
Characterizing the elementary recursive functions

by a fragment of Gödel’s T

Arnold Beckmann∗ and Andreas Weiermann† ‡

Institut für mathematische Logik und Grundlagenforschung

der Westfälischen Wilhelms-Universität Münster

Einsteinstr. 62

D-48149 Münster

Germany

February 23, 2004

Abstract

Let T be Gödel’s system of primitive recursive functionals of finite type

in a combinatory logic formulation. Let T
⋆ be the subsystem of T in which

the iterator and recursor constants are permitted only when immediately

applied to type 0 arguments. By a Howard-Schütte-style argument the T
⋆-

derivation lengths are classified in terms of an iterated exponential func-

tion. As a consequence a constructive strong normalization proof for T
⋆

is obtained. Another consequence is that every T
⋆-representable number-

theoretic function is elementary recursive. Furthermore, it is shown that,

conversely, every elementary recursive function is representable in T
⋆.

The expressive weakness of T
⋆ compared to the full system T can be

explained as follows: In contrast to T , computation steps in T
⋆ never

increase the nesting-depth of Iρ and Rρ at recursion positions.

1 Introduction and motivation

This article is part of a general investigation of (sub-)recursive function theory
and the theory of primitive recursive functionals of finite type by using methods
borrowed from term rewriting theory. The general idea behind this approach is
as follows. Assume that we are interested in a complexity class C of numberthe-
oretic functions which is defined equationally. First, one attempts to assign to C

∗email: Arnold.Beckmann@math.uni-muenster.de
†Research partially supported by a Heisenberg fellowship of the DFG
‡email: weierma@math.uni-muenster.de

1

a canonical rewrite system RC that computes every function in C. Second, one
classifies the derivation lengths in RC . If this can be done, we obtain informa-
tion about the computational nature of C. For example, we obtain time bounds
for computing the elements of C on a Turing or register machine. This approach
has been applied successfully to various small and large complexity classes (See,
for example, [1, 5, 10, 14, 15, 16, 17]). It is particularly suited when C is defined
via a (typed or untyped) reduction system, since then the choice of RC is clear
in advance. In [17, 18] a classification of derivation lengths for Gödel’s system
T of primitive recursive functionals of finite types in the CL and the lambda
formulation have been given by explicitly constructing an ε0-recursive function
D : T → ω so that a reduces to b implies Da > Db for all terms a, b ∈ T. D
may be considered as witnessing constructively the strong normalization of T .
In the construction of D transfinite ordinals come into play via a variant of
the Howard-Schütte-function []0 : T → ε0 (see [7, 13]) which witnesses (con-
structively) the normalization property of T . In fact, D and []0 have to be
defined simultaneously. At this point it seems quite natural to pin down exactly
the rôle of transfinite ordinals in the original Howard-Schütte proof and in its
modification based on D.

Of course, since T represents exactly the < ε0-recursive functions the use of
some form of transfinite induction up to ε0 is necessary for proving the normal-
ization property for T . Here we will find a natural subsystem T ⋆ of T for which
the strong normalization proof via []0 does not require transfinite ordinals.

For this purpose let us take a closer look at the Howard-Schütte weak nor-
malization proof for T given in [13]. The infinite ordinals are used when one
deals with unrestricted occurrences of iterators Iρ. For the subsystem T̃ of
T , in which iterator operators can occur only when applied to a numeral, the
Howard-Schütte function []0, restricted to T̃ witnesses constructively the strong
normalization of T̃ . In particular, []0 also witnesses the strong normalization
of the simple typed λ-calculus – i.e. the subsytem of T without iterators – and
[]0 also provides non trivial upper bounds for the resulting derivation lengths.

In the Howard-Schütte approach iterator occurrences of the form Iρt
0 where

t0 is not a numeral are dealt with by transfinite ordinals. It will be shown here
that this is not necessary, and following [16, 17] we propose a modified definition
of []0 (that will also be denoted by []0) that assigns finite ordinals to Iρt

0. Let
T ⋆ be the subsystem of T in which the iterator operators Iρ can occur only
when applied to a (type 0) argument.

Thus, for example, the T -term KρρIρIρ is not a T ⋆-term. Then the modi-
fied Howard-Schütte assignment []0 witnesses the strong normalization for T ⋆

without using transfinite ordinals.
But this proof yields much more interesting information! Indeed [·]0 can

be defined in terms of elementary functions such as 0,+, · and λx.2x for any
term a ∈ T ⋆. Thus, the derivation lengths function for T ⋆ is in the fourth
Grzegorczyk class E4. Moreover, if f : INk → IN is representable in T ⋆ then
a look at the corresponding derivation lengths shows that f is computable in

2

elementary recursive time, hence is elementary recursive.
The expressive weakness of T ⋆ can be explained as follows: Let a be a term

of T ⋆. Then the nesting-depth of iterator operators in an arbitrary computation
of a is bounded by the nesting-depth of iterator operators occuring in a itself,
i.e. is bounded a priori. This is not the case for unrestricted iterator occurrences
Iρ, since we can not predict a priori the recursion arguments of Iρ which may
appear during a compution of a term a (in which Iρ occurs not restrictedly).
This is the deeper reason to assign the infinite ordinal ω in some way to Iρ,
since ω is larger than all the finite ordinals which are assigned to members of
the familiy (Iρt

