
Exact bounds for lengths of reductions in typed

λ-calculus

Arnold Beckmann

Institut für mathematische Logik und Grundlagenforschung

der Westfälischen Wilhelms-Universität Münster

Einsteinstr. 62, D-48149 Münster, Germany

January 29, 2003

Abstract

We determine the exact bounds for the length of an arbitrary reduction

sequence of a term in the typed λ-calculus with β-, ξ- and η-conversion.

There will be two essentially different classifications, one depending on

the height and the degree of the term and the other depending on the

length and the degree of the term.

Although it is well known that the full reduction tree for any term of the
typed λ-calculus – and thus also any reduction sequence of that term – is finite,
there exists – to the authors best knowledge – a gap concerning the classifica-
tion of their growth rates. We only know that the growth rates are in E4 (cf.
Schwichtenberg [S82]). A better upper bound is achieved in [S91]. There
the estimate depends on the degree g(r), the height h(r) and the arities of free
variables ar(r) of a term r. It is shown that any reduction sequence for r is
bounded by

ar(r)2g(r)(g(r)+2 h(r)+2 ar(r)+2)

where 2m(n) is recursively defined by 20(n) = n and 2m+1(n) = 22m(n). In this
paper we will show that this bound can be improved to

2g(r)+1(h(r)) resp. 2g(r)(l(r))

where l(r) denotes the length of r. Together with an optimal lower bound this
closes the gap.

1 Introduction

Let r, s, t denote terms of the typed λ-calculus.1 The length l(r) and the height
h(r) of r are defined by l(x) = 1, l(λxr) = l(r) + 1, l(rs) = l(r) + l(s) and

1For a general definition of the typed λ-calculus see Barendregt [B84].

1

h(x) = 0, h(λxr) = h(r) + 1, h(rs) = max(h(r),h(s)) + 1. By induction on
r we immediately see l(r) ≤ 2h(r). A ground type ι has level lv(ι) = 0 and
lv(ρ → σ) = max(lv(ρ) + 1, lv(σ)). The level lv(r) of r is defined to be the level
lv(σ) of its type σ, the degree g(r) of r is defined to be the maximum of the
levels of subterms of r.

With d(r) we denote the maximum of lengths of reduction sequences for r
with respect to −→1, the one step reduction using β-, ξ- and η-conversion rules.
Our investigations will focus on the following functions estimating derivation
lengths:

dln(N) := max{d(r) : r a term, g(r) ≤ n, l(r) ≤ N} and

dhn(N) := max{d(r) : r a term, g(r) ≤ n,h(r) ≤ N}.

We introduce some common notions for comparing growth rates of functions.
The symbols f(n) = O(g(n)), f(n) = Ω(g(n)) and f(n) = Θ(g(n)) denote that
eventually f(n) ≤ c · g(n), f(n) ≥ c · g(n) and c1 · g(n) ≤ f(n) ≤ c2 · g(n) where
c, c1, c2 are positive constants. Obviously f(n) = Θ(g(n)) iff f(n) = O(g(n))
and f(n) = Ω(g(n)). For S one of O,Ω,Θ the symbols f(n) = h(S(g(n))) denote
that there is a functions φ(n) such that f(n) = h(φ(n)) and φ(n) = S(g(n)).

The main result in this paper will be the following

Main Theorem Independent of n we have

dhn(N) = 2n+1(Θ(N)) and dln(N) = 2n(Θ(N)).

