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Abstract. Height restricted resolution (proofs or refutations) is a nat-
ural restriction of resolution where the height of the corresponding proof
tree is bounded. Height restricted resolution does not distinguish between
tree- and sequence-like proofs. We show that polylogarithmic-height reso-
lution is strongly connected to the bounded arithmetic theory S1

2(α). We
separate polylogarithmic-height resolution from quasi-polynomial size
tree-like resolution.
Inspired by this we will study infinitely many sub-linear-height restric-

tions given by functions n 7→ 2i

“

(log(i+1) n)O(1)
”

for i ≥ 0. We show

that the resulting resolution systems are connected to certain bounded
arithmetic theories, and that they form a strict hierarchy of resolution
proof systems. To this end we will develop some proof theory for height
restricted proofs.
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1 Introduction

In this article, we will focus on two approaches to the study of computational
complexity classes, propositional proof systems and bounded arithmetic theories.
Cook and Reckhow in their seminal paper [8] have shown that the existence
of “strong” propositional proof systems in which all tautologies have proofs of
polynomial size is tightly connected to the NP vs. co-NP question. This has been
the starting point for a currently very active area of research where one tries to
separate all kinds of proof systems by proving super-polynomial lower bounds.

Theories of bounded arithmetic have been introduced by Buss in [6]. They
are logical theories of arithmetic where formulas and induction are restricted
(bounded) in such a way that provability in those theories can be tightly con-
nected to complexity classes (cf. [6, 12]). A hierarchy of bounded formulas, Σb

i ,
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and of theories S1
2 ⊆ T 1

2 ⊆ S2
2 ⊆ T 2

2 ⊆ S3
2 . . . has been defined (cf. [6]). The

class of predicates definable by Σb
i formulas is precisely the class of predicates in

the ith level Σp
i of the polynomial hierarchy. The Σb

i -definable functions of Si
2

form precisely the ith level p
i of the polynomial hierarchy of functions, which

consists of the functions which are polynomial time computable with an oracle
from Σp

i−1.
It is an open problem of bounded arithmetic whether the hierarchy of theories

collapses. This is connected with the open problem of complexity theory whether
the polynomial hierarchy PH collapses – the P=?NP problem is a sub-problem
of this. The hierarchy of bounded arithmetic collapses if and only if PH collapses
provably in bounded arithmetic (cf. [14, 7, 18]). The case of relativized complexity
classes and theories behaves completely differently. The existence of an oracle
A is proven in [1, 17, 9], such that the polynomial hierarchy in this oracle PHA

does not collapse, hence in particular PA 6= NPA holds. Building on this one can
show T i

2(α) 6= Si+1
2 (α) [14]. Here, the relativized theories Si

2(α) and T i
2(α) result

from Si
2 and T i

2, resp., by adding a free set variable α and the relation symbol ∈.
Similarly also, Si

2(α) 6= T i
2(α) is proven in [10], and separation results for further

relativized theories (dubbed Σb
n(α)-LmIND) are proven in [16]. Independently of

these, and with completely different methods, we have shown separation results
for relativized theories of bounded arithmetic using as method called dynamic
ordinal analysis [2, 3]. Despite all answers in the relativized case, all separation
questions continue to be open for theories without set parameters.

Propositional proof systems and bounded arithmetic theories are connected.
For example, Paris and Wilkie have shown in [15] that the study of constant-
depth propositional proofs is relevant to bounded arithmetic. In particular, the
following translations are known for the first two levels of bounded arithmetic
S1

2(α) and T 1
2 (α) (a definition of these theories can be found e.g. in [6, 12]).

Kraj́ıček has observed (cf. [13, 3.1]) that provability in T 1
2 (α) translates to

quasi-polynomial1 size sequence-like resolution proofs. Furthermore, it is known
that provability in S1

2(α) translates to quasi-polynomial size tree-like resolution
proofs.2 It is also known that quasi-polynomial size tree-like resolution proofs are
separated from quasi-polynomial size sequence-like resolution proofs (the best
known separation can be found in [5]).

An examination of dynamic ordinal analysis (cf. [2, 3]) shows that provability
in S1

2(α) can even be translated to polylogarithmic3-height resolution proofs.
We will prove that polylogarithmic-height resolution proofs form a proper sub-
system of quasi-polynomial size tree-like resolution proofs. Hence we will obtain
the relationships represented in Fig. 1.

