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Abstract

We consider intermediate predicate logics defined by fixed well-ordered
(or dually well-ordered) linear Kripke frames with constant domains where
the order-type of the well-order is strictly smaller than ωω. We show
that two such logics of different order-type are separated by a first-order
sentence using only one monadic predicate symbol. Previous results by
Minari, Takano and Ono, as well as the second author, obtained the same
separation but relied on the use of predicate symbols of unbounded arity.

1 Introduction

There are at least three good reasons for studying predicate logics defined by
linear Kripke frames with constant domains: These logics are typical examples
of intermediate predicate logics, that is logics that lie between classical and in-
tuitionistic logic (Horn, 1969; Ono, 1972/73), and bare relation to linear-time
temporal logic (Nowak and Demri, 2007; Prior, 1967; Rohde, 1997). Further-
more, they have a strong link to one of the three main t-norm based logics
called Gödel logics (Hájek, 1998): The logics defined by countable linear Kripke
frames with constant domains coincide with the set of all Gödel logics (Beck-
mann and Preining, 2007). Finally, they have interesting connections to the
theory of linear orders. For example, studying countable closed linear orderings
with respect to continuous monotone embeddability has lead to the surprising
result that there are only countably many Gödel logics (Beckmann et al., 2008;
Laver, 1971).

The original motivation for this paper was to understand how much we
can express in the world of linear Kripke frames with constant domain, if the
language is restricted to one of the simplest reasonable first-order fragment
which extends propositional logic, which is first-order formulas based on exactly
one monadic predicate symbol. Very early guesses, that there are only four such
logics (“What can we express more than infima and suprema and their order?”),
were soon overthrown. In fact, our results in this paper show that there are
countably infinite many such logics.
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More specific, we will show (in Theorem 18) that for any ordinals 0 < α <
β < ωω, the logics defined by α and β as well-founded linear Kripke frames
with constant domains can be separated by a first-order sentence which uses
only one monadic predicate symbol. The same holds if we take ordinals as
dually well-founded Kripke frames (Theorem 23).

Related work The study of the relation between Kripke frames and ordinals
carries a long tradition, and results related to ours have been obtained in Minari
et al. (1990), which in turn is related to Minari (1985). Similar result have been
obtained in Preining (2002). Minari (1985) showed that any ordinal ξ less then
ωω is Kripke-definable, which in his interpretation means that there is a formula
separating the logics of the Kripke frames based on ξ and ξ + 1.

We improve this result by firstly providing a formula in the monadic fragment
with only one predicate symbol, and secondly, by separating any two logics of
Kripke frames based on two different ordinals less than ωω. This also explains
why the formulas we are providing are dependent on both ordinals.

Minari (1985) also discusses the definability of ordinals larger then ωω: He
shows that no ordinal bigger then ω1 is Kripke-definable (based on Löwenheim-
Skolem), and conjectures that no ordinal between ωω and ω1 is definable.

Relation to quantified propositional logic The monadic fragment under
discussion can be seen as the linear fragment of Gabbay’s 2h logic (Gabbay,
1981), the second order propositional logic, which could also be called intu-
itionistic quantified propositional logic. The semantic of this logic is based
on Kripke frames with the addition that the set of possible interpretations for
atomic propositions is not necessarily the full set, but any arbitrary subset of
the sets of all upsets of the Kripke frame (set D in (Gabbay, 1981)). Note that
the restriction to evaluate atomic propositions into a restricted set does not
apply to the extension to compound formulas. Each first order quantification,
as its variable is only occurring within one monadic predicate symbol, can be
replaced by a corresponding propositional quantification. In this way, each par-
ticular model of the second order propositional logic 2h can be simulated by
one particular model and evaluation of monadic first order linear Kripke logic.
Thus, counter models can be translated from second order propositional logic
2h to monadic first order logics of linear Kripke frames with constant domains,
and vice versa.

A less direct relation exists to quantified propositional Gödel logics (Baaz
et al., 2001, 2000), where the full set of truth values can act as possible inter-
pretation for atomic propositions. In this case, counter models can be translated
from quantified propositional Gödel logic to monadic first order Gödel logic, but
not vice versa.

The present article also exploits and continues the connection between logics
of linear Kripke frames and Gödel logics, obtained in Beckmann and Preining
(2007). Due to the fact that evaluations in Kripke frames are governed by special
rules with respect to the order — in other words, evaluations in Kripke frames
are based on upsets — evaluations in Gödel logics have a much simpler structure.
Furthermore we view our results as part of a wider research programme which
connects the theory of linear orders to investigations of logics. In particular,
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we are interested in the question which order theoretic notion resembles the
structure of logics best, see Section 6 for more details.

To keep the article self-contained we will introduce all necessary definitions,
but refer the reader to the Handbook article on Gödel logics for more background
(Baaz and Preining, 2011). Section 2 introduces logics of Kripke frames and
ordinals as Kripke frames, as well as giving the necessary notations of Descriptive
Set Theory. It furthermore contains the definitions of important formulas and
the main technical Lemma 14 computing their evaluations. Although not strictly
necessary, we treat the special case of ordinals of the form ωn separately in
Section 3 as it is simpler than the general case. The separation theorem for well-
founded Kripke frames, Theorem 18, and it’s proof is given in Section 4. Finally,
the case of dually well-ordered Kripke frames with Theorem 23 is presented in
Section 5. We conclude with plans for further extensions and possible future
research in Section 6.

2 Preliminaries

2.1 Logics based on (linear) Kripke frames

In the following we are only concerned with linear Kripke frames with constant
domains. Thus, the following definitions are targeted towards these cases. Note
that the class of logics based on countable linear Kripke frames with constant
domain is equivalent to the class of Gödel logics, as shown in Beckmann and
Preining (2007).

Definition 1 (Kripke frame (linear, constant domain)). A Kripke frame is a
triple (K,R, U) where (K,R) is a (non-empty) quasi order (i.e., reflexive and
transitive), and U is a countable infinite set of objects.

We often define Kripke frames by not mentioning its domain U . In this case
it is assumed that U is the set of natural numbers N = {0, 1, 2, . . . }.

In standard Kripke style semantics evaluations are considered via forcing
relations in the worlds (i.e., elements of K), together with conditions that guar-
antee persistency, i.e., that if A holds in a world w, it also holds in all worlds w′

such that w R w′. Instead of following this approach we will consider an equiv-
alent approach in which valuations map to the set of upward closed subsets of
(K,R), i.e., the latter will serve as the set of truth values for valuations.

Definition 2 (Upsets). Let K be a Kripke frame. The set of all upsets of K,
Up(K), consists of all upward closed subsets of K, where X ⊆ K is upward
closed iff x ∈ X and R(x, y) implies y ∈ X, for all x, y ∈ K.

In case of linear Kripke frames the set Up(K) is a complete total order with
respect to ⊆. It can also be viewed as a complete lattice under the usual set-
theoretic lattice operations. We will often write ≤ instead of ⊆, and we will
denote with 0K the smallest element in Up(K), i.e., the empty set 0K = ∅, and
with 1K the largest element, i.e., the full frame 1K = K.

