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Abstract. This note is a case study for finding universal measures for
weak implicit computational complexity. We will instantiate “univer-
sal measures” by “dynamic ordinals”, and “weak implicit computational
complexity” by “bounded arithmetic”. Concretely, we will describe the
connection between dynamic ordinals and witness oracle Turing ma-
chines for bounded arithmetic theories.

Keywords: Bounded arithmetic; Dynamic ordinals; Witness oracle Tur-

ing machines; Weak implicit computational complexity.

1 Introduction

Implicit computational complexity denotes the collection of approaches to com-
putational complexity which define and classify the complexity of computations
without direct reference to an underlying machine model. These approaches are
formal systems which cover a wide range, including applicative functional pro-
gramming languages, linear logic, bounded arithmetic and finite model theory
(c.f. [13]). In this note we contribute to the idea of characterizing the computa-
tional complexity of such formal systems by universal measures, such that the
formal systems describe exactly the same complexity class if and only if they
agree in their universal measure. In general, we aim at connections which can
be represented as follows:

complexity class oo // formal systems

universal measure
²²

OOjjTTTTTTTTTTTTTTTTTTTTTTT

Many formal systems admit such kind of universal measures. For example,
in case of “strong” implicit computational complexity, e.g. for number-theoretic
functions which are computable by primitive recursive functionals in finite types,
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so-called proof-theoretic ordinals have proven useful as universal measures of
proof and computation (and also consistency) strength (cf. [15]). With respect
to our general picture this situation can be represented as follows:

primitive recursive in finite types oo // formal systems
PA, ACA0, etc.

proof-theoretic ordinal ǫ0
²²

OOjjTTTTTTTTTTTTTTTTTTTTTT

In this note we will focus on “weak” complexity classes. By this we mean
complexity classes strictly below EXPTIME. We will approach the general idea
of finding universal measures by doing a case study for a particular framework
of weak implicit computational complexity called bounded arithmetic. Bounded
arithmetic theories are logical theories of arithmetic given as restrictions of
Peano arithmetic. Quantification and induction are restricted (“bounded”) in
such a manner that complexity-theoretic classes can be closely tied to prov-
ability in these theories. A hierarchy of bounded formulas, Σb

i , and of theories
S1

2 ⊆ T1
2 ⊆ S2

2 ⊆ T2
2 ⊆ S3

2 . . . has been defined (cf. [5]). The class of predi-
cates definable by Σb

i (or Πb
i ) formulas is precisely the class of predicates in the

ith level Σp
i (resp. Πp

i ) of the polynomial hierarchy. The Σb
i -definable functions

of Si
2 are precisely the p

i -functions, which are the functions which are polyno-
mial time computable with an oracle from Σp

i−1 (cf. [5]). Kraj́ıček [10] char-

acterizes the Σb
i+1-definable multivalued functions of Si

2 as FPΣb

i (wit, O(log n)).

FPΣb

i (wit, O(log n)) is the class of multivalued functions computable by a poly-
time Σb

i -witness oracle Turing machine with the number of queries bounded by
O(log n), that is, a Turing machine running in polynomial time which on inputs
of length n uses fewer than O(log n) witness queries to a Σb

i -oracle. A witness
query to a Σb

i -oracle is one which in case of a positive answer also supplies a
poly-size witness string, i.e. one whose binary length is polynomially bounded in
the binary length of the query. These kind of results are extended and generalized
by Pollett [16].

It is an open problem of bounded arithmetic whether the hierarchy of theories
collapses. This problem is connected with the open problem in complexity theory
whether the polynomial hierarchy PH collapses – the P=?NP problem is a sub-
problem of this. The bounded arithmetic hierarchy collapses if and only if PH
collapses provably in bounded arithmetic (cf. [12, 6, 19]). The case of relativized
complexity classes and theories behave completely differently. The existence of
an oracle A is proven in [2, 18, 8], such that the polynomial hierarchy in this
oracle PHA does not collapse, hence in particular PA 6= NPA holds. Building
on this one can show Ti

2(X) 6= Si+1
2 (X) [12]. Here, the relativized theories Si

2(X)
and Ti

2(X) result from Si
2 and Ti

2, resp., by adding a free set variable X and
the relation symbol ∈. Similarly also, Si

2(X) 6= Ti
2(X) is proven in [10], and

separation results for further relativized theories (dubbed Σb
n(X)-LmIND) are

proven in [16]. Independently of these, and with completely different methods
(see below), we have shown separation results for theories of relativized bounded



arithmetic in [3, 4]. Despite all answers in the relativized case, all separation
questions continue to be open for theories without set parameters.