In this article we pick up this observation and examine height restricted
propositional proofs and refutations. To this end we develop some proof theory
for height restricted propositional proofs. This includes several cut elimination

1 A function f(n) grows quasi-polynomial (in n) iff f(n) ∈ 2(log n)O(1)

.
2 The author of this paper could not find a reference for this, but it follows by similar

calculations as in [13, 3.1].
3 A function f(n) grows polylogarithmic (in n) iff f(n) ∈ (log n)O(1).



S1
2(α) →֒ polylogarithmic-height resolution

(

quasi-polynomial-size tree-like resolution

(

T 1
2 (α) →֒ quasi-polynomial-size sequence-like resolution

Fig. 1. Translation of S1
2(α) and T 1

2 (α) to resolution

results, and the following so called boundedness theorem (cf. [4]): Any resolution
proof of the order induction principle for n, i.e. for the natural ordering of num-
bers less than n, must have height at least n. On the other hand there are tree-like
resolution proofs of the order induction principle for n which have height linear
in n and size quadratic in n. This gives us the separation of polylogarithmic-
height resolution from quasi-polynomial size tree-like resolution. In particular,
we obtain simple proofs of separation results of relativized theories of bounded
arithmetic which reprove some separation results mentioned before.

This way we will study infinitely many sub-linear-height restrictions given

by functions n 7→ 2i

(

(log(i+1) n)O(1)
)

for i ≥ 0. We will show that the re-

sulting resolution systems are connected to certain bounded arithmetic theories
Σb

i+1(α)-Li+1IND (a definition of these theories can be found e.g. in [2, 3]), and
that they form a strict hierarchy of resolution proof systems utilizing the order
induction principle.

The paper is organized as follows: In the next section we recall the defini-
tion of the proof system LK. We introduce an inductively defined provability
predicate for LK which measures certain parameters of proofs. Furthermore, we
introduce the order induction principle for n and give suitable resolution proofs
of height linear in n and size quadratic in n. We recall the lower bound (linear
in n) to the height of resolution proofs of the order induction principle for n, and
we give a proof for the lower bound to the height of resolution refutations of that
principle. In section 3 we develop some proof theory for height restricted proposi-
tional proofs. This includes several cut elimination techniques. We further recall
the translation from bounded arithmetic to height restricted resolution from [2].
We conclude this section by stating the relationship between resulting height
restricted resolution systems. The last section gives an attemp to prove simu-
lations between height restricted LK systems with different so called Σ-depths.
The Σ-depth of an LK-proof restricts the depth of principle formulas in cut-
inferences. Cut elimination lowers the Σ-depth but raises the height of proofs.
For the opposite effect (shrinking height by raising Σ-depth) we introduce some
form of cut-introduction. We end this section by some final remarks and open
problems.



2 The Proof System LK

We recall the definition of language and formulas of LK from [11]. LK consists of
constants 0, 1, propositional variables p0, p1, p2 . . . (also called atoms; we may use
x, y, . . . as meta-symbols for variables), the connectives negation ¬, conjunction
∧

and disjunction
∨

(both of unbounded finite arity), and auxiliary symbols
like brackets. Formulas are defined inductively: constants, atoms and negated
atoms are formulas (they are called literals), and if ϕi is a formula for i < I, so
are

∧

i<I ϕi and
∨

i<I ϕi . ¬ϕ is an abbreviation of the formula formed from ϕ
by interchanging

∧

and
∨

, 0 and 1, and atoms and their negations. The logical
depth, or just depth, dp(ϕ) of a formula ϕ, is the maximal nesting of

∧

and
∨

in it. In particular, constants and atoms have depth 0, the depths of ϕ and ¬ϕ
are equal, and dp(

∨

i<I ϕi) equals 1 + maxi<I dp(ϕi).
In our setting, cedents Γ,∆, . . . are finite sets of formulas, not sequences as

in [11], and the meaning of a cedent Γ is
∨

Γ . Cedents are also called clauses
(in case of resolution). We often abuse notation by writing Γ, ϕ or Γ ∨ϕ instead
of Γ ∪ {ϕ} , or by writing ϕ1, . . . , ϕk instead of {ϕ1, . . . , ϕk} .

Our version of LK does not have structural rules as special inferences, they
will be available as derivable rules. LK consists of four inference rules: cut-rule,
initial cedent rule, and introduction rules for

∧

and
∨

. We define a derivability

predicate A
η,σ,λ

C Γ meaning that there is a proof of Γ which may use axioms
from A such that the height of the proof-tree is bounded by η, the size (= number
of occurrences of cedents in it) is bounded by σ, and the number of formulas |Γ |
of every cedent Γ in it is bounded by λ.

Definition 1. We inductively define A
η,σ,λ

C Γ for A is a set of cedents consist-
ing only of literals, Γ a cedent, C a set of formulas and natural numbers η, σ, λ.

