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• A novel Core Reference Ontology for Steelmaking (CROS) has been
introduced.

• CROS formally describes essential steelmaking manufacturing processes,
facilities, resources, machines, machine tools, equipment, and system
functionalities.

• We demonstrate the systematic ontology development process for CROS,
which includes specification, knowledge acquisition, conceptualisation,
integration, implementation, and evaluation.

• We evaluate the functionality and usefulness of the proposed ontology
by demonstrating a real-world case study on a condition-based main-
tenance task of cold rolling mills in the steel industry.
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Abstract

Following the trend of Industry 4.0, the business model of steel manufac-
turing is transforming from a historical inwardly focused supplier/customer
relationship to one that embraces the wider end-to-end supply chain and
improves productivity more holistically. However, the data and informa-
tion required for supply chain planning and steelmaking process modelling
are normally distributed over scattered sources across organisation bound-
aries and research communities. This leads to a major problem concerning
semantic interoperability. To address this issue, this paper introduces a Com-
mon Reference Ontology for Steelmaking (CROS). CROS serves as a shared
steelmaking resource and capability model that aims to facilitate knowledge
modelling, knowledge sharing and information management. In contrast to
most of the existing steelmaking ontologies which merely focus on conceptual
modelling, our work pays special attention to the real-world implementation
and utilisation aspects of CROS. The functionality and usefulness of CROS is
evaluated and tested on a real-world condition-based monitoring and main-
tenance task for cold rolling mills at Tata Steel in the United Kingdom.
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1. Introduction

Within manufacturing activities, steelmaking is the process of producing
steel from iron ore and scrap. Normally, steelmaking involves consecutive
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high-temperature chemical processes where liquid steel is refined for obtain-
ing a narrow chemical composition for specified steel grades [1]. Within these
chemical processes, impurities such as excess carbon, sulfur, nitrogen, and
silicon are removed from iron. Alloying elements such as carbon, chromium,
nickel, manganese, and vanadium are incorporated to iron for improving
mechanical properties and maintaining high strength and ductility. The pro-
duced steel is a versatile material that is pervasively used across different
industries such as buildings, infrastructure, cars, ships, trains, electrical ap-
pliances, and weapons. Statistics show that the global crude steel production
reached just over 1.8 billion tons in 2018 [2].

Following the trend of Industry 4.0, the business model of steel manufac-
turing is transforming from a historical inwardly focused supplier/customer
relationship to one that embraces the wider end-to-end supply chain and
improves productivity more holistically. However, the data and information
required for supply chain planning and steelmaking process modelling are
normally distributed over scattered sources across organisation boundaries
and research communities [3]. This leads to a major problem concerning
semantic interoperability. By definition, semantic interoperability ensures
the information requester and provider have a common understanding of the
“meanings” of the exchanged data and information [4]. As computational re-
sources are developed by different languages and vocabularies, they may use
their own proprietary data structures, which leads to the encoding of vague
data semantics [5]. Moreover, as humans and organisations involved in steel-
making may have different levels of experience and expertise, the interaction
processes among these different stakeholders may suffer from different un-
derstanding of the used terminology and standards. The lack of semantic
interoperability hinders the smooth exchange of data and information, thus
is detrimental to the productivity and availability of manufacturing produc-
tion systems [6]. These challenges highlight the requirement for semantic
interoperability during steelmaking processes.

To address the semantic interoperability issue, ontologies appear to be a
promising solution [3, 7, 8, 9]. In computer science, an ontology is defined
as “an explicit specification of a conceptualisation for a domain of interest”
[10]. Normally, the conceptualisation within an ontology is formalised by
a logic theory that is written in a certain language. Also, ontologies pro-
vide reasoning capabilities by which new knowledge can be inferred. Since
ontologies incorporate a formal representation of concepts, individuals, and
relationships among these concepts, data and entities, they contain explicit
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and unambiguous data semantics thus enable semantic interoperability [11].
In the context of the Engineering and Physical Sciences Research Council

(EPSRC) funded research project SUSTAIN1, this paper presents a common
formal ontological framework for steelmaking process knowledge modelling
and information management. The proposed ontological framework serves
as a shared steelmaking resource and capability model that aims to facilitate
knowledge sharing and information management. The contributions of this
paper are trifold:

1. In this paper, we propose a Core Reference Ontology for Steelmaking
(CROS) that formally describes essential steelmaking manufacturing
processes, facilities, resources, machines, machine tools, equipment,
and system functionalities. The developed CROS serves as an on-
tological framework and aims to provide rich semantics to heteroge-
neous steel manufacturing data, thus enabling semantic interoperabil-
ity. Compared to other existing steelmaking ontologies where the focus
is solely on either steel products or resources, the distinguishing novelty
of the proposed ontology is its wider modelling of domain knowledge
with regard to steelmaking processes, resources, facilities, and system
functionalities. Also, in contrast to most of the existing steelmaking
ontologies which merely focus on conceptual modelling, our work pays
special attention to the real-world implementation and utilisation as-
pects of ontologies. These two aspects of work are often overlooked in
the literature.

2. We demonstrate the systematic ontology development process which
includes specification, knowledge acquisition, conceptualisation, inte-
gration, implementation, and evaluation. The development process is
enhanced by mature industry standards and terminology and yet re-
tains an actionable level of flexibility for knowledge management and
reuse. The incorporation of industry standards and terminology en-
sures rigorous conceptualisation of the ontology.

3. We evaluate the functionality and usefulness of the proposed ontology
by demonstrating a real-world case study. The case study is performed
on several real-world data sets collected from cold rolling processes at
Tata Steel2. The aim is to use CROS for a condition-based maintenance

1https://www.sustainsteel.ac.uk/
2https://www.tatasteeleurope.com/ts/
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task of cold rolling mills at a Tata Steel plant in Port Talbot. Results
have shown that CROS is feasible and flexible to be implemented for
knowledge reuse, knowledge modelling, data access, and data integra-
tion tasks within steelmaking. The utilisation of CROS can mitigate
the pain points of traditional predictive maintenance/condition-based
maintenance methods for which the reuse of domain knowledge is often
overlooked.

The remainder of this paper is organised as follows: Section 2 gives a
comprehensive review of the literature and highlights the open challenges
that motivate the proposed work. Section 3 introduces the proposed ontology
where the main classes and relationships of CROS are introduced. Section
4 presents a real-world case study within which CROS is used as a uniform
knowledge model to query and reason on heterogeneous data sources for the
goal of condition-based maintenance of cold rolling mills. Section 5 concludes
the paper and outlines future directions of research.