Recently, there has been a new approach to the study of relativized theo-
ries of bounded arithmetic called dynamic ordinal analysis [3, 4]. Inspired from
proof-theoretic ordinals which have their origin in Gentzen’s consistency proof
for PA, the proof theoretic strength of fragments of bounded arithmetic is char-
acterized by so called dynamic ordinals. The dynamic ordinal DO(T (X)) of a
relativized theory of bounded arithmetic T (X) is a set of unary number-theoretic
functions which characterizes the amount of Πb

1(X)-order-induction which T (X)
can prove. For example, the dynamic ordinals of T1

2(X), S1
2(X) and sR2

2(X) are
computed to be

DO(T1
2(X)) = {λn.2|n|

c

: c a number}

DO(S1
2(X)) = {λn.|n|c : c a number}

DO(sR2
2(X)) = {λn.2||n||

c

: c a number} .

In this way, separation results can be obtained between those relativized theories
which have been assigned different dynamic ordinals.

In this note we will connect the dynamic ordinal of some relativized theo-
ries of bounded arithmetic with the Σb

2-definable multivalued functions of their
unrelativized companions. This shows that dynamic ordinals do in fact also char-
acterize the computational complexity of theories of bounded arithmetic. For T
from the following infinite list

T1
2, S2

2, S1
2, sR2

2, sR1
2, and Σb

m-Lm+1IND and Σb
m-LmIND for all m > 0,

we obtain

T and the theory which has induction for Σb
1-formulas for all functions

in DO(T (X)) prove the same Σb
2-formulas.

and, therefore,

A multivalued function f is Σb
2-definable in T if and only if f is com-

putable by some polytime Σb
1-witness oracle Turing machine with the

number of queries bounded by log(DO(T (X))).

The paper is organized as follows. In the following section we will review
the definition of bounded arithmetic theories. The third section summarizes def-
inition and results on dynamic ordinals. In section 4 we define witness oracle
Turing machines and review results characterizing definable multivalued func-
tions of bounded arithmetic theories by witness oracle Turing machines. In
section 5 we apply the results from the previous sections to obtain the connec-
tion of dynamic ordinals and witness oracle Turing machines. The last section
discusses open questions and possible extensions of these connections.



2 Bounded arithmetic

Bounded arithmetic, in the way we consider it, can be formulated as the fragment
I∆0+Ω1 of Peano arithmetic in which induction is restricted to bounded formu-
las and Ω1 expresses a growth rate strictly smaller than exponentiation, namely
that 2|x|

2

exists for all x, with |x| being the length of the binary representation
of x, i.e. an integer valued logarithm of x. The same fragment is obtained by ex-
tending the language, and we will follow this approach (cf. [5, 11]). Let us recall
some definitions.

The language of bounded arithmetic LBA consists of function symbols 0
(zero), S (successor), + (addition), · (multiplication), |x| (binary length), ⌊ 1

2x⌋

(binary shift right), x# y (smash, n#m := 2|n|·|m|), x ·−y (arithmetical subtrac-
tion), MSP(x, i) (Most Significant Part) and LSP(x, i) (Less Significant Part),
and relation symbols = (equality) and ≤ (less than or equal). The meaning of
MSP and LSP is given by

x = MSP(x, i) · 2i + LSP(x, i) and LSP(x, i) < 2i

for all x and i. Restricted exponentiation 2min(x,|y|) can be defined by

2min(x,|y|) = MSP(y # 1, |y| ·− x) ,

hence we can assume that restricted exponentiation is also part of our language
LBA. We often write 2t and mean 2min(t,|x|) if t ≤ |x| is clear from the context.

Relativized bounded arithmetic is formulated in the language LBA(X) which
is LBA extended by one set variable X and the element relation symbol ∈.

BASIC is a finite set of open axioms (cf. [5, 17, 9]) which axiomatizes the
non-logical symbols. When dealing with LBA(X) we assume that BASIC also
contains the equality axioms for X.

