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Abstract

Dynamic ordinal analysis is ordinal analysis for weak arithmetics like
fragments of bounded arithmetic. In this paper we will define dynamic
ordinals – they will be sets of number theoretic functions measuring the
amount of sΠb

1(X) order induction available in a theory. We will compare
order induction to successor induction over weak theories. We will com-
pute dynamic ordinals of the bounded arithmetic theories sΣb

n(X)-LmIND
for m = n and m = n+1, n ≥ 0. Different dynamic ordinals lead to sepa-
ration. In this way we will obtain several separation results between these
relativized theories. We will generalize our results to further languages
extending the language of bounded arithmetic.1
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1 Introduction

Bounded arithmetic is designed to characterize low complexity computability,
i.e. the polynomial hierarchy. Every primitive recursive function is provable
total in IΣ1, hence IΣ1 is much stronger than bounded arithmetic. By Parikh’s
Theorem ([14], or see [5, p.83, Theorem 11]) the provable total functions of I∆0

(in the language LPA of Peano arithmetic) are bounded by polynomials. Hence
I∆0(LPA) is weaker than bounded arithmetic. Furthermore, only a constant
number of elements ≤ n can be coded in a sequence s = nO(1). What do we
mean by this? Assume a faithfull and feasible sequence coding and consider
the function sn(l) obtained by forming the sequence consisting of l copies of n.
sn(l) roughly is of the form

sn(l) =

log n bits
︷ ︸︸ ︷

. . .

log n bits
︷ ︸︸ ︷

︸ ︷︷ ︸

l times

I.e., sn(l) consists of l · log n bits, hence it has size nl (roughly). How fast
is l, as a function of m, allowed to grow such that I∆0(LPA) can prove the
totality of sn(l(m)) as a function of n,m? As remarked above sn(l(m)) has to
be bounded by a polynomial in m,n, hence l(m) can only be constant. Thus,
metamathematical arguments in general are not formalizable in I∆0(LPA). We
now look for a growth rate of l(m) such that sn(l(m)) has a growth rate suitable
for bounded arithmetic.

Allowing l(m) = m many elements would result in an exponential growth
rate of sn(l(m)), again too strong.

As argued in [14] the right growth rate is obtained by allowing l(m) = log m
many elements ≤ n to be coded into one sequence. Then

sn(l(m)) = nlog m ≈ 2|n|·|m| =: n#m

where |m| is the number of bits in the binary representation of m. Now bounded
arithmetic can be formulated as I∆0 in the language LBA of bounded arith-
metic, that is LPA extended by |.|,#, or, equivalently, as I∆0 + Ω1 (where Ω1

is equivalent to the statement ∀x∃y(|x|2 = |y|)), the latter being the original
formulation of bounded arithmetic, see [20].

A stratification of bounded arithmetic, which corresponds to the stratifica-
tion of the polynomial hierarchy, is obtained by putting restrictions on induction
axioms; namely, allowing induction only for certain classes, Σb

i , of bounded for-
mulas, and using length induction (LIND) in place of usual successor induction
(IND). The most important subtheories of bounded arithmetic are the theories
Si

2, axiomatized by Σb
i -LIND, and the theories T i

2, axiomatized by Σb
i -IND. The

following is known for these theories:

S1
2 ⊆ T 1

2 ¹∀Σb
2

S2
2 ⊆ T 2

2 ¹∀Σb
3

S3
2 . . .

and their union is the theory S2 = T2 = I∆0(LBA) (cf. [5, 6]). Here T ¹∀Σb
i

T ′

means that T ′ is a ∀Σb
i -conservative extension of T . Furthermore, the class of
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predicates definable by Σb
i (or Πb

i ) formulas is precisely the class of predicates
in the ith level Σp

i (resp. Πp
i ) of the polynomial hierarchy. In addition, the Σb

i -
definable functions of Si

2 are precisely the p
i -functions, which are the functions

which are polynomial time computable with an oracle for Σp
i−1.

The main open problem for bounded arithmetic is the question if S2 is
finitely axiomatizable. As Si

2 and T i
2 are finitely axiomatizable, this question

is equivalent to ask if there exists an i with Si
2 = T i

2. This question is also
connected to the open problem whether the polynomial hierarchy collapses,
hence also with P =?NP . The connection is that S2 is finitely axiomatizable if
and only if S2 can prove that the polynomial hierarchy collapses. The precise
connection is that T i

2 = Si+1
2 if and only if the polynomial hierarchy collapses

to its i + 2nd level, provable in T i
2 (cf. [7, 22]).

The common conjecture is that the answer to all these questions is NO!

Bounded arithmetic still is in lack of a good measure of the proof theoretic
strength of its fragments. By this we mean that proof theoretic strength should
be assigned to fragments in such a way that different fragments are measured
differently, which results in a separation of the fragments.

Good measures for a lot of theories are already known in the literature.
An example is the proof theoretic ordinal of a theory. Inspired by Gentzen’s
consistency proof for PA one defines

PO(T (X)) := sup{α : α is the ordertype of a primitive recursive

well-ordering ≺ and T (X) ⊢ Wf(≺)}

where T (X) denotes the theory T in a language extended by adding a free set
parameter X and the relation ∈ (we will call T (X) “the relativization of T”),
and where Wf(≺) expresses the well-foundedness of ≺ by the Π1

1 sentence

(∀X) Found(≺,X) ≡ (∀X)
[

(∀x)((∀y ≺ x)(y ∈ X) → x ∈ X) → (∀x)(x ∈ X)
]

.

Gentzen’s proof shows that PO(PA(X)) = ǫ0. If one applies his methods to
sub-theories of PA(X) one obtains

PO(∆0(X)-Ind) = ω2 PO(Σ1(X)-Ind) = ωω PO(Σ2(X)-Ind) = ωωω

. . .

Now it is an obvious question whether the proof theoretical ordinal is a good
measure for bounded arithmetic. The answer is NO, because R. Sommer in [18]
has shown that if T (X) is a reasonable theory strictly weaker than Σ1(X)-Ind,
then T (X)’s proof theoretic ordinal is always ω2. Applied to bounded arithmetic
this shows

PO(S1
2(X)) = ω2 PO(T 1

2 (X)) = ω2 . . . PO(S2(X)) = ω2

In this paper we follow another idea to measure proof theoretic strength
of certain fragments of arithmetic. Proof theoretic ordinals are sets of static
ordinals, “static” in the sense that ordinals are points. We will rather consider
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sets of ordinal enumerations, which we will call dynamic ordinals, “dynamic”
in the sense that ordinal enumerations capture a certain dynamic. Ordinal
enumerations will be compared by their growth rates. A first approach would
look like (here “otyp” denotes “ordertype”)

DO(T (X)) := {λn. otyp(≺n) : (≺n)n is a suitable sequence of well-founded

orderings and T (X) ⊢ (∀x) Found(≺x,Π1(X))}

where Found(≺,Φ), for Φ is a set of formulas, denotes the schema of all formulas
Found(≺, A) for A ∈ Φ, where Found(≺, A) is the result of replacing X in
Found(≺,X) by the formula A.

Dynamic ordinals are arranged with respect to “eventual majorizability”.
But we immediately see that already very weak theories (which are even weaker
than S0

0) can always define an ordering ≺ whose ordertype is the supremum
of those of a given sequence ≺n, by defining 〈n, a〉 ≺ 〈m, b〉 iff n = m and
a ≺n b. Also it is provable that the well-foundedness of all ≺n, n ∈ ω, implies
the well-foundedness of ≺ (no induction is needed for this). Hence, concerning
eventually majorizability, this definition of a dynamic ordinal always yields

DO(T ) ≡ {λn.α : α ∈ PO(T )},

so nothing is gained.
Another approach could be to fix a suitable well-ordering ≺ and then define

DO(T (X)) := {λn. otyp(≺↾f(n)) : f is a provable total function in T (X)

and T (X) ⊢ (∀x) Found(≺↾f(x),Π1(X))}

where ≺↾ n denotes the restriction of ≺ to the domain {m : m ≺ n}, i.e.
≺↾n =≺ ∩{m : m ≺ n}2. The behaviour of this definition of dynamic ordinals
for stronger theories than bounded arithmetic is unstudied up to now.

In case of fragments of bounded arithmetic we also restrict ≺ to the natural
ordering on numbers < and f to terms in the language LBA. Observe that
otyp(<↾n) = n. Furthermore, the definition of dynamic ordinals now uses the
principle Found(<↾ t(x), A) which is equivalent to order induction OInd(t(x), A)
given by

(∀y ≤ t(x))
(

(∀z < y)A(z) → A(y)
)

→ (∀y ≤ t(x))A(y).

For A ∈ sΠb
1(X) this formula is equivalent to an sΣb

2(X)-formula (sΠb
1, sΣb

2 etc.
are prenex (or strict) reformulations of Πb

1 resp. Σb
2 etc.).

To sum up, we define the dynamic ordinal of fragments T (X) of relativized
bounded arithmetic by

DO(T (X)) := {λx.t : T (X) ⊢ (∀x) OInd(t, sΠb
1(X))}.

(Of course, with t we mean an LBA-term in which at most x occurs as a vari-
able.) For very weak LBA(X)-theories T (X), which have induction restricted
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to Σb
0(X)-formulas, the set of formulas in the definition of DO(T (X)) has to be

restricted to specific subsets of sΠb
1(X) formulas, see Definition 17 on page 14.

Dynamic ordinals are sets of number theoretic functions, i.e. subsets of ωω.
As said before, we arrange subsets of ωω by eventual majorizability:

f E g :⇔ g eventually majorizes f ⇔ (∃m)(∀n ≥ m)f(n) ≤ g(n).