2. Related work

Ontologies play a key role in knowledge modelling and information man-
agement for manufacturing systems [12]. By providing a formal description of
terms and relationships within a domain of interest, ontologies enable inter-
pretable and interoperable knowledge sharing and reuse among stakeholders.
In this section, we first give a comprehensive review of the existing ontolo-
gies developed for the smart manufacturing domain. Then we focus on those
ontologies specially designed for steelmaking processes.

2.1. Ontologies for smart manufacturing
Over recent years, ontologies have emerged as promising solutions for ad-

dressing the semantic interoperability issue in smart manufacturing. The
Manufacturing Service Description Language (MSDL) ontology is an upper-
level ontology for the formal representation of manufacturing entities, ser-
vices, and capabilities [13, 14]. Initially developed for automatic supplier
discovery in distributed environments, MSDL was then extended and applied
in several domain tasks such as mechanical machining capability description.
Within MSDL, manufacturing capabilities are categorised into Technological
Capabilities, Operational Capabilities, Geometric Capabilities, Quality Capa-
bilities, Relational Capabilities, and Stochastic Capabilities. This ontology
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has been applied in several manufacturing activities, such as metal casting
and manufacturing service description. MASON is another ontology that
aims to propose a common semantic net for the manufacturing domain [15].
MASON ontology is built upon three super classes: Entities, Operations, and
Resources. Among them, Entities are modelled to provide an abstract de-
scription of manufacturing produces. The Operations class is related to man-
ufacturing process description. For applications, MASON is implemented for
automatic cost estimation, and the construction of multi-agent systems for
manufacturing [15].

Besides the above ontologies that model the manufacturing entities from
a high level, there are ontologies specially developed for the manufacturing
product domain. The consensus-based Additive Manufacturing Ontology
(AMO) was developed to address the low degree of interoperability issue
among dentistry product manufacturing systems [16]. The focus of AMO
is to formally represent different components and phases within the Product
Life Cycle (PLC) of additive manufacturing. The ontology introduced in [17]
is another example of product knowledge and information modelling. This
ontology was proposed to facilitate manufacturing knowledge reuse regard-
ing effective product design and manufacturing processes. It incorporates
domain knowledge relevant to Design Failure Mode and Effects Analysis
(DFMEA) and Process Failure Mode and Effects Analysis (PFMEA). Other
representative ontologies include the reference ontology for PLC management
[18], Building Product Ontology (BPO) [19], Product-driven ONTOlogy for
Product Data Management (ONTO-PDM) [20], and the ontology for product
version management [21].

The domain ontology for smart condition monitoring is another example
ontology for predictive maintenance [9]. For this ontology, the ontology mod-
ularisation design methodology is adopted to structure the big ontology into
small ontological sub-models. This method eases the manipulation and man-
agement of knowledge components. As results, the ontology is organised into
the Manufacturing Module, the Context Module, and the Condition Moni-
toring Module. A case study on a conditional maintenance task of bearings
in rotating machinery is performed to evaluate the ontology. This ontol-
ogy was extended in [22], where a more informative and expressive ontology
named Manufacturing Predictive Maintenance Ontology (MPMO) was pro-
posed. MPMO was used together with a pattern mining approach called
chronicle mining [23] to propose a hybrid semantic approach for predictive
maintenance. The hybrid semantic approach aims to automate and facilitate
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predictive maintenance tasks and has been evaluated on a real-world data
set collected from a semi-conductor manufacturing process. Experimental
results show that the ontology together with chronicle mining could achieve
over 83% Precision regarding failure prediction.

2.2. Ontologies for steelmaking
Ontologies are also used in the steelmaking domain to facilitate knowl-

edge sharing and information management. To cope with the challenges in
the dynamic and heterogeneous global steelmaking supply chain, a rule-based
ontology reasoning method is proposed in [24]. In [24], a shared domain ontol-
ogy is developed to formalise both internal and external decision knowledge
regarding global steelmaking supply chain and dynamic business market. On-
tology matching and integration methods are also used to build a semantic
interoperable decision environment within the global steel supply chain. In
this way, interpretable multi-source knowledge is provided in a timely man-
ner to facilitate decision making. To help with knowledge acquisition, an
ontology for modelling steel manufacturing processes was jointly used with
big data analysis techniques to proposes a big data knowledge management
system (BDAKMS) [25]. Within their work, ontologies are used to model
domain knowledge of steelmaking and enhance the usability and interoper-
ability of BDAKMS. In [26], ontologies and logic rules are used to develop
a steel semantic model (named STSM). The objective of STSM is to unify
steel knowledge and discover new knowledge by performing rule-based rea-
soning. The proposed ontology covers basic concepts in the steel domain
such as steel materials, steel types, steel properties, and the organisation
structure of steel. In [27], a semantic model has been introduced to facilitate
the seamless and agile cooperation and information exchange for the steel
industry. The semantic model describes data and data sources related to
steel products, production, and process information. In this way, it supports
intelligent integration and reasoning over distributed system components.

Besides the aforementioned ontologies that model the steelmaking domain
from a general point of view, there exist other works that focus on a spe-
cific sub-field of the steel industry. These works include the ontology-based
intelligent diagnostic system for steel corrosion protection [28], the ontologi-
cal approach for steel production scheduling and planning [29], steel reverse
supply chain service modelling [30], and the ontology for the collaborative
design of steel frame structures [31], etc.
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We use Table 1 to compare the existing steelmaking ontologies with
CROS. We summarise 7 core concepts that a core reference ontology should
capture: Steelmaking product, Steelmaking process, Steelmaking material,
Steelmaking facility, Steelmaking tool, Steelmaking byproduct, Human. If the
concept is covered by the listed ontology, a check mark is assigned in the
table. Otherwise, a cross mark is assigned. From the table we observe that
the existing ontologies in the literature fail to cover all the essential concepts
for describing the steelmaking industry. We aim to fill this gap by developing
CROS.

Table 1: A comparison between the proposed CROS and the existing steelmaking ontolo-
gies with respect to their domain coverage.