More exact we will prove the Main Theorem in the following form: There
are strictly positive constants cl, ch such that for all n there exists some N0(n)
such that for all N ≥ N0(n)

2n(
N

cl

) ≤ dln(N) ≤ 2n(N)

2n+1(
N

ch

) ≤ dhn(N) ≤ 2n+1(N)

Remark Our investigations are concerned with worst case reductions, i.e.
longest possible reduction chains. If one considers arbitrary reduction chains
the following super-exponential lower bounds are known. In §1 of [S82] terms
of length O(n) and degree n + 2 are defined such that every reduction sequence
up to the normal form has length ≥ 2n−2(1)− n. Applying the same argument
from §1 of [S82] to our lower bounds An

N shows that there are terms of length
O(N) and degree n + 1 such that every reduction sequence up to the normal
form has length ≥ 2n−1(N) − N for N big enough. It would be interesting
to know what are the exact classifications of dl∗n, dh∗

n, where dl∗n and dh∗
n are

obtained from dln and dhn resp. by replacing d(r) with the minimum of lengths
of reduction sequences for r with respect to −→1.

2

Remark The author learned from the referee that the rules defining our “ex-
panded head reduction tree” were already considered by van Raamsdonk and
Severi in [R95] as well as Goguen in [G94]. Furthermore, Loader indepen-
dently claimed slightly weaker upper bounds for dln(N) (i.e., 2n(K ·N) for some
K > 1) in an unpublished report [L98].

2 Upper bounds

In [S91] it is proved that d(r) ≤ ar(r)
2g(r)(c·(h(r)))

for some c > 0 where ar(r)
is the maximum of the arities of free variables of r. Unfortunately the arity
of a term of type 0 cannot be bounded uniformly by a function in the length
or height of the term. E.g. let xn, yn be variables of type (0n → 0) → 0 resp.
0n → 0, then ar(xnyn) = n, l(xnyn) = 2 and h(xnyn) = 1 for all n.

In showing dln(N) ≤ 2n(N) we do obtain also the exact bounds depending
on the heights, because l(r) ≤ 2h(r) yields

dhn(N) ≤ dln(2N) ≤ 2n(2N) = 2n+1(N). (1)

On the other hand we cannot argue that dhn(N) ≤ 2n+1(N) implies dln(N) ≤
2n(N), because there are terms r of arbitrary length such that l(r) = h(r) + 1,
e.g. r = λ~x.y.

The key observation in [S91] is that the number of nodes with conversion
in the head reduction tree of a λ-I-term bounds the length of any reduction
sequence. There, λ-I-terms are special λ-terms having the property of never
forgetting subterms in reductions. More formally a term r is called a λ-I-term
if for any subterm of the form λxs one has x ∈ fvar(s), where fvar(s) is the set
of variables free in s. The general case can be reduced to the case of λ-I-terms
by introducing variants of a term. Such a variant r◦ of a term r is a λ-I-term
with g(r◦) = g(r) and d(r◦) ≥ d(r), but only l(r◦) = O(l(r)2). Thus we cannot
use this approach directly to obtain the desired bound.

In our approach we consider an expanded head reduction tree. Each node
labeled with a β-redex (λxr)s will have two childs, r[x := s] and s. Thus, also in
the case x /∈ fvar(r) the expanded head reduction tree will control conversions in
s. Hence the number of nodes with conversion in the expanded head reduction
tree bounds the length of any reduction sequence, this time for arbitrary typed
λ-terms.

The main difference of our calculus
α

ρ r compared with the calculus in [S91]
is beside the refinement of the β-Rule, that λ-terms of arbitrary level are derived,
and that the width of the expanded head reduction tree is also controled. The
latter yields a later Estimate Lemma which is independent from the arities of
certain free variables.

The techniques used here are refinements and further developments of those
presented in [S91].

Definition We define
α

ρ r for λ-terms r of arbitrary level and α, ρ < ω induc-
tively by

3

(β-Rule) If
α

ρ r[x := s]~t and
α

ρ s, then
α+1

ρ (λxr)s~t.

(β0-Rule) If
α

ρ r then
α+1

ρ λxr.

(Variable Rule) If
α

ρ ti for i = 1, . . . , n, then
α+n

ρ x~t. In particular
α

ρ x for
any variable x and α, ρ < ω.

(Cut Rule) If
α

ρ r, lv(r) ≤ ρ and
α

ρ t, then
α+1

ρ rt.