For subsets of number theoretic functions D,E ⊂ ωω we define

D E E :⇔ (∀f ∈ D)(∃g ∈ E)f E g

and from this

D ≡ E :⇔ D E E & E E D

D ⊳ E :⇔ D E E & E 6E D

We immediately see that E is a partial, transitive, reflexive ordering, ⊳ is a
partial, transitive, irreflexive, not well-founded ordering, and ≡ is an equivalence
relation.

Examples

{λn.nk : k ∈ ω} ≡ {λn.p(n) : p a polynomial}

⊳ {λn.2|n|
k

: k ∈ ω} ⊳ {λn.2n}.

The next example shows that ⊳ is not well-founded.

{λn.|n|k+1} ⊳ {λn.|n|k}

where |n|k is the k-fold iteration of | · | applied to n. The next example shows
that the orderings are not total on ωω.

λn.

{
0 : n even
2 : n odd

is incomparable to (λn.1) .

We will be able to assign different dynamic ordinals to certain fragments of
bounded arithmetic, thus, by the next lemma, these fragments will be separated.
Therefore, we can say:

Dynamic ordinals are good measures for proof theoretic
strengths of fragments of bounded arithmetic.

Lemma 1. Let S, T be two theories in the language of bounded arithmetic and
assume DO(S) 6= DO(T ). Then S is separated from T .

Proof. Assume f ∈ DO(T ) \ DO(S). By the definition of dynamic ordinals
there is a term t(x) and an sΠb

1(X)-formula A such that f(n) = t(n) and
T ⊢ (∀x)OInd(t(x), A). But f /∈ DO(S) implies S 0 (∀x)OInd(t(x), A).
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We observe that the separation is given by a ∀sΣb
2(X)-sentence; in case that

t is sharply bounded (i.e., t ≡ |t′|) this sentence even will be ∀sΣb
1(X).

The main achievements of this paper will be the computation of the following
dynamic ordinals:

DO(T 1
2 (X)) ≡ {λn.22(c · |n|2) : c ∈ ω} ≡ DO(S2

2(X))

DO(S1
2(X)) ≡ {λn.2c·|n|2 : c ∈ ω}

DO(sR2
2(X)) ≡ {λn.22(c · |n|3) : c ∈ ω}

where sRi
2(X) is sΣb

i (X)-L2IND which is induction restricted to double-loga-
rithmic induction on sΣb

i (X)-formulas, and more generally for m ≥ 0

DO(sΣb
m(X)-LmInd) ≡ {λn.2m(c · |n|m+1) : c ∈ ω}

where 2m is the m-fold iteration of exponentiation. Furthermore, we will use
results from Arai [1] to obtain

DO(T 0
2 (X)) ≡ {λn.2c·|n|2 : c ∈ ω} ≡ DO(S1

2(X))

DO(S0
2(X)) ≡ {λn.c · |n|2 : c ∈ ω}

DO(sR1
2(X)) ≡ {λn.2c·|n|3 : c ∈ ω}

and more generally for m ≥ 0

DO(sΣb
m(X)-Lm+1Ind) ≡ {λn.2m(c · |n|m+2) : c ∈ ω}

Thus by the previous Lemma and remarks these dynamic ordinals lead to rela-
tionships of bounded arithmetic theories which we display in Figure 1. Here
we mean with S < T that the theories S and T are separated and S is included
in the consequences of T ; with S ≡ T that S and T have the same dynamic
ordinals (this does not imply that S and T prove the same consequences); and
with S * T that S is not included in the consequences of T .

2 Bounded arithmetic

Let us recall some definitions. Fragments of bounded arithmetic are first order
theories of arithmetic. The language of bounded arithmetic LBA consists of
function symbols 0 (zero), S (successor), + (addition), · (multiplication), |x|
(binary length), ⌊ 1

2x⌋ (binary shift right), x# y (smash), x ·− y (arithmetical
subtraction), MSP(x, i) (Most Significant Part) and LSP(x, i) (Less Significant
Part), and relation symbols = (equality) and ≤ (less than or equal).

The meaning of MSP and LSP is given by

x = MSP(x, i) · 2i + LSP(x, i) and LSP(x, i) < 2i.

Restricted exponentiation 2min(x,|y|) can be defined by

2min(x,|y|) = MSP(y # 1, |y| ·− x),
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Figure 1: The separations

hence we can assume that restricted exponentiation is also part of our language
LBA. We often write 2t and mean 2min(t,|x|) if t ≤ |x| is clear from the context.

Relativized bounded arithmetic is formulated in the language LBA(X) which
is LBA extended by one set variable X and the element relation ∈.

BASIC is a finite set of open axioms (cf. [5, 19, 10]) which axiomatizes the
non-logical symbols. When dealing with LBA(X) we assume that BASIC also
contains the equality axioms for X.

Bounded quantifiers play an important rôle in bounded arithmetic . We
abbreviate

(∀x ≤ t)A := (∀x)(x ≤ t → A) (∃x ≤ t)A := (∃x)(x ≤ t ∧ A)

(∀x < t)A := (∀x ≤ t)(x < t → A) (∃x < t)A := (∃x ≤ t)(x < t ∧ A)

and call these bounded quantifiers. A quantifier of the form (Qx ≤ |t|)A, Q ∈
{∀,∃}, is called a sharply bounded quantifier. A formula in which all quantifiers
are (sharply) bounded is called a (sharply) bounded formula. Bounded formulas
are stratified into levels:

Definition 2. 1. ∆b
0 = sΣb

0 = sΠb
0 is the set of all sharply bounded formulas.

2. sΣb
n-formulas are those which have a block of n alternating bounded quanti-

fiers, starting with an existential one, in front of a sharply bounded kernel.

3. sΠb
n is defined dually, i.e. the block of alternating quantifiers starts with

an universal one.
In the relativized case ∆b

0(X), sΣb
n(X), sΠb

n(X) are defined analogously.
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Induction is also stratified. Let |x|0 := x and |x|m+1 := |(|x|m)|.

Definition 3. Ψ-LmIND is the schema

ϕ(0) ∧ (∀x < |t|m)(ϕ(x) → ϕ(S x)) → ϕ(|t|m)

for ϕ ∈ Ψ and terms t. For m = 0 this is the usual successor induction schema
and will be denoted by Ψ-IND. In case m = 1 we usually write Ψ-LIND.

The theories of bounded arithmetic are given by

BASIC + sΣb
n-LmIND.

Usually we do not mention BASIC and simply call this theory sΣb
n-LmIND.

Some of the theories have special names:2

Definition 4. T i
2 := sΣb

i -IND,

Si
2 := sΣb

i -LIND,

sRi
2 := sΣb

i -L
2IND.

For theories S, T let S ⊆ T denote that all axioms in S are consequences of
T . From the definition of the theories it immediately follows

sΣb
n-Lm+1IND ⊆ sΣb

n-LmIND,

sΣb
n-LmIND ⊆ sΣb

n+1-L
mIND.

A little bit more insight is needed for

sΣb
n-LmIND ⊆ sΣb

n+1-L
m+1IND,

S0
2 = sR0

2 = ∆b
0-L

m+1IND,

see [5, 3] for a proof. Figure 2 reflects the just obtained relations. View the
diagram as a graph whose nodes are theories. Take any edge in the graph. The
way we displayed the graph allows us to destinguish a left and a right end of the
edge. Now, the theory on the lefthand side of any edge in the graph is included
in the theory on the righthand side. Similar definitions and results can be
stated for theories of relativized bounded arithmetic. Furthermore, Kraj́ıček,
Pudlák and Takeuti have shown in [13] that T i

2(X) 6= Si+1
2 (X) using an oracle

A such that the polynomial hierarchy in A collapses, in particular PA 6= NPA

(see [2, 21, 9] for a construction of A). Similarly, Kraj́ıček has shown in [11]
that Si

2(X) 6= T i
2(X). A similar method is used by Pollett in [16] to obtain

some refined separations for relativized theories sΣb
n(X)-LmIND (independently

from our work). In this article we will prove further refined separations which
base on a completely different method called dynamic ordinal analysis. One half
of these results are part of the author’s dissertation [3], the other half bases on
results due to Arai [1].

2The definition of T i

2
, resp. Si

2
, in [5, 12] differs from the one used here in that we define

theories by induction only on strict formulas, but they all define same theories.
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Figure 2: The theories sΣb
n-LmIND

3 Lower bounds on dynamic ordinals

Theories of bounded arithmetic are axiomatized by using successor induction,
where dynamic ordinals are based on order induction. In the following we will
compare these two kinds of induction. Let us first fix some useful abbreviations.
We adopt from set theory the convention of identifying numbers with the set
of their predecessors, i.e. y = {z : z < y}. E.g., we write y ⊆ X instead of
(∀z < y)(z ∈ X).

SProg(x,X) := 0 ∈ X ∧ (∀y < x)(y ∈ X → S y ∈ X)

SInd(x,X) := SProg(x,X) → x ∈ X

OProg(x,X) := (∀y ≤ x)(y ⊆ X → y ∈ X)

OInd(x,X) := OProg(x,X) → S x ⊆ X

Order induction, here called OInd, is logically equivalent to minimization:

(∃y ≤ x)A(y) → (∃y ≤ x)(A(y) ∧ (∀z < y)¬A(z)).

It is well-known (cf. [5, 12]) that over the base theory BASIC the schema
sΣb

i -IND is equivalent to minimization for sΣb
i -formulas which is equivalent (by

coding one existential quantifier) to minimization for sΠb
i−1-formulas.

We first examine direct relations between SInd and OInd. We will often
consider sets {y : A(y)} for a formula A(a), and we usually will abbreviate this
set by A if the variable a is clear or unimportant. For a set of formulas Φ
let OInd(t,Φ) denote the schema given by all instances OInd(t, A) for A ∈ Φ;
similar for SInd. When saying “let T be an LBA-theory” we always mean that
T includes some weak base theory, e.g. S0

2 ⊆ T .
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Lemma 5. 1. BASIC ⊢ OInd(t, A) → SInd(t, A) for arbitrary formulas A.