Ontologies Steelmaking product Steelmaking process Steelmaking material Steelmaking facility Steelmaking tool Steelmaking byproduct Human
[26] 3 3 3 7 7 3 7

[28] 3 3 3 7 3 7 7

[28] 3 3 3 7 3 7 3

[30] 3 3 7 7 3 7 7

[27] 3 3 7 3 7 7 7

CROS 3 3 3 3 3 3 3

2.3. Open challenges
The literature review exposes two main challenges concerning ontologies

for steelmaking. Firstly, most of the existing ontologies merely cover a limited
proportion of the steelmaking domain knowledge. Some of them are domain-
specific and only focus on specific tasks within steelmaking processes such as
steel resource planning, steel corrosion protection, and steel organisational
structure, etc. This highlights the need for a core reference ontology for
modelling steelmaking processes. The required ontology should be able to
capture core concepts and relationships and be considered as a key compo-
nent of future steelmaking manufacturing systems. Secondly, most of the
works in the literature focus on the conceptual modelling work for the steel-
making domain while lacks the utilisation and implementation aspects of
ontologies (on real-world scenarios). These two aspects of activities are often
overlooked within the existing ontology-based approaches. In this context,
we aim to address these two main challenges by developing a core reference
ontology for steelmaking process knowledge modelling and information man-
agement. As developing large ontologies from scratch is time-consuming and
work-intensive, our core reference ontology aims to form a unified semantic
model that captures common concepts and relations within the steelmaking
domain. In this way, it could be reused or specialised (for specific tasks) by
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others, which minimises their effort in developing similar ontological models
for steelmaking.

3. The Core Reference Ontology for Steelmaking

In this section, we first introduce ontology development methodology and
development environment. We then list the reused ontologies for developing
CROS. After that, we introduce the key classes and relationships of CROS
in detail3.

3.1. Ontology development methodology
There are several ontology development methodoloiges in the literature.

These methodoloiges address the design and development aspects of ontol-
ogy engineering and provide guidelines for constructing ontologies classes,
relationships, and logic formalism. The most popular ontology development
methodoloiges include Common-KADS [32], TOVE [33], the the Enterprise
Model Approach [34], Ontology Description Capture Method (IDEF5) [35],
and METHONTOLOGY [36]. In this work, we employ the IDEF5 method-
ology [35] for developing CROS. The reason we choose IDEF5 is its consider-
ation of a gradual refinement process during ontology development. This re-
finement process allows us to develop CROS as an evolving prototype model,
which ensures the ontology to progressively capture high-level domain con-
cepts as well as low-level industrial data. Both knowledge acquisition and
data integration processes help to enrich CROS while following its original
conceptual structure.

Based on IDEF5, CROS is developed according to the following five steps:
i) Scope domain and collect raw data. This step involves tasks regarding
domain scoping and data collection. To obtain required domain knowledge
and structure it in a systematic way, we refer to several international and
industrial standards. The considered standards and their description are
listed in Table 2. Also, to gain more granular domain knowledge, we have
consulted domain experts who had years of experience in the steel industry;
ii) Develop initial proto-kinds. This step is to use the captured knowledge and
collected data to generate a tentative relation-poor ontology of proto-kinds,
proto-concepts, and proto-types [35]; iii) Refine initial analysis. This step

3The ontology files can be found at: https://github.com/caoppg/CROS
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focuses on generating a more stable version of ontology from the tentative
ontology developed in step 2; iv) Add relationships. This step aims to system-
essential relationships to the ontology; v) Validate stable ontology using raw
data. Within this step, the stable ontology is to be validated using real-world
data.

Table 2: International standards used for developing CROS.

International standard Description

ISO 14649 Industrial Automation Systems and Integration
ISO 17359 Condition Monitoring and Diagnostics of Machines
ISO 23495 Industrial Furnaces and Associated Processing Equipment
ISO 204 Metallic Materials
A322 - 13 Standard Specification for Steel Bars, Alloy, Standard Grades
A108 - 18 Standard Specification for Steel Bar, Carbon and Alloy, Cold-Finished
A370 Test Methods and Definitions for Mechanical Testing of Steel Products
A109/A109M Specification for Steel, Strip, Carbon (0.25 Maximum Percent)
A751 Test Methods and Practices for Chemical Analysis of Steel Products
IEC 62264 Enterprise-control System Integration
IEC 60050 International Electrotechnical Vocabulary
SAE J1739 Potential Failure Mode and Effects Analysis in Design

3.2. Ontology encoding and development environment
To develop CROS, we choose Web Ontology Language (OWL) [37] as the

ontology encoding language. By providing rich and formal semantics to web
contents, OWL supports a wide range of web data format such as XML, RDF,
and RDF Schema (RDF-S). We also use Protégé 5.5.04 as the ontology editor
to structure and modify our ontology. Protégé is an open-source knowledge
acquisition and ontology development tool that includes deductive classifiers
to validate that models are consistent and to infer new information based on
the analysis of an ontology.

3.3. Ontology reuse
Ontology reuse is an important process where existing ontological re-

sources are adapted or added to CROS. This step aims to leverage existing
resources for the purpose of specifying and formally describing steelmaking-
related activities. In this paper, several ontologies are considered important
and reused during the development of CROS. These ontologies are listed in
Table 3.

4https://protege.stanford.edu/
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Table 3: Reused ontologies during the development of CROS.

Reused Ontologies Ontology description
UFO [38] A top-level ontology of universals.
MSDL [14] An upper-level ontology for describing manufacturing services.
MASON [15] An OWL-based ontology to facilitate knowledge sharing in manufacturing.
OntoProg [39] An ontology for the predictive maintenance aspect of manufacturing activities.
DOSCM [9] A domain ontology for smart condition monitoring.
MPMO [22] An ontology for failure prediction in Industry 4.0.
Time Ontology [40] An ontology to formalise temporal properties of resources in the world.
STSM [26] A semantic model to unify steel knowledge.

3.4. Main classes
Within CROS, SteelmakingProcess, SteelManufacturingResource, Steel-

Product, SteelmakingTool, SteelmakingMaterial, and SteelmakingFacility are
the main/super classes. The SteelmakingProcess superclass describes a set of
manufacturing processes that are involved in producing steel from iron ore
and scrap. We define 30 subclasses under this superclass. The Steelmaking-
Facility class represents the equipment of places where a specific steelmaking
activity is performed. We create 14 subclasses under this superclass. Other
superclasses are defined around the SteelmakingProcess and SteelmakingFa-
cility classes. Fig. 1 shows the class hierarchy of CROS as well as the
subclasses of SteelmakingProcess and SteelmakingFacility. Table 4 gives a
more detailed class description. Since the ontology contains a large number
of 276 classes, for the reason of clarity, we only list a subset of important
classes in the table.