We will furthermore freely use notations from linear orders, especially in-
tervals like [a, b] for a and b in Up(K), with the usual meaning [a, b] = {c ∈
Up(K) : a ⊆ c ⊆ b}.

3



Let L be a language of first-order logic. Formulas and their free and bound
variables are defined as usual. A formula is called closed if it does not contain
free variables. Let U be a domain. With LU we denote the language L extended
by constant symbols for elements in U . For u ∈ U , we will identify the constant
symbol and its corresponding element, and write u for both of them.

We will base our definition of semantics on Up(K) instead of K itself. This
is straight-forward in the constant domain case.

Definition 3 (Valuation). Let K be a Kripke frame. A function ϕ mapping
closed atomic formulas in LU into Up(K) is called a valuation for K

The extension of ϕ to all closed formulas in LU is defined by structural
induction as follows:

ϕ(A ∧B) = min{ϕ(A), ϕ(B)} ϕ(A ∨B) = max{ϕ(A), ϕ(B)}

ϕ(⊥) = 0K ϕ(A→ B) =

{
1K if ϕ(A) ≤ ϕ(B)

ϕ(B) otherwise

ϕ(∀xA(x)) = inf{ϕ(A(u)) : u ∈ U} ϕ(∃xA(x)) = sup{ϕ(A(u)) : u ∈ U}

where min, max, inf, sup are the usual order-theoretic operations on Up(K).

We are interested in fragments of one monadic predicate symbol. Thus, we
assume that our L contains a unary predicate symbol P , which we keep fixed
throughout this article. To simplify notation, we will often use the following
abbreviation for c ∈ U :

ϕ(c) := ϕ(P (c))

Based on the above definition of a valuation we will define the validity of a
formula and the notion of logic as the set of formulas valid under all valuations.
Note that the definition of logic here does not involve entailment relations. In
the case of Gödel logics (which is the same as countable linear Kripke frames
with constant domains), entailment based logics and validity based logics do not
coincide. For a more detailed discussion see Baaz and Preining (2011), Baaz
et al. (2007), or Beckmann and Preining (2007).

Definition 4 (Validity). Let K be a Kripke frame. The logic of a fixed Kripke
frame K, L(K), is the set of all closed formulas A in L, such that for all
valuations ϕ for K, A evaluates to 1K under ϕ, i.e., ϕ(A) = 1K.

Let α be an ordinal in the set-theoretic sense, that is, α is the set of all
smaller ordinals. We will denote the less-than-or-equal relation on ordinals
by � to distinguish it from the order relation on upsets. Ordinals as Kripke
frames have already been studied in Minari (1985) and Minari et al. (1990). We
will follow their approach and define what they called normal ordinal logics (for
countable ordinals).

Definition 5 (Ordinal-based Kripke frames). For an ordinal α � 0, let Kα be
the Kripke frame given by the set α and the relation �. The upsets of Kα have
the form [β, α) = {γ : β � γ ≺ α}, and β 7→ [β, α) is an isomorphism between
(α+1,�) and (Up(Kα),⊆). We will use β↑ to denote [β, α).
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Consider Kα and the corresponding set of upsets Up(Kα). We observe that
α↑ = ∅ = 0Kα

and that 0↑ = 1Kα
. The order ⊆ on upsets corresponds to � on

ordinals.

Definition 6 (Logics of ordinal-based Kripke frames). We will denote the logic
of Kα, L(Kα), by L(α).

For other studies related to logics of Kripke frames over ordinals we refer
the reader to Minari et al. (1990).

Example. Consider the ordinal α = ω22 + ω13 + ω02. As a set, α consists of
all ordinals less than α:

α = {0, 1, . . . , ω22 + ω13 + ω01}

Writing α as a Kripke frame we obtain a frame as displayed on the lower right.
The origin of the frame is labelled with the ordinal 0, the last element of the
frame is the ordinal ω22 + ω13 + ω01. Considering the upsets of the frame,
drawn horizontally in the left part of the following figure, we get exactly the
same sequence with one additional element at the left end, the empty set, which
can be represented by the original ordinal α. Considering the ordering relations
we see that in the order of the ordinals, we have ω2 ≺ ω2 + ω, and accordingly

the subset relation of the upsets will give ω2↑ ⊃ (ω2 + ω)
↑
. We also indicate the

imaginative point for α itself in the Kripke frame, that links to 0K.

0

ω

ω2

ω2

ω2 + ω

ω2 + ω2

ω22

ω22 + ω

ω22 + ω2

ω22 + ω3
ω22 + ω3 + 1

0
↑

1K

⊂

ω
2
↑⊂

(
ω
2
2
)
↑

⊂

(
ω
2
2

+
ω
)
↑

⊂

(
ω
2
2

+
ω
2
)
↑

⊂

(
ω
2
2

+
ω
3
)
↑

⊂

(
ω
2
2

+
ω
3

+
1
)
↑

⊂

α
↑

=
∅

0K

α

In the following we will keep the following conventions to ensure that the
reader does not get lost:
• Kripke frames are drawn vertically
• elements of the Kripke frame are denoted with lowercase Greek letters
• the upsets of the Kripke frames are drawn horizontally
• upsets are denoted by α↑

• comparing elements of the Kripke frame, i.e., ordinals, we use �
• comparing elements of Up(K) we use either ⊆ or ≤

2.2 Descriptive Set Theory

We recall a few necessary notions from the framework of Polish spaces, which
are separable, completely metric topological spaces. For our discussion it is only
necessary to know that the set of upsets are all Polish spaces. For a detailed
exposition see Kechris (1995) or Moschovakis (1980).
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Definition 7 ((iterated) Cantor-Bendixon derivative). For any topological
space X let

X ′ = {x ∈ X : x is limit point of X}.
We call X ′ the Cantor-Bendixon derivative of X.

Using transfinite recursion we define the iterated Cantor-Bendixon deriva-
tives Xα, α ordinal, as follows:

X0 = X

Xα+1 = (Xα)′

Xλ =
⋂
α<λ

Xα, if λ is limit ordinal.

It is obvious that X ′ is closed, that X is perfect iff X = X ′, and that Xα

for ordinals α � 0 is a decreasing transfinite sequence of closed subsets of X.

Theorem 8 (Cantor-Bendixon). Let X be a polish space. For some countable
ordinal α0, Xα = Xα0 for all α � α0 (Xα0 is the perfect kernel).

Definition 9 (Cantor-Bendixon rank, CB-rank). The Cantor-Bendixon rank
of an element x ∈ X, where X is countable closed polish space, is defined as

rkCB(x) = sup{α : x ∈ Xα}

The rank of X is defined as rkCB(X) = sup{rkCB(x) : x ∈ X}.

Since Up(K) forms a Polish Space, we can compute the Cantor-Bendixon
rank of elements of it.

Lemma 10. Assume β = γ + ωξ � α. Then rkCB(β↑) = ξ in Up(L(α)).