Bounded quantifiers play an important rôle in bounded arithmetic. We ab-
breviate

(∀x ≤ t)A := (∀x)(x ≤ t → A) (∃x ≤ t)A := (∃x)(x ≤ t ∧ A)

(∀x < t)A := (∀x ≤ t)(t £ x → A) (∃x < t)A := (∃x ≤ t)(t £ x ∧ A)

The quantifiers (Qx ≤ t), (Qx < t), Q ∈ {∀,∃}, are called bounded quantifiers.
A bounded quantifier of the form (Qx ≤ |t|), Q ∈ {∀,∃}, is called a sharply
bounded quantifier. A formula in which all quantifiers are (sharply) bounded is
called a (sharply) bounded formula. Bounded formulas are stratified into levels:

1. ∆b
0 = Σb

0 = Πb
0 is the set of all sharply bounded formulas.

2. Σb
n-formulas are those which have a block of n alternating bounded quanti-

fiers, starting with an existential one, in front of a sharply bounded kernel.
3. Πb

n is defined dually, i.e. the block of alternating quantifiers starts with an
universal one.

In the relativized case ∆b
0(X), Σb

n(X), Πb
n(X) are defined analogously.

Attention: In our definition, the class Σb
n consists only of prenex, also called



strict, formulas. In other places like [5, 11], the definition of Σb
n is more liberal,

and the class defined here is then denoted sΣb
n, where the “s” indicates “strict”.

Induction is also stratified. Let |x|0 := x and |x|m+1 := |(|x|m)|.

For Ψ is a set of formulas and m is a natural number, let Ψ -LmIND
denote the schema

ϕ(0) ∧ (∀x < |t|m)(ϕ(x) → ϕ(S x)) → ϕ(|t|m)

for all ϕ ∈ Ψ and terms t.

For m = 0 this is the usual successor induction schema and will be denoted by
Ψ -IND. In case m = 1 we usually write Ψ -LIND.

The theories of bounded arithmetic under consideration are given by

BASIC + Σb
n-LmIND .

Usually we do not mention BASIC and simply call this theory Σb
n-LmIND. Some

of the theories have special names:

Ti
2 := Σb

i -IND ,

Si
2 := Σb

i -LIND ,

sRi
2 := Σb

i -L
2IND .

For theories S, T let S ⊆ T denote that all axioms in S are consequences of
T . From the definition of the theories it immediately follows

Σb
n-Lm+1IND ⊆ Σb

n-LmIND ,

Σb
n-LmIND ⊆ Σb

n+1-L
mIND .

A little bit more insight is needed to obtain

Σb
n-LmIND ⊆ Σb

n+1-L
m+1IND ,

see [5, 3] for a proof. Figure 1 reflects the just obtained relations – going from
left to right in the diagram means that the theory on the lefthand side of an edge
is included in the theory on the righthand side. Similar definitions and results
can be stated for relativized theories of bounded arithmetic.

3 Dynamic ordinals

In this section we summarize results on dynamic ordinals. Full proofs can be
found in [4]. In this section the underlying language will always be the language
LBA(X) of relativized bounded arithmetic.

Theories of bounded arithmetic are axiomatized by using successor induction,
where dynamic ordinals are based on order induction. In the following we will
compare these two kinds of induction. Let us first fix some useful abbreviations.



T3
2

??
??

?

S4
2

T2
2

??
??

?

S3
2

ÄÄÄÄÄ

??
??

?

sR4
2

ÄÄÄÄÄ

T1
2

??
??

?

n //

m

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

S2
2

ÄÄÄÄÄ

??
??

?

sR3
2

ÄÄÄÄÄ

??
??

?

Σ
b
4-L

3IND

ÄÄÄÄÄ

S1
2

ÄÄÄÄÄ

??
??

?

sR2
2

ÄÄÄÄÄ

??
??

?

Σ
b
3-L

3IND

ÄÄÄÄÄ

sR1
2

ÄÄÄÄÄ

??
??

?

Σ
b
2-L

3IND

ÄÄÄÄÄ

⊆

//

Fig. 1. The theories Σ
b
n-LmIND

We adopt from set theory the convention of identifying numbers with the set of
their predecessors, i.e. y is identified with {z : z < y}. E.g., we write y ⊆ X
instead of (∀z < y)(z ∈ X).

