Arnold Beckmann and Norbert Preining
Journal Logic Computation (2015) 25(3): 527-547
Publication year: 2015

We consider intermediate predicate logics defined by fixed well-ordered (or dually well-ordered) linear Kripke frames with constant domains where the order-type of the well-order is strictly smaller than~$\omega^\omega$. We show that two such logics of different order-type are separated by a first-order sentence using only one monadic predicate symbol. Previous results by Minari, Takano and Ono, as well as the second author, obtained the same separation but relied on the use of predicate symbols of unbounded arity.

Leave a Reply

Your email address will not be published. Required fields are marked *