A
η,σ,λ

C Γ holds iff

(Init) η ≥ 0, σ ≥ 1, λ ≥ |Γ | and Γ is an initial cedent, i.e. 1 ∈ Γ , or x,¬x ∈ Γ
for some variable x, or there is some Γ ′ ⊆ Γ such that Γ ′ ∈ A .

(
∧

) There are some
∧

i<I ϕi ∈ Γ , η′ < η , σi ∈ N for i < I with
∑

i<I σi < σ

such that A
η′,σi,λ

C Γ, ϕi for all i < I.
(
∨

) There are some
∨

i<I ϕi ∈ Γ , i0 < I, η′ < η and σ′ < σ such that

A
η′,σ′,λ

C Γ, ϕi0 .

(Cut) There are some ϕ ∈ C , η′ < η , σ0 +σ1 < σ such that A
η′,σ0,λ

C Γ, ϕ and

A
η′,σ1,λ

C Γ,¬ϕ .

Parameters which are unimportant are often dropped (if possible) or replaced

by −. E.g., A
η

C Γ abbreviates (∃σ, λ)A
η,σ,λ

C Γ , and A
−,σ

C Γ abbreviates (∃η, λ)

A
η,σ,λ

C Γ .
η,σ,λ

C Γ means ∅
η,σ,λ

C Γ .

If A
η,σ,λ

C ∅ then we call this proof a refutation proof of A. Proofs where
cut-formulas C are only variables are called resolution proofs, refutations of that

kind resolution refutations. We denote this by
η,σ,λ

V ar .



Let ϕ be a CNF-formula, i.e. of the form
∧

i<I

∨

j<Ji
ϕij with ϕij being

literals. Then ϕ can be viewed as a set of clauses consisting of all {ϕij : j < Ji}

for i < I. This gives meaning to the writing ϕ
η,σ,λ

C Γ .

Structural rules are not included in the definition of LK. But we obtain
structural rules as derivable rules which is stated in the next proposition. It is
readily proven by induction on the height of the derivation η.

Proposition 2 (Structural Rule). Assume A ⊆ A′ , η ≤ η′ , σ ≤ σ′ , C ⊆ C′

and |Γ ′| ≤ λ′ , then A
η,σ,λ

C Γ implies A′ η′,σ′,λ+λ′

C′ Γ, Γ ′. ⊓⊔

The principle OInd(n) of order induction for n is given by





∧

i<n









∧

j<i

pj



 → pi







 →
∧

i<n

pi

(of course A → B is an abbreviation of
∨

{¬A,B}). Let us also fix the set of
clauses corresponding to ¬OInd(n):

type I ¬p0, . . . ,¬pa−1, pa for any a < n ,

type II ¬p0, . . . ,¬pn−1 .

We can give upper bounds for certain parameters of shortest proofs of OInd(n).

Theorem 3. 1.
O(n),O(n2)

∅ OInd(n) .

2. ¬OInd(n)
n,O(n)
V ar ∅ .

Proof. Ad 1.: We can easily show by induction on k that

H(k),S(k)

∅ ¬
∧

i<n

(

∧

j<i

pj → pi

)

,
∧

i<n

pi, {¬pi : i < k}

holds for k = n, . . . , 0 , with H(k) := 3(n + 1 − k), S(k) := (n + 1 − k)(n + 2).
The assertion then follows for k = 0.

Ad 2.: We can easily show by induction on k that

¬OInd(n)
H(k),S(k)
V ar {¬pi : i < k}

holds for k = n, . . . , 0 , with H(k) := n− k , S(k) := 2(n + 1− k). The assertion
then follows for k = 0. ⊓⊔

2.1 Lower Bounds on Heights for Resolution

Viewing the “Boundedness Theorem” from [3, 2] (which is adapted from [4]) in
the light of resolution we obtain that the principle of order-induction OInd(n)
for n gives us lower bounds to the height of resolution proofs:



Theorem 4 ([4, 2, 3]).
η

V ar OInd(n) ⇒ η ≥ n . ⊓⊔

Together with Theorem 3.1 this gives us a separation of polylogarithmic-
height resolution proofs from quasi-polynomial size tree-like resolution proofs.

A similar result holds for resolution refutations of ¬OInd(n), but with a
much simpler proof.

Theorem 5. ¬OInd(n)
η

V ar ∅ ⇒ η ≥ n .

