Publication Types:

Feasible set functions have small circuits

feasible set fctsjournal
Arnold Beckmann, Samuel R. Buss, Sy-David Friedman, Moritz Müller and Neil Thapen
Publication year: 2018

The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion and a form of Mostowski collapse. The second is our main result: the CRSF functions are shown to be precisely the functions computed by a class of uniform, infinitary, Boolean circuits. The third is in terms of a simple extension of the rudimentary functions by transitive closure and subset-bounded recursion.

Cobham Recursive Set Functions and Weak Set Theories

feasible set fctsjournal
Arnold Beckmann, Samuel R. Buss, Sy-David Friedman, Moritz Müller and Neil Thapen
Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore: Volume 33, 2017, pp. 55-116
Publication year: 2017

This paper introduces bounded fragments of Kripke Platek set theory which characterise the Cobham Recursive Set Functions.

Cobham Recursive Set Functions

feasible set fctsjournal
Arnold Beckmann, Samuel R. Buss, Sy-David Friedman, Moritz Müller and Neil Thapen
APAL 2016, 167(3): 335-369
Publication year: 2016

This paper introduces the Cobham Recursive Set Functions (CRSF) as a version of polynomial time computable functions on general sets, based on a limited (bounded) form of epsilon-recursion. This is inspired by Cobham’s classic definition of polynomial time functions based on limited recursion on notation. We introduce a new set composition function, and a new smash function for sets which allows polynomial increases in the ranks and in the cardinalities of transitive closures. We bootstrap CRSF, prove closure under (unbounded) replacement, and prove that any CRSF function is embeddable into a smash term. When restricted to natural encodings of binary strings as hereditarily finite sets, the CRSF functions define precisely the polynomial time computable functions on binary strings. Prior work of Beckmann, Buss and Friedman and of Arai introduced set functions based on safe-normal recursion in the sense of Bellantoni-Cook. We prove an equivalence between our class CRSF and a variant of Arai’s predicatively computable set functions.

Safe Recursive Set Functions

feasible set fctsjournal
Arnold Beckmann, Samuel R. Buss and Sy-David Friedman
JSL 2015, 80(3): 730-762
Publication year: 2015

We introduce the safe recursive set functions based on a Bellantoni-Cook style subclass of the primitive recursive set functions. We show that the functions computed by safe recursive set functions under a list encoding of finite strings by hereditarily finite sets are exactly the polynomial growth rate functions computed by alternating exponential time Turing machines with polynomially many alternations. We also show that the functions computed by safe recursive set functions under a more efficient binary tree encoding of finite strings by hereditarily finite sets are exactly the quasipolynomial growth rate functions computed by alternating quasipolynomial time Turing machines with polylogarithmic many alternations.
We characterize the safe recursive set functions on arbitrary sets in definability-theoretic terms. In its strongest form, we show that a function on arbitrary sets is safe recursive if, and only if, it is uniformly definable in some polynomial level of a refinement of Jensen’s J-hierarchy, relativised to the transitive closure of the function’s arguments.
We observe that safe-recursive functions on infinite binary strings are equivalent to functions computed by so-called infinite-time Turing machines in time less than ω^ω. We also give a machine model for safe recursion which is based on set-indexed parallel processors and the natural bound on running times.