Proof. Under the assumption β = γ + ωξ � α we have that the Cantor normal
form of β ends in ωξ. Let Wα be Up(L(α))\{0↑}, and W ξ

α its Cantor-Bendixon

derivations. As 0↑ is isolated in Up(L(α)) we have that W ξ
α =

(
Up(L(α))

)ξ
for

ξ � 0. Let
Sξ =

{
(γ + ων)

↑
: γ + ων � α and ν � ξ

}
.

We observe that
(γ + ων)

↑ ∈ Sξ iff ν � ξ . (1)

Claim. W ξ
α = Sξ for ξ � 0.

This claim immediately proves the lemma: The assumption β = γ +ωξ � α
together with the claim and (1) shows that

β ∈W η
α iff β ∈ Sη iff ξ � η .

Thus rkCB(β↑) = sup{η : β ∈W η
α} = ξ.

We are left to prove the claim, which we do by transfinite induction on ξ.
For ξ = 0 we have

β↑ ∈W 0
α ⇐⇒ β↑ ∈ Up(L(α)) \ {0↑}
⇐⇒ β � α and β � 0

⇐⇒ β � α and β = γ + ων and ν � 0

⇐⇒ β↑ ∈ S0
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so the claim follows in this case.
For ξ a limit ordinal, we immediately obtain⋂

η≺ξ

Sη = Sξ

using (1). Hence the claim follows by induction.
Finally, assume ξ = η+1. To prove the claim by induction, we have to show

that (Sη)′ = Sξ. It is easy to see that the isolated points in Sη are exactly of

the form (γ + ωη)
↑
. Therefore, using (1) we obtain

(Sη)′ = {(γ + ων)
↑

: γ + ων � α and ν � η}

= {(γ + ων)
↑

: γ + ων � α and ν � ξ} = Sξ .

Example (cont). We are still considering the ordinal α = ω22 + ω13 + ω02
from above. The first Cantor-Bendixon derivative of the Upsets of α, Up(α)′ =
Up(α)(1) as well as the second one, Up(α)(2), are shown on the left, while the
original Kripke frame is still shown on the right. We see that at the second
derivative only isolated points remain, thus at the next stage we will obtain the
empty set.

0

ω

ω2

ω2

ω2 + ω

ω2 + ω2

ω22

ω22 + ω

ω22 + ω2

ω22 + ω3
ω22 + ω3 + 1

0
↑

1K

⊂

ω
2
↑⊂

(
ω
2
2
)
↑

⊂

(
ω
2
2

+
ω
)
↑

⊂

(
ω
2
2

+
ω
2
)
↑

⊂

(
ω
2
2

+
ω
3
)
↑

⊂

(
ω
2
2

+
ω
3

+
1
)
↑

⊂

α
↑

=
∅

0K

α

Up(α)

Up(α)(1)

Up(α)(2)

In the following we will often have to consider the rank of an element in the
context of a fixed valuation ϕ, e.g. when computing the evaluation of specific
formulas under ϕ. In such situations, the ranks needs to be computed relative
to the set of actually taken truth values under ϕ. We call this the relativised
Cantor-Bendixon rank, since we relativise to the set of all actually taken truth
values. Since this set is not necessarily a closed set, we will have to take the
topological closure of it, and compute the rank within this closure.

Definition 11 (relativised CB-rank). Given a specific valuation ϕ, we define
the set of evaluations of atomic formulas and its closure as

ϕ(P (U)) = {ϕ(P (u)) : u ∈ U} ,

VU = ϕ(P (U)) ,

and the relativised CB-rank of c as

rkϕCB(c) = rkCB(c) in VU .

If rkϕCB(c) = 0 (i.e., ϕ(c) = ϕ(P (c)) is isolated in VU ), we define the
successor of this element, written as succϕ(c), as its order-theoretic successor
within VU .
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In other words, the set VU is the smallest subset of Up(K) that can serve as
valuation base for the given ϕ. Note that in the above definition we will write
only c in rkϕCB(c) instead of the more noisy rkϕCB(ϕ(P (c))).

We continue defining formulas that will be used to characterise infima of
a certain degree. The first definition (A ≺ B) is standard notation in Gödel
logics, and expresses the strict less in the linear order of the truth values with
the sole exception at 1K where we have 1K ≺ 1K. The definition of infimum
follows the intuitive, order theoretic, definition.

A ≺ B = ((B → A)→ B)

Q(c) = ∀x((Pc ≺ Px)→ Px)

Inf0(x) = ⊥ → ⊥
Infn+1(x) = ∀y((Px ≺ Py)→ ∃z(Infn(z) ∧ Px ≺ Pz ≺ Py))

Later in the proofs of the central theorems we will often refer to the following
lemmas computing the evaluations of the above defined formulas, depending on
topological properties of the evaluation of P (c). As mentioned already above,
the formula A ≺ B defines the strictly-less relation on the truth values, with
the exception at 1K:

Lemma 12. Let ϕ be a valuation for a Kripke frame K. Then

ϕ(A ≺ B) =

{
1K ϕ(A) < ϕ(B)

ϕ(B) otherwise

Proof. If ϕ(A) < ϕ(B), then by definition ϕ(B → A) = ϕ(A), and thus again
by definition ϕ((B → A) → B) = ϕ(A → B) = 1K. Otherwise we have
ϕ(B → A) = 1K and thus (adding > temporarily) ϕ((B → A)→ B) = ϕ(> →
B) = ϕ(B).

The next lemma exhibits an important property, namely that we can distin-
guish between isolated points (that is rkϕCB(c) = 0) and not-isolated points.

Lemma 13. Let ϕ be a valuation for Kα. Then

ϕ(Q(c)) =

{
ϕ(c) if ϕ(c) = 1K or rkϕCB(c) ≥ 1

succϕ(c) otherwise

Proof. First, assume that ϕ(c) = ϕ(P (c)) = 1K. Then for all u ∈ U we have
ϕ(Pc ≺ Pu) = ϕ(P (u)), and thus (Pc ≺ Pu) → Pu as well as Q(c) evaluates
to 1K, which indeed is ϕ(c).

Consider now an arbitrary u ∈ U : If ϕ(c) ≥ ϕ(u), then ϕ(Pc ≺ Pu) =
ϕ(Pu), and the inner part of Q(c) evaluates to ϕ(Pu → Pu) = 1K. If ϕ(c) <
ϕ(u), then the inner part evaluates to ϕ(u). As a consequence we have that

ϕ(Q(c)) = inf{ϕ(u) : ϕ(u) > ϕ(c)}.

Considering now the rank of ϕ(c) = ϕ(P (c)) in VU : Let us assume first that
the rank of ϕ(c) in VU is bigger than 1, i.e., rkϕCB(c) ≥ 1. Since we are
discussing only ordinals, we know that there has to be a strictly decreasing
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sequence to ϕ(P (c)) in VU . That is, there are un ∈ U such that ϕ(P (un)) is a
strictly decreasing sequence with limit ϕ(P (c)). This shows that

ϕ(Q(c)) = inf{ϕ(u) : ϕ(u) > ϕ(c)} = ϕ(c).