Proof. Assume for the sake of contradiction that ¬OInd(n)
η

V ar ∅ and η < n
hold. Let P be such a resolution refutation tree of height bounded by η. The
assumption η < n implies that the type II axiom of ¬OInd(n) does not occur in
P , because the size of sequents can only shrink by 1 through an application of
(Cut). But the set of axioms of type I is satisfiable (by assigning each variable
to 1) and the rules of LK are correct, hence the last sequent in the proof, which
is ∅, must be true under this assignment, too. Contradiction. ⊓⊔

Theorem 3.2 and Theorem 5 together give us a separation of polylogarithmic-
height resolution refutations from quasi-polynomial size tree-like resolution refu-
tations.

3 Height Restricted Propositional Proofs

We start this section by proving further properties of height restricted proposi-
tional proofs like inversions and different kinds of cut-elimination.

The following propositions on (
∧

)-Inversion and (
∨

)-Exportation are readily
proven by induction on the height of the derivation η.

Proposition 6 ((
∧

)-Inversion). Assume that A
η,σ,λ

C Γ,
∧

i<I ϕi holds, and

that
∧

i<I ϕi /∈ Γ , then A
η,σ,λ

C Γ, ϕi holds for all i < I. ⊓⊔

Proposition 7 ((
∨

)-Exportation). Suppose A
η,σ,λ

C Γ,
∨

i<I ϕi holds, then

A
η,σ,λ+I

C Γ, ϕ0, . . . , ϕI−1 . ⊓⊔

We define special sets of constant depth formulas.

Definition 8. Σs,t
d is the set of all formulas ϕ with

1. dp(ϕ) ≤ d + 1;
2. if dp(ϕ) = d + 1 , then the outermost connective of ϕ is

∨

;
3. all depth > 1 sub-formulas of ϕ have the arity of their outermost connective

bounded by s; and
4. all depth 1 sub-formulas of ϕ have the arity of their outermost connective

bounded by t.

A formula is in Πs,t
d iff its negation is in Σs,t

d .



For sets of number-theoretic functions Ξ,Σ,Λ, F,G and a sequence of ce-
dents Γn, n ∈ N, we write (An)n

Ξ,Σ,Λ

Σ
F,G

d

(Γn)n , or sometimes An
Ξ,Σ,Λ

Σ
F,G

d

Γn ,

to denote that there are some η, σ, λ, f, g from Ξ,Σ,Λ, F,G , resp., such that

An
η(n),σ(n),λ(n)

Σ
f(n),g(n)
d

Γn holds for all n. We further use Σ
poly(n)
d as an abbreviation

for
⋃

{Σf,g
d : f(n) ∈ 2(log n)O(1)

, g(n) ∈ (log n)O(1)} . Here Σf,g
d denotes the set

of sequences (ϕn)n of formulas such that ϕn ∈ Σ
f(n),g(n)
d for all n ∈ N . We often

write ϕn ∈ Σf,g
d instead of (ϕn)n ∈ Σf,g

d .

Remark 9. Kraj́ıček in [13] has defined resolution systems R∗ and R(log)∗

which correspond to our setting as follows: Let Φn be a sequence of clauses.
Then (Φn)n is quasi-polynomial size refutable in R∗ (respectively R(log)∗) iff

(Φn)n
−,2(log n)O(1)

V ar ∅
(

respectively (Φn)n
−,2(log n)O(1)

Σ
poly(n)
0

∅
)

.

The next Proposition shows that by controlling heights we also obtain control
over sizes and sequent-lengths of proofs. It follows directly by induction on the
height.

Proposition 10. A
η

Σ
s,t

d

Γ ⊂ Σs,t
d′ and t ≤ s ⇒ A

η,sη,|Γ |+η

Σ
s,t

d

Γ . ⊓⊔

Remark 11. Kraj́ıček in [11] has defined a notion called Σ-depth of a proof.
This can be expressed in our terms as follows: ϕ has a Σ-depth d tree-like LK-
proof of size σ iff

−,σ

Σ
σ,log σ

d

ϕ . Hence, the sequence (ϕn)n has quasi-polynomial-

size Σ-depth d tree-like proofs iff
−,2(log n)O(1)

Σ
poly(n)
d

(ϕn)n . The last Proposition shows

that
(log n)O(1)

Σ
poly(n)
d

(ϕn)n implies that (ϕn)n has Σ-depth d tree-like LK-proofs of

size quasi-polynomial in n in which every cedent is of length polylogarithmic
in n. Similar statements hold for refutations.

The proof of the next Lemma and Proposition follows the standard one which
can be found e.g. in [2, 3] – we only have to control additional parameters.