The calculus allows a structural rule, i.e. if
α

ρ r and α ≤ α′ < ω, ρ ≤ ρ′ < ω,

then
α′

ρ′
r.

First we observe that
α

0
r can be viewed as a tree which is generated in a

unique way. We call this tree (with the α’s stripped off) the expanded head
reduction tree. It has the desired property that #r, the number of nodes with
conversion in it, bounds the length on any reduction sequence of r. More pre-
cisely we define by induction on

α

0
r:

#
(
(λxr)s~t

)
:= #

(
r[x := s]~t

)
+ 1 + #s

#(λxr) := #r + 1

#(xt1 . . . tn) :=
n∑

i=1

#ti.

Before we show that #r has the desired properties we need some technical
lemmas.

Lemma 1 #r = #r[x := y].

Proof. The proof by induction on
α

0
r is obvious. ¤

Lemma 2 #(ry) ≥ #r.

Proof. By induction on
α

0
ry.

#
(
(λxr)s~ty

)
= #

(
r[x := s]~ty

)
+ 1 + #s

≥ #
(
r[x := s]~t

)
+ 1 + #s = #

(
(λxr)s~t

)

#((λxr)y) = #(r[x := y]) + 1 + #y = #r + 1 = #(λxr)

(xt1 . . . tny) =
n∑

i=1

#ti + #y =
n∑

i=1

#ti = #(xt1 . . . tn) .

We used #y = 0 and Lemma 1. ¤

Now we are able to prove our

Main Lemma If r −→1 s, then #r > #s.

Proof. We will show a more general assertion. If z ∈ fvar(r), then

(β) # (r[z := (λxp)q]) > #(r[z := p[x := q]])

4

(η) # (r[z := (λx.px)]) > #(r[z := p]) if x /∈ fvar(p).

Let t∗ := t[z := (λxp)q] and t′ := t[z := p[x := q]] for assertion (β) resp. t∗ :=
t[z := (λx.px)] and t′ := t[z := p] for (η). We prove both assertions by induction
on #r∗.

#
(
(λyr)s~t

)∗
= #

(
r[y := s]~t

)∗
+ 1 + #s∗

> #
(
r[y := s]~t

)′
+ 1 + #s′

= #
(
(λyr)s~t

)′

For ”>” it is important that we have z ∈ fvar(r[y := s]~t) or z ∈ fvar(s). This is
the reason why we formulated the β-Rule in the definition of

α

ρ r as we did.

#(λyr)∗ = #r∗ + 1 > #r′ + 1 = #(λyr)′.

For the next case we assume z 6= y, hence n > 0 and z ∈ fvar(~t).

(yt1 . . . tn)
∗

=
n∑

i=1

#t∗i >
n∑

i=1

#t′i = #(yt1 . . . tn)
′
.

Considering assertion (β) we have

(zt1 . . . tn)
∗

= #
(

(λxp)q~t
∗
)

= #
(

p[x := q]~t
∗
)

+ 1 + #q

≥ #
(

p[x := q]~t
′
)

+ 1

> #
(

p[x := q]~t
′
)

= #(z~t)′.

For assertion (η) we distinguish two cases.

#z∗ = #(λx.px) = #(px) + 1 > #(px) ≥ #p

using Lemma 2.

#
(
zt0~t

)∗
= #

(

(λx.px)t∗0~t
∗
)

= #
(

pt∗0~t
∗
)

+ 1 + #(t∗0)

≥ #
(

pt′0~t
′
)

+ 1

> #
(

pt′0~t
′
)

= #(zt0~t)
′.

¤

5

We are now going to eliminate cuts.

Renaming Lemma If
α

ρ r, then
α

ρ r[x := y].

Proof. The proof by induction on
α

ρ r is obvious. ¤

Appending Lemma If
α

ρ r and ry is a term, then
α+1

ρ ry.

Proof. By induction on
α

ρ r.