In the case that the rank of ϕ(c) in VU is 0, i.e., ϕ(c) is isolated in VU , we know
there is a successor, and the above infimum evaluates exactly to the successor
of ϕ(c) in VU , that is

ϕ(Q(c)) = inf{ϕ(u) : ϕ(u) > ϕ(c)} = succϕ(c).

Lemma 14. Let ϕ be a valuation for Kα, then

ϕ(Infn(c)) =


1K if ϕ(c) = 1K or rkϕCB(c) ≥ n
ϕ(c) if ϕ(c) 6= 1K and 0 < rkϕCB(c) < n

succϕ(c) otherwise, i.e., ϕ(c) 6= 1K, rkϕCB(c) = 0 and n > 0.

Proof. The proof is by induction on n. Let us recall the definition of Infn(c):

Inf0(c) = ⊥ → ⊥
Infn+1(c) = ∀y((Pc ≺ Py)→ ∃z(Infn(z) ∧ Pc ≺ Pz ≺ Py))

Obviously, ϕ(Inf0(c)) = 1K for any c ∈ U , which proves the lemma for the
case n = 0, since rkϕCB(c) ≥ 0 for all c.

Now assume n > 0. Let

C(x, y, z) = Infn−1(z) ∧ Px ≺ Pz ≺ Py

and

B(x, y) = ∃zC(x, y, z)

then Infn(x) can be written as ∀y((Px ≺ Py)→ B(x, y)).

Claim.
ϕ(B(c, d)) ≥ min(ϕ(c), ϕ(d)) (2)

and
ϕ
(
(Pc ≺ Pd)→ B(c, d)

)
≥ ϕ(c) (3)

for any c, d ∈ U . Thus,
ϕ(Infn(c)) ≥ ϕ(c) (4)

for any c ∈ U .

Proof of Claim. To prove the first part, it is enough to show

ϕ(C(c, d, c)) ≥ min(ϕ(c), ϕ(d)) .

By induction hypothesis we have ϕ(Infn−1(c)) ≥ ϕ(c). Lemma 12 shows that
ϕ(Pc ≺ Pc) = ϕ(c) and ϕ(Pc ≺ Pd) ≥ ϕ(c). Putting things together we obtain
ϕ(C(c, d, c) ≥ min(ϕ(c), ϕ(d)), hence (2) follows.
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The second part follows using (2) and distinguishing cases depending on
whether ϕ(c) < ϕ(d) or not. If ϕ(c) < ϕ(d), then

ϕ((Pc ≺ Pd)→ B(c, d)) = ϕ(B(c, d)) ≥ min(ϕ(c), ϕ(d)) = ϕ(c) .

Otherwise, ϕ(c) ≥ ϕ(d), and

ϕ(B(c, d)) ≥ min(ϕ(c), ϕ(d)) = ϕ(d) = ϕ(Pc ≺ Pd) .

Hence,
ϕ((Pc ≺ Pd)→ B(c, d)) = 1K ≥ ϕ(c) .

The last part follows directly from (3).

Let c ∈ U . We consider cases according to the properties satisfied by c. If
ϕ(c) = 1K then ϕ(Infn(c)) = 1K by (4).

Assume ϕ(c) < 1K. Let m be rkϕCB(c).
If m ≥ n, we have to show that ϕ((Pc ≺ Pd) → B(c, d)) = 1K for any

d ∈ U . Let d ∈ U be given. If ϕ(d) ≤ ϕ(c), then, by Lemma 12 and (2),

ϕ(Pc ≺ Pd) = ϕ(d) = min(ϕ(c), ϕ(d)) ≤ ϕ(B(c, d))

hence ϕ((Pc ≺ Pd) → B(c, d)) = 1K. In the other case ϕ(d) > ϕ(c). By
definition of Cantor-Bendixon rank, as rkϕCB(c) = m, there exists b ∈ U such
that rkϕCB(b) = m−1 and ϕ(c) < ϕ(b) < ϕ(d). Induction hypothesis yields
ϕ(Infn−1(b)) = 1K as rkϕCB(b) = m−1 ≥ n−1. Hence, by Lemma 12,

ϕ(C(c, d, b)) = ϕ
(
Infn−1(b) ∧ (Pc ≺ Pb) ∧ (Pb ≺ Pd)

)
= 1K .

Thus, ϕ(B(c, d)) = 1K and the assertion follows for m ≥ n.

Now assume 0 < m < n. We have to show ϕ(Infn(c)) = ϕ(c).
By definition of Cantor-Bendixon rank, there exist some di ∈ U such that

ϕ(c) < ϕ(di),

∀b∈U
(
ϕ(c) < ϕ(b) < ϕ(di)⇒ rkϕCB(b) < m

)
and ϕ(c) = infi(ϕ(di)). We will show that ϕ(B(c, di)) ≤ ϕ(di) for all i, which
will prove this case because

ϕ(Infn(c)) ≤ inf
i

(
ϕ((Pc ≺ Pdi)→ B(c, di))

)
= inf

i

(
ϕ(B(c, di))

)
≤ inf

i

(
ϕ(di)

)
= ϕ(c)

and ϕ(Infn(c)) ≥ ϕ(c) using (4).
To prove ϕ(B(c, di)) ≤ ϕ(di) we will show ϕ(C(c, di, b)) ≤ ϕ(di) for any

b ∈ U , by distinguishing cases according to the comparison of ϕ(b) with ϕ(c)
and ϕ(di). Let b ∈ U be given. C(c, di, b) is of the form

Infn−1(b) ∧ (Pc ≺ Pb) ∧ (Pb ≺ Pdi) .

If ϕ(b) ≤ ϕ(c) then

ϕ(C(c, di, b)) ≤ ϕ(Pc ≺ Pb) = ϕ(b) ≤ ϕ(c) < ϕ(di) .
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If ϕ(b) ≥ ϕ(di) then

ϕ(C(c, di, b)) ≤ ϕ(Pb ≺ Pdi) = ϕ(di) .

If ϕ(c) < ϕ(b) < ϕ(di) then rkϕCB(b) < m ≤ n−1 by assumption, thus, using
the induction hypothesis,

ϕ(C(c, di, b)) ≤ ϕ(Infn−1(b)) ≤ succϕ(b) ≤ ϕ(di) .

For the final case, assume m = 0 < n. We have to show ϕ(Infn(c)) =
succϕ(c).

By definition of Cantor-Bendixon rank, there exists some d ∈ U such that
ϕ(c) < ϕ(d) and, for all b ∈ U , either ϕ(b) ≤ ϕ(c) or ϕ(d) ≤ ϕ(b). We first
prove

ϕ(B(c, d)) = ϕ(d) (5)

by showing that ϕ(C(c, d, b)) ≤ ϕ(d) for any b ∈ U , and that ϕ(C(c, d, d)) =
ϕ(d). Let b ∈ U be arbitrary. C(c, d, b) is of the form

Infn−1(b) ∧ (Pc ≺ Pb) ∧ (Pb ≺ Pd) .