Lemma 12 (Cut Elimination Lemma). If A
η0,σ0,λ0

Σ
s,t

d

Γ, ϕ , A
η1,σ1,λ1

Σ
s,t

d

∆,¬ϕ

and ϕ ∈ Σs,t
d+1 , then A

η0+η1,σ0·σ1,λ0+λ1

Σ
s,t

d

Γ,∆ . ⊓⊔

Proposition 13 (Cut Elimination Theorem).

A
η,σ,λ

Σ
s,t

d+1

Γ ⇒ A
2η,σ2η

,2η·λ

Σ
s,t

d

Γ . ⊓⊔

The next Proposition gives a form of cut elimination which makes use of the
parameters size and sequent-length (and arity of outermost connective of cut
formulas) while at the same time ignoring height of proofs. The one after the
next one ignores size and sequent-length and depends only on height (and length
of cut formulas).



Proposition 14 (Kraj́ıček’s Cut Elimination [11, 12.2.1]).

A
η,σ,λ

Σ
s,t

d+1

Γ ⇒ A
−,σ·sλ

Σ
s,t

d

Γ . ⊓⊔

The following Bounded-Cut Elimination is central for the study of height
restricted proof systems. We repeat the proof from [3].

Proposition 15 (Bounded-Cut Elimination [2, 3]).

A
η

Σ
s,t
0

Γ ⇒ A
η·t
V ar Γ .

Proof. The Proposition follows from the following Bounded-Cut Elimination
lemma, which even gives rise to a more general Bounded-Cut Elimination –
we keep the proposition in the form we have because that is all we need here.

Let noa(ϕ) be the number of (occurrences of) atoms in ϕ.

A
η

V ar Γ, ϕ and A
η

V ar Γ,¬ϕ ⇒ A
η+noa(ϕ)
V ar Γ . (1)

We prove (1) by induction on ϕ. If ϕ is atomic we just apply (Cut).
Now assume w.l.o.g. that ϕ has the form

∨

i<k ϕi . By (
∧

)-Inversion and (
∨

)-

Exportation from Section 3 we obtain A
η

V ar Γ, ϕ0, . . . , ϕk−1 and A
η

V ar Γ,¬ϕi

for all i < k. By successively applying the induction hypothesis k times we obtain

A
η+noa(ϕ0)+···+noa(ϕk−1)

V ar Γ . Observe that noa(ϕ) =
∑

i<k noa(ϕi). ⊓⊔

We repeat the translation (also called embedding) of provability in S1
2(α),

T 1
2 (α), and more general of Σb

m+1(α)-Lm+1IND , to LK from [2, 3]. We do not
introduce language and theories of bounded arithmetic. All what we need from
bounded arithmetic is that formulas translate in a certain way to the language
of LK as described below, and that provability translates in the way described
by the next theorem. Readers not familiar with bounded arithmetic simply can
view these connections to bounded arithmetic as a motivation for studying the
resulting propositional proof systems.

Let log(k)(n) be the k-times iterated logarithm applied to n, and 2k(n) the
k-times iterated exponentiation applied to n.

There exists a canonical translation from the language of bounded arithmetic
to the language of LK (see [12, 9.1.1], or [2, 3]). Let ϕ be a formula in the language
of bounded arithmetic in which no individual (i.e. first order) variable occurs free
– we call such a formula (first order) closed. Then [[ϕ]] denotes the translation of
ϕ to the language of LK, which for example maps the atom α(t), for t a closed
term of value mt ∈ N , to the propositional variable pmt

, and bounded quantifiers
to connectives

∧

resp.
∨

, e.g. [[(∀x ≤ t)ϕ(x)]] =
∧

i≤mt
[[ϕ(i)]] . It follows that

a formula ϕ(x) from Σb
d (with x being the only variable occurring free in ϕ)

translates to
(

[[ϕ(n)]]
)

n
in Σ

poly(n)
d .

Theorem 16 ([2, 3]). Let ϕ(x) be a formula in the language of bounded arith-
metic, in which at most the variable x occurs free.



1. If S1
2(α) ⊢ ϕ(x), then

O(log(2) n)
Σ

poly(n)
1

[[ϕ(n)]] .

2. If T 1
2 (α) ⊢ ϕ(x), then

O(log n)

Σ
poly(n)
1

[[ϕ(n)]] .

3. If Σb
m+1(α)-Lm+1IND ⊢ ϕ(x), then

O(log(m+2) n)
Σ

poly(n)
m+1

[[ϕ(n)]] . ⊓⊔

By combining this Theorem first with the Cut Elimination Theorem and
afterwards with the Bounded-Cut Elimination we obtain

Theorem 17 ([2, 3]). Let ϕ(x) be a formula in the language of bounded arith-
metic, in which at most the variable x occurs free.