0)t0∈T

However, it is shown that random-access machine transitions can be simu-
lated in the subsystem of T ⋆ in which the iterator is dropped. This is utilized
for showing that T ⋆ represents any elementary recursive function, hence T ⋆

represents exactly the elementary recursive functions.
It turns out that T ⋆ defines the same class of numbertheoretic functions as

Leivant’s calculus of predicative recurrence in higher types, namely the class
of elementary recursive functions. Nevertheless it seems that Leivant’s result
is not directly comparable to the characterization of T ⋆ obtained here. We do
not need a tiering operator on finite types. Furthermore, in T ⋆ any elementary
recursive function f : INk → IN is represented by a type one functional, whereas
in Leivant’s approach one has to find an object type τf so that f can be skewly
represented by a term of type τk

f → 0. In this paper the use of iterators is
essential whereas in Leivant’s approach reccurrence can be eliminated by using
an interpretation which simulates higher type Church numerals.

The methods of this paper can also be applied to a λ-formulation of T ⋆.
The restriction on terms consists in allowing only iterators of the form Iρt

0

and in disallowing λ-abstraction of the form λx . . . Iρt
0 . . . where x occurs in

t0. A somewhat related restriction on reductions is already contained in [7],
where Howard deals with contracting subterm occurences instead of subform
occurences (cf. p. 446 in [7]).

In Section 2 we define T ⋆ in detail. In Section 3 we classify the T ⋆-derivation
lengths and show that every T ⋆-representable function is elementary recursive.
In Section 4 we prove that every elementary recursive function is representable in
T ⋆. Section 5 contains some applications of the machinery developed in Section
3. In particular, by a uniform Howard-Schütte style argument we show that
T ⋆ is closed under several schemes of recursion like recursion with parameter
substitution, simple nested recursion and unnested multiple recursion.

2 Basic definitions

We follow essentially the notation of chapter V I of [13].

Definition 1 Inductive definition of types.

3

1. The symbol 0 is a type.

2. If σ and τ are types than (σ)τ is also a type.

For the sake of brevity we write στ for (σ)τ .
We posit of the following variables and constants.

1. Denumerably infinitely many variables of each type.

2. The arithmetic constants O (for the natural number zero), S+ (for the
successor function) and P (for the predecessor function).

3. The combinators Kστ and Sρστ for each type ρ, σ, τ.

4. The discriminator Dσ for each type σ.

5. The iterator functional Iρ for each type ρ.

Compared with Schütte’s approach we have added constants for the pre-
decessor function and the discriminator. (In T these functions are definable
anyway.) In contrast to the other constants the iterator functionals will not be
considered as terms.

Definition 2 Inductive definition of the terms of T ⋆ and their types

1. Every variable of type τ is a term of type τ .

2. O is a term of type 0.

3. S+ is a term of type 00.

4. P is a term of type 00.

5. Kστ is a term of type τστ .

6. Sρστ is a term of type (ρστ)(ρσ)ρτ .

7. Dσ is a term of type 0σσσ.

8. If t0 is a term of type 0 then Iρt
0 is a term of type (ρρ)ρρ.

9. If aστ is a term of type στ and bσ is a term of type σ then aστ (bσ) is a

term of type τ .

For the sake of brevity we write aστ bσ for aστ (bσ) if the term bσ is not written as
a composite term. xτ , yτ , zτ range over variables of type τ . aτ , bτ , cτ , dτ range
over terms of type τ. In particular, t0 ranges over terms of type 0. For avoiding
annoying case distinctions we allow aστ bσ also to denote terms of the form Iρt

0.
In this case bσ and aστ bσ are terms but not aστ .

4

Definition 3 Inductive definition of the numerals n

1. 0 := O.

2. n + 1 := S+n.

In order to allow general unrestricted reductions we modify Schütte’s defi-
nition of the one step reduction ¤

1 as follows.

Definition 4 ¤
1 is the least binary relation on terms of T ⋆ so that

1. P(O) ¤
1 O.

2. P(S+t0) ¤
1 t0.

3. Kστaτ bσ
¤

1 aτ .

4. Sρστaρστ bρσcρ
¤

1 aρστ cρ(bρσcρ).

5. DσOaσbσ
¤

1 aσ.

6. Dσ(S+t0)aσbσ
¤

1 bσ.

7. Iτ0aττ bτ
¤

1 bτ .

8. Iτ (S+t0)aττ bτ
¤

1 aττ (Iτ t0aττ bτ).

9. If bσ
¤

1 cσ then aστ bσ
¤

1 aστ cσ.

10. If aστ
¤

1 bστ then aστ cσ
¤

1 bστ cσ.

By our convention, 9. includes the case: if s0
¤

1 t0 then Iτs0
¤

1 Iτ t0.
Let ¤ be the reflexive and transitive closure of ¤

1.

Definition 5 1. A term a is called normal or in normal form if there is no

term b such that a ¤
1 b.

2. A term a is called strongly normalizable if there does not exist an infinite

sequence of terms 〈ai : i < ω〉 so that a = a0 and ai ¤
1 ai+1 for all i < ω.