β-Rule. By induction hypothesis we have
α+1

ρ r[x := u]~ty and
α

ρ u, hence
α+2

ρ (λxr)u~ty by the β-Rule.

β0-Rule. We have
α

ρ r, hence
α

ρ r[x := y] by the Renaming Lemma. Thus
α+1

ρ (λxr)y by the β-Rule.

Variable Rule. By assumption we have
α

ρ ti. Furthermore
α

ρ y by the Variable

Rule, hence
α+n+1

ρ xt1 . . . tny by the Variable Rule.

Cut Rule. We have
α+1

ρ rt and lv(r) ≤ ρ, hence lv(rt) ≤ lv(r) ≤ ρ. By the

Variable Rule we obtain
α+1

ρ y, thus
α+2

ρ rty by a cut. ¤

Observe that the following Estimate Lemma does not depend on the arity
ar(r) of r.

Estimate Lemma If
α

0
r, then #r ≤ 2α.

Proof. We show
α

0
r ⇒ #r ≤ 2α − 1 by induction on

α

0
r.

β-Rule. #
(
(λxr)s~t

)
= #

(
r[x := s]~t

)
+ 1 + #(s) ≤ (2α − 1) + 1 + (2α − 1) ≤

2α+1 − 1
β0-Rule. # (λxr) = #r + 1 ≤ (2α − 1) + 1 ≤ 2α+1 − 1
Variable-Rule. # (xt1 . . . tn) =

∑n
i=1 #ti ≤ n · (2α − 1) ≤ 2α+n − 1. ¤

Substitution Lemma If
α

ρ r and
β

ρ sj and lv(sj) ≤ ρ, j = 1, . . . , k, then
β+α

ρ r[~x := ~s].

Proof. By induction on
α

ρ r. We write t∗ for t[~x := ~s].

β-Rule. By induction hypothesis we have
β+α

ρ r∗[x := u∗]~t
∗

and
β+α

ρ u∗, hence
β+α+1

ρ (λxr∗)u∗~t
∗

by the β-Rule.

β0-Rule. By induction hypothesis
β+α

ρ r∗, hence
β+α+1

ρ (λxr∗) by the β0-Rule.

Variable Rule. By induction hypothesis we have
β+α

ρ t∗i , hence
β+α+n

ρ xt∗1 . . . t∗n
by the Variable Rule. If x /∈ ~x then we are done.

Otherwise there is some j with x = xj . The presumptions yield
β+α

ρ sj and

lv(sj) ≤ ρ, thus we obtain
β+α+n

ρ sjt
∗
1 . . . t∗n by applying n cuts.

Cut Rule. By induction hypothesis
β+α

ρ r∗ and
β+α

ρ t∗ and lv(r∗) ≤ ρ, thus
β+α+1

ρ r∗t∗ again by a cut. ¤

6

Cut Elimination Lemma If
α

ρ+1
r then

2α

ρ r.

Proof. We show
α

ρ+1
r ⇒

2α−1

ρ r by induction on
α

ρ+1
r.

β-Rule. By induction hypothesis we have
2α−1

ρ r[x := u]~t and
2α−1

ρ u, hence
2α

ρ (λxr)u~t by the β-Rule and 2α ≤ 2α+1 − 1.

β0-Rule. By induction hypothesis we have
2α−1

ρ r, hence
2α

ρ λxr by the β0-
Rule.
Variable Rule. By induction hypothesis

2α−1

ρ ti, hence
2α+n−1

ρ xt1 . . . tn by

the Variable Rule and 2α + n − 1 ≤ 2α+n − 1.

Cut Rule. By induction hypothesis we have
2α−1

ρ r,
2α−1

ρ t and lv(r) ≤ ρ + 1,

hence lv(t) ≤ ρ. By the Appending Lemma we obtain
2α

ρ ry, thus
2α+1−1

ρ rt
by the Substitution Lemma. ¤

We embed terms depending on their length instead of height in order to
obtain a sharper bound on the cut degrees.