For the construction of main classes, we reused concepts from other on-
tologies. The reuse and alignment to other ontologies bring a formal structure
to CROS and enable reasoning in a general manner. The alignments of CROS
classes with other ontologies are defined as below:

CROS : SteelmakingProcess v MASON : Process

CROS : SteelManufacturingResource v MASON : Resource

CROS : SteelProduct v MPMO : Product

CROS : SteelmakingTool v MASON : Tool

CROS : SteelmakingMaterial v MASON : RawMaterial

CROS : SteelmakingFacility v MSDL : ManufacturingFacility
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Figure 1: The class hierarchy of CROS: i) main classes; ii) The SteelmakingProcess class;
iii) The SteelmakingFacility and SteelmakingMaterial classes.

3.5. Relationships
For OWL ontoloiges, object and data properties are the two important

relationships that connect classes. Object properties are used to link indi-
viduals and data properties link an individual to an XML Schema Datatype
value or an rdf literal [41]. Fig. 2 gives an overview of the created object
and data properties for CROS. In Fig. 2, the left column shows main object
properties, and the right side column presents data properties.

3.6. Ontology evaluation
Ontology evaluation refers to the processing of accessing the expressive-

ness, accuracy, and quality of an ontology from the knowledge representation
perspective. The aim of ontology evaluation is to avoid logical inconsistencies
or undesired inferences [42]. To make sure CROS is free of modelling errors
and anomalies, we use the web-based ontology evaluation tool OOPS! (On-
tOlogy Pitfall Scanner!) [42] to access the quality of CROS. As an automatic
ontology pitfall detector, OOPS! helps to detect the most common pitfalls
that appear during the ontology development process.

In OOPS!, ontology pitfalls are classified into three importance levels:
critical, important, and minor. Critical pitfalls may affect the ontology con-
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Table 4: Description of CROS main classes and their subclasses.

CROS ontology classes Class description
CROS:SteelmakingProcess Describes a set of processes for producing steel from iron ore and scrap.
CROS:BasicOxygenSteelmaking Primary steelmaking where carbon-rich molten pig iron is made into steel.
CROS:Blending Mix substances together so as to make a steel product of the desired quality.
CROS:Casting Shape (metal or other material) by pouring it into a mold while molten.
CROS:ChemicalReduction A type of chemical reaction in which the oxidation states of atoms are changed.
CROS:Coating A covering process that is applied to the surface of an object.
CROS:Extrusion A forming process to reduce the cross section of metal or convert it into desire shape.
CROS:IronMaking A smelting process to turn the ore into a form from which products can be fashioned.
CROS:Rolling A metal forming process where steel plate is passed through rolls to reduce thickness.

CROS:ColdRolling A process of strengthening steel by changing its shape without using heat.
CROS:HotRolling A process of strengthening steel by changing its shape using heat.

CROS:Sintering Make coalesce into a solid or porous mass by heating it without liquefaction.
CROS:Squeezing A method combining die casting and forging to create stronger metal alloys.
CROS:SecondarySteelmaking A process using an electric arc to melt scrap iron.
CROS:Tempering To improve the hardness and elasticity of steel by reheating and then cooling it.

CROS:SteelmakingFacility Describes the equipment of places that perform steelmaking activities.
CROS:ColdRollingMill Used to pass hot-rolled coils and produce products of the desired thickness.
CROS:HotRollingMill Produces sections of steel at various dimensions from billets of steel at high temperature.
CROS:BlastFurnace A type of metallurgical furnace used for smelting to produce industrial metals.
CROS:BlastFurnace A type of metallurgical furnace used for smelting to produce industrial metals.
CROS:BOSVessel It takes a combined charge of scrap and liquid iron and convert this into steel.
CROS:Mold A hollow container used to give shape to molten or hot liquid material.
CROS:PickleLine The place where metal surface treatment is performed to remove impurities.
CROS:RoughingStand The first rolling stand through which metal passes during hot rolling.
CROS:Tundish An intermediate vessel placed between the ladle and the mold.
CROS:VacuumDegasser Quickly removes gases entering the system for safe and reliable operation.

CROS:SteelmakingMaterial This class describes the materials needed for steelmaking.
CROS:Coke A solid fuel made by heating coal in the absence of air.
CROS:Coolant A liquid or gas that is used to remove heat from something.
CROS:Fluorspar A mineral consisting of calcium fluoride which typically occurs as cubic crystals.
CROS:IronOre Rocks and minerals from which metallic iron can be economically extracted.
CROS:Limestone Used to remove impurities from the blast furnace when making iron.
CROS:MoltenIron A liquid material that is created by smelting iron ingots or other iron items.
CROS:Sinter A mixture of iron ore and other materials prepared for smelting.
CROS:Slag Stony waste matter separated from metals during the smelting or refining of ore.
CROS:SteelScrap Discarded steel or steel products, generally segregated by composition.

CROS:SteelmakingTool This class describes the tools used for steelmaking.
CROS:Choke Used to reduce the amount of air in the fuel mixture.
CROS:GasBurner A device producing a controlled flame by mixing fuel gas with oxidizer.
CROS:GraphiteElectrode The main heating element used in an electric arc furnace.
CROS:Lance A metal pipe supplying a jet of oxygen to a furnace or to a hot flame for cutting.
CROS:SteelMill An industrial plant for the manufacture of steel.
CROS:SteelRoll Equipment that performs steel rolling.

CROS:Roll_Grinding Power grinding tools or machine tools used in the grinding process.
CROS:Roll_Refurbishment Renovation and redecoration of steel rolls.

CROS:RollingMillStands Used to reduce the thickness of steel and extend the overall length.
CROS:SteelTube Can be used to make furniture, frameworks and for general construction.

CROS:SeamlessTube Manufactured using the extrusion process.
CROS:WeldedTube Produced either by hot forming and cold forming processes.

CROS:Tuyeres A nozzle through which air is forced into a smelter, furnace, or forge.

sistency, reasoning and applicability. It is crucial to correct these pitfalls.
Important pitfalls are not critical for ontology function but recommended to
be corrected. Minor pitfalls are those that do not represent a real ontology
engineering problem. However, removing minor pitfalls may help to better
organise the ontology and improve its usability.