1. If S1
2(α) ⊢ ϕ(x), then

(log n)O(1)

V ar [[ϕ(n)]] .

2. If Σb
m+1(α)-Lm+1IND ⊢ ϕ(x), then

2m((log(m+1) n)O(1))
V ar [[ϕ(n)]] . ⊓⊔

If we take Theorem 16, and first apply the Cut Elimination Theorem, then
Proposition 10, and finally Kraj́ıček’s Cut Elimination, we obtain the following
Theorem:

Theorem 18 ([13, 3.1]). Let ϕ(x) be a formula in the language of bounded
arithmetic, in which at most the variable x occurs free.

If T 1
2 (α) ⊢ ϕ(x) or Σb

m+1(α)-Lm+1IND ⊢ ϕ(x), then
−,2(log n)O(1)

Σ
poly(n)
0

[[ϕ(n)]] . ⊓⊔

We represent the last two Theorems together with previously obtained results
in Fig. 1 and 2. The separation between quasi-polynomial-size tree-like resolution
and quasi-polynomial-size sequence-like resolution is well-known (the best known
separation can be found in [5]).

S1
2(α) →֒ polylogarithmic-height resolution

(

sR2
2(α) →֒ 2(log log n)O(1)

-height resolution

(

sΣb
3(α)-L3IND →֒ 22

“

(log(3) n)O(1)
”

-height resolution

(

...

Fig. 2. Translation of Σb
m+1(α)-Lm+1IND

A separation between polylogarithmic-height resolution and quasi-polynomi-
al-size tree-like resolution follows from Theorems 3 and 4: The first Theorem
shows that OInd(n) has tree-like resolution proofs of size O(n2), whereas the



second one shows that a resolution proof of this statement must have height
Ω(n) and hence is unprovable in polylogarithmic-height resolution.

Theorems 3 and 4 can also be used to obtain a separation between

2m

(

(

log(m+1) n
)O(1)

)

-height resolution and 2m+1

(

(

log(m+2) n
)O(1)

)

-height

resolution: By the first theorem, the formulas OInd
(

2m+1

(

(

log(m+2) n
)2

))

, for

m fixed, have resolution proofs of height 2m+1

(

(

log(m+2) n
)O(1)

)

, whereas the

second theorem can be used to show that resolution proofs of these statements

must have height Ω
(

2m+1

(

(

log(m+2) n
)2

))

, again for m fixed, and, therefore,

are unprovable in 2m

(

(

log(m+1) n
)O(1)

)

-height resolution.

By Theorem 17 and Theorem 18 we obtain translations of provability in
Σb

m(α)-LmIND into two propositional proof systems which seem to be incom-
parable (for m ≥ 2). We have visualized this for the case m = 2 in Fig. 3.

Note that in general 2m

(

(

log(m+1) n
)O(1)

)

-height resolution proofs have size

super-quasi-polynomial in n.

2(log log n)O(1)

-height resolution

sR2
2(α) →֒

(log log n)O(1)

Σ
poly(n)
1

→֒
→֒

quasi-polynomial-size R(log)∗

Fig. 3. Differences of translations of derivations

4 Cut Introduction and Simulation

In this section we investigate converses to cut-elimination. Kraj́ıček has used
ideas from Spira ([11, 4.3.10]) to reduce the number of cuts on any path through
a tree-like proof by adding a special-

∧

-rule to LK and raising the depth of
formulas in the proof.

Here we will study how the height of proofs can be shrinked by raising the
depth of cut-formulas. We will obtain the following converse to the Cut Elimi-
nation Theorem from Section 3. Recall that |Γ | denotes the number of formulas
in the cedent Γ .

Theorem 19. 1. Assume
γ

Σ
s,t

d

Γ for Γ ⊂ Πs,t
d+1 such that |Γ | ≤ log γ and

d > 0. Then
O((log γ)2)

Σ
sγ ,t

d+1

Γ for sγ := sγO(1)

.

2. Assume
γ

V ar Γ for Γ ⊂ Πs,t
1 such that |Γ | ≤ log γ . Then

O(log γ)

Σ
2γ ,O(t·γ)
1

Γ .

The proof of this Theorem needs some lemmas. Let mn denote the set of all
number-theoretic functions from {0, . . . ,m−1} to {0, . . . , n−1} . The first lemma



reduces heights by introducing intermediate cut formulas from the set Σs,t,δ
d+1

given by formulas of the form
∨

s

(
∧

δ(Σ
s,t
d ∪ Πs,t

d )
)

. We understand Σs,t
d+1 ⊂

Σs,t,δ
d+1 .