3. The relation ¤ is called confluent, if for all terms a, b, c such that a ¤ b

and a ¤ c there exists a term d such that b ¤ d and c ¤ d.

Lemma 1 1. Every term is strongly normalizable.

2. The relation ¤ is confluent.

3. If a is a closed and normal term of type 0 then there exists an n ∈ IN so

that a is equal to n.

5

Proof. These results can be adapted, for example, from [13]. Additionally as-
sertion 1 is proved contructively in Section 3. 2

Definition 6 Let f : INk → IN. We say that f is representable in T ⋆ if there

is a term a0 with variables among x0
1, . . . , x

0
k so that

f(m1, . . . ,mk) = l ⇐⇒ a[x1 := m1, . . . , xk := mk] ¤ l.

Note that Lemma yields that for each closed term a of type 0 there is a uniquely
determined numeral l such that a ¤ l. We would like to remark that it is
not justified to define the representing term for f via the usual CL-translation
of λx1 . . . xk.a, since – in contrast to T – the system T ⋆ is not closed under
translated λ-abstraction.

3 A constructive strong normalization proof for

T
⋆

Based on previous work by Howard and Schütte [7, 13] we define a mapping
[·]0 such that a ¤

1 b implies [a]0 > [b]0. As motivated in [7] this requires an
assignment of a sequence of numbers to terms that is needed for deeling with
the higher types. The definition of the vector of a term a is based on the notion
of the level, g(aτ), of a term a which itself is given by the level g(τ) of τ .

Definition 7 Recursive definition of gτ .

1. g0 := 0.

2. g(στ) := max{gσ + 1, gτ}.

Definition 8 1. [0]i := 0.

2. [S+]0 := 1.

3. [S+]i := 0 if i > 0.

4. [P]0 := 1.

5. [P]i := 0 if i > 0.

6. [Dσ]0 := 1.

7. [Dσ]i := 0 if i > 0.

8. [aτ]i := 1 if i ≤ gτ and aτ is a combinator.

9. [aτ]i := 0 if i > gτ and aτ is a combinator.

6

10. [Iρt
0]0 := [t0]0.

11. [Iρt
0]i := 1 if 1 ≤ i ≤ gρ + 1.

12. [Iρt
0]i := [t0]0 if i = gρ + 2.

13. [Iρt
0]i := 0 if i > gρ + 2.

14. [aστ bσ]i := 2[aστ bσ]i+1 · ([aστ]i + [bσ]i) if i ≤ gσ and aστ is not an iterator.

15. [aστ bσ]i := [aστ]i if i > gσ and aστ is not an iterator.

The crucial point in Definition 8 is case 12 (cf. the proof of Lemma 13). In
Lemma 13 we also need that [s0]0 > [t0]0 implies [Iρs

0]0 > [Iρt
0]0. This is the

reason for putting [Iρt
0]0 := [t0]0 in case 10. Assigning a 1 to S+ in case 2

guarantees that [n]0 = n.

Lemma 2 1. For each term a there is a k such that [a]i = 0 for all i > k.

2. [a]i < ω. 2

Lemma 3 1. [n]0 = n.

2. i ≥ 1 ⇒ [n]i = 0. 2

Proof. By induction on n. 2

Lemma 4 1. If aστ bσ has not the form Iρt
0 then [aστ]i ≤ [aστ bσ]i.

2. If i ≤ gσ then [bσ]i ≤ [aστ bσ]i.

Proof. 1. This follows immediately from case (4) of definition 7. (Cf. [13]).
2. The assertion is clear if aστ bσ 6= Iρt

0. If aστ bσ = Iρt
0 then gσ = 0 and

[Iρt
0]0 = [t0]0 holds by definition. 2

Lemma 5 1. [aστ bσ]i ≤ 2[aστ bσ]i+1 · ([aστ]i + [bσ]i) if i ≤ gσ.

2. [aστ bσ]i ≤ [aστ]i if i > gσ and aστ bσ has not the form Iρt
0.

Proof. If aστ bσ 6= Iρt
0 then equality holds by definition. Assume that aστ bσ =

Iρt
0. Then σ = 0 and gσ = 0. Let i = 0. Then [Iρt

0]0 := [t0]0 ≤ 2[Iρt0]1 ·
([Iρ]0 + [t0]0). 2

Definition 9 aτ ≫ bτ : ⇐⇒ [aτ]0 > [bτ]0 & (∀i ≤ gτ) [aτ]i ≥ [bτ]i.

The proofs of the following lemmas 6, 7, 8, 9 and 10 are straightforward by
simple monotonicity arguments. We only prove Lemma 10.

Lemma 6 P(O) ≫ O. 2

7

Lemma 7 P(S+t0) ≫ t0. 2

Lemma 8 DσOaσbσ ≫ aσ. 2

Lemma 9 Dσ(S+t0)aσbσ ≫ bσ. 2

Lemma 10 Kστaτ bσ ≫ aτ .

Proof. As in [13] we have [Kστaτ bσ]i ≥ [aτ]i by Lemma 3. For i = 0 we obtain
[aτ]0 < 2[Kστ aτ bσ]1 · (2[Kστ aσ]1 · ([Kστ]0 + [aτ]0) + [bσ]0) = [Kστaσbτ]0. 2

Lemma 11 Sρστaρστ bρσcρ ≫ aρστ cρ(bρσcρ)

Proof. See [13]. 2

Lemma 12 Iτ0aττ bτ ≫ bτ .