SProg(x,X) := 0 ∈ X ∧ (∀y < x)(y ∈ X → S y ∈ X)

SInd(x,X) := SProg(x,X) → x ∈ X

OProg(x,X) := (∀y ≤ x)(y ⊆ X → y ∈ X)

OInd(x,X) := OProg(x,X) → Sx ⊆ X

Order induction, here denoted OInd, is logically equivalent to minimization:

(∃y ≤ x)A(y) → (∃y ≤ x)(A(y) ∧ (∀z < y)¬A(z)).

It is well-known (cf. [5, 11]) that over the base theory BASIC the schema Σb
i -IND

is equivalent to minimization for Σb
i -formulas which is equivalent (by coding one

existential quantifier) to minimization for Πb
i−1-formulas.

We first examine direct relations between SInd and OInd. We will often
consider sets {y : A(y)} for a formula A(a), and we usually will abbreviate this
set by A if the variable a is clear or unimportant. For Φ is a set of formulas,
let OInd(t, Φ) denote the schema of all instances OInd(t, A) for A ∈ Φ, where
OInd(t, A) is the result of replacing X in OInd(t,X) by the formula A. Similarly
for SInd. When saying “let T be a theory” we always mean that T contains some
weak base theory, say S0

2 ⊆ T .

Lemma 1. 1. BASIC ⊢ OInd(t, A) → SInd(t, A) for arbitrary formulas A.
2. Let Φ be a set of formulas, which is closed under bounded universal quan-

tification, T be a theory, and t be a term. Then T ⊢ SInd(t, Φ) implies
T ⊢ OInd(t, Φ).



Proof. 1. is obvious. For 2. we argue in T . Assuming T ⊢ SInd(t, Φ), A ∈ Φ and
OProg(t, A) we can show t + 1 ⊆ A by induction for y up to t + 1 in y ⊆ A. ⊓⊔

Now we define the dynamic ordinal of an LBA(X)-theory based on OInd. Af-
terwards, we will characterize dynamic ordinals in terms of SInd using Lemma 1.

Definition 2. The dynamic ordinal of an LBA(X)-theory T is defined by

DO(T ) := {λx.t : T ⊢ (∀x) OInd(t,Πb
1(X))} .

Of course, t always denotes a term in which at most x occurs as a variable in
the last definition and in the next theorem.

Theorem 3. DO(T ) = {λx.t : T ⊢ (∀x) SInd(t,Πb
1(X))} .

Proof. Lemma 1.1 shows “⊆”, and part 2. of Lemma 1 shows “⊇”. ⊓⊔

Dynamic ordinals are sets of number theoretic functions, i.e. subsets of NN.
We arrange subsets of NN by eventual majorizability:

f E g :⇔ g eventually majorizes f ⇔ (∃m)(∀n ≥ m)f(n) ≤ g(n) .

For subsets of number theoretic functions D,E ⊆ NN we define

D E E :⇔ (∀f ∈ D)(∃g ∈ E)f E g

and from this

D ≡ E :⇔ D E E & E E D

D ⊳ E :⇔ D E E & E 6E D

E is a partial, transitive, reflexive ordering, ⊳ is a partial, transitive, irreflexive,
not well-founded ordering, and ≡ is an equivalence relation.

Lemma 4. Let S, T be two theories in the language of bounded arithmetic and
assume DO(S) 6= DO(T ). Then S is separated from T .

Proof. Assume f ∈ DO(T ) \ DO(S). By the definition of dynamic ordinals
there is a term t(x) and a Πb

1(X)-formula A such that f(n) = t(n) and T ⊢
(∀x)OInd(t(x), A). But f /∈ DO(S) implies S 0 (∀x)OInd(t(x), A). ⊓⊔

Using the well-known big-O notation we will denote sets

f(O(g(id))) := {λn.f(c · g(n)) : c ∈ N}

for unary number-theoretic functions f and g, where id denotes the identity
function, i.e. id(n) = n. We have the following crude upper bound on dynamic
ordinals which is simply given by the growth rates of the functions representable
by terms in the language LBA:

DO(T ) E 22(O(| id |2)) .

The language LBA includes the successor function, + and ·, which enables
us to speed-up induction polynomially.