If ϕ(b) ≤ ϕ(c) then

ϕ(C(c, d, b)) ≤ ϕ(Pc ≺ Pb) = ϕ(b) ≤ ϕ(c) < ϕ(d) .

If ϕ(b) > ϕ(c), then ϕ(b) ≥ ϕ(d) by choice of d, hence

ϕ(C(c, d, b)) ≤ ϕ(Pb ≺ Pd) = ϕ(d) .

To evaluate ϕ(C(c, d, d)), we compute ϕ(Infn−1(d)) ≥ ϕ(d) by induction hy-
pothesis, ϕ(Pc ≺ Pd) = 1K, and ϕ(Pd ≺ Pd) = ϕ(d). This finishes the proof
of (5).

At last, to show ϕ(Infn(c)) = ϕ(d) it suffices to show

ϕ
(
(Pc ≺ Pb)→ B(c, b)

)
≥ ϕ(d)

for all b ∈ U , because ϕ((Pc ≺ Pd) → B(c, d)) = ϕ(d) follows using (5). Let
b ∈ U be arbitrary. If ϕ(b) ≤ ϕ(c) then ϕ(Pc ≺ Pb) = ϕ(b) and ϕ(B(c, b)) ≥
min(ϕ(c), ϕ(b)) = ϕ(b) using (2). Thus,

ϕ((Pc ≺ Pb)→ B(c, b)) = 1K ≥ ϕ(d) .

Otherwise, ϕ(b) > ϕ(c), hence ϕ(b) ≥ ϕ(d) by choice of d. Thus

ϕ((Pc ≺ Pb)→ B(c, b)) = ϕ(B(c, b)) ≥ ϕ
(
Infn−1(d)∧(Pc ≺ Pd)∧(Pd ≺ Pb)

)
.

We have ϕ(Infn−1(d)) ≥ ϕ(d) by induction hypothesis, ϕ(Pc ≺ Pd) = 1K, and
ϕ(Pd ≺ Pb) ≥ ϕ(b) ≥ ϕ(d). Hence

ϕ((Pc ≺ Pb)→ B(c, b)) ≥ ϕ(d)

which finishes the proof.

In the following, our aim is to distinguish the logics L(α) and L(β) based on
the Kripke frames Kα and Kβ according to Definition 5 on page 4, for different
ordinals α and β.
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3 The simple case

In a first step we separate the logics determined by ordinals of the form αn = ωn,
for n ≥ 0. In the following we will refer to the linear Kripke frame where the
carrier set is equivalent to the ordinal ωn as Kn.

Definition 15. Let

An = ∀x∀y(Infn(x) ∧ Infn(y) ∧Q(x)→ Q(y))

Theorem 16. With the definitions above we have An 6∈ L(Kn), but An ∈
L(Km) for all m < n.

Proof. We first show that An 6∈ L(Kn) by providing a model in which ϕ(An) 6=
1K, i.e., does not evaluate to the full Kripke frame.

Since the outer quantifiers are universal, we have to give instances for x
and y rendering the inner part false. Let U , the universe of objects, be equal to
the upset of K, U = Up(K), and fix the valuations in the canonical way, i.e.,

ϕ(u) = u

Now let x = 1K and y = 0K. Thus, according to Lemma 14, we obtain that

ϕ(Infn(x)) = ϕ(Infn(1K)) = 1K due to ϕ(1K) = 1K

ϕ(Infn(y)) = ϕ(Infn(0K)) = 1K due to rkϕCB(0K) = n > 0.

According to Lemma 13, we obtain that

ϕ(Q(x)) = ϕ(Q(1K)) = 1K due to ϕ(1K) = 1K

ϕ(Q(y)) = ϕ(Q(0K)) = 0K due to rkϕCB(0K) ≥ 1.

Combining these, we obtain that

ϕ(An) = 1K ∧ 1K ∧ 1K → 0K = 0K,

which shows that An 6∈ L(Kn).
Next we prove that An ∈ L(Km) for all m < n. We have to show that for

each evaluation and each selection of x and y, the inner part evaluates to true,
i.e., 1K. This is done by case distinction over value and rank of x and y, see
Table 1 on the next page. Thus, An ∈ L(Km) for m < n.

4 The general case

The general case builds upon the ideas presented in the previous section, and
extends it to any logic based on a Kripke frame with carrier set determined by
an ordinal less than ωω.

At the core of the proof is the idea that also axiomatises finitely valued
logics, namely that if we have a disjunction of n implications, but less than n
many truth values, then the formula evaluates to true. More formally, define
chain(x1, . . . , xn) as follows:

chain(x1, . . . , xn) = (P (x1)→ Q(x2)) ∨
n−1∨
i=2

(P (xi)→ P (xi+1)) .

12



Table 1: Evaluations of An and its sub-formulas

IF THEN

x y rkϕCB(x) rkϕCB(y) Infn(x) Infn(y) Q(x) Q(y) An

1K 1K / / 1K 1K 1K 1K 1K

< 1K 1K 0 < . < n / x 1K x 1K 1K

0 / S(x) 1K S(x) 1K 1K

1K < 1K / 0 < . < n 1K y 1K y 1K

/ 0 1K S(y) 1K S(y) 1K

< 1K < 1K 0 < . < n 0 < . < n x y x y 1K

0 < . < n 0 x S(y) x S(y) 1K

0 0 < . < n S(x) y S(x) y 1K

0 0 S(x) S(y) S(x) S(y) 1K

S(x) is short for succϕ(x); if x or y = 1K, then the respective rkϕCB is irrelevant (/)

In the following we will mainly consider infinite ordinals. For the finite case
we only mention that by replacing in the above definition Q with P one obtains
the standard chain definition that also provides an axiomatisation of the logics
of finite linear Kripke frames with constant domains (Baaz et al., 2007).

An obvious consequence is

Proposition 17. Let ϕ be a valuation, and a1, . . . , an elements in U . Then we
have the following:

1. If ϕ(a1) > succϕ(a2) and ϕ(a2) > ϕ(a3) > · · · > ϕ(an), then

ϕ(chain(a1, . . . , an)) = succϕ(a2) < 1K .

2. If one comparison in the above sequence is not strictly decreasing, then

ϕ(chain(a1, . . . , an)) = 1K .

Proof. In the first case, we have ϕ(P (a1)→ Q(a2)) = ϕ(Q(a2)) and ϕ(P (ai)→
P (ai+1)) = ϕ(P (ai+1)) for i ≥ 2, thus

ϕ(chain(a1, . . . , an)) = max{ϕ(Q(a2)), ϕ(a3), . . . , ϕ(an)}
= max{succϕ(a2), ϕ(a3), . . . , ϕ(an)} = succϕ(a2) < ϕ(a1) ≤ 1K .