Proof. Lemma 3 yields [Iτ0aττ bτ]i ≥ [bτ]i. Furthermore, we have [bτ]0 <

[Iτ0aττ bτ]0 = 2[Iτ0aττ bτ]1 · ([Iτ0aττ]0 + [bτ]0). 2

Lemma 13 Iτ (S+t0)aττ bτ ≫ aττ (Iτ t0aττ bτ).

Proof. We follow the argument of [13].
Note that [S+t0]0 = [t0]0 + 1.

Let αi := [Iτ (S+t0)aττ]i, βi := [Iτ (S+t0)aττ bτ]i, ξi := [Iτ t0aττ]i, ηi :=
[Iτ t0aττ bτ]i, and ζi := [aττ (Iτ t0aττ bτ)]i. The proof given in [13] yields

(∗) ξi < αi

and
(∗∗) ηi + ζi + 1 ≤ βi

whenever 1 ≤ i ≤ gτ. We now prove ζ0 = [aττ (Iτ t0aττ bτ)]0 < β0.

Since aττ is not an iterator we have [aττ (Iτ t0aττ bτ)]0 =
2ζ1 · ([a]0 + η0) = 2ζ1 · ([a]0 + 2η1 · (ξ0 + [b]0)) =

ζ0 = 2ζ1 · ([a]0 + 2η1 · (2ξ1 · ([t0]0 + [a]0) + [b]0))

By (∗) and (∗∗) ζ0 is smaller than

β0 = 2β1 · (α0 + [b]0) = 2β1 · (2α1 · ([t0]0 + 1 + [a]0) + [b]0).

2

Lemma 14 bσ ≫ cσ ⇒ aστ bσ ≫ aστ cσ

Proof. Assume first that aστ bσ has not the form Iρt
0. Then

1. [aστ bσ]i = 2[aστ bσ]i+1 · ([aστ]i + [bσ]i) if i ≤ gσ.

8

2. [aστ bσ]i = [aστ]i if i > gσ.

3. [aστ cσ]i = 2[aστ cσ]i+1 · ([aστ]i + [cσ]i) if i ≤ gσ.

4. [aστ cσ]i = [aστ]i if i > gσ.

In this case the assertion follows immediately from the assumption.
Assume now that aστ bσ = Iρt

0. Then cσ is also of type 0. bσ ≫ cσ yields
[Iρb

σ]0 > [Iρc
σ]0. Let i > 0. If i 6= gρ + 2 then [Iρb

σ]i = 1 = [Iρc
σ]i. Finally,

for the critical case, suppose i = gρ + 2. Then bσ ≫ cσ yields [Iρb
σ]i = [bσ]0 >

[cσ]0 = [Iρc
σ]i. 2

Lemma 15 Assume that neither aστ cσ nor bστ cσ have the form Iρt
0.

aστ ≫ bστ ⇒ aστ cσ ≫ bστ cσ.

Proof. The assumptions yield

1. [aστ cσ]i = 2[aστ cσ]i+1 · ([aστ]i + [cσ]i) if i ≤ gσ.

2. [aστ cσ]i = [aστ]i if i > gσ.

3. [bστ cσ]i = 2[bστ cσ]i+1 · ([bστ]i + [cσ]i) if i ≤ gσ.

4. [bστ cσ]i = [bστ]i if i > gσ.

Thus the assertion follows immediately from aστ ≫ bστ . 2

Theorem 1 If a ¤
1 b then a ≫ b, hence [a]0 > [b]0.

Proof. By induction on the definition of ¤
1. The base cases are covered by

lemmas 6 through 13.
Lemma 14 and 15 yield closure under application. 2

Let lh(a) denote the number of constants and variables in a. Thus lh(0) =
lh(S+) = lh(P) = lh(Dσ) = lh(Kστ) = lh(Sρστ) = lh(Iρ) = lh(xτ) = 1 and
lh(ab) = lh(a) + lh(b). Let G(a) := g(τ) if a is a constant of type τ and set
G(ab) := max{G(a), G(b)} otherwise. Then G(a) is the maximal type level in a.
An inspection of the definition of [a]i yields [a]i = 0 for i > G(a). Let 20(α) := α

and 2n+1(α) := 22n(α).

Let T− be T ⋆ without the iterator constants Iρ. An immediate verification
yields that [a]i ≤ 2G(a)+1−· i(G(a) + 1 −· i + 2 · lh(a)) holds for every a ∈ T−.
Thus [a]0 ≤ 2G(a)+1(G(a) + 1 + 2 · lh(a)).

If a1 ¤
1 . . . ¤

1 al then, by Theorem 1, l ≤ [a1]0 ≤ 2G(a1)+1(G(a1) + 1 +
2 · lh(a1)). Let DERT− , the derivation lengths function for T−, be defined as
follows: DERT−(m) is the maximal length of a reduction chain starting with
any T−-term a, such that the depths of a is less than or equal to m. Then
DERT− is an element of the fourth Grzegorczyk class E4 (See, for example, [11]

9

for a definition). Furthermore, let a ∈ T− be of type 00. Then the height of the
reduction tree for an is bounded by 2k(n) where k only depends on a.

