Arnold Beckmann
Archive for Mathematical Logic Vol. 42, pp. 303-334
Publication year: 2003

Dynamic ordinal analysis is ordinal analysis for weak arithmetics like fragments of bounded arithmetic. In this paper we will define dynamic ordinals – they will be sets of number theoretic functions measuring the amount of Π^b_1(α) order induction available in a theory. We will compare order induction to successor induction over weak theories. We will compute dynamic ordinals of the bounded arithmetic theories Σ^b_n(α)-L^mIND for m=n and m=n+1, n≥0 . Different dynamic ordinals lead to separation. Therefore, we will obtain several separation results between these relativized theories. We will generalize our results to arbitrary languages extending the language of Peano arithmetic.

Leave a Reply

Your email address will not be published. Required fields are marked *