In the second case, either ϕ(a1) ≤ succϕ(a2) or ϕ(ai) ≤ ϕ(ai+1) for some
i ≥ 2. If ϕ(a1) ≤ succϕ(a2) we have

ϕ(chain(a1, . . . , an)) ≥ ϕ(P (a1)→ Q(a2)) = 1K ,

and otherwise

ϕ(chain(a1, . . . , an)) ≥ ϕ(P (ai)→ P (ai+1)) = 1K .
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Let 0 ≺ α ≺ β ≺ ωω, and assume that β is infinite. The Cantor normal form
of α and β can be written as

α = ωnkn + · · ·+ ω0k0
β = ωnln + · · ·+ ω0l0

(6)

for some finite n, l0, . . . , ln, k0, . . . , kn with n > 0 (as β � ω) and ln > 0 (some
or all of the other ki and li may be 0). As α ≺ β, there is some d ≤ n such
that kd < ld. Choose d maximal, i.e., ki = li for i = d + 1, . . . , n. As 0↑ = 1K

and 1K satisfies all of the Infn-formulas, we need an additional variable xn+1
1

reserved to deal with this situation. Then, let

~x = (xn+1
1 , xn1 , . . . , x

n
ln , . . . , x

d
1, . . . , x

d
ld

),

and define Aα,β(~x) and Aα,β as follows:

Aα,β(~x) =
( n∧
u=d

lu∧
i=1

Infu(xui )
)
→ chain(~x)

and

Aα,β = ∀~xAα,β(~x).

Example (cont). Continuing our example, let α = ω22 + ω13 + ω02 and
β = ω22 + ω14 + ω01. That is, k0 = 2, k1 = 3, k2 = 2, l0 = 1, l1 = 4, l2 = 2.
We obtain d = 1, since k1 = 3 < 4 = l1, and it is the largest one.

0

ω

ω2

ω2

ω2 + ω

ω2 + ω2

ω22

ω22 + ω

ω22 + ω2

ω22 + ω3
ω22 + ω3 + 1

α

α

β

β

0
↑

1K

⊂

ω
2
↑⊂

(
ω
2
2
)
↑

⊂

(
ω
2
2

+
ω
)
↑

⊂

(
ω
2
2

+
ω
2
)
↑

⊂

(
ω
2
2

+
ω
3
)
↑

⊂

(
ω
2
2

+
ω
3

+
1
)
↑

⊂

α
↑

=
∅

0K

Up(α)

0
↑

1K

⊂

ω
2
↑

⊂

(
ω
2
2
)
↑

⊂

(
ω
2
2

+
ω
)
↑

⊂

(
ω
2
2

+
ω
2
)
↑

⊂

(
ω
2
2

+
ω
3
)
↑

⊂

(
ω
2
2

+
ω
4
)
↑

⊂

β
↑

=
∅

0K

Up(β)

x31x21x22x11x12x13x14

Since we add an additional term for 1K, we also have k3 = l3 = 1. The variable
vector becomes

~x = (x31, x
2
1, x

2
2, x

1
1, x

1
2, x

1
3, x

1
4)

and Aα,β is

∀~x(Inf2(x21) ∧ . . . ∧ Inf1(x13) ∧ Inf1(x14)→ chain(~x))

The diagram on the side shows the two ordinals, and the intended interpretation
of the variables as the respective infima. If the xij are chosen as shown, the
formula Aα,β will evaluate to 1K in L(α) but something smaller in L(β).
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Theorem 18. If 0 ≺ α ≺ β ≺ ωω with β � ω, then Aα,β ∈ L(α), but Aα,β 6∈
L(β).

Proof. Let K be Kβ . First we show that Aα,β 6∈ L(β) in the very same way
as in the in the proof of the simple case, Theorem 16, namely by defining the
universe of our valuation to be Up(K), and the valuation to be ϕ(P (c)) = c for
c ∈ Up(K). We have to provide an instance ~a such that the formula Aα,β(~a)
evaluates to something different from 1K. We choose ~a as the canonical points
specified by the Cantor normal form of ordinal β; that is, let

aij = (ωnln + · · ·+ ωi+1li+1 + ωij)
↑

for d ≤ i ≤ n+1 and 0 < j ≤ li. In particular, ϕ(P (an+1
1 )) = 0↑ = 1K. Using

Lemma 10, we have rkϕCB(aij) = i for d ≤ i ≤ n and 0 < j ≤ li. Hence,

Lemma 14 shows ϕ
(
Infi(aij)

)
= 1K for d ≤ i ≤ n+1 and 0 < j ≤ li.

Let
~a = (an+1

1 , an1 , . . . , a
n
ln , . . . , a

d
1, . . . , a

d
ld

) .

Then ϕ(an+1
1 ) > ϕ(an1 ) > . . . > ϕ(adld) and ϕ(an1 ) = succϕ(an1 ) as β is infinite.

Thus, Proposition 17 shows

ϕ
(

chain(~a)
)

= succϕ(an1 ) = ϕ(an1 ) < ϕ(an+1
1 ) = 1K .

This proves the first direction.

In order to show Aα,β ∈ L(α), let ϕ be a valuation, and let aij be any choice
of elements in U , for d ≤ i ≤ n+1 and 0 < j ≤ li. We have to show

ϕ(

n∧
i=d

li∧
j=1

Infi(aij)→ chain(~a)) = 1K .

To this end, assume ϕ(chain(~a)) < 1K. By Proposition 17 we must have
ϕ(an+1

1 ) > succϕ(an1 ),

ϕ(an1 ) > · · · > ϕ(anln) > ϕ(an−11 ) > · · · > ϕ(adld) (7)

and ϕ(chain(~a)) = succϕ(an1 ).
Assume for the sake of contradiction that we have rkϕCB(aij) ≥ i for all

d ≤ i ≤ n and 0 < j ≤ li. By induction on the position of ϕ(aij) in (7), and
using Lemma 10, we can show

ϕ(aij) ≤ (ωnln + · · ·+ ωi+1li+1 + ωij)
↑

for d ≤ i ≤ n and 0 < j ≤ li. E.g., consider ϕ(an1 ). By assumption, rkϕCB(an1 ) ≥
n, but the biggest element in Up(Kα) of CB-rank ≥ n is (ωn)

↑
. Hence ϕ(an1 ) ≤

(ωn)
↑
. Assume, the next element in (7) is ϕ(an2 ) (it could also be ϕ(an−11 ) which

would require a similar argumentation). Again, rkϕCB(an2 ) ≥ n by assumption,
and the biggest element in Up(Kα) of CB-rank ≥ n, which is smaller than ϕ(an1 ),

must also be smaller than (ωn)
↑

as we have just shown, and thus is ≤ (ωn2)
↑
.

Hence ϕ(an2 ) ≤ (ωn2)
↑
. And so on. Thus, we obtain for adkd

ϕ(adkd) ≤ (ωnkn + · · ·+ ωdkd)
↑
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(remember kn = ln, . . . , kd+1 = ld+1). As ld > kd, we obtain rkϕCB(adkd+1) ≥ d
by assumption, and also

ϕ(adkd+1) < ϕ(adkd) ≤ (ωnkn + · · ·+ ωdkd)
↑
.