These observations can be extended to T ⋆ as follows.

Definition 10 Definition of the iterator nesting degree, d(a), of a T ⋆-term a.

1. d(0) = d(S+) = d(P) = d(Dσ) = d(Kστ) = d(Sρστ) = d(xτ) := 0.

2. If aστ bσ = Iρt
0 then d(aστ bσ) := d(t0) + 1.

3. If aστ bσ 6= Iρt
0 then d(aστ bσ) := max{d(aστ), d(bσ)}.

Lemma 16

[a]i ≤ 2(G(a)+1)·d(a)+G(a)+1−· i((G(a) + 1) · d(a) + G(a) + 1 −· i + 2 · lh(a)).

Proof. By induction on lh(a) and subsidiary induction on i ≤ G(a). Recall that
[a]i = 0 for i > G(a). If lh(a) = 1 then [a]i ≤ 1 and the assertion is clear. If
a has the form bc but not the form Iρt

0 then the assertion follows immediately
from the induction hypothesis, since

2m(x + 1) · (2m(x) + 2m(x)) ≤ 2m(x + 2)

holds for all x and m ≥ 2.
For the critical case assume that a = Iρt

0. The induction hypothesis yields

[Iρt
0]0 = [Iρt

0]ρ+2

= [t0]0

≤ 2(G(t0)+1)·d(t0)+G(t0)+1((G(t0) + 1) · d(t0) + G(t0) + 1 + 2 · lh(t0))

≤ 2(G(t0)+1)·d(a)((G(t0) + 1) · d(a) + 2 · lh(t0))

≤ 2(G(a)+1)·d(a)((G(a) + 1) · d(a) + 2 · lh(a))

Thus we obtain

[a]i ≤ 2(G(a)+1)·d(a)+G(a)+1−· i((G(a) + 1) · d(a) + G(a) + 1 −· i + 2 · lh(a))

for any i ≤ ρ + 2. 2

Lemma 17 Let a ∈ T ⋆ be a term of type 0 such that all the variables of a

are contained in {x0
1, . . . , x

0
k}. Then G(a) = G(a[x0

1 := m1, . . . , x
0
k := mk])

and d(a) = d(a[x0
1 := m1, . . . , x

0
k := mk]. Moreover, if every variable from

{x0
1, . . . , x

0
k} occurs at most once in a then lh(a[x0

1 := m1, . . . , x
0
k := mk]) ≤

lh(a) + m1 + · · · + mk.

10

Proof. By a straightforward induction on lh(a). 2

Corollary 1 Let f : INk → IN be representable in T ⋆. Then f is elementary

recursive.

Proof. Let f : INk → IN be represented by a term a ∈ T ⋆ whose variables are
among {x0

1, . . . , x
0
k} and no variable occurs more than once. Then by Lemma 16

and Lemma 17 [a[x0
1 := m1, . . . , x

0
k := mk]]0 ≤ 2(G(a)+1)·d(a)+G(a)+1((G(a)+1) ·

d(a) + G(a) + 1 + 2 · (lh(a) + m1 + · · ·+ mk)). Thus by Theorem 1 the number
of steps needed for rewriting a[x0

1 := m1, . . . , x
0
k := mk] by any reasonable

rewriting strategy, for example leftmost reduction, into the numeral representing
its value is bounded elementary recursive in m1, . . . ,mk. Hence, f is computable
in elementary recursive time and thus is elementary recursive. 2

4 Representing the elementary recursive func-

tions

In this section we prove in detail that every elementary recursive function
is representable in T ⋆. It is obvious that random–access machine (RAM)–
computations can be simulatet in Gödel’s T. Although it is known in the litera-
ture (see, for example, Leivant [8]) that this can also be done in weaker systems
the proofs known to us are somehow sketchy and do not clarify the rôle of it-
erators in such a simulation. Therefore, we will define explicitly the transition
function of a RAM in T−, the subsystem of T ⋆ in which no term occurrences
of (restricted) iterators are allowed. (T− can be viewed as a CL-formulation
of the simply typed λ-calculus.) We will see that only iterators of type 0 and
00 are needed to represent the elementary recursive functions. Then we can
apply the following characterization of the elementary recursive functions (cf.,
for example, [11]).

Fact 1 f : INm → IN is elementary recursive iff there are natural numbers

k > m, c1, c2 and a program P for a RAM with k registers such that

f(~a) = OUT k(iτP (c1 + 2c2
(max{~a}), INk

m(~a)))

and

iτP (c1 + 2c2
(max{~a}), INk

m(~a)) is an end–configuration

for all ~a ∈ INm.

Recall that 2m(b) is defined by 20(b) = b and 2c+1(b) = 22c(b). The notions
INk

m, OUT k, iτP are defined explicitly in the following.
To fix the context we recall the notion of a k+1–RAM in detail. A random–

access machine with k + 1 registers (k + 1–RAM) is a tuple

(INk+1, {INC(r),DEC(r) : r ≤ k}, {BEQ(r) : r ≤ k}).