To evaluate the quality of CROS, we uploaded the source codes of the
ontology to the web-based OOPS! platform5. As results, no ontology devel-

5http://oops.linkeddata.es/
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Figure 2: The main relationships of CROS: i) object properties; ii) data properties.

opment pitfalls have been detected, as shown in Fig. 3. This means our
ontology is free of errors that are detrimental to logic consistency, reasoning
and applicability.

4. Industrial application: a case study

This section demonstrates a real-world case study using CROS. This case
study is about a condition-based maintenance task performed on a cold
rolling process at a Tata Steel plant in Port Talbot. The aim of the case
study is to evaluate the functionality and usefulness of CROS under real-
world scenarios. We focus on the knowledge reuse and information man-
agement perspectives within this condition-based maintenance task. The
obtained results prove that CROS and its related ontological modelling tools
are easy to use for knowledge embedding, data access, and information re-
trieval within the steelmaking domain. The remainder of this section gives a
detailed description of our experimental set-up, data collection, and ontology-
based predictive maintenance process.

13



Figure 3: Ontology evaluation results by OOPS!.

4.1. Cold rolling at Tata Steel
In steel manufacturing, the cold-rolled strip is produced on a cold strip

mill, where the work rolls flatten the strip to a deformed flat shape. Fig. 4
shows a graphical conceptualisation of the roll management procedure in the
Port Talbot cold rolling mill at Tata Steel. In the figure, the rolls and chocks
move from refurbishment which is carried out by refurbishment shops to the
roll management system in a clockwise manner. The cold rolling mill has five
stands, with each stand having a work and backup roll. There is also a top
and bottom roll pair (i.e. work and backup). After doing a “fixed” amount
of tonnage, the rolls are extracted and sent to refurbishment shops.

At present, Tata Steel adopts a heuristic approach towards estimating
this “optimal” time of roll maintenance. However, this is complex, as the
remaining useful life (RUL) of a roll depends on many factors, which need
to be understood prior to developing an advanced predictive maintenance
model. As integrating different data sets and providing convenient access to
them are essential but work-intensive and expensive tasks, a flexible method
for easy data access and management is required. This motivates us to
use CROS to perform ontology-based data access (OBDA), which facilitates
the condition-based maintenance task on cold rolling mills. Leveraging the
rich semantics encoded in CROS, the targeted data sets are enriched by the
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Figure 4: High-level visualisation of roll management system for cold rolling mills.

domain knowledge. This allows reasoning and inference to be performed
over data and knowledge, which enhances the autonomous decision making
process of the condition-based maintenance system.

4.2. Data collection
The data sets used in this case study are obtained from the cold rolling

processes at Tata Steel. They contain static data related to the rolls, roll
storage, and roll refurbishment. The data sets are stored in several tables in
a database where the numeric values are dynamic because of the changes of
conditions of the rolls. The changes of roll conditions are causes either by
the continuous usage of rolls or the manual operation of machine operators
(roll replacement, roll grinding, roll refurbishment, etc.). For this paper, we
use three specific tables within the database: ROLLS, ROLL_GRINDIN-
G, and ROLL_MILLS. These tables contain data fields that are crucial
for the predictive and condition-based maintenance of cold rolling mills.
For example, in the ROLLS table, data fields such as ROLL_ID, DIAM-
ETER, INIT_DIAME-TER, LAST_LOC_DATA_TIME, SUPPLIER_ID,
MILL_ID, and LAST_GRIND_NR are considered important for determin-
ing the status of cold rolling mills. Table 5 shows the data sets used in our
case study.
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Table 5: Used data sets and their key data fields, data types, and data description.

Table and fields Data type Description
ROLLS Table Contains static data relevant to the Rolls.
ROLL_ID Integer Unique identifier of the roll. Primary Key.
DIAMETER Double Stores the value of the diameter of the roll.
POSITION String Top or Bottom to denote their position in mill.
PARTNER_ID Integer Unique identifier of the roll’s partner.
WORK_BACKUP String Identifier to specify whether a roll is a work or backup roll.
LAST_LOC_DATE_TIME Date Timestamp of the date when the roll was last located.
Last_STAND_ID Integer The last stand this roll was placed in.

ROLL_GRINDING Table Table that stores the previous grindings of each roll.
ROLL_ID Integer Unique identifier to specify which roll.
DIAMETER Double Stores the value of the diameter of the roll.
GRIND_DATE Date Timestamp of the date when that roll was grinded.
STAND_ID Integer The last stand this roll was placed in.

ROLL_MILLS Table Table that stores the data of mills for cold rolling.
MILL_ID Integer Unique identifier of a mill.
MILL_ID String Unique string identifier of a mill.
MILL_RETIRE Boolean A boolean value indicating whether a mill is retired.
ACT_MILL_NAME String Unique string identifier for a mill in action.
UPDATE_DATETIME Date Timestamp of the mill status update.

4.3. Ontology-based data access using CROS
The predictive and condition-based maintenance task of Port Talbot cold

rolling mills is carried out using OBDA techniques. In this work, we use the
Virtual Knowledge Graph System Ontop6. Ontop can map domain ontologies
to arbitrary relational databases using R2RML, Direct Mapping, and its
own mapping language. The advantage of Ontop is its adoption of Virtual
Knowledge Graphs. As the graphs (ontologies) are kept virtual, it avoids the
manipulation of relational databases, which is normally considered as work-
intensive and expensive. In this way, Ontop provides convenient access to
databases and eases the task of data integration.

Some of the data tables introduced in Table 5 are not interconnected
but contain fields that are semantically related. For example, ROLL_ID
appears only in the table ROLLS but is linked to different data fields ac-
cross all the data sets. To effectively use the data, integration is required
which could be manually costly and time consuming. To mitigate this data
integration pain point, OBDA is a promising solution as it allows flexible
integration through virtual knowledge graph. An ontology-based approach
also enables the enrichment of domain knowledge, by which inference over
data and knowledge could be carried out to derive new knowledge.

In this case study, we first upload the three data sets onto the H2 Data
Base Engine7. H2 is a Java-based relational database management system

6https://ontop-vkg.org/
7https://www.h2database.com/html/main.html
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that allows users to interact with relational databases in a client-server mode.
Fig. 5 shows the H2 console and uploaded data sets.

Figure 5: The H2 relational database management system and uploaded data sets.