By examining the Cantor normal form of α, we see that such an element does
not exist in Up(Kα), so we have obtained a contradiction.

Hence, we must have rkϕCB(aij) < i for some i ≤ n and 0 < j ≤ ki. Using
Lemma 14, we obtain

ϕ(

n∧
i=d

li∧
j=1

Infi(aij)) ≤ ϕ(Infi(aij)) ≤ succϕ(aij) ≤ succϕ(an1 ) = ϕ(chain(~a))

which proofs the claim.

5 Dually well-founded Kripke frames based on
ordinals

For well-founded Kripke frames, the ordering on the upsets contains proper
infima, but no proper suprema — we have studied well founded Kripke frames
based on ordinals < ωω in detail in the previous section. For dually well-founded
Kripke frames, the ordering on the upsets does not contain proper infima, but
may contain proper suprema (of different Cantor-Bendixon rank). In this section
we will consider this kind of dual situation to the previous section, and prove
similar results. In particular we will define a kind of dual to the Inf formulas
based on suprema, and will separate logics based on dually well-founded Kripke
frames based on ordinals < ωω.

Definition 19 (Dually well-founded Kripke frames based on ordinals). Given
an ordinal α, let K∗α be the Kripke frame given by the set α and the relation �.

Using the set-theoretic view of ordinals, the upsets of K∗α are literally the
same as the ordinals β � α. Nevertheless, we will use β↑ to conceptually
distinguish upsets from worlds in the Kripke frame — mathematically, β↑ is
just the identity, β↑ = β. Hence, we have Up(K∗α) = {β↑ : β � α}. We observe
that 0↑ = ∅ = 0K∗α and that α↑ = 1K∗α . The order ⊆ on upsets this time
corresponds to � on ordinals, i.e., β↑ ⊆ γ↑ iff β � γ.

Lemma 10 on computing Cantor-Bendixon ranks carries over to the dually
well-founded case, with the same proof.

Lemma 20. Let β = γ + ωξ � α. Then rkCB(β↑) = ξ in Up(L(K∗α)).

The following Supn formulas express a kind of dual to the Infn formulas
from the previous section.

Sup0(x) = ⊥ → ⊥
Supn+1(x) = [(∀yPy) ≺ Px]

∧ ∀y[(Py ≺ Px)→ ∃z(Supn(z) ∧ Py ≺ Pz ≺ Px)]
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Lemma 21. Let ϕ be a valuation for K∗α, then

ϕ(Supn(c)) =

{
1K if ϕ(c) = 1K or rkϕCB(c) ≥ n
ϕ(c) otherwise.

Proof. The proof is by induction on n. Obviously, ϕ(Sup0(c)) = 1K for any
c ∈ U , which proves the lemma for the case n = 0.

Now assume n > 0. Let

B(x, y) = ∃z(Supn−1(z) ∧ Py ≺ Pz ≺ Px)

then Supn(x) can be written as

((∀yPy) ≺ Px) ∧ ∀y((Py ≺ Px)→ B(x, y))

Claim.
ϕ(B(c, d)) ≥ ϕ(c) (8)

for any c, d ∈ U . Thus,
ϕ(Supn(c)) ≥ ϕ(c) (9)

for any c ∈ U .

Proof of Claim. For the first part, we obtain by Lemma 12 that ϕ(Pd ≺ Pc) ≥
ϕ(c) and ϕ(Pc ≺ Pc) = ϕ(c), and by induction hypothesis that ϕ(Supn−1(c)) ≥
ϕ(c). Thus ϕ(Supn−1(c) ∧ Pd ≺ Pc ≺ Pc) = ϕ(c), hence (8) follows.

The second part follows because, again by Lemma 12, ϕ((∀yPy) ≺ Pc) ≥
ϕ(c), and ϕ((Pd ≺ Pc)→ B(c, d)) ≥ ϕ(B(c, d)) ≥ ϕ(c) for any d ∈ U .

Let c ∈ U . We consider cases according to the properties satisfied by c. If
ϕ(c) = 1K then ϕ(Supn(c)) = 1K by (9).

Assume ϕ(c) < 1K. Let m be rkϕCB(c).
If m ≥ n, there exists, by definition of Cantor-Bendixon rank, ci ∈ U such

that rkϕCB(ci) = m−1, ϕ(ci) < ϕ(c) and supi ϕ(ci) = ϕ(c). In particular,
ϕ(∀yPy) ≤ ϕ(c0) < ϕ(c), hence ϕ((∀yPy) ≺ Pc) = 1K by Lemma 12. Thus,
we have to show that ϕ((Pd ≺ Pc)→ B(c, d)) = 1K for any d ∈ U .

Let d ∈ U be given. If ϕ(d) ≥ ϕ(c), then, by Lemma 12 and (8),

ϕ(Pd ≺ Pc) ≤ ϕ(c) ≤ ϕ(B(c, d))

hence ϕ((Pd ≺ Pc) → B(c, d)) = 1K. In the other case ϕ(d) < ϕ(c), hence
there is some i such that ϕ(d) < ϕ(ci) < ϕ(c). By induction hypothesis,
ϕ(Supn−1(ci)) = 1K as rkϕCB(ci) = m−1 ≥ n−1. Hence, by Lemma 12,

ϕ
(
Supn−1(ci) ∧ Pd ≺ Pci ≺ Pc

)
= 1K .

Thus, ϕ(B(c, d)) = 1K and the assertion follows for m ≥ n.
Now assume m < n. We have to show ϕ(Supn(c)) = ϕ(c).
By Lemma 12, ϕ((∀yPy) ≺ Pc) ≥ ϕ(c). Thus, by (8), it is enough to show

that ϕ((Pd ≺ Pc)→ B(c, d)) ≤ ϕ(c) for some d ∈ U .
By definition of Cantor-Bendixon rank, there exists some d ∈ U such that

ϕ(d) < ϕ(c) and

∀b∈U(ϕ(d) < ϕ(b) < ϕ(c)⇒ rkϕCB(b) < m .
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We claim that ϕ(B(c, d)) ≤ ϕ(c) which proves the assertion as ϕ(Pd ≺ Pc) =
1K. That is, we have to show for

C(x, y, z) = Supn−1(z) ∧ (Py ≺ Pz) ∧ (Pz ≺ Px)

that
ϕ(C(c, d, b)) ≤ ϕ(c)

for any b ∈ U .
Let b ∈ U be given. We distinguish cases according to the comparison of

ϕ(b) with ϕ(c) and ϕ(d). If ϕ(b) ≤ ϕ(d) then ϕ(C(c, d, b)) ≤ ϕ(Pd ≺ Pb) =
ϕ(b) ≤ ϕ(d) < ϕ(c). If ϕ(b) ≥ ϕ(c) then ϕ(C(c, d, b)) ≤ ϕ(Pb ≺ Pc) = ϕ(c). If
ϕ(d) < ϕ(b) < ϕ(c) then rkϕCB(b) < m ≤ n−1 by assumption, thus, using the
induction hypothesis, ϕ(C(c, d, b)) ≤ ϕ(Supn−1(b)) = ϕ(b) < ϕ(c).