11

A program for a k + 1–RAM is a finite set P = {p0, . . . , pl} of instructions
where an instruction pi is a tuple (i, inst,m) with m ∈ {0, . . . , l+1} and inst ∈
{INC(r),DEC(r) : r ≤ k} or a tuple (i, inst,m, n) with m,n ∈ {0, . . . , l + 1}
and inst ∈ {BEQ(r) : r ≤ k}.

The transition function for a program P = {p0, . . . , pl} is the map

τP : {0, . . . , l + 1} × INk+1 → {0, . . . , l + 1} × INk+1

which is defined by

τP (i, (z0, . . . , zk)) =



































(m, (z0, . . . , zr + 1, . . . , zk)) if (i, INC(r),m) ∈ P

(m, (z0, . . . , zr −· 1, . . . , zk)) if (i,DEC(r),m) ∈ P

(m, (z0, . . . , zr, . . . , zk)) if (i, BEQ(r),m, n) ∈ P

and zr = 0
(n, (z0, . . . , zr, . . . , zk)) if (i, BEQ(r),m, n) ∈ P

and zr 6= 0
(i, (z0, . . . , zk)) if i = l + 1.

An element from {0, . . . , l + 1} × INk+1 is called a configuration, one from {l +
1} × INk+1 an end–configuration. The iterated transition function

iτP : IN × INk+1 → {0, . . . , l + 1} × INk+1

is defined by

iτP (0, ~z) = (0, ~z), iτP (n + 1, ~z) = τP (iτP (n, ~z)).

We set

INk+1
m : INm → INk+1, (z1, . . . , zm) 7→ (z1, . . . , zm, 0, . . . , 0)

and
OUT k+1 : IN × INk+1 → IN, (i, (z0, . . . , zk)) 7→ z0.

To simulate transitions of a k–RAM in T− we recall the standard definition
of λ–abstraction for T−-terms. (See, for example, [13] for a definition.)

Definition 11 1. λxρ.xρ := IDρ := Sρ(ρρ)ρK(ρρ)ρKρρ

2. If xρ does not occur in cτ , then λxρ.cτ := Kρτ cτ

3. If xρ occurs in (aστ bσ), then λxρ.(aστ bσ) := Sρστ (λxρ.aστ)(λxρ.bσ)

Then λxρ.cτ ∈ T− is a term of type ρτ for any term cτ ∈ T− of type τ and xρ

does not occur in λxρ.cτ .
In the sequel we write λxρ.f [x] in short for λxρ.f [xρ]. As usual we put

λx1 . . . xn.a := λx1(. . . (λxn.a) . . .). It should be noticed that the definition of
λ–abstraction can not be extended to all T ⋆-terms, because we then would have
λx0(Iρx) as a term, hence Iρ has to be a term.

12

Theorem 2 Assume that c ∈ T− is of type τ and d ∈ T ⋆ is of type ρ. Then

(λxρ.cτ)dρ
¤ cτ [xρ := dρ].

Proof by induction on the generation of c ∈ T−. 2

In order to deal with formal tuple generation and decomposition we first
extend the discriminator as follows.

D2
σ := Dσ

Dn+1
σ := λx0yσ

0 . . . yσ
n. Dσxy0(D

n
σ(Px)y1 . . . yn).

Then Dn
σ ∈ T− is a term of type 0σn+1 such that

Dn+1
σ ms0 . . . sn ¤

{

sm if m ≤ n

sn else

Let
decσ

i = λx0σ.xi

tuσ
k = λxσ

1 . . . xσ
ky0.(Dk

σyx1 . . . xk)

and observe that decσ
i , tuσ

k ∈ T− are of type (0σ)σ resp. σk0σ. For terms
s1, . . . , sk ∈ T ⋆ of type σ we compute

decσ
i (tuσ

ks1 . . . sk) ¤ tuσ
ks1 . . . ski

¤ Dk
σis1 . . . sk

¤ si

[Of course we do not have tu(dec0s)(dec1s) ¤ s]
For a fixed k we abbreviate tu0

ks1 . . . sk by 〈s1, . . . , sk〉 and dec0
i s by (s)i.

For a given program P = {p0, . . . , pl} we formalize the k–RAM–transition by
a term of T− as follows. We interpret a configuration as a k + 1–tuple, i.e. as
a term of type 00. For 0 ≤ i ≤ k and 0 ≤ j ≤ l let Aij ∈ T− be a term of
type 0 which modifies the i–th position of a configuration x00 according to the
instruction pj :

A0j =

{

b if pj = (j, inst, b)
D(x00)r+1b c if pj = (j, BEQ(r), b, c)

and for r < k

A(r+1)j =







P((x00)r+1) if pj = (j,DEC(r), b)
S+((x00)r+1) if pj = (j, INC(r), b)
(x00)r+1 else.

Then the transition function for the i–th position of a configuration x00, 0 ≤
i ≤ k is defined by

tri
P = Dl+2

0 (x00)0Ai0 . . . AilI0.

13

Let
trP = λx00.〈tr0

P , . . . , trk
P 〉.

