*uniform reduct* of a propositional proof system as the set of those bounded formulas in the language of Peano Arithmetic which have polynomial size proofs under the Paris-Wilkie-translation. With respect to the arithmetic complexity of uniform reducts, we show that uniform reducts are Π^0_1-hard and obviously in Σ^0_2. We also show under certain regularity conditions that each uniform reduct is closed under bounded generalisation; that in the case the language includes a symbol for exponentiation, a uniform reduct is closed under modus ponens if and only if it already contains all true bounded formulas; and that each uniform reduct contains all true Π^b_1(α)-formulas.

Steve Cook made a comment on Problem 2.

He showed that the existence of a proof system whose uniform reduct equals

the set of all true bounded formulas is equivalent to the existence of

an

optimal proof system.Cook’s Comments (ps-file), in arXiv