Lemma 5. Let T be a theory and Φ a set of formulas closed under substitution.
Suppose T ⊢ SInd(t, Φ). Then T ⊢ SInd(p(t), Φ) for all polynomials p.

Proof. We suppose that the assumptions of the lemma hold. We prove the asser-
tion by induction on the complexity of the polynomial p. The interesting case is
that p(x) is of the form q(x)·x. Let A ∈ Φ, C(z) :≡ A(z·t) and D(u) :≡ A(c·t+u),
then by assumption C,D ∈ Φ, hence by induction hypothesis SInd(q, C) and by
assumption SInd(t,D). These are used to conclude SInd(p(t), A) in T . ⊓⊔

Lemma 6. Let T be a theory and Φ a set of formulas closed under bounded
universal quantification and substitution. Suppose T ⊢ OInd(t, Φ). Then T ⊢
OInd(p(t), Φ) for all polynomials p.

Proof. Suppose T ⊢ OInd(t, Φ). Then Lemma 1.1. shows T ⊢ SInd(t, Φ). Hence
T ⊢ SInd(p(t), Φ) by Lemma 5. Hence T ⊢ OInd(p(t), Φ) using Lemma 1.2. ⊓⊔

The last Lemma together with Lemma 1 yields

Theorem 7. Σb
n-LmIND ⊢ OInd(p(|x|m),Πb

n) for polynomials p, if m > 0 or
n > 0.

Proof. Let T be Σb
n-LmIND, then T proves the schema SInd(|x|m,Πb

n). In case
n > 0, Lemma 1.2. shows T ⊢ OInd(|x|m,Πb

n). In case n = 0 we have m > 0 by
assumption. An inspection of the proof of Lemma 1.2. shows that the induction
is on a sharply bounded formula for sharply bounded A. Thus, we always have
T ⊢ OInd(|x|m,Πb

n), hence the assertion follows from Lemma 6. ⊓⊔

For special theories these results can be rewritten as

Ti+1
2 ⊢ OInd(2|t|

c

,Πb
i+1)

Si+1
2 ⊢ OInd(|t|c,Πb

i+1)

sRi+1
2 ⊢ OInd(||t||c,Πb

i+1)

for any positive integer c.
Order induction for higher formula complexity is connected to larger order

induction by speed-up techniques. The main ingredient which formalizes this is
the following jump set Jp(t, x,X):

{

y ≤ t : t ≤ |x| ∧ (∀z ≤ 2t)[z ⊆ X ∧ z + 2y ≤ 2t + 1 → z + 2y ⊆ X]
}

.

Iterations of Jp are defined by

Jp0(t, x,X) = X ,

Jpi+1(t, x,X) = Jp(t, |x|i, Jpi(t, x,X)) ,

where | · |i is the i-fold iteration of | · |. Also, 2m denotes the m-fold iteration of
exponentiation. Using the iterated jump set we obtain the following connections:



Theorem 8.

BASIC ⊢ t ≤ |x|m → [OInd(2m(t), A) ↔ OInd(t, Jpm(t, x,A))] .

Proof. The direction from left to right follows directly. For the other direction
we would have to prove the following lemma

BASIC ⊢ t ≤ |x| ∧ OProg(2t, A) → OProg(t, Jp(t, x,A)) . ⊓⊔

Concerning the complexity of the iterated jump we observe that

Jpi(t, x,Πb
1) ⊂ Πb

i+1

hence Theorem 7 and Theorem 8 together show

Corollary 9. Let 0 ≤ n < m or n = m = 1, and let c be some natural number,
then Σb

n+1-L
mIND ⊢ OInd(2n(|x|cm),Πb

1), hence Σb
n+1-L

mIND ⊢ OInd(2n+1(c ·
|x|m+1),Π

b
1). ⊓⊔

This establishes already tight lower bounds on dynamic ordinals. Tight upper
bounds on dynamic ordinals are obtained by dynamic ordinal analysis (see [3]
or [4]) for theories Σb

m(X)-LmIND for m > 0. Results from Arai [1], section 2.4,
yield tight upper bounds on dynamic ordinals for theories Σb

m(X)-Lm+1IND for
m > 0 (see [4]). Altogether we obtain the following results:

DO(T1
2(X)) ≡ 22(O(| id |2)) ≡ DO(S2

2(X))

DO(S1
2(X)) ≡ 21(O(| id |2))

DO(sR2
2(X)) ≡ 22(O(| id |3))

DO(sR1
2(X)) ≡ 21(O(| id |3)) ,

and more generally for m > 0

DO(Σb
m(X)-Lm+1Ind) ≡ 2m(O(| id |m+2))

DO(Σb
m(X)-LmInd) ≡ 2m(O(| id |m+1)) .