Obviously, tri
P ∈ T− is a term of type 0, hence trP ∈ T− is of type (00)00. By

construction we get

Lemma 18
τP (a, (z1, . . . , zk)) = (b, (z′1, . . . , z

′
k))

⇐⇒ trP 〈a, z1, . . . , zk〉 ¤ 〈b, iz′1, . . . , iz
′
k〉

hence
iτP (n, (z1, . . . , zk)) = (b, (z′1, . . . , z

′
k))

⇐⇒ I00n(trP)〈0, z1, . . . , zk〉 ¤ 〈b, z′1, . . . , z
′
k〉.

2

Theorem 3 The elementary recursive functions are representable in T ⋆.

Proof. Let f : INm → IN be elementary recursive. By Fact 1 there are natural
numbers k > m, l, c1, c2 and some program P = {p0, . . . , pl} for a k–RAM such
that

f(~q) = OUT k(iτP (c1 + 2c2
(max{~q}), INk

m(~q)))

and
(iτP (c1 + 2c2

(max{~q}), INk
m(~q)))0 > l

for all ~q ∈ INm.
We define a term t ∈ T ⋆ in the variables x0

1, . . . , x
0
m which satisfies ∀~q ∈

INm∃r ∈ IN

t[x1 := q1, . . . , xm := qm] ¤ r and r ≥ c1 + 2c2
(max{~q}). (1)

Let
t̃0 := x1 + (x2 + . . . (xm + c1) . . .)

where u + v := I0u(S+)v, and

t̃1 := I00z
0(double)(S+)

where double := λy00
1 y0

2 .(y1(y1y2)). By induction on q one easily verifies that

(t̃1u)[z := q]¤S+(2q)
u, hence (t̃10) represents the exponential function (cf. [8]).

We define
t0 := t̃0, tn+1 := (t̃10)[z := tn], t := tc2

and observe that t fulfills the assertion (1).
Now we define

R = dec0
1(I00t(trP)〈0, x0

1, . . . , x
0
m〉)

which is a term of T ⋆ of type 0. We claim that R represents f .

14

Indeed, let ~q ∈ INm, then there is an r ∈ IN such that t[x1 := q1, . . . , xm :=

qm] ¤ r and r ≥ c1 + 2c2
(max{~q}). There is also some ~q′ ∈ INk with iτP (r, ~q) =

(l + 1, ~q′). We compute

f(~q) = OUT k(iτP (c1 + 2c2
(max{~q}), INk

m(~q))) = OUT k(l + 1, ~q′) = q′1.

Hence

R[x1 := q1, . . . , xm := qm] ¤ dec0
1(I00r(trP)〈0, q1, . . . , qm〉)

¤ dec0
1(〈l + 1, q′1, . . . , q

′
m〉)

¤ q′1 ≡ f(~q).

2

5 Further applications

In this section we indicate how the Howard-Schütte style derivation lengths
classification of Section 3 can easily be adapted for showing that T ⋆ is closed
under various schemes of recursion like recursion with parameter substitution,
simple nested recursion and unnested multiple recursion. For his calculus of
predicative recurrence of finite types Leivant has established similar looking
closure properties in [8]. Related closure properties of the primitive recursive
functions have been shown by Simmons in [12].

First we consider the system in which the iterator is replaced by a constant
for the recursor. For any type τ let Rτ be a new constructor constant. We
enlarge the term definition [Def. 2] by the following rule:
If t0 is a term of type 0 then Rτ t0 is a term of type (0ττ)ττ .
The definition of the reduction relation ¤

1 [Def. 4] is extended by the following
clauses:

Rτ0a0ττ bτ
¤

1 bτ ,

Rτ (S+t0)a0ττ bτ
¤

1 (a0ττ t0)(Rτ t0a0ττ bτ).

The definition of []i is extended as follows:

1. [Rτ t0]i := [t0]i if i = 0.

2. [Rτ t0]i := 1 if 1 ≤ i ≤ gρ + 1.

3. [Rτ t0]i := [t0]0 if i = gρ + 2.

4. [Rτ t0]i := 0 if i > gρ + 2.

Then, for the extended calculus one shows that a ¤
1 b implies [a]0 > [b]0 and as

in Section 3 we see that the derivation lengths function for any term representing

15

a number-theoretic function in the extended calculus is elementary recursive in
the input arguments.

The treatment of recursion with parameter substitution, simple nested re-
cursion and unnested multiple recursion is similar. Let us start with parameter
recursion. For any type τ let PRτ be a new constructor constant. We enlarge
the term definition by the following rule:
If t0 is a term of type 0 and if cττ is a term of type ττ then PRτ cττ t0 is a term
of type (0ττ)ττ .
The defining reduction rules for recursion with parameter substitution are:

PRτ cττ0a0ττ bτ
¤

1 bτ ,

PRτ cττ (S+t0)a0ττ bτ
¤

1 (a0ττ t0)(PRτ cττ t0a0ττ (cττ bτ))

For treating these rules the definition of []i is extended as follows:

1. [PRτ cττ t0]i := [cττ]i + [t0]i if i = 0.

2. [PRτ cττ t0]i := 1 if 1 ≤ i ≤ gρ + 1.

3. [PRτ cττ t0]i := [cττ]0 + [t0]0 if i = gρ + 2.

4. [PRτ cττ t0]i := 0 if i > gρ + 2.