2. Let Φ be a set of LBA-formulas, which is closed under bounded (resp.,
sharply bounded) universal quantification, T be an LBA-theory, and t
(resp., t = |s|) be an LBA-term. Then T ⊢ SInd(t,Φ) implies T ⊢
OInd(t,Φ).

Proof. 1. is obvious, because SProg(t, A) immediately implies OProg(t, A) in
BASIC. Therefore, we obtain t + 1 ⊆ A assuming OInd(t, A) and SProg(t, A).
In particular A(t).

For 2. assume T ⊢ SInd(t,Φ) and A ∈ Φ. We argue in T to show OInd(t, A).
To this end suppose OProg(t, A), then we have to show t + 1 ⊆ A. Define
B(y) := y ⊆ A. Then B ∈ Φ. We prove B(t) using SInd(t, B). B(0) is obvious.
Now assume y < t such that B(y) holds. Then y ⊆ A, hence A(y) using
OProg(t, A), hence B(y + 1). By SInd(t, B), which is available by assumption,
we obtain B(t). Thus t ⊆ A. One more application of OProg(t, A) yields A(t),
hence t + 1 ⊆ A.

The tightest connection between SInd and OInd is obtained using the jump
set jp(x,X) defined by:

{

y ≤ |x| : (∀z ≤ 2|x|)[(z ∈ X ∧ z + 2y ≤ 2|x| → z + 2y ∈ X) ∧ 0 ∈ X]
}

Lemma 6. Let Φ be a set of LBA-formulas, which is closed under substitu-
tion, and T be an LBA-theory. Then T ⊢ SInd(2|x|,Φ) if and only if T ⊢
OInd(|x|, jp(x,Φ)).

Proof. Let A ∈ Φ and abbreviate jp(x,A) by Y . We argue in T .
For the direction from left to right assume SInd(2|x|,Φ) and OProg(|x|, Y ),

then we have to show |x|+1 ⊆ Y . To this end let y ≤ |x| and z ≤ 2|x| such that
A(z) and z + 2y ≤ 2|x|. We have to prove A(z + 2y) and A(0). From 0 ⊆ Y we
obtain 0 ∈ Y by OProg(|x|, Y ), hence A(0). Let t(a) be (z+2y) ·−(z+2y ·−a) and
let B(a) be A(t(a)), then B ∈ Φ. We want to show B(2|x|) using the assumption
SInd(2|x|,Φ), then this implies the assertion as t(2|x|) = z + 2y.

First we observe t(a) = min(a, z + 2y). We already have A(0), hence B(0).
For the induction step let a < 2|x| such that B(a). In case a ≥ z + 2y we
immediately have B(a+1). Otherwise, B(a) yields A(a). As a+20 = a+1 ≤ 2|x|

we can use 0 ∈ Y to obtain A(a + 1), hence B(a + 1). Now SInd(2|x|, B) yields
B(2|x|) and we are done.

For the other direction from right to left we assume OInd(|x|, Y ) and
SProg(2|x|, A), then we have to show A(2|x|). As an intermediate assertion we
prove OProg(|x|, Y ). So assume b ≤ |x| with b ⊆ Y , then we have to show b ∈ Y .
Going into the definition of Y let u ≤ 2|x| such that A(u) and u+2b ≤ 2|x|. We
have to conclude A(u + 2b).

In a first case assume b = 0, then u+2b = u+1 ≤ 2|x|, hence u < 2|x|. Thus
the assertion A(u + 1) follows using SProg(2|x|, A).

In the other case b = c + 1 for some c, hence c < b ≤ |x|, hence c ∈ Y by
assumption. Using this and the definition of Y twice we first obtain A(u + 2c)
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using the assumption A(u), and from this A((u+2c)+2c). This shows A(u+2b)
which completes the proof of the intermediate assertion.

Using the assumption OInd(|x|, Y ) we obtain |x|+1 ⊆ Y , hence |x| ∈ Y . As
A(0) we obtain A(2|x|), hence the main assertion follows.

Lemma 7. Let T be an LBA-theory and Φ a set of LBA-formulas closed under
substitution. Suppose T ⊢ SInd(t,Φ). Then T ⊢ SInd(p(t),Φ) for all monotone
polynomials p.

Proof. The monotone polynomials in one variable x can be formally defined
as an inductive set MonPoly(x) by the clauses: 0 ∈ MonPoly(x), and if p ∈
MonPoly(x), then also p + 1 ∈ MonPoly(x) and p · x ∈ MonPoly(x). We can
easily find for all monotone polynomials p in one variable x some q ∈ MonPoly(x)
such that BASIC ⊢ p = q.

Suppose T ⊢ SInd(t,Φ). We proof the assertion by induction on the genera-
tion of p ∈ MonPoly(t). The cases p = 0 and p = q + 1 are simple. We consider
the case p(t) = q · t. We argue in T . Let A ∈ Φ and assume SProg(q · t, A), then
we have to show A(q · t).

Define C(z) :≡ A(z · t). Then C ∈ Φ, hence we can apply the induction
hypothesis obtaining SInd(q, C). Therefore, if we can show SProg(q, C), then
this implies C(q) ≡ A(q · t) and we are done.

So we have to show SProg(q, C). C(0) is obvious as A(0) holds. Let c < q
such that C(c), show C(c+1). Define D(u) :≡ A(c·t+u) then D ∈ Φ. Hence we
can apply the assumption and obtain SInd(t,D). In order to show SProg(t,D)
first observe that C(c) implies D(0). Now let v < t such that D(v). This can be
rewritten as A(c · t + v). An application of SProg(q · t, A) yields A(c · t + v + 1)
which is the same as D(v + 1).

Hence we have shown SProg(t,D). Together with SInd(t,D) we obtain D(t)
which is the same as A(c · t + t), hence C(c + 1) and we are done.

Lemma 8. Let T be an LBA-theory and Φ a set of LBA-formulas closed un-
der bounded universal quantification and substitution. Suppose T ⊢ OInd(t,Φ).
Then T ⊢ OInd(p(t),Φ) for all monotone polynomials p.

Proof. Suppose T ⊢ OInd(t,Φ). Then Lemma 5.1. shows T ⊢ SInd(t,Φ). Hence
T ⊢ SInd(p(t),Φ) by Lemma 7. Hence T ⊢ OInd(p(t),Φ) using Lemma 5.2.

Theorem 9. 1. sΣb
n-LmIND ⊢ OInd(p(|x|m), sΠb

n) for monotone polynomi-
als p, if m > 0 or n > 0.

2. sΣb
0-L

mIND ⊢ OInd(c · |x|m+1, jp(x,∆b
0)) for natural numbers c.

Proof. For 1. let T be sΣb
n-LmIND. Using standard techniques (cf. [5]) we can

see that T proves the schema SInd(|x|m, sΠb
n). If n > 0, then Lemma 5.2.

shows T ⊢ OInd(|x|m, sΠb
n). In case n = 0 we have m > 0 by assumption.

An inspection of the proof of Lemma 5.2. shows that B(y) can be written as
(∀z ≤ |x|m)(z < y → A(z)). Therefore, for sharply bounded A we can choose

11



B also to be sharply bounded, hence the same proof as in Lemma 5.2. shows
T ⊢ OInd(|x|m, sΠb

0).
Thus, we always have T ⊢ OInd(|x|m, sΠb

n), hence the assertion follows from
Lemma 8.

In case 2. observe that sΣb
0-L

mIND ⊢ SInd(2|x|m+1 ,∆b
0). Thus, we obtain

sΣb
0-L

mIND ⊢ SInd(2c·|x|m+1 ,∆b
0) by applying Lemma 7. Hence the assertion

follows from Lemma 6.

For special theories these results can be rewritten as

T 0
2 ⊢ OInd(|t|c, jp(x,Σb

0)) T i+1
2 ⊢ OInd(2|t|

c

, sΠb
i+1)

S0
2 ⊢ OInd(c · ||t||, jp(x,Σb

0)) Si+1
2 ⊢ OInd(|t|c, sΠb

i+1)

sRi+1
2 ⊢ OInd(||t||c, sΠb

i+1)

where c is a positive integer.
Now we connect order induction for different complexities of formulas using

a (big) jump set Jp(t, x,X) defined by:

{

y ≤ t : t ≤ |x| ∧ (∀z ≤ 2t)[z ⊆ X ∧ z + 2y ≤ 2t + 1 → z + 2y ⊆ X]
}

In the following four statements let A(a) be an arbitrary LBA-formula.

Proposition 10. BASIC ⊢ t ≤ |x| ∧ OInd(2t, A) → OInd(t, Jp(t, x,A)).

Proof. We argue in BASIC.
Suppose t ≤ |x|, OInd(2t, A) and OProg(t, Jp(t, x,A)). We have to show

t + 1 ⊆ Jp(t, x,A)). To this end we show OProg(2t, A), because this implies
2t + 1 ⊆ A. But then the assertion follows because if u ≤ t and z given such
that z + 2u ≤ 2t + 1 then z + 2u ⊆ 2t + 1 ⊆ A, hence u ∈ Jp(t, x,A)).

We are left to show OProg(2t, A). Suppose z ≤ 2t with z ⊆ A. By assump-
tion OProg(t, Jp(t, x,A)) we have 0 ∈ Jp(t, x,A))). Thus we obtain z + 1 ⊆ A.
In particular A(z).

Lemma 11. BASIC ⊢ t ≤ |x| ∧ OProg(2t, A) → OProg(t, Jp(t, x,A)).

Proof. We argue in BASIC. Assume t ≤ |x|, OProg(2t, A) and u ≤ t such that
u ⊆ Jp(t, x,A). We have to show u ∈ Jp(t, x,A). To this end let z ≤ 2t such
that z ⊆ A and z + 2u ≤ 2t + 1. We are left to prove z + 2u ⊆ A.