Thus by the previous Lemma and remarks these dynamic ordinals lead to rela-
tionships of bounded arithmetic theories which we display in Fig. 2. Here we
mean with S < T that the theories S and T are separated and S is included
in the consequences of T ; with S ≡ T that S and T have the same dynamic
ordinals (this does not imply that S and T prove the same consequences); and
with S * T that S is not included in the consequences of T .

4 Witness oracle query complexity

In this section we define witness oracle Turing machines and summarize how
definable multivalued functions in bounded arithmetic theories are connected to
witness oracle Turing machines.

A Turing machine with a witness oracle Q(x) = (∃y)R(x, y) is a Turing

machine with a query tape for queries to Q that answers a query a as follows:
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Fig. 2. Separations by dynamic ordinal analysis

1. if Q(a) holds, then it returns Y ES and some b such that R(a, b);
2. if ¬Q(a) holds, then it returns NO.

In general this type of Turing machine, called witness oracle Turing machine
(WOTM), computes only multivalued functions rather than functions, as there
may be multiple witnesses to affirmative oracle answers. A multivalued function
is a relation f ⊆ N × N such that for all x ∈ N there exists some y ∈ N with
(x, y) ∈ f . We express (x, y) ∈ f as f(x) = y. A natural stratification of WOTMs,
called bounded WOTMs, is obtained by bounding the number of oracle queries.

Pollett in [16] has given characterization of definable multivalued func-
tions of theories of bounded arithmetic analogous to Kraj́ıček’s characteriza-

tion of the Σb
i+1-multivalued functions of Si

2 as FPΣb

i (wit, O(log n)) (cf. [10]).

FPΣb

i (wit, O(log n)) is the class of multivalued functions computable by a poly-
nomial time WOTM which on inputs of length n uses fewer than O(log n) witness
queries to a Σb

i -oracle. For Φ is a set of formulas, a multivalued function f is
called Φ-definable in some theory T if there is a formula ϕ(x, y) in Φ such that
ϕ describes the graph of f and T proves the totality of f via ϕ:

T ⊢ (∀x)(∃y)ϕ(x, y)

N ² (∀x)(∀y)[f(x) = y ↔ ϕ(x, y)]

Pollett generalizes polynomial time WOTM classes and bounded arith-
metic theories in the following form to obtain a very general relationship of
definable multivalued functions and bounded polynomial time WOTM classes.

Definition 10. Let τ be a set of unary functions represented by terms in LBA.



1. FPΣb

i (wit, τ) is the class of multivalued functions computable by a polynomial
time WOTM which on input x uses fewer than l(t(x)) witness queries to a
Σb

i -oracle for some l ∈ τ and LBA-term t.

2. Let T̂i,τ
2 be the theory BASIC + Σb

i -INDτ , where Σb
i -INDτ is the schema

ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x + 1)) → (∀x)ϕ(l(x))

with ϕ ∈ Σb
i and l ∈ τ .

As said before, id denotes identity id(n) = n. The class FPΣb

i (wit, O(log n))

considered by Kraj́ıček can be expressed as FPΣb

i (wit, O(| id |2)) by the previ-
ous definition. Also the bounded arithmetic theories defined in previous sections
can be expressed in terms of the last Definition.

Ti
2 = T̂i,id

2 Si
2 = T̂

i,| id |
2

sRi
2 = T̂

i,|| id ||
2 Σb

i -L
mIND = T̂

i,| id |m
2 .

Pollett obtains the following general characterization of definable multi-
valued functions by bounded polynomial time WOTMs.

Theorem 11 (Pollett [16]).

1. A multivalued function f is Σb
i+1-definable in T̂i,τ

2 iff f ∈ FPΣb

i (wit, O(|τ |))
for i ≥ 1.