The following formula is similar to the corresponding one in the previous
section, It is slightly simpler as it does not involve the predicate Q.

chain∗(x1, . . . , xn) =

n−1∨
i=1

(P (xi)→ P (xi+1)) .

The following proposition is proven in the same way as Proposition 17.

Proposition 22. Let ϕ be a valuation for K∗α, and a1, . . . , an elements in U .
Then we have the following:

1. If ϕ(a1) > ϕ(a2) > ϕ(a3) > · · · > ϕ(an), then

ϕ(chain(a1, . . . , an)) = ϕ(a2) < 1K .

2. If the above sequence is not strictly decreasing, then

ϕ(chain(a1, . . . , an)) = 1K .

The separating formulas for logics based on dually well-founded Kripke
frames based on ordinals ≺ ωω are defined similarly to the case of well-founded
Kripke frames. Let α ≺ ωω, and write α+1 in Cantor normal form as

α+1 = ωnkn + · · ·+ ω0k0 (10)

for some finite n, k0, . . . , kn with kn > 0. We also have k0 > 0, but some other
ki may be 0. Let

~x = (x0k0 , . . . , x
0
1, . . . , x

n
kn , . . . , x

n
1 ) ,

and define A∗α(~x) and A∗α as follows:

A∗α(~x) =
( n∧
i=0

ki∧
j=1

Supi(xij)
)
→ chain∗(~x)

and

A∗α = ∀~xA∗α(~x).
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Theorem 23. If 0 ≺ α ≺ β ≺ ωω, then A∗α ∈ L(K∗α), but A∗α /∈ L(K∗β).

Proof. Let K be K∗β . First, we show that A∗α 6∈ L(K∗β) in a similar way as in
the in the proof of Theorem 18, by defining the universe of our valuation to
be Up(K∗β), and the valuation to be ϕ(P (c)) = c for c ∈ Up(K∗β). We have
to provide an instance ~a such that the formula A∗α(~a) evaluates to a value less
than 1K. To this end, choose ~a as the canonical points specified by the Cantor
normal form of ordinal β, that is, let

aij = (ωnkn + · · ·+ ωi+1ki+1 + ωij)
↑

for i = 0, . . . , n and j ≤ ki. Observe ai0 = ai+1
ki+1

for i < n. Using Lemma 20,

we have rkϕCB(aij) = i for i ≤ n and 0 < j ≤ ki. Hence, Lemma 21 shows

ϕ
(
Supi(aij)

)
= 1K for i ≤ n and 0 < j ≤ ki.

Let
~a = (a0l0 , . . . , a

0
1, . . . , a

n
ln , . . . , a

n
1 ) .

As ϕ(a0l0) > ϕ(a0l0−1) > . . . > ϕ(an1 ), Proposition 22 shows

ϕ
(

chain∗(~a)
)

= ϕ(a0l0−1) < ϕ(a0l0) ≤ 1K .

This proves the first direction.

In order to show A∗α ∈ L(K∗α), let ϕ be any valuation for K∗α, and let aij be
any choice of elements in U for i ≤ n and 0 < j ≤ ki. We have to show

ϕ
( n∧
i=0

ki∧
j=1

Supi(aij)
)
≤ ϕ

(
chain∗(~a)

)
.

To this end, assume ϕ(chain∗(~a)) < 1K. By Proposition 22, in this case we
must have

ϕ(a0k0) > ϕ(b) > · · · > ϕ(an1 ) (11)

and ϕ(chain(~a)) = ϕ(b) for b = a0k0−1, where we let a00 = a1k1 in case k0 = 1.

Assume for the sake of contradiction that we have rkϕCB(aij) ≥ i for all i ≤ n
and 0 < j ≤ ki, except maybe for a0l0 . Using Lemma 20, we then have

ϕ(aij) ≥ (ωnkn + · · ·+ ωi+1ki+1 + ωij)
↑

by induction of the position of ϕ(aij) in (11). E.g., consider the smallest element,
ϕ(an1 ). By assumption, rkϕCB(an1 ) ≥ n, but the smallest element in Up(K∗α) of

CB-rank ≥ n is (ωn)
↑
. Hence ϕ(an1 ) ≥ (ωn)

↑
. The next element in (11) may

be of the form ϕ(an2 ). The smallest element in Up(K∗α) of CB-rank ≥ n, which

is bigger than ϕ(an1 ), must be bigger than (ωn)
↑
, and thus is at least as big as

(ωn2)
↑
. Hence ϕ(an2 ) ≥ (ωn2)

↑
. And so on. Thus, we obtain

ϕ(b) = ϕ(a0l0−1) ≥ (ωnkn + · · ·+ ω0(l0−1))
↑

= α↑ = 1K .

But then we have ϕ(b) = ϕ(a0l0) = 1K, contradicting (11).
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Hence, we must have rkϕCB(aij) < i for some i ≤ n and 0 < j ≤ ki with
(i, j) 6= (0, l0). Using Lemma 21, we obtain

ϕ
( n∧
i=0

ki∧
j=1

Supi(aij)
)
≤ ϕ(Supi(aij)) = ϕ(aij) ≤ ϕ(b) = ϕ(chain∗(~a))

which proves the claim.

6 Conclusion

Theorems 18 and 23 provide a clear separation of the logics of Kripke frames
based on well-ordered and dually well-ordered ordinals up to ωω, already at level
of only one monadic predicate symbol. While some of the results are known
from the literature, the extension to dually well-ordered Kripke frames, and
more importantly, the separation already with one monadic predicate symbol,
is new. It can be considered as one more step in the examination of expressive
power of standard first order language over order.

The above two theorems also set the stage for further investigations into
separation within the class of logics of linear Kripke frames. As mentioned in
Preining (2002), the Cantor-Bendixon analysis is not fine-grained enough for
our purposes, since it doesn’t make a distinction between suprema and infima.
By using ordinal notations and comparison we hope to extended the current
results to a broader class of Kripke frames, where at each stage of the Cantor-
Bendixon derivation either all limit points are infima, or all are suprema, or
all are both infima and suprema (but not mixture). In this case a ordinal
description language can be used and ideas of the above proofs could lead to
separation formulas between the respective logics.

Other possible directions of research are related to satisfiability. It has to
be noted that, contrary to classical logic, in the current setting validity and
satisfiability are not dual. As a consequence we cannot obtain any insights into
satisfiability, in particular 1-satisfiability, with the above theorems.

Finally, an even more challenging open question: It seems that all these frag-
ments under discussion in this article are decidable by a suitable embedding into
Rabin’s S2S. Although we have some initial ideas how to tackle this questions,
the more general one, whether the same holds for the 1 predicate fragments of
arbitrary linear countable Kripke, remains open.
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