In a first case assume u = 0, then we derive A(z) from the assumptions
z ⊆ A and OProg(2t, A), hence z + 1 ⊆ A. Otherwise u = v + 1 for some v,
hence v ∈ Jp(t, x,A) by assumption. Using this twice we obtain from z ⊆ A
first z + 2v ⊆ A and then (z + 2v) + 2v ⊆ A. But 2v + 2v = 2u, hence we are
done.

Proposition 12. BASIC ⊢ t ≤ |x| ∧ OInd(t, Jp(t, x,A)) → OInd(2t, A).
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Proof. We argue in BASIC.
Suppose t ≤ |x|, OInd(t, Jp(t, x,A)) and OProg(2t, A). By the previous

Lemma 11 we derive OProg(t, Jp(t, x,A)), hence t+1 ⊆ Jp(t, x,A). In particular
t ∈ Jp(t, x,A). Reading the definition of Jp we obtain from 0 ⊆ A already 2t ⊆
A. Thus A(2t) using OProg(2t, A) again. Altogether we have 2t + 1 ⊆ A.

Similar proofs like the ones of the last three statements show

Proposition 13. BASIC ⊢ SInd(|t|, jp(t, A)) ↔ SInd(2|t|, A).

We will show in an example how this can be used to obtain stronger induction
in theories. Let BB Φ be the sharply bounded collection scheme for formulas in
Φ. Let i ≥ 1. By a result of Ressayre we know that the theories Si

2 and Si
2 +

BB Σb
i+1 have the same ∀Σb

i -consequences (see [12] for definitions and results).
Let us fix some special collection scheme which is more suitable for our purpose:
For a set of formulas Φ let BB(sΣb

i ,Φ) be the set of all formulas

(∀x ≤ |t|)[(∃yA) ∨ B] → (∃w)(∀x ≤ |t|)[Ay((w)x) ∨ B]

with ∃yA ∈ sΣb
i and B ∈ Φ. We immediately have that

BB(sΣb
i , sΠ

b
i ) ⊆ BB sΣb

i+1

and, by a standard argument using sΣb
i -LMax which is equivalent to sΣb

i -LIND,

Si
2 ⊢ BB(Σb

i ,Σ
b
∞).

Now jp(|x|, sΠb
i ) ⊆ s∆b

i+1 using BB(sΣb
i , sΠ

b
i ). By a result of Pollett [16] we

have sRi
2 ⊢ SInd(||x||, s∆b

i+1), hence

sRi
2 + BB(sΣb

i , sΠ
b
i ) ⊢ SInd(||x||, jp(|x|, sΠb

i )).

Now the last Proposition shows sRi
2 + BB(sΣb

i , sΠ
b
i ) ⊢ SInd(2||x||, sΠb

i ), hence

Corollary 14. Si
2 = sRi

2 + BB(sΣb
i , sΠ

b
i ).

Similar results hold for other fragments of bounded arithmetic.

We now consider iterations of Jp:

Jp0(t, x,X) = X,

Jpi+1(t, x,X) = Jp(t, |x|i, Jpi(t, x,X)).

By iterated applications of Proposition 10 and Proposition 12 we obtain

Corollary 15.

BASIC ⊢ t ≤ |x|m → [OInd(2m(t), A) ↔ OInd(t, Jpm(t, x,A))].
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Concerning the complexity of the iterated jump we observe that

Jpi(t, x, sΠb
1) ⊂ sΠb

i+1

hence Theorem 9 and Corollary 15 together show

Theorem 16. Let 0 ≤ n < m or n = m = 1, and let c be some natural
number, then sΣb

n+1-L
mIND ⊢ OInd(2n(|x|cm), sΠb

1), hence sΣb
n+1-L

mIND ⊢
OInd(2n+1(c · |x|m+1), sΠ

b
1).

Proof. Theorem 9 shows sΣb
n+1-L

mIND ⊢ OInd(|x|cm, Jpn(|x|cm, s(x), sΠb
1)). To

be able to apply Corollary 15 to this we need that |x|cm ≤ |s(x)|n. But this is
granted by the assumptions n < m or n = m = 1 (for a suitable choice of s).

The results obtained so far all relativize to theories including X and ∈.

Definition 17. The dynamic ordinal of an LBA(X)-theory T (X) is defined by

DO(T (X)) := {λx.t : T (X) ⊢ (∀x) OInd(t, sΠb
1(X))}.

For very weak LBA(X)-theories T (X), which have their induction restricted to
Σb

0(X)-formulas, the set of formulas in the definition of DO(T (X)) has to be
restricted to a specific subset of sΠb

1(X) given by jp(t,∆b
0(X)). Furthermore, we

restrict terms to the form |t| because dynamic ordinals of very weak theories are
bounded by the dynamic ordinal of S1

2(X) which, as we will see, is eventually
majorized by {λn.|n|c : c a numeral }:

DO(T (X)) := {λx.|t| : T ⊢ (∀x) OInd(|t|, jp(t,∆b
0(X)))}.

(Of course, with t we always mean an LBA-term t in which at most x occurs as
a variable.)

By definition we have

DO(T (X)) E {λn.2|n|
c

: c number} ≡ {λn.22c·||n||

: c number}

and, for very weak theories T ,

DO(T (X)) E {λn.|n|c : c number} ≡ {λn.2c·||n|| : c number}

where ‘number’ alsways means a positive integer. These are crude upper bounds
simply given by growth rates of functions represented by LBA-terms. Combining
them with the lower bounds resulting from Theorem 16, we can estimate the
dynamic ordinals for several theories:

DO(T 0
2 (X)) ≡ {λn.|n|c : c number} ≡ {λn.2c·||n|| : c number}

DO(T 1
2 (X)) ≡ {λn.2|n|

c

: c number} ≡ {λn.22c·||n||

: c number}

DO(S0
2(X)) D {λn.(c · ||n||) : c number}

DO(S1
2(X)) D {λn.|n|c : c number} ≡ {λn.2c·||n|| : c number}

DO(S2
2(X)) ≡ {λn.2|n|

c

: c number} ≡ {λn.22c·||n||

: c number}

DO(sR1
2(X)) D {λn.||n||c : c number} ≡ {λn.2c·|n|3 : c number}

DO(sR2
2(X)) D {λn.2||n||

c

: c number} ≡ {λn.22c·|n|3
: c number}
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In general

DO(sΣb
m(X)-Lm+1IND) D {λn.2m(c · |n|m+2) : c number}

DO(sΣb
m(X)-LmIND) D {λn.2m(c · |n|m+1) : c number}

From the lower bound for the dynamic ordinal of a theory T (X) we im-
mediately read how much sΠb

1(X)-induction (resp., ∆b
0(X)-induction for very

weak T (X)) is available in T (X). E.g., let λx.t ∈ DO(T (X)). Then T (X) ⊢
OInd(t, sΠb

1(X)), hence T (X) ⊢ SInd(t, sΠb
1(X)). For very weak T (X) we have

t = |s| and T (X) ⊢ OInd(t, jp(2t,∆b
0(X))), hence T (X) ⊢ SInd(2t,∆b

0(X)).

4 Upper bounds

We will start this section computing upper bounds on dynamic ordinals for
theories sΣb

m(X)-Lm+1IND by applying results from Arai [1], section 2.4.
Assume f ∈ DO(sΣb

m(X)-Lm+1IND). If m > 0 then there is by defini-
tion some LBA-term t(x) such that f = λn.t(n) and sΣb

m(X)-Lm+1IND ⊢
OInd(t, sΠb

1(X)). Let τ := 2min(t,|x|) − 1, then |τ | = min(t, |x|) ≤ t, hence
sΣb

m(X)-Lm+1IND ⊢ OInd(|τ |, jp(τ,∆b
0(X))) as jp(τ,∆b

0(X)) ⊆ sΠb
1(X). In

case m = 0 there is by definition some LBA-term t(x) such that t = |t′|,
f = λn.t(n) and sΣb

m(X)-Lm+1IND ⊢ OInd(t, jp(t′,∆b
0(X))). But then also

sΣb
m(X)-Lm+1IND ⊢ OInd(|τ |, jp(τ,∆b

0(X))). In both cases Lemma 6 shows

sΣb
m(X)-Lm+1IND ⊢ SInd(τ + 1,X),

as jp(τ,X) ∈ jp(τ,∆b
0(X)) and 2|τ | = τ + 1. By investigations from Arai [1],

section 2.4, this implies that there is a polynomial p such that

τ + 1 = 2min(t(n),|n|) ≤ 2m(p(|n|m+1)).

Thus, there is a natural number c (the degree of p) such that p(|n|m+1) E |n|cm+1,
hence

2min(t(n),|n|) E 2m+1(c · |n|m+2),

hence
min(t(n), |n|) E 2m(c · |n|m+2) ⊳ 2m(|n|m+1) ≡ |n|

(in writing r(n) E s(n) we always mean that λn.r(n) E λn.s(n)). Hence
λn.min(t(n), |n|) ≡ f . Altogether we have

f E λn.2m(c · |n|m+2),

hence

DO(sΣb
m(X)-Lm+1IND) ≡ {λn.2m(c · |n|m+2) : c number}.

We now turn to the computation of upper bounds on dynamic ordinals for
theories sΣb

m(X)-LmIND.
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4.1 Semi-formal systems for bounded arithmetic

We introduce semi-formal systems for bounded arithmetic á là Schütte [17,
15]. They are a kind of propositional proof systems which are adequate for
investigating the provability strength of weak theories.