We then use the software Protégé 5.5.0 to create mappings from CROS to
cold rolling mill data sets. The aim of these mappings is to connect ontology
vocabulary to data sources for collecting queries over original relational data
sets. The collected queries are then used to construct ontology class and
property assertions for CROS. The following codes show an example mapping
we generated to connect CROS to data sets:

: r o l l_ { ro l l_ id } a :Work_Roll ;
: ha sPos i t i on {_pos i t ion } ;
: hasRol lID { ro l l_ id } ;
: hasDiameter { diameter } ;
: hasPartner { partner_id } ;
: isWorkOrBack {work_backup } ;
: isAssignedToStand { last_stand_id } ;
: hasTypeID {type_id } ;
: hasMil l ID {mi l l_id } ;
: hasLastSe l ec tedGr inder { l a s t_gr inde r } ;
: hasLastStand { stand_id } ;
: hasLastChokeNumber { last_chocking_nr } .
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The mapping is written in Turtle syntax, which connects logic axioms in
CROS to relational databases. Each Ontop mapping can be considered an
RDF subject-predicate-object (SPO) graph, and they are separated by space
followed by period. For the mapping shown above, relationships such as :has-
Position, :hasRollID, :hasDiameter, :hasPartner, :hasMillID, :hasLastSelect-
edGrinder, and :hasLastChokeNumber are data properties in CROS. Syntax
in curly brackets are data fields/attributes in the data sets. They map from
relational databases to ontology axioms. Similarly, two other mappings are
created to connect CROS to the collected data sets. In this way, OBDA
allows rich data semantics to be provided for information retrieval and man-
agement tasks. Compared to traditional data retrieval tasks, our approach
helps to improve the explainability of data retrieval results and enrich the
query answers with rich domain knowledge.

4.4. Condition-based maintenance of cold rolling mills
After creating the mappings, queries are created to reason and examine

the status of cold rolling mills for the goal of condition-based maintenance. In
this work, the W3C standard ontology query language SPARQL [43] is used
for data and information retrieval. Once SPARQL queries are constructed,
Ontop translates them to SQL queries over the H2 relational database man-
agement system. By this, we aim to use SPARQL-based ontology reasoning
for the condition-based maintenance and monitoring task on cold rolling
mills.

The first SPARQL query we execute is to reason about the diameter of
those rolls that have at least one partner roll which can be used for replace-
ment. In a real-world scenario, rolls may break due to constant usage. To
avoid shut down of the whole steelmaking production line, a partner roll is
needed for rapid replacement of the broken roll. To execute this replace-
ment, it is required that both the broken and replacement partner roll have
the same diameter. In this context, we propose the following SPARQL query
to retrieve the diameter of the rolls, by which we can discover which rolls
have partners for replacement once they are broken:

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xml: <http://www.w3.org/XML/1998/namespace>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX obda: <https://w3id.org/obda/vocabulary#>
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PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX time: <http://www.w3.org/2006/time#>

PREFIX cros: <http://www.semanticweb.org/CROS#>

SELECT ?Diameter

WHERE {

?roll cros:hasRollID ?rollid .

?roll cros:hasDiameter ?Diameter .

MINUS {

?roll cros:hasGrindRoll ?grind .

}

}

GROUP BY ?Diameter

having (count(?Diameter) > 2)

The proposed query looks for all the subjects that contain the :hasDi-
ameter variable of any diametric value, and then prints out those variables
whose diametric value appears more than twice. This query does not include
the subjects that also contain the :hasGrindRoll relatinoship as these diam-
eter values are often historical of previous grind values. The SPARQL query
results are shown in Fig. 6, where the diameter of the rolls are displayed.

In Fig. 6, the diameter of rolls that appears more than twice are printed
in the Protégé Ontop SPARQL Tab. The SPARQL query reasoning results
provide steel manufacturers with the diametric information of the rolls that
have at least one partner roll. In case a roll breaks down under a specific
diametric value, steel manufactures can execute this SPARQL query to dis-
cover whether one roll has a partner roll for rapid replacement. In this way,
intelligent maintenance of the rolls is achieved.

Another proposed query for roll maintenance is to identify condition of
the rolls with temporal information. The data sets we use contain temporal
information of the rolls from the year 2015 to 2019. To retrieve the relevant
information regarding rolls, roll partners, diameter, and temporal informa-
tion, we executed the following SPARQL query:

PREFIX owl: <http://www.w3.org/2002/07/owl#>
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Figure 6: The SPARQL query for reasoning on diameter of roll partners and the query
results.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xml: <http://www.w3.org/XML/1998/namespace>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX obda: <https://w3id.org/obda/vocabulary#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX time: <http://www.w3.org/2006/time#>

PREFIX cros: <http://www.semanticweb.org/CROS#>

SELECT ?Roll ?Partner ?Diameter ?LastLocatedDate

WHERE {

?Roll cros:hasRollID ?RollID .

?Roll cros:hasDiameter ?Diameter .

?Roll cros:lastLocatedDate ?LastLocatedDate .

OPTIONAL {

?Roll cros:hasPartner ?Partner .

}

MINUS {
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?Roll cros:hasGrindRoll ?GrindRoll .

}

FILTER (?LastLocatedDate

> "2015-01-15T16:09:20.000Z"

^^xsd:dateTime && ?LastLocatedDate

< "2019-05-15T16:09:20.000Z"

^^xsd:dateTime)

}

GROUP BY ?Roll ?Diameter ?Partner ?LastLocatedDate

ORDER BY ?Roll

Within this query, the OPTIONAL keyword is a binding that allows us to
query for data but not to fail the query when that data does not exist. After
query execution, both optional and non-optional information is returned. In
this example, we retrieve the rolls without considering whether a specific
roll has a partner of the same diameter. Same to the previous query, the
:hasGrindRoll relationship is removed by the MINUS keyword. To restrict
the scope of this query, FILTER keyword is used to select those rolls that last
located from 15th January 2015 to 15th May 2019. The date in xsd:dateTime
format.

Fig. 7 shows the results of the above SPARQL query. We group the
results using the GROUP BY keyword and then use the ORDER BY clause
to establish the order of a solution sequence. The results are ordered by the
name of rolls. In total, 1866 results are returned from data sets.