Embedding Lemma

g(r) ≤ ρ + 1 implies
l(r)

ρ r.

Proof. We show g(r) ≤ ρ + 1 ⇒
l(r)−1

ρ r by induction on r.

Case x. The Variable Rule shows
l(x)−1

ρ x.

Case λxr. By induction hypothesis
l(r)−1

ρ r, hence
l(λxr)−1

ρ (λxr) by the β0-
Rule.

Case ts. By induction hypothesis
l(t)−1

ρ t and
l(s)−1

ρ s, thus the Appending

Lemma yields
l(t)

ρ ty. Since lv(t) ≤ ρ+1 we have lv(s) ≤ ρ, hence
l(t)+l(s)−1

ρ ts
by the Substitution Lemma. ¤

With the Embedding Lemma and the Cut Elimination Lemma it follows
that the expanded head reduction tree of r with g(r) > 0 has the

height ≤ 2g(r)−1(l(r)).

The Estimate Lemma now shows

#r ≤ 22g(r)−1(l(r)) = 2g(r)(l(r))

Together with the Main Lemma this yields

d(r) ≤ #r ≤ 2g(r)(l(r)).

Hence we obtain for n > 0
dln(N) ≤ 2n(N). (2)

This is also true for n = 0 because the only terms t with g(t) = 0 are variables
t = x, hence dl0(N) = 0.

7

Together with observation (1) from the beginning of this section (2) also
shows

dhn(N) ≤ 2n+1(N). (3)

Remarks The techniques from the last part can also be applied to reductions
in Combinatory Logic with combinators K and S which yield the same upper
bound.

3 Lower bounds

We are going to define terms An
N and Bn

N such that

1. g(An
N) = g(Bn

N) = n + 1,

2. d(An
N) ≥ 2n+1(N) and d(Bn

N) ≥ 2n+2(N),

3. l(An
N) = O(N) = h(Bn

N) independent of n.

This yields

dln(N) = 2n(Ω(N)) and dhn(N) = 2n+1(Ω(N)) (4)

because

1. l(An
N) ≤ c · N for some c > 0 and N big, hence

dln+1(N) ≥ d(An
⌊N

c
⌋
) ≥ 2n+1(⌊

N

c
⌋) ≥ 2n+1(

N

c + 1
)

for N ≥ c · (c + 1) as ⌊N
c
⌋ ≥ N

c
− 1 ≥ N

c
− N

c·(c+1) = N
c+1 .

2. h(Bn
N) ≤ c · N for some c > 0 and N big, hence

dhn+1(N) ≥ d(Bn
⌊N

c
⌋
) ≥ 2n+2(⌊

N

c
⌋) ≥ 2n+2(

N

c + 1
)

for N ≥ c · (c + 1).

Fix some ground type 0. For natural numbers n define a type o(n) via

o(0) = 0 and o(n + 1) = o(n) → o(n), then lv(o(n)) = n. With [u]
k
(v) we

denote the k-fold iteration of u applied to v, i.e. [u]
k
(v) = u(. . . (u

︸ ︷︷ ︸

k−times u

v) . . .). We

define the generalized Church-numerals for a type σ by

N
σ

= λfσ→σλxσ [f]
N

(x).

Then N
σ

is of type (σ → σ) → σ → σ and g(N
σ
) = lv(N

σ
) = lv(σ) + 2.

Furthermore we fix some variable 0 of type 0 and some variable d of type
0 → 0 → 0. Let I = λx0.x and D = λx0.dxx. We define the tree-like term
Tk(u) of height k via T0(u) = u and Tk+1(u) = d(Tk(u))(Tk(u)).

Lemma Let k be a natural number.

8

1. l([r]
k
(s)) = k · l(r) + l(s).

2.
[
2

σ]k
(r)s −→∗ [r]

2k

(s)

3. [D]
k
(r) −→∗ Tk(r)

4. Tk(I0) −→2k

Tk(0)

Proof. All assertions are immediate by induction on k. ¤

Let 2
o(−1)

be D and 2
o(−2)

be (I0). For natural numbers n and N we define
a term An

N and compute one special reduction sequence of it using the last
Lemma.