The language Lω of our semi-formal systems is a finitary version of the
infinitary language L∞ described in [15]. It is a Tait-style language consisting
of one set variable X, logical connectives

∨
,
∧

, numerals n for n ∈ ω, and binary
relation symbols =, 6=,≤, 6≤,∈, /∈. Atomic or prime formulas are m = n, m 6= n,
m ≤ n, m 6≤ n, m ∈ X, m /∈ X for m,n ∈ ω, and arbitrary Lω-formulas are
obtained using the following rule: if Ai for i < k are Lω-formulas, then also
∧

i<k Ai and
∨

i<k Ai. Typical for a Tait-language is that negation ¬ is not
a symbol of the language, instead it is a defined syntactic operation mapping
Lω-formulas to Lω-formulas, which bases on the de Morgan laws of negation.
E.g., ¬m /∈ X is the same as m ∈ X, ¬

∧

i<k Ai the same as
∨

i<k ¬Ai etc. For
a given set M ⊆ ω we can evaluate an Lω-formula F in the standard model
N in the usual way by interpreting X thru M . We write N ² FX [M ] iff this
evaluation results in true.

Before we can describe some calculus for Lω we need some measures of
certain complexities of Lω-formulas. The length or size of an Lω-formula F ,
lh(F ), is the number of atomic formula occurrences in F . We define for λ < ω
the λ-rank λ -rk(F ) of F over small sub-formulas, i.e. sub-formulas of length
bounded by λ, inductively as follows: If F atomic, let λ -rk(F ) := 0. If lh(F ) ≤ λ
and λ > 1, let λ -rk(F ) := 0. Otherwise, F is of the form

∧

i<k Ai or
∨

i<k Ai.
In this case let

λ -rk(F ) := max{λ -rk(Fi) : i < k} + 1.

We have definied 1 -rk in such a way that it is the same as the usual rank. In
particular, 1 -rk(F ) = 0 if and only if F is atomic. Furthermore, λ -rk(F ) < ω
for arbitrary λ < ω and Lω-formulas F .

Definition 18. We inductively define the semi-formal system δ
ρ,λ ∆ for natural

numbers δ, ρ, λ ∈ ω and a finite set ∆ of Lω-formulas by the following clauses:

(Ax1) δ
ρ,λ ∆,m = m holds. δ

ρ,λ ∆,m 6= n holds if m 6= n.

(Ax2) δ
ρ,λ ∆,m /∈ X,m ∈ X holds.

(
∧

) δ
ρ,λ ∆,

∧

i<k Fi holds if for all i < k there is some δi < δ such that
δi

ρ,λ ∆, Fi.

(
∨

) δ
ρ,λ ∆,

∨

i<k Fi holds if there is some i0 < k and δ0 < δ such that
δ0

ρ,λ ∆, Fi0 .

(Cut) δ
ρ,λ ∆ holds if there is some δ0 < δ and some Lω-formula F such

that λ -rk(F ) < ρ and δ0

ρ,λ ∆, F and δ0

ρ,λ ∆,¬F .

A formula which is derived in an inference is called the main formula of that
inference. The formula which disappears thru a (Cut) is called a cut-formula.
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It is clear from the definition that if δ
ρ,λ ∆ then there is a derivation-tree D∆

such that each node of D∆ is labeled with a finite set of Lω-formulas, the root is
labeled with ∆, each leaf with an axiom (Ax1) or (Ax2), and the labels of each
node together with those of its sons represent valid inferences which in case of
a (Cut) fulfill that the λ-rank of the cut-formula is strictly bounded by ρ, and
the depth of D∆ (i.e. the length of the longest path through D∆) is bounded

by δ. Furthermore, if δ
1,1 ∆, then only atomic cut-formulas are allowed in the

derivation, because 1 -rk(F ) = 0 is equivalent to F being atomic. If δ
0,λ ∆ then

no cut at all occurs in the derivation. In this case we call the derivation cut-free,
in the former nearly cut-free.

4.2 Cut-elimination and boundedness

The most important property of a semi-formal derivation D is that cuts can be
eliminated. Beside the pure existence of a cut-free derivation D′ for D we can
control the depth of the derivation during the elimination process. The resulting
depth depends on the complexity of cut-formulas that are eliminated. We will
prove two cut-elimination theorems, one eliminating arbitrary cut-formulas, and
the other eliminating small cut-formulas.

The second important property of cut-free derivations is the boundedness
theorem which yields lower bounds on the depth of the derivation. It states
that a nearly cut-free derivation of the statement ‘< restricted to {0, . . . , n− 1}
is well-founded’, i.e. the ‘translation’ of OInd(n,X) to Lω, must have depth at
least n.

Let us first state some direct properties, which are easily proven by induction
on the depth δ of the derivation.

Proposition 19 (Structural Rule). Assume ∆ ⊆ ∆′, δ ≤ δ′, ρ ≤ ρ′, λ ≤ λ′

and δ
ρ,λ ∆, then δ′

ρ′,λ′ ∆′.

Proposition 20 ((
∧

)-Inversion). Suppose δ
ρ,λ ∆,

∧

i<k Fi, then δ
ρ,λ ∆, Fi for

all i < k.

Proposition 21 ((
∨

)-Exportation). Suppose δ
ρ,λ ∆,

∨

i<k Fi, then
δ
ρ,λ ∆, F0, . . . , Fk−1

Lemma 22 (Elimination Lemma). Assume F is of the form
∧

i<k Fi and

λ -rk(F ) ≤ ρ and ρ > 0. If
γ

ρ,λ Γ, F and δ
ρ,λ ∆,¬F , then

γ+δ

ρ,λ Γ,∆.

Proof. We prove the assertion by induction on δ. The interesting case is that
¬F ≡

∨

i<k ¬Fi is the main formula of the last inference and λ -rk(¬F ) = ρ. By
eventually applying a Structural Rule we can assume w.l.o.g. that the premise
of the last inference is of the form

δ′

ρ,λ ∆,¬F,¬Fi0
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for some δ′ < δ and some i0 < k. Now the induction hypothesis yields

γ+δ′

ρ,λ Γ,∆,¬Fi0

Applying (
∧

)-Inversion to the first derivation yields
γ

ρ,λ Γ, Fi0 , hence

γ+δ′

ρ,λ Γ,∆, Fi0

by a Structural Rule. Now an application of (Cut) yields the assertion as
λ -rk(Fi0) < λ -rk(F ) ≤ ρ and γ + δ′ < γ + δ.

Theorem 23 (Elimination Theorem). If δ
ρ+1,λ ∆ and ρ > 0, then 2δ

ρ,λ ∆.

Proof. By induction on δ we replace cuts by applications of the Elimination
Lemma.

The Elimination Theorem shows that reducing the cut-rank results in an
exponential blow-up of the depth of the derivation. The advantage of this reduc-
tion is that it is independent from the size of the eliminated cut-formulas. But if
the sizes are small another type of cut-elimination produces better, i.e. smaller,
growth rates. Lω-Cut-Elimination has been invented in [3]. Here, we present a
technically more elegant version.

Lemma 24 (Lω-Cut-Elimination Lemma). Assume F is an Lω-formula

and ρ, λ > 0. If δ
ρ,λ ∆, F and δ

ρ,λ ∆,¬F , then
δ+lh(F )

ρ,λ ∆.

Proof. We prove the assertion by induction on the definition of F as an Lω-
formula. If F is atomic, we obtain the assertion by a (Cut), because lh(F ) = 1
and λ -rk(F ) = 0.

Otherwise assume F is not atomic. W.l.o.g. we can assume that F is of the
form

∨

i<k Fi. (
∨

)-Exportation yields

δ
ρ,λ ∆, F0, . . . , Fk−1. (1)

Using (
∧

)-Inversion for the second derivation we obtain

δ
ρ,λ ∆,¬F0

hence the induction hypothesis produces

δ+lh(F0)

ρ,λ ∆, F1, . . . , Fk−1.

Next we use (
∧

)-Inversion and the induction hypothesis to produce

δ+lh(F0)+lh(F1)

ρ,λ ∆, F2, . . . , Fk−1.

Inductively we obtain
δ+

P

i<k lh(Fi)

ρ,λ ∆

which is our assertion because
∑

i<k lh(Fi) = lh(F ).

18



Theorem 25 (Lω-Cut-Elimination Theorem). If δ
1,λ ∆, then δ·λ

1,1 ∆.

Proof. By induction on δ we replace cuts by applications of the Lω-Cut-Elimi-
nation Lemma.

Corollary 26 (Cut-Elimination Corollary). If δ
ρ+1,λ ∆, then

2ρ(δ)·λ
1,1 ∆.

Proof. Applying the Elimination Theorem ρ times, and finally the Lω-Cut-
Elimination Theorem.

We have shown how to obtain nearly cut-free derivations, i.e. derivations
where only atomic cut-formulas are allowed. Nearly cut-free derivations enjoy a
property called ‘boundedness’ which gives us lower bounds on the depth of the
derivation: it states that the depths of derivations of certain well-foundedness
principles cannot be small. The boundedness theorem needed here is a Lω-
version of the one proven in [4]. In order to make this paper self-contained, and
because the version needed for Lω is much simpler, we repeat the arguments in
an adapted form.

Let us consider the canonical translation of OProg and OInd to Lω which
we will call again OProg resp. OInd:

OProg(n,X) :=
∧

i≤n

( ∧

j<i

(j ∈ X) → i ∈ X
)

OInd(n,X) := OProg(n,X) →
∧

i≤n

(i ∈ X).

Of course A → B is an abbreviation of
∨
{¬A,B}. We will prove

δ
1,1 OInd(n,X) ⇒ δ ≥ n.

The main tool for this will be the so called reachability operator Rδ(M) which
is defined as follows. For a (finite) set M ⊆ ω let enM be the enumeration
function of ω \ M . We define

R
δ(M) := {m ∈ ω : m ≤ enM (δ)} ∪ M.

The reachability operator gives us the part of X accessed by a derivation using
OProg(n,X). Let us state some properties which we will need. We start with
some monotonicity properties.