The SPARQL-based query capability of CROS is a significant enhance-
ment over traditional data access and retrieval methods. Leveraging the rich
domain knowledge and data semantics incorporated in CROS, the search re-
sults do not only present the text field matching but also provide a more pre-
cise and richer ontological description of data. This enhancement is achieved
by mapping the specific data fields to the pre-defined concepts and relation-
ships in ontologies. In this way, data access, harmonisation and integration
are easily performed at the knowledge layer where CROS serves as a vir-
tual knowledge graph encoded with rich domain knowledge. The use of this
ontology-based approach mitigates the pain points of traditional predictive
maintenance/condition-based maintenance methods for which the reuse of
domain knowledge is often overlooked. Moreover, compared to traditional
information retrieval tasks where keyword searches in heterogeneous data
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Figure 7: The SPARQL query for reasoning on the temporal information of rolls. Results
are grouped by roll names, partner ID, diameter, and last located date.

files are work-intensive, our proposed ontology-based approach proves to have
more flexibility regarding data access and integration. However, there are two
main limitations for this work. Firstly, the proposed ontology-based predic-
tive maintenance method does not perform well when dealing with real-time
data. To address this issue, real-time data processing techniques such as
stream reasoning [44] should be considered. Secondly, it is time-consuming
for the Protégé-based Ontop system query large data sets. To improve the
efficiency of data retrieval and integration, we aim to consider the source
code version of Ontop in the future.

5. Conclusions and future work

In this paper, a core reference ontology for steelmaking named CROS
is presented. The proposed ontology aims to facilitate steelmaking process
modelling and information management and serves as a uniform knowledge
model that can be used to query and reason on heterogeneous steelmaking
data sources. To develop the ontology, we formalised the knowledge anchored
in different steelmaking processes and applied this knowledge to facilitate
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decision making for solving complex tasks. During knowledge acquisition
and formalisation, a set of international standards and domain ontologies
were reused to ensure rigorous conceptualisation. The ontology develop-
ment methodology IDEF5 was adopted for conceptualisation. The developed
CROS was then evaluated by the ontology pitfall detection system OOPS!.
Results have shown that CROS is free of critical development errors that may
affect ontology consistency, reasoning and applicability. Unlike most of the
existing steelmaking ontologies, we focus on the utilisation and implemen-
tation perspectives of ontologies. These two aspects of ontology usage are
often overlooked in the literature. The functionality and usefulness of CROS
were tested and validated by a real-world case study where a condition-based
predictive maintenance task of cold rolling mills is performed.

For future work, we firstly will focus on investigating the ontology reason-
ing capability of CROS. We plan to implement rule-based reasoning on the
important data attributes within cold rolling mill data sets, such as roll diam-
eter, roll partner, roll damage, roll scrap reason, and roll supplier. This will
help with the predictive analytics tasks such as roll refurbishment time pre-
diction, roll partner selection, and intelligent supplier discovery. The second
future direction of research is to combine statistical methods and ontology
reasoning for the predictive maintenance of cold rolling mills. Machine learn-
ing and data mining will be used to derive and capture interesting patterns
from data. Then a hybrid approach for cold rolling mill maintenance will be
proposed. The hybrid approach will automatically generate IF-THEN-based
logic rules from derived data patterns. By this, we aim to use ontology rea-
soning to automate and facilitate the decision making process regarding cold
rolling mill refurbishment.

Acknowledgement

Q. Cao and A. Beckmann (in part) were supported by the Engineering and
Physical Sciences Research Council [grant number EPSRC EP/S018107/1].
S. Beden was supported by the Engineering and Physical Sciences Research
Council [grant number EP/T517537/1] and by Tata Steel].

References

[1] I.-H. Jung, Overview of the applications of thermodynamic databases
to steelmaking processes, Calphad 34 (2010) 332–362.

23



[2] D. O. L. Fontes, L. G. S. Vasconcelos, R. P. Brito, Blast furnace hot
metal temperature and silicon content prediction using soft sensor based
on fuzzy c-means and exogenous nonlinear autoregressive models, Com-
puters & Chemical Engineering 141 (2020) 107028.

[3] M. Sabou, S. Biffl, A. Einfalt, L. Krammer, W. Kastner, F. J. Ekapu-
tra, Semantics for cyber-physical systems: A cross-domain perspective,
Semantic Web 11 (2020) 115–124.

[4] S. Heiler, Semantic interoperability, ACM Computing Surveys (CSUR)
27 (1995) 271–273.

[5] A. Matsokis, D. Kiritsis, An ontology-based approach for product life-
cycle management, Computers in industry 61 (2010) 787–797.

[6] J. Nilsson, F. Sandin, Semantic interoperability in industry 4.0: Survey
of recent developments and outlook, in: 2018 IEEE 16th international
conference on industrial informatics (INDIN), IEEE, 2018, pp. 127–132.

[7] A. K. Y. Wong, P. Ray, N. Parameswaran, J. Strassner, Ontology map-
ping for the interoperability problem in network management, IEEE
Journal on selected areas in Communications 23 (2005) 2058–2068.

[8] A. Gyrard, S. K. Datta, C. Bonnet, A survey and analysis of ontology-
based software tools for semantic interoperability in iot and wot land-
scapes, in: 2018 IEEE 4th World Forum on Internet of Things (WF-
IoT), IEEE, 2018, pp. 86–91.

[9] Q. Cao, F. Giustozzi, C. Zanni-Merk, F. de Bertrand de Beuvron, C. Re-
ich, Smart condition monitoring for industry 4.0 manufacturing pro-
cesses: An ontology-based approach, Cybernetics and Systems 50 (2019)
82–96.

[10] T. R. Gruber, A translation approach to portable ontology specifica-
tions, Knowledge acquisition 5 (1993) 199–220.

[11] L. Patil, D. Dutta, R. Sriram, Ontology-based exchange of product data
semantics, IEEE Transactions on automation science and engineering 2
(2005) 213–225.

24



[12] J. Arancón, L. Polo, D. Berrueta, F.-M. Lesaffre, N. de Abajo, A. Cam-
pos, Ontology-based knowledge management in the steel industry, in:
The Semantic Web, Springer, 2007, pp. 243–272.

[13] F. Ameri, C. Urbanovsky, C. McArthur, A systematic approach to de-
veloping ontologies for manufacturing service modeling, in: Proceedings
of the workshop on ontology and semantic web for manufacturing, vol-
ume 14, Citeseer, 2012.

[14] F. Ameri, D. Dutta, An upper ontology for manufacturing service de-
scription, in: International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume
42578, 2006, pp. 651–661.