Lemma 20. 1. Let Γ ⊂ Πs,t
d+1 and assume

γ

Σ
s,t

d

Γ . Then
O(log γ)+|Γ |

Σ
sγ ,t,γ+|Γ |
d+1

Γ .

2. In case of d = 0 let Γ ⊂ Πs,t
1 and assume

γ

V ar Γ . Then
O(log γ)+|Γ |

Σ
2γ ,γ+t·|Γ |
1

Γ .

The proof of this lemma is postponed to Appendix A. The second part of the
previous Lemma already proves the second part of Theorem 19.

The next Lemma is a propositional variant of sharply bounded collection [11,
Def. 5.2.11].

Lemma 21. Let ϕij ∈ Πs,t
d−1 and assume d, s, α ≥ 2 , then

γ

Σ
sα,t

d

Γ,
∧

i<α

∨

j<s

ϕij ⇒
γ+log α+O(d)

Σ
sα,t

d

Γ,
∨

f∈αs

∧

i<α

ϕi f(i) .

Proof. Assume that
γ

Σ
sα,t

d

Γ,
∧

i<α

∨

j<s ϕij and the other assumptions of the

Lemma hold. For all 0 ≤ a ≤ b ≤ α and k ≤ ⌈log α⌉ it is not hard to show that

γ+N(k)

Σ
sα,t

d

Γ,¬
∨

f∈αs

∧

a≤i<b

ϕi f(i),
∨

f∈αs

∧

a≤i<b+2k,i<α

ϕi f(i)

holds for N(k) = k + O(d). Then the assertion follows for k = ⌈log α⌉ and
a = b = 0 . ⊓⊔

Finally we can remove the special cut formulas from Lemma 20.

Lemma 22. Assume α ≥ 2, d ≥ 1 and t ≤ s. Then

γ

Σ
s,t,α

d+1

Γ ⇒
(γ+1)·2·log α

Σ
sα+1,t

d+1

Γ .

The proof of this lemma is postponed to Appendix A.

Proof (of Theorem 19.1). Assume
γ

Σ
s,t

d

Γ for Γ ⊂ Πs,t
d+1 such that |Γ | ≤ log γ

and d ≥ 1. By Lemma 20 we obtain
O(log γ)

Σ
sγ ,t,2·γ
d+1

Γ . Now Lemma 22 produces

O(log γ)·2·log(2·γ)

Σ
sγ·(2·γ),t

d+1

Γ . Hence
O((log γ)2)

Σ
sγO(1)

,t

d+1

Γ . ⊓⊔

Applying Theorem 19, and the Cut Elimination Theorem and the Bounded-
Cut Elimination from Section 3 we can draw the following Corollary:

Corollary 23 (Simulation). Let (Γn)n be included in Π
poly(n)
d+1 and the length

of Γn, |Γn|, be bounded by a constant for all n ∈ N.



1. Assume d > 0 and 2i+1((log(j) n)O(1)) grows polylogarithmic in n, i.e. i+3 ≤
j. Then

2i+1((log
(j) n)O(1))

Σ
poly(n)
d

(Γn)n ⇔
2i((log

(j) n)O(1))

Σ
poly(n)
d+1

(Γn)n .

2. For d = 0 assume 2i+1(O(log(j) n)) grows polylogarithmic in n, i.e. i+2 ≤ j.
Then

2i+1(O(log(j) n))

V ar (Γn)n ⇔
2i(O(log(j) n))

Σ
poly(n)
1

(Γn)n .

In particular, for i = 0 and j = 2 this shows

(log n)O(1)

V ar (Γn)n ⇔
O(log log n)

Σ
poly(n)
1

(Γn)n .

⊓⊔

Final Remarks and Open Problems

We have shown (and represented in Fig. 1) that provability in S1
2(α) translates to

polylogarithmic-height resolution, and provability in T 1
2 (α) translates to quasi-

polynomial size sequence-like resolution. Is there a system of bounded arithmetic
which corresponds to quasi-polynomial size tree-like resolution?

The simulation given by Corollary 23 is unsatisfying in the following aspects:
First, it does not hold for super-polylogarithmic height resolution which comes
from Σb

i (α)-LiIND for i ≥ 2. And second, for polylogarithmic-height resolu-

tion we have established the simulation only for provability of Π
poly(n)
1 -sequents

which does not include OInd(n). This leads to the following questions:
1. What is the “right” propositional proof system corresponding to e.g. sR2

2(α)
(which is the same as Σb

2(α)-L2IND)? Remember that we have the two trans-
lations, represented in Fig. 3, that sR2

2(α)-proofs translate on the one side to

2(log log n)O(1)

-height resolution, and on the other side to quasi-polynomial-size
R(log)∗. Is the “right” system given by combining both proof systems, i.e. by
2(log log n)O(1)

,2(log n)O(1)

Σ
poly(n)
0

which is the same as quasi-polynomial-size 2(log log n)O(1)

-

height R(log)∗?