γ ≤ δ ⇒ R
γ(M) ⊆ R

δ(M). (2)

If M ⊆ N then enM (δ) ≤ enN (δ), hence

M ⊆ N ⇒ R
δ(M) ⊆ R

δ(N). (3)

For M ⊂ ω and m ∈ ω we often write M,m instead of M ∪{m}. An important
calculation is: enM,m(δ) ≤ enM (δ + 1), hence

R
δ(M,m) ⊆ R

δ+1(M) ∪ {m}. (4)
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The most important property is

(∀i < n)i ∈ R
δ(M) ⇒ n ∈ R

δ+1(M). (5)

To see this assume n /∈ Rδ+1(M), hence n /∈ M and enM (δ + 1) < n. Let
m := enM (δ + 1). then m /∈ M as m is in the range of enM which is ω \M , and
enM (δ) < m. Hence m /∈ Rδ(M) and m < n.

An Lω-formula F is called X-positive if no s /∈ X occurs as a sub-formula
in F . The essential property of X-positive formulas is that they are monotone
in the following sense: If F is X-positive, M ⊆ N ⊆ ω and N ² FX [M ], then
N ² FX [N ]. This is easily proven by induction on the definition of F .

Lemma 27 (Boundedness Lemma). Let ∆ be a set of X-positive formulas,
and m1, . . . ,mk ∈ ω. Assume

δ
1,1 ¬OProg(n,X),m1 /∈ X, . . . ,mk /∈ X,∆,

then N ² (
∨

∆)X [Rδ(m1, . . . ,mk)].

Before proving the Boundedness Lemma let us first draw the desired result.

Theorem 28 (Boundedness Theorem). If δ
1,1 OInd(n,X), then δ ≥ n.

Proof. From the assumption we obtain δ
1,1 ¬OProg(n,X),

∧

i≤n(i ∈ X) by (
∨

)-

Exportation. Applying the Boundedness Lemma yields i ∈ Rδ(∅) for all i ≤ n.
In particular n ∈ Rδ(∅), hence n ≤ en∅(δ) = δ.

Proof of the Boundedness Lemma. We prove the assertion by induction on δ
and destinguish cases according to the last inference in δ

1,1 ¬OProg(n,X), ~m /∈
X,∆. If this is an axiom according to (Ax1) then ∆ already is an axiom of the
same kind and the assertion is obvious. If this is an axiom according to (Ax2)
then mj ∈ X occurs in ∆ for some j ∈ {1, . . . , k}. But now the assertion is

obvious because m ∈ R0[~m]. If the main formula of the last inference belongs
to ∆ then the assertion follows from the induction hypothesis, the monotonicity
of ∆ and its sub-formulas, and the correctness of the inferences.

We now turn to the interesting cases. If the main formula of the last inference
is ¬OProg(n,X), then we can find, using (

∧
)-Inversion, some γ < δ and some

m ∈ ω such that

γ
1,1 ¬OProg(n,X), ~m /∈ X,∆,

∧

j<m

(j ∈ X) (6)

and
γ
1,1 ¬OProg(n,X), ~m /∈ X,∆,m /∈ X. (7)

If there is some j < m such that j /∈ Rγ(~m) then the induction hypothesis ap-
plied to (6) yields N ² ∆X [Rγ(~m)], and the assertion follows from the monoticity
of ∆ and (2). Otherwise we have j ∈ Rγ(~m) for all j < m, hence

m ∈ R
γ+1(~m)
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using (5), which together with (4) implies

R
γ(~m,m) ⊆ R

γ+1(~m) ∪ {m} ⊆ R
δ(~m). (8)

The induction hypothesis applied to (7) together with (8) entails

N ² (
∨

∆)X [Rδ(~m)]

by the monotonicity of ∆.
In case that the last inference is a (Cut) there are γ < δ and an atomic

formula F such that

γ
1,1 ¬OProg(n,X), ~m /∈ X,∆, F (9)

and
γ
1,1 ¬OProg(n,X), ~m /∈ X,∆,¬F. (10)

Assume F is of the form m ∈ X for some m ∈ ω. In the case m /∈ Rδ(~m)
the induction hypothesis applied to (9) yields N ² (

∨
(∆,m ∈ X))X [Rδ(~m)]

using monotonicity, hence N ² (
∨

∆)X [Rδ(~m)]. Otherwise m ∈ Rδ(~m) and the
induction hypothesis applied to (10) leads to N ² (

∨
∆)X [Rγ(~m,m)]. Using (4)

we compute
R

γ(~m,m) ⊆ R
γ+1(~m) ∪ {m} ⊆ R

δ(~m).

Hence N ² (
∨

∆)X [Rδ(~m)] using monotonicity.
If F is of the form m /∈ X for some m, then the situation is symmetrical to

the previous case. In the remaining case F is an atomic sentence not containing
X. The induction hypothesis applied to (9) and (10) combined with mono-
tonicity yields N ² (

∨
(∆, F ))X [Rδ(~m)] and N ² (

∨
(∆,¬F ))X [Rδ(~m)], hence

N ² (
∨

∆)X [Rδ(~m)].

4.3 Embedding

We want to embed formal derivations into semi formal systems. Certain mea-
sures of the resulting derivations should be controlled. The main process dur-
ing this embedding is to unfold the induction axioms of the formal derivation
through cuts and cut-elimination on the semi-formal side. To obtain optimal
bounds we need an intermediate semi-formal system which preprocesses induc-
tion. We add the following rule to our previously defined semi-formal system

δ
ρ,λ Γ obtaining INDn

δ,κ

ρ,λ Γ:

(INDn) INDn
δ,κ

ρ,λ Γ,¬F0, Fj holds if 0 < j ≤ κ and there are δ′ <

δ and F1, . . . , Fj−1 such that λ -rk(Fi) ≤ n for i ≤ j and

INDn
δ,κ

ρ,λ Γ,¬Fi, Fi+1 for i < j.

The extended semi-formal system enjoys similar basic properties as before:

Proposition 29 (Structural Rule). Assume ∆ ⊆ ∆′, δ ≤ δ′, ρ ≤ ρ′, λ ≤ λ′,

κ ≤ κ′ and INDn
δ,κ

ρ,λ ∆, then INDn
δ′,κ′

ρ′,λ′ ∆′.
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Proposition 30 ((
∧

)-Inversion). Suppose INDn
δ,κ

ρ,λ ∆,
∧

i<k Fi, then for all

i < k we have INDn
δ,κ

ρ,λ ∆, Fi.

Proposition 31 ((
∨

)-Exportation). Suppose INDn
δ,κ

ρ,λ ∆,
∨

i<k Fi, then we

have INDn
δ,κ

ρ,λ ∆, F0, . . . , Fk−1.

Lemma 32 (Elimination Lemma). Assume F is of the form
∧

i<k Fi and
λ -rk(F ) ≤ ρ and ρ > 0.

If INDn
γ,κ

ρ,λ Γ, F and INDn
δ,κ

ρ,λ ∆,¬F , then INDn
γ+δ,κ

ρ,λ Γ,∆.

Theorem 33 (Elimination Theorem). If INDn
δ,κ

ρ+1,λ ∆ and ρ > 0, then

INDn
2δ,κ

ρ,λ ∆.

Corollary 34 (Cut-Elimination Corollary). If INDn
δ,κ

n+ρ+1,λ ∆, then

INDn
2ρ(δ),κ

n+1,λ ∆.

The auxiliary semi-formal system can be embedded into the proper semi-
formal system. The cost is an increase of the derivation depth by a factor
logarithmically in the additional parameter κ.

Theorem 35. If κ > 0 and INDn
δ,κ

n+1,λ Γ, then
δ·|κ|
n+1,λ Γ.

Proof. We use induction on δ. If the last inference is not (INDn) we obtain the
assertion directly (from the induction hypothesis if δ > 0) by the same inference,
because the function δ 7→ δ · |κ| is strictly monotone. Otherwise, there are some
j, δ′ with 0 < j ≤ κ and δ′ < δ, and some F0, . . . , Fj with λ -rk(Fi) ≤ n for i ≤ j
and ¬F0, Fj ∈ Γ such that

δ′·|κ|
n+1,λ Γ,¬Fi, Fi+1 for i < j

using the induction hypothesis.
Now we proceed with cuts using the following strategy, which we picture for

j = 7:

¬F0, F1 ¬F1, F2 ¬F2, F3 ¬F3, F4 ¬F4, F5 ¬F5, F6

¬F0, F2 ¬F2, F4 ¬F4, F6 ¬F6, F7

¬F0, F4 ¬F4, F7

¬F0, F7

Thus, we obtain
δ′·|κ|+|j|
n+1,λ Γ,¬F0, Fj , hence

δ·|κ|
n+1,λ Γ.

We fix a formal proof system.

Definition 36. Let T be sΣb
n(X)-LmIND. We inductively define T ⊢ ∆ for

finite sets of LBA(X)-formulas ∆ by the following clauses:

(AxL) T ⊢ ∆ holds if ∆ contains a logical axiom ¬A,A for some atomic
formula A.
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(AxE) T ⊢ ∆ holds if ∆ contains an equality axiom of the form (s = s) or
(s = t ∧ A(s) → A(t) for some atomic formula A and terms s, t.

(AxB) T ⊢ ∆ holds if ∆ contains an instance of an axiom from BASIC.

(IND) T ⊢ ∆ holds if ∆ contains an instance of a formula from
sΣb

n(X)-LmIND.

(∧) T ⊢ ∆, F0 ∧ F1 holds if T ⊢ ∆, Fi for all i ∈ {0, 1}.

(∨) T ⊢ ∆, F0 ∨ F1 holds if T ⊢ ∆, Fi for some i ∈ {0, 1}.

(∀) T ⊢ ∆, (∀x)F holds if there is some free variable y not occurring in
∆, (∀x)F such that T ⊢ ∆, Fx(y).

(∃) T ⊢ ∆, (∃x)F holds if there is some term s such that T ⊢ ∆, Fx(s).

(Cut) T ⊢ ∆ holds if there is some formula F such that T ⊢ ∆, F and
T ⊢ ∆,¬F .