[15] S. Lemaignan, A. Siadat, J.-Y. Dantan, A. Semenenko, Mason: A pro-
posal for an ontology of manufacturing domain, in: IEEE Workshop on
Distributed Intelligent Systems: Collective Intelligence and Its Applica-
tions (DIS’06), IEEE, 2006, pp. 195–200.

[16] M. M. Ali, R. Rai, J. N. Otte, B. Smith, A product life cycle ontology
for additive manufacturing, Computers in Industry 105 (2019) 191–203.

[17] P. Chhim, R. B. Chinnam, N. Sadawi, Product design and manufactur-
ing process based ontology for manufacturing knowledge reuse, Journal
of Intelligent Manufacturing 30 (2019) 905–916.

[18] G. Bruno, D. Antonelli, A. Villa, A reference ontology to support prod-
uct lifecycle management, Procedia CIRP 33 (2015) 41–46.

[19] A. Wagner, U. Rüppel, Bpo: the building product ontology for assem-
bled products, in: Proceedings of the 7th Linked Data in Architec-
ture and Construction workshop (LDAC 2019)’, Lisbon, Portugal, 2019,
p. 12.

[20] H. Panetto, M. Dassisti, A. Tursi, Onto-pdm: Product-driven ontol-
ogy for product data management interoperability within manufactur-
ing process environment, Advanced Engineering Informatics 26 (2012)
334–348.

25



[21] M. S. Sonzini, M. Vegetti, H. Leone, Towards an ontology for product
version management, International Journal of Product Lifecycle Man-
agement 8 (2015) 80–97.

[22] Q. Cao, A. Samet, C. Zanni-Merk, F. de Bertrand de Beuvron, C. Reich,
Combining chronicle mining and semantics for predictive maintenance
in manufacturing processes, Semantic Web (2020) 1–22.

[23] C. Sellami, C. Miranda, A. Samet, M. A. B. Tobji, F. de Beuvron, On
mining frequent chronicles for machine failure prediction, Journal of
Intelligent Manufacturing 31 (2020) 1019–1035.

[24] X. Wang, T. Wong, Z.-P. Fan, Ontology-based supply chain decision
support for steel manufacturers in china, Expert Systems with Applica-
tions 40 (2013) 7519–7533.

[25] Q. Bao, J. Wang, J. Cheng, Research on ontology modeling of steel
manufacturing process based on big data analysis, in: MATEC Web of
Conferences, volume 45, EDP Sciences, 2016, p. 04005.

[26] X. Zhang, P. Lv, J. Wang, Stsm: An infrastructure for unifying steel
knowledge and discovering new knowledge, International Journal of
Database Theory & Application 7 (2014) 175–190.

[27] S. Zillner, A. Ebel, M. Schneider, Towards intelligent manufacturing, se-
mantic modelling for the steel industry., IFAC-PapersOnLine 49 (2016)
220–225.

[28] V. Lytvyn, D. Dosyn, A. Smolarz, An ontology based intelligent diag-
nostic system of steel corrosion protection, Elektronika: konstrukcje,
technologie, zastosowania 54 (2013) 22–24.

[29] M. Dobrev, D. Gocheva, I. Batchkova, An ontological approach for
planning and scheduling in primary steel production, in: 2008 4th In-
ternational IEEE Conference Intelligent Systems, volume 1, IEEE, 2008,
pp. 6–14.

[30] Y. Xiong, Y. Liu, Modelling of resources and activity of the scrap iron
and steel reverse supply chain service based on ontology, in: Journal
of Physics: Conference Series, volume 1885, IOP Publishing, 2021, p.
022016.

26



[31] O. Ugwu, C. J. Anumba, A. Thorpe, T. Arciszewski, Building knowledge
level ontology for the collaborative design of steel frame structures, in:
Advances in Intelligent Computing in Engineering—Proceedings of 9th
International Workshop of the European Group of Intelligent Computing
in Engineering (EG-ICE), August, 2002, pp. 01–03.

[32] A. T. Schreiber, G. Schreiber, H. Akkermans, A. Anjewierden, N. Shad-
bolt, R. de Hoog, W. Van de Velde, B. Wielinga, R. Nigel, et al., Knowl-
edge engineering and management: the CommonKADS methodology,
MIT press, 2000.

[33] M. Gruninger, M. S. Fox, The design and evaluation of ontologies for
enterprise engineering, in: Workshop on Implemented Ontologies, Eu-
ropean Conference on Artificial Intelligence (ECAI), Citeseer, 1994.

[34] M. Uschold, M. King, Towards a methodology for building ontologies,
Citeseer, 1995.

[35] C. PERAKATH, C. MENZEL, R. MAYER, et al., The idef5 ontology
description capture method overview, Knowledge Based Systems (1994).

[36] M. Fernández-López, A. Gómez-Pérez, N. Juristo, Methontology: from
ontological art towards ontological engineering (1997).

[37] D. L. McGuinness, F. Van Harmelen, et al., Owl web ontology language
overview, W3C recommendation 10 (2004) 2004.

[38] G. Guizzardi, R. de Almeida Falbo, R. S. Guizzardi, Grounding software
domain ontologies in the unified foundational ontology (ufo): The case
of the ode software process ontology., in: CIbSE, Citeseer, 2008, pp.
127–140.

[39] D. L. Nuñez, M. Borsato, Ontoprog: An ontology-based model for
implementing prognostics health management in mechanical machines,
Advanced Engineering Informatics 38 (2018) 746–759.

[40] J. R. Hobbs, F. Pan, Time ontology in owl, W3C working draft 27
(2006) 133.

[41] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, C. Wroe, A
practical guide to building owl ontologies using protégé 4 and co-ode
tools edition1. 2, The university of Manchester 107 (2009).

27



[42] M. Poveda-Villalón, A. Gómez-Pérez, M. C. Suárez-Figueroa,
Oops!(ontology pitfall scanner!): An on-line tool for ontology evalua-
tion, International Journal on Semantic Web and Information Systems
(IJSWIS) 10 (2014) 7–34.

[43] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of sparql,
ACM Transactions on Database Systems (TODS) 34 (2009) 1–45.

[44] D. Dell’Aglio, E. Della Valle, F. van Harmelen, A. Bernstein, Stream
reasoning: A survey and outlook, Data Science 1 (2017) 59–83.

28