An
N :=

[

2
o(n−1)

]N

(2
o(n−2)

)2
o(n−3)

. . . 2
o(−2)

2.

−→∗
[

2
o(n−2)

]2N

(2
o(n−3)

) . . . 2
o(−2) 2.

−→∗ . . .

2.

−→∗ [D]
2n(N)

(I0)
3.

−→∗ T2n(N)(I0)
4.
−→

2n+1(N)
T2n(N)(0).

Then d(An
N) ≥ 2n+1(N), g(An

N) = g(2
o(n−1)

) = n + 1 and l(An
N) = O(N)

independent of n, because l(An+1
N) = N · l(2) + n · l(2) + l(D) + l(I0) and

l(A0
N) = N · l(D) + l(I0). Thus An

N has the desired properties.

Considering heights of terms we have to replace
[

2
o(n−1)

]N

with height O(N)

in the definition of An
N by a tree-like term with height O(N) which produces

[

2
o(n−1)

]2N

. Let f be some variable of type σ → σ. We define bσ
0 := f and

bσ
k+1 := λxσ.bσ

k(bσ
kx), then we have bσ

kx −→∗ [f]
2k

(x) as
[
2

σ]k
(f) −→∗ bσ

k ,
g(bσ

k) = g(f), h(bσ
k) = 3 · k and h(bσ

k [f := r]) = h(bσ
k) + h(r). With the

abbreviations from above we define and compute

Bn
N := b

o(n)
N [f := 2

o(n−1)
]2

o(n−2)
. . . 2

o(−2)

−→∗
[

2
o(n−1)

]2N

(2
o(n−2)

)2
o(n−3)

. . . 2
o(−2)

−→∗ T2n+1(N)(I0) −→2n+2(N) T2n+1(N)(0).

Then d(Bn
N) ≥ 2n+2(N), g(Bn

N) = g(2
o(n−1)

) = n + 1 and h(Bn
N) = O(N),

because h(Bn+1
N) = 3 · N + h(2) + n + 2 and h(B0

N) = 3 · N + h(D) + 1. Thus
Bn

N has the desired properties.

Remark The argument from §1 of [S82] applied to An
N reads as follows: Let

Sn
N be the length of an arbitrary reduction sequence of An

N to its normal form
T2n(N)(0). As each reduction step at most squares the lengths of terms we obtain

2n+1(N) ≤ l(T2n(N)(0)) ≤ l(An
N)2

S
n
N = (O(N))2

S
n
N ≤ 22N+S

n
N

for N big enough. Hence Sn
N ≥ 2n−1(N) − N .

9

References

[B84] Barendregt, H.P.: The Lambda Calculus. Studies in Logic, Vo. 103, North-
Holland (1984).

[G94] Goguen, H.: A typed operational semantics for type theory. PhD thesis,
University of Edinburgh, 1994.

[L98] Loader, R.: Notes on Simply Typed Lambda Calculus. Technical Report
ECS-LFCS-98-381, Edinburgh.

[R95] van Raamsdonk, F., Severi, P.: On normalisation. Computer Science
Report CS-R9545 1995, Centrum for Wiskunde en Informatica.

[S82] Schwichtenberg, H.: Complexity of normalization in the pure typed lambda
- calculus. In: The L.E.J.Brouwer Centenary Symposium, A.S. Troelstra
and D. van Dalen (editors), North-Holland, 453–457 (1982).

[S91] Schwichtenberg, H.: An upper bound for reduction sequences in the typed
λ-calculus. Arch. Math. Logic 30, 405–408 (1991).

[V87] de Vrijer, R.: Exactly estimating functionals and strong normalization.
Nederl. Akad. Wetensch. Indag. Math. 49, 479–493 (1987)

10