The introduced formal derivation systems are complete and allow partial
cut-elimination, i.e., the cuts can be reduced to formulas of the complexity of
the axioms which are bounded formulas. Furthermore, we obtain a normal
form for derivations. Let T be a theory formulated in LBA(X) and ∆ a finite
set of LBA(X)-formulas. Then we can show that T ⊢ ∆ iff ∆ is derivable
in the restriction of the previously defined calculus, in which cut-formulas are
restricted to bounded formulas and only (∀)-inferences eliminate variables. This
eliminated variable has to be the eigenvariable of the inference. We call such a
restricted derivation a normal derivation.

This normal form is somehow part of the normal form which Buss et al. call
‘a bounded proof which has no free cuts, is in free variable normal form and is
restricted by parameter variables’ (cf. [5, p. 77, Theorem 9]). In essential, the
normal form defined here is that part of the latter normal form which is needed
for the forthcoming.

We call an LBA(X)-formula F a sentence if at most the second order variable
X occurs free in F . We define a translation ∗ of bounded LBA(X)-sentences
into Lω.

1. (Ps1 . . . sk)∗ :≡ (PsN
1 . . . sN

k ) for predicate symbols P of LBA(X). Here we

think of ‘∈ X’ and ‘/∈ X’ as special predicate symbols. I.e., (s /∈ X)∗ ≡
(sN /∈ X).

2. (F0 ∧ F1)
∗ :≡

∧

i≤1 F ∗
i .

3. (F0 ∨ F1)
∗ :≡

∨

i≤1 F ∗
i .

4.
(

(∀x ≤ t)F (x)
)∗

:≡
∧

i≤ tN F (i)∗.

5.
(

(∃x ≤ t)F (x)
)∗

:≡
∨

i≤ tN F (i)∗.
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Observe that the definition of OProg(n,X) and OInd(n,X) on p. 19 is simply
the ∗-translation of the former OProg(n,X) resp. OInd(n,X) on p. 9.

The next definition needs a technical tool. To each LBA-term t we can
associate a monotone LBA-term σ[t] which is an upper bound to t, see Buss

[5, p. 77] for a definition. To each ∆b
0(X)-formula F we associate a monotone

LBA-term ∆(F ) by recursion on the definition of F .

1. If F is atomic, let ∆(F ) be 1. Observe that |∆(F )| = 1.

2. If F is of the form G∧H or G∨H let ∆(F ) be 2 · (∆(G)+1) · (∆(H)+1).
Observe that |∆(F )| ≥ |∆(G)| + |∆(H)|.

3. If F is of the form (∀x ≤ |t|)G or (∃x ≤ |t|)G let ∆(F ) be

∆(G)x(σ[|t|])# σ[2 · t + 1].

Observe that |∆(F )| ≥
∑

n≤|t|N |∆(G)x(n)|.

We easily compute that for ∆b
0(X)-sentences F

lh(F ∗) ≤ |∆(F )|.

We extend the definition of ∆(F ) to sΣb
n(X)-formulas F : If F is of the form

(∃x1 ≤ t1)(∀x2 ≤ t2) . . . (Qxn ≤ tn)G

with G ∈ ∆b
0(X) and (Qxn ≤ tn)G /∈ ∆b

0(X), let ∆(F ) be

∆(G)xn
(σ[tn])xn−1

(σ[tn−1]) . . . x1
(σ[t1]).

We easily compute for sΣb
n(X)-sentences F

|∆(F )| -rk(F ) ≤ n.

We now come to the main theorem of this subsection, the Embedding The-
orem. First some notation. If the free variables of a term t are included
in {x0, . . . , xp} and x0, . . . , xp ∈ ω (abbreviated by ~x ∈ ω), then we define
t〈~x〉 :≡ tx0,...,xp

(x0, . . . , xp). Analogously we define F 〈~x〉 for formulas F and

Γ〈~x〉 for sets of formulas Γ. To abbreviate we use F,G〈~x〉 instead of {F,G}〈~x〉
if this does not confuse.

In the following we will often identify a ground term t with its evaluation tN.
It will be clear from the context what is meant.

Theorem 37 (Embedding). Let Γ be a finite set of bounded LBA-formulas.
Let the free variables of Γ occur under {x0, . . . , xp}. Let T be sΣb

n(X)-LmIND
and assume T ⊢ Γ. Then there are δ, ρ < ω and some monotone LBA-term t
whose free variables occur among {x0, . . . , xp} such that

∀~x ∈ ω INDn
δ,|t|m〈~x〉N

ρ,|t|〈~x〉N Γ〈~x〉∗.
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Proof. As remarked above we obtain a normal derivation T ⊢ Γ in which all cut-
formulas are sΣb

∞(X)-formulas and all formulas in the derivation are bounded.
We prove the assertion by induction along this derivation.

In the following we often omit the superscript ∗. Observe that for every
bounded formula F containing no variable not in {x0, . . . , xp} we can find some
δ < ω with

∀~x ∈ ω δ
0,0 ¬F, F 〈~x〉 (11)

We distinguish cases according to the last inference:

Cases (AxL), (AxE), (AxB): If Γ is a logical axiom, an equality axiom or an
instance of an axiom from BASIC then (Ax1), resp. (Ax2) (and at most four
(
∨

)-inferences) yield 4
0,0 Γ〈~x〉 for any ~x ∈ ω.

Case (IND): There is some sΣb
n(X)-formula F and some term t with

SInd(|t|m, F ) ∈ Γ. If x does not occur as a free variable in F then Fx(0) ≡
F ≡ Fx(|t|m), thus using (11) we obtain some δ < ω with

∀~x ∈ ω δ
0,0 ¬Fx(0), Fx(|t|m)〈~x〉

and three times (
∨

) yields the assertion.
Otherwise, let s′ :≡ σ[∆(F )]x(|t|m)+t and s :≡ |s′|m, then the free variables

of s′ and s are among {x0, . . . , xp}. Using (11) we obtain some δ such that for
any ~x ∈ ω and i < |t|m〈~x〉N

δ
0,0 ¬Fx(i)〈~x〉∗, Fx(i)〈~x〉∗ and δ

0,0 ¬Fx(S i)〈~x〉, Fx(i + 1)〈~x〉,

hence

δ+2
0,0 (∃x ≤ |t|m)(F ∧ ¬Fx(S x))〈~x〉∗,¬Fx(i)〈~x〉∗, Fx(i + 1)〈~x〉∗

by (
∧

) and (
∨

). Observe t〈~x〉 ≤ s′〈~x〉, hence |t|m〈~x〉 ≤ s〈~x〉. For i ≤ |t|m〈~x〉
we have ∆(Fx(i))〈~x〉 ≤ s′〈~x〉, hence |s′〈~x〉| -rk(Fx(i)〈~x〉) ≤ n. Therefore, we can
apply (INDn) to produce

INDn
δ+3,s〈~x〉

0,|s′|〈~x〉
¬(∀x ≤ |t|m)(F → Fx(S x))〈~x〉∗,¬Fx(0)〈~x〉∗, Fx(|t|m)〈~x〉∗.

Four times (
∨

) yields

∀~x ∈ ω INDn
δ+7,s〈~x〉

0,|s′|〈~x〉
SInd(|t|m, F )〈~x〉∗.

Case (∨): The assertion follows directly from the induction hypothesis.

Case (∧): The assertion follows from the induction hypothesis after replacing
the upper bounds by some common bounds (using Structural Rule). We may
always take the sum of the inductively given terms.
Therefore, in the other cases we will assume common upper bounds.
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Case (Cut): There is some bounded formula F such that the free variables
of F are among {x0, . . . , xp}, T ⊢ Γ, F and T ⊢ Γ,¬F . Thus, the induction
hypothesis yields some δ, ρ < ω, and some monotone LBA-term t with

INDn
δ,|t|m〈~x〉

ρ,|t|〈~x〉 Γ, F 〈~x〉 and INDn
δ,|t|m〈~x〉

ρ,|t|〈~x〉 Γ,¬F 〈~x〉

for all ~x ∈ ω. Let ρ′ be the maximum of ρ and 0 -rk(F 〈~0〉) + 1, then

|t|〈~x〉 -rk(F 〈~x〉) < ρ′

for all ~x ∈ ω. Applying Structural Rules and a (Cut) in the semi-formal system

yields INDn
δ+1,|t|m〈~x〉

ρ′,|t|〈~x〉
Γ.

Case (∃): There are some term s, some variable x and some formula F such
that (w.l.o.g. by eventually using a Structural Rule) (∃x)F ∈ Γ and T ⊢ Γ, Fx(s).
By assumption (∃x)F is bounded, thus there is some bounded formula B and
some term u such that (∃x)F ≡ (∃x ≤ u)B and Fx(s) ≡ s ≤ u ∧ Bx(s). The
induction hypothesis and (

∧
)-Inversion produce some δ, ρ < ω with ρ > 0 and

some t whose free variables occur under {x0, . . . , xp} such that

INDn
δ,|t|m〈~x〉

ρ,|t|〈~x〉 Γ, s ≤ u〈~x〉 (12)

and
INDn

δ,|t|m〈~x〉

ρ,|t|〈~x〉 Γ, Bx(s)〈~x〉 (13)

for all ~x ∈ ω.
Fix ~x ∈ ω. If s〈~x〉 6≤ u〈~x〉 then we obtain from (Ax1) by a (Cut) with (12)

INDn
δ+1,|t|m〈~x〉

ρ,|t|〈~x〉 Γ〈~x〉. Otherwise s〈~x〉 ≤ u〈~x〉. Hence (
∨

) applied to (13) yields

INDn
δ+1,|t|m〈~x〉

ρ,|t|〈~x〉 Γ,

because
∨

n≤u〈~x〉N

Bx(n)〈~x〉∗ ≡ ((∃x ≤ u)B〈~x〉)∗ ≡ ((∃x)F 〈~x〉)∗ ∈ Γ∗.