2. Can the simulation between
O(log log n)

Σ
poly(n)
1

(which corresponds to provability

in S1
2(α)) and polylogarithmic-height resolution be extended to formulas of the

same kind as OInd(n), e.g. Σ
poly(n)
2 ? Or, is there another version of resolution

which allows this correspondence?
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Appendix A. Proofs of Lemma 20 and of Lemma 22

Proof (of Lemma 20). For A a set of cedents let
∨

A be the set of all
∨

Γ for
Γ ∈ A . Let Γ ⊂ Σs,t

d ∪ Πs,t
d . We can show

A 2γ

Σ
s,t

d

Γ ⇒
∨

A
O(γ)

Σ
s2

γ
,t,2γ+|Γ |

d+1

∨

Γ

by induction on γ. Then we obtain 1. by the following argument: Let Γ be
the set {

∧

j<s ϕij : i < I} with ϕij ∈ Σs,t
d . For f ∈ Is let Γf be the set

{ϕif(i) : i < I} of inversions, then by (
∧

)-Inversion from Section 3
γ

Σ
s,t

d

Γf .

From the assertion we obtain
O(log γ)

Σ
sγ ,t,γ+|Γ |
d+1

Γf for all f ∈ Is , hence by |Γ | many

(
∧

) inferences
O(log γ)+|Γ |

Σ
sγ ,t,γ+|Γ |
d+1

Γ .



The idea for proving the induction step of the assertion goes as follows: Given

A 2γ+1

Σ
s,t

d

Γ we can find some set of cedents Γi for i ∈ I such that A 2γ

Σ
s,t

d

Γi for all

i ∈ I and {Γi : i ∈ I} 2γ

Σ
s,t

d

Γ . Now we can apply the induction hypothesis to all

these derivations, and putting them together suitably yields the assertion. The
additional cuts are of the form

∧

i∈I

∨

Γi .

In case of d = 0 the same strategy even shows

A 2γ

V ar Γ and Γ ⊂ V ar ⇒
∨

A
O(γ)

Σ
22

γ
,2γ+|Γ |

1

∨

Γ .

Then we obtain 2. in the following way: Let Γ be the set {
∧

j<s

∨

k<t ϕijk : i < I}

with ϕijk ∈ V ar . For f ∈ Is let Γf be the set
⋃

i<I{ϕi,f(i),0, . . . , ϕi,f(i),(t−1)} of

inversions, then by (
∧

)-Inversion and (
∨

)-Exportation from Section 3
γ

V ar Γf

for all f ∈ Is . The assertion now shows
O(log γ)

Σ
2γ ,γ+t·|Γ |
1

∨

Γf . From this we obtain

by a direct argument
O(log γ)

Σ
2γ ,γ+t·|Γ |
1

∨

k<t ϕ0,f(0),k , . . . ,
∨

k<t ϕ(I−1),f(I−1),k for all

f ∈ Is , hence by |Γ | many (
∧

) inferences
O(log γ)+|Γ |

Σ
2γ ,γ+t·|Γ |
1

Γ . ⊓⊔

Proof (of Lemma 22). Again we have to make our assertion a little bit more
general. W.l.o.g. let ϕ ∈ Σs,t,α

d+1 be of the form

ϕ =
∨

i<s

[

∧

j<αi

∨

k<s

ϕijk ∧
∧

αi≤j<α

ϕij

]

with ϕijk ∈ Πs,t
d−1 and ϕij ∈ Πs,t

d . Then let

ϕ∗ :=
∨

i<s

∨

f∈(αi)s

[

∧

j<αi

ϕijf(j) ∧
∧

αi≤j<α

ϕij

]

.

Dually for Πs,t,α
d+1 . Observe that

(

Σs,t,α
d+1

)∗
⊂ Σsα+1,t

d+1 and
(

Πs,t,α
d+1

)∗
⊂ Πsα+1,t

d+1

We can prove

γ

Σ
s,t,α

d+1

Γ,Ξ and Ξ ⊂ Σs,t,α
d+1 ∪ Πs,t,α

d+1 ⇒
(γ+1)·2·log α

Σ
sα+1,t

d+1

Γ,Ξ∗

by induction on γ which implies the Lemma for Ξ = ∅. In the induction step we
use the previous Lemma 21. ⊓⊔