2. A multivalued function f is Σb
i+k-definable in T̂i,τ

2 iff

f ∈ FPΣb

i+k−1(wit, O(1)) for k ≥ 2 and i ≥ 0. ⊓⊔

Furthermore, Pollett obtains conservation results, which we do not state
here in its general form, but in a form suitable for later use. Let τ be the set

τ := 2k(O(| id |l))

for some fixed k, l satisfying k + 2 ≤ l; in particular, this implies τ E {| id |}.

Theorem 12 (Pollett [16]). For τ as defined above, the theories T̂i+1,τ
2 and

T̂i,2τ

2 prove the same Σb
i+1-formulas. I.e., T̂i+1,τ

2 is Σb
i+1-conservative over T̂i,2τ

2 ,

in symbols T̂i,2τ

2 ¹Σb

i+1
T̂i+1,τ

2 . ⊓⊔

5 Connecting dynamic ordinals and witness oracle query

complexity

In this section we use the results from the previous two sections to compare
dynamic ordinals and definable multivalued functions. We want to compute the
Σb

2-definable multivalued functions of Σb
i -L

mIND for 0 < i ≤ m. To this end we

first conclude that Σb
i -L

mIND is Σb
2-conservative over T̂

1,2i(O(| id |m+1))
2 by ap-

plying Theorem 12, hence both theories have the same Σb
2-definable multivalued



functions. For the second equality in the following computation, we use the fact
that induction can always be speeded up polynomially, cf. Lemma 5.

Σb
i -L

mIND = T̂
i,| id |m
2 = T̂

i,| id |O(1)
m

2 = T̂
i,21(O(| id |m+1))
2

ºΣb

i

T̂
i−1,22(O(| id |m+1))
2

...

ºΣb

2
T̂

1,2i(O(| id |m+1))
2 .

This can be used to argue that Σb
i -L

mIND and T̂
1,2i(O(| id |m+1))
2 have the

same Σb
2-definable multivalued functions. The argument is the following: Let T

be one of Σb
i -L

mIND or T̂
1,2i(O(| id |m+1))
2 , and let ϕ(x, y) be in Σb

2 such that
T ⊢ (∀x)(∃y)ϕ(x, y). By Parikh’s Theorem ([14], or see [5, p.83, Theorem 11]),
there is a term t(x) in LBA such that T ⊢ (∃y ≤ t(x))ϕ(x, y). Furthermore,
(∃y ≤ t(x))ϕ(x, y) is in Σb

2.
Now we can compute the Σb

2-definable multivalued functions of Σb
i -L

mIND.
As argued above, they are the same as the Σb

2-definable multivalued functions

of T̂
1,2i(O(| id |m+1))
2 . By Theorem 11, these are FPΣb

1(wit, 2i−1(O(| id |m+1))).

Corollary 13 (Pollett [16]). The multivalued function f is Σb
2-definable in

Σb
i -L

mIND iff f ∈ FPΣb

1(wit, 2i−1(O(| id |m+1))). ⊓⊔

Now we can compare the Σb
2-definable multivalued functions of certain un-

relativized theories with the dynamic ordinals of their relativized companions.
At the end of section 3 we have computed the dynamic ordinal of some theories
of bounded arithmetic:

DO(T1
2(X)) ≡ 22(O(| id |2)) ≡ DO(S2

2(X))

DO(S1
2(X)) ≡ 21(O(| id |2))

DO(sR2
2(X)) ≡ 22(O(| id |3))

DO(sR1
2(X)) ≡ 21(O(| id |3))

DO(Σb
m(X)-LmInd) ≡ 2m(O(| id |m+1))

DO(Σb
m(X)-Lm+1Ind) ≡ 2m(O(| id |m+2)) .

for m > 0. For example, in case of sR2
2 we obtain:

DO(sR2
2(X)) ≡ 22(O(| id |3))

sR2
2 ºΣb

2
T̂

1,22(O(| id |3))
2

Σb
2-definable multivalued functions of sR2

2 = FPΣb

1(wit, 21(O(| id |3))) .



Hence we can state the following connection between the Σb
2-definable mul-

tivalued functions of those unrelativized theories with the dynamic ordinals of
their relativized companion.

Theorem 14. For any theory T from the infinite list

T1
2, S2

2, S1
2, sR2

2, sR1
2, Σb

m-Lm+1IND, Σb
m-LmIND for arbitrary m > 0,

we have

1. T is Σb
2-conservative over T̂

1,DO(T (X))
2 .