Case (∀): There are some formula F and some variables x, y satisfying
(w.l.o.g., by eventually using a Structural Rule) (∀x)F ∈ Γ, y does not occur
under the free variables of Γ, (∀x)F and T ⊢ Γ, Fx(y). By assumption (∀x)F is
a bounded formula. Hence there are some bounded formula G and some term u
with (∀x)F ≡ (∀x ≤ u)G and Fx(y) ≡ y ≤ u → Gx(y). The induction hypoth-
esis and (

∨
)-Exportation yield some δ, ρ < ω, ρ > 0 and some monotone term

t whose free variables are among {x0, . . . , xp, y}, such that

INDn
δ,|t|m〈~x,y〉

ρ,|t|〈~x,y〉 Γ, y 6≤ u,Gx(y)〈~x, y〉 (14)

for all ~x, y ∈ ω. Fix ~x ∈ ω.
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Let t′ :≡ σ[t]y(u). The free variables of t′ are among {x0, . . . , xp} and
t〈~x, y〉 ≤ t′〈~x〉 for y ≤ u〈~x〉.

Let y ≤ u〈~x〉. Then (14) leads to INDn
δ,|t′|m〈~x〉

ρ,|t′|〈~x〉
Γ, Gϕ(y), y 6≤ u〈~x〉. By

(Ax1) and a (Cut) we obtain

INDn
δ+1,|t′|m〈~x〉

ρ,|t′|〈~x〉
Γ, Gϕ(y)〈~x〉.

Applying (
∧

) produces INDn
δ+2,|t′|m〈~x〉

ρ,|t′|〈~x〉
Γ〈~x〉, because

∧

y≤u〈~x〉N

Gx(y)〈~x〉∗ ≡ ((∀x ≤ u)G〈~x〉)∗ ≡ ((∀x)F 〈~x〉)∗ ∈ Γ〈~x〉∗.

4.4 Computing upper bounds

Assume f ∈ DO(sΣb
m(X)-LmIND) and m > 0. By definition there is some

LBA-term t(x) such that f = λn.t(n) and sΣb
m(X)-LmIND ⊢ OInd(t,Πb

1(X)),
hence

sΣb
m(X)-LmIND ⊢ OInd(t,X).

By the Embedding Theorem 37 there are some δ, ρ < ω and some LBA-term
s(x) in which at most x occurs as a free variable such that

∀x ∈ ω INDm
δ,|s|m〈x〉N

ρ,|s|〈x〉N OInd(t〈x〉N,X).

Fix n ∈ ω. The Cut-Elimination Corollary 34 for the auxiliary semi-formal
system yields

INDm
2ρ(δ),|s(n)|m
m+1,|s(n)| OInd(t(n),X).

Hence, by Theorem 35

2ρ(δ)·|s(n)|m+1

m+1,|s(n)| OInd(t(n),X).

Now the Cut-Elimination Corollary 26 shows

2m(2ρ(δ)·|s(n)|m+1)·|s(n)|
1,1 OInd(t(n),X).

The Boundedness Theorem 28 applied to this yields

f(n) = t(n) ≤ 2m(2ρ(δ) · |s(n)|m+1) · |s(n)|. (15)

Let c := 2ρ(δ). As s is an LBA-term it represents a function of polynomial
growth rate, hence there is some d < ω such that |s(n)| ≤ |n|d for n big enough,
hence we compute for n big enough and some c′ (remember m > 0)

f(n) ≤ 2m(c′ · |n|m+1) · |n|
d

≤ 2m((c′ + d) · |n|m+1).
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Altogether, we have
f E λn.2m((c′ + d) · |n|m+1),

hence

DO(sΣb
m(X)-LmIND) ≡ {λn.2m(c · |n|m+1) : c number}

for m > 0.

5 Proofs revisited

If we examine the proofs of our results we discover that they are nearly indepen-
dent from the language LBA. We only needed that + and · are included in LBA

for the lower bounds (e.g. Lemma 7). A language-dependent reformulation of
our results reads as follows: Suppose the underlying language is L and + and ·
are included in L.

Assume n + 1 > m ≥ 0 and f ∈ DO(sΣb
n(X)-LmIND(L)). Similar to the

last section we obtain some L-term t and some number c such that

f(x) ≤ 2n(c · |t(x)|m+1) · |t(x)|,

c.f. (15). If n > 0 then we can compute

f(x) ≤ 2n(c · |t(x)|m+1 + |t(x)|n+1)

≤ 2n((c + 1) · |t(x)|m+1)

as n ≥ m. Together with the results from the beginning of Section 4 and
DO(T ) E {λx.|t(x)| : t an L-term} for very weak L-theories T , we obtain for
n + 1 ≥ m ≥ 0

DO(sΣb
n(X)-LmIND(L))

E {λx.2n(c · |t(x)|m+1) : c a number and t an L-term}.

On the other hand, 2. of Theorem 9 and Theorem 16 yield

DO(sΣb
n(X)-LmIND(L))

D {λx.2n(c · |t(x)|m+1) : c a number and t an L-term}

for 0 ≤ n ≤ m. Hence

DO(sΣb
n(X)-LmIND(L))

≡ {λx.2n(c · |t(x)|m+1) : c a number and t an L-term}

for m = n or m = n + 1 (and n ≥ 0).
This has several consequences:
1. We can add arbitrary functions of polynomial growth rate to LBA, still

obtaining the ‘same’ results – the only difference is that the theories are formula-
ted in the new language L. E.g., S1

2(L;X) < T 1
2 (L,X), S1

2(L;X) < sR2
2(L,X),

and T 1
2 (L;X) * sR2

2(L,X).
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2. We can also consider languages including functions of stronger growth
rates. E.g., for k > 0 let Lk be LBA without # but extended by #2, . . . ,#k,
where #1 = · and x#k+1 y = 2|x|#k |y|. Hence x#k+1 y = 2k(|x|k · |y|k) and
#2 = #. Therefore, L1 is LBA without #, L2 is LBA, and L3 is LBA extended
by #3 etc. Observe that for an Lk-term t(x) in which at most x occurs as a free
variable there exits a d ∈ ω such that λx.t(x) E λx.2k(d · |x|k). The theories
T i

k, Si
k, sRi

k are T i
2, Si

2, resp. sRi
2 reformulated in the language Lk.

We compute for m + 1 ≤ k

λx.2n(c · |t(x)|m+1) E λx.2n(c · 2k−(m+1)(d · |x|k))

E λx.2k−1+n−m(d′ · |x|k)

for certain d, d′ ∈ ω. And for m + 1 > k we have

λx.2n(c · |t(x)|m+1) E λx.2n(c · |d · |x|k|m+1−k)

E λx.2n(c′ · |x|m+1)

for certain d, c′ ∈ ω.
Using these estimations we obtain

DO(sΣb
m(X)-Lm+1IND(Lk)) ≡ {λx.2k−2(c · |x|k) : c number}

for m + 2 ≤ k, and

DO(sΣb
m(X)-Lm+1IND(Lk)) ≡ {λx.2m(c · |x|m+2) : c number}

for m + 2 > k. We also have

DO(sΣb
m(X)-LmIND(Lk)) ≡ {λx.2k−1(c · |x|k) : c number}

for m + 1 ≤ k, and

DO(sΣb
m(X)-LmIND(Lk)) ≡ {λx.2m(c · |x|m+1) : c number}

for m + 1 > k.
Furthermore, we obtain

DO(T 1
k (X)) D {λx.2k(c · |x|k) : c number}

and, for m < k,

DO(sΣb
m+1(X)-LmIND(Lk))

E {λx.2m+1(c · |t(x)|m+1) : c a number and t an Lk-term}

≡ {λx.2k(c · |x|k) : c number}.

Hence

DO(S0
k(X)) ≡ DO(sR1

k(X)) ≡ . . . ≡ DO(sΣb
k−2(X)-Lk−1IND(Lk))

DO(T 0
k (X)) ≡ DO(S1

k(X)) ≡ . . . ≡ DO(sΣb
k−1(X)-Lk−1IND(Lk))

DO(T 1
k (X)) ≡ DO(S2

k(X)) ≡ . . . ≡ DO(sΣb
k(X)-Lk−1IND(Lk)).
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Figure 5: The L3-theories

In Figure 3-5 we have displayed the relationships of L1, L2, resp. L3-theories.
Here we mean with S < T that the theories S and T are separated and S is
included in the consequences of T ; with S ≡ T that S and T have the same dy-
namic ordinals (this does not imply that S and T prove the same consequences);
and with S * T that S is not included in the consequences of T .

T 0
2 (X) and S1

2(X), resp. T 1
2 (X) and S2

2(X), must have the same dynamic
ordinal because it is well-known that S1

2 is ∀Σb
1-conservative over T 0

2 (if we
identify T 0

2 with PV1) (i.e. T 0
2 ¹∀Σb

1
S1

2), resp. S2
2 is ∀Σb

2-conservative over

T 1
2 (i.e. T 1

2 ¹∀Σb
2

S2
2). Different dynamic ordinals would lead to separations

contradicting these conservativity results.
In thinking the other way round we can postulate the following (weak) con-

jectures by reading them out of our results. E.g., from Figure 5 we draw the
following conjectures:

S1
3 ¹∀Σb

1
(L3) sR2

3,

T 1
3 ¹∀Σb

2
(L3) S2

3 ¹∀Σb
2
(L3) sR3

3;

more general we can postulate

S1
k ¹∀Σb

1
(Lk) . . . ¹∀Σb

1
(Lk) sΣb

k−1-L
k−1IND(Lk),

T 1
k ¹∀Σb

2
(Lk) S2

k ¹∀Σb
2
(Lk) . . . ¹∀Σb

2
(Lk) sΣb

k-Lk−1IND(Lk).
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