2. A multivalued function f is Σb
2-definable in T if and only if

f ∈ FPΣb

1(wit, log(DO(T (X)))). ⊓⊔

6 Final remarks and possible extensions

• As we have seen the Σb
2-definable multivalued functions of certain unrela-

tivized theories T of bounded arithmetic are strongly connected to the dynamic
ordinals of their relativized companion T (X). Up to now the computations of
the definable multivalued functions and the dynamic ordinals are based on com-
pletely different methods. In a next step these different paths of computation
should be brought together.
• It should be possible to extend the connection to other bounded arithmetic
theories. In the same way as before Pollett’s results show that Σb

k+i−1-L
mIND

is Σb
k+1-conservative over T̂

k,2i(O(| id |m+1))
2 for 0 < i ≤ m and k ≥ 1:

Σb
k+i−1-L

mIND = T̂
k+i−1,| id |m
2 = T̂

k+i−1,| id |O(1)
m

2

= T̂
k+i−1,21(O(| id |m+1))
2

ºΣb

k+i−1
T̂

k+i−2,22(O(| id |m+1))
2

...

ºΣb

k+1
T̂

k,2i(O(| id |m+1))
2 .

For k ≥ 2, the Σb
2-definable multivalued functions of T̂

k,2m(O(| id |m+1))
2 cannot be

expressed adequately in terms of bounded witness oracle Turing machines with

Σb
1 witness oracles, because | id | ⊳ 2m(O(| id |m+1)), Tk−1

2 ⊆ Sk
2 = T̂

k,| id |
2 , and

already for T1
2 we have the maximal possible number of oracle accesses, namely

polynomially many. This class of definable function has to be expressed in terms
of a different type of computation like polynomial local search. E.g., by a result
of Buss and Kraj́ıček 1994 [7] the Σb

1-definable multivalued functions of T1
2

can be expressed in terms of polynomial local search problems.
But if we look at Σb

k+1-definable multivalued functions we again obtain rea-
sonable classes of bounded witness oracle Turing machines: In the following



table let 0 < i ≤ m, j < k and k ≥ 1. The values listed in the next table have
the following properties for a given theory T :

T ºΣb

k+1
T̂k,νT

2

Σb
k+1-definable multivalued functions of T = FPΣb

k(wit, σT ) .

We obtain: T νT σT

Tk
2 22(O(| id |2)) 21(O(| id |2))

Sk+1
2 22(O(| id |2)) 21(O(| id |2))

Sk
2 21(O(| id |2)) O(| id |2)

sRk+1
2 22(O(| id |3)) 21(O(| id |3))

sRk
2 21(O(| id |3)) O(| id |3)

Σb
k−1+i-L

mIND 2i(O(| id |m+1)) 2i−1(O(| id |m+1))

Σb
j -L

mIND O(1)

Tk
2

??
??

??
?

Sk+1

2Sk
2

ÄÄÄÄÄÄÄ

??
??

??
?

sRk+1

2

ÄÄÄÄÄÄÄ

??
??

??
?

Σ
b
k+2-L

3IND

Σ
b
2k−1-L

kIND

sRk
2

ÄÄÄÄÄÄÄ

??
??

??
?

Σ
b
k+1-L

3IND

ÄÄÄÄÄÄÄ

Σ
b
k-L3IND

ÄÄÄÄÄÄÄ

Σ
b
k+1-L

kINDΣ
b
k-LkIND

Fig. 3. Theories which have their Σ
b
k+1-definable multivalued functions characterized

by bounded witness oracle Turing machines. (k ≥ 1)

Hence, all theories displayed in Fig. 3 have their Σb
k+1-definable multivalued

functions reasonably characterized by bounded witness oracle Turing machines.
From this Figure we can conjecture that an adequate definition of a dynamic
ordinal of these theories is likely to exist such that they are connected to Σb

k+1-
definable multivalued functions in the same way as before. An obvious candidate



would be
DOk(T ) = {λx.t : T ⊢ (∀x)OInd(t,Πb

k(X))} .

Another observation drawn from Fig. 3 is that it should be possible for ex-
ample to compute directly DO(Σb

1-L
3IND) by proof theoretic means similar to

dynamic ordinal analysis.
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