Then, for the extended calculus one shows that a ¤
1 b implies [a]0 > [b]0 and

as before we see that the derivation lengths function for any term representing
a number-theoretic function in the extended calculus is elementary recursive in
the input arguments.

Now we deal with simple nested recursion. For any type τ let SNRτ be a
new constructor constant. The term definition is extended as follows:
If t0 is a term of type 0 then SNRτ t0 is a term of type (0ττ)ττ .
The defining reduction rules for simple nested recursion are:

SNRτ0a0ττ bτ
¤

1 bτ ,

SNRτ (S+t0)a0ττ bτ
¤

1 (a0ττ t0)(SNRτ t0a0ττ (SNRτ t0a0ττ b))

For treating these rules the definition of []i is changed as follows:

1. [SNRτ t0]i := [t0]i if i = 0.

2. [SNRτ t0]i := 1 if 1 ≤ i ≤ gρ + 1.

3. [SNRτ t0]i := [t0]0 if i = gρ + 2.

4. [SNRτ t0]i := 0 if i > gρ + 2.

5. [aστ bσ]i := 4[aστ bσ]i+1 · ([a]i + [b]i) if aστ is not an iterator or recursor.

16

Again, for the extended calculus one shows that a¤
1 b implies [a]0 > [b]0 and as

before we see that the derivation lengths function for any any term representing
a number-theoretic function in the extended calculus is elementary recursive in
the input arguments.

Finally, let us treat unnested multiple recursion. For any type τ let UMRτ

be a new constructor constant. The term definition is extended as follows:
If t0 and s0 are terms of type 0 and c00 is of type 00 then UMRτ c00s0t0 is a
term of type (0τττ)ττ .
The defining reduction rules for unnested multiple recursion are:

UMRτ c00(s0)0a0τττ bτ
¤

1 bτ ,

UMRτ c000(t0)a0τττ bτ
¤

1 bτ ,

UMRτ c00(S+s0)(S+t0)a0τττ bτ
¤

1

(a0τττ t0)(UMRτ c00s0(c00t0)a0τττ bτ)(UMRτ c00(S+s0)t0a0τττ bτ)

For treating these rules the definition of []i is changed as follows:

1. [UMRτ c00s0t0]i := [t0]i if i = 0.

2. [UMRτ c00s0t0]i := 1 if 1 ≤ i ≤ gρ + 1.

3. [UMRτ c00s0t0]i := 8([c]0+1)3·([s]0+1)
·([t0]0+1) if i = gρ + 2.

4. [UMRτ c00s0t0]i := 0 if i > gρ + 2.

5. [aστ bσ]i := 8[aστ bσ]i+1 · ([a]i + [b]i) if aστ is not an iterator or recursor.

Then, for the extended calculus one shows that a ¤
1 b implies [a]0 > [b]0 and as

before we see that the derivation lengths function for any any term representing
a number-theoretic function in the extended calculus is elementary recursive in
the input arguments.

Acknowledgements. The authors would like to thank the referee for valuable
comments.

References

[1] Beckmann, A. and Weiermann, A.: A term rewriting characterization of the

polytime functions and related complexity classes. Archive for Mathematical
Logic 36 (1996), 11-30.

[2] Beckmann, A. and Weiermann, A.: Investigations on subrecursion via logic

programming. Preprint, Münster (1995).

[3] Beckmann, A.: Exact bounds for lengths of reductions in typed λ-calculus.

Preprint, Münster (1998) (submitted)

17

[4] Bellantoni, S. and Cook, S.: A new recursion-theoretic characterization of

the polytime functions. Comput. Complexity 2, No. 2 (1992), 97-110.

[5] Cichon, E.A. and Weiermann, A.: Term rewriting theory for the primitive

recursive functions. Annals of Pure and Applied Logic 83 (1997), 199-223.

[6] Hofbauer, D.: Termination proofs by multiset path orderings imply prim-

itive recursive derivation lengths. Proc. 2nd ALP. Lecture Notes in Com-
puter Science 463 (1990), 347-358.

[7] W. Howard: Assignment of ordinals to terms for primitive recursive func-

tionals of finite type. Intuitionism and Proof Theory. North-Holland, Am-
sterdamm 1970, 443-458.

[8] D. Leivant: Predicative recurrence in finite type. In A. Nerode and Y.V.
Matiyasevich (eds.), Logical Foundations of Computer Science. Springer
Lecture Notes in Computer Science 813 (1994), 227-239.

[9] D. Leivant: Ramified recurrence and computational complexity I: Word

recurrence and poly-time. Feasible Mathematics II, P. Clote and J. Remmel
(eds.), Perspectives in Computer Science, Birkhäuser (1995).

[10] Möllerfeld, M. and Weiermann, A.: A uniform approach to ≺-recursion.

Preprint, Münster (1995) (submitted).

[11] H.E. Rose: Subrecursion: Functions and Hierarchies. Oxford University
Press 1984.

[12] Simmons, H.: The realm of primitive recursion. Arch. Math. Logic 27
(1988), 177-188.

[13] K. Schütte: Proof Theory. Springer 1977.

[14] Weiermann, A.: Termination proofs for term rewriting systems by lexico-

graphic path orderings yield multiply recursive derivation lengths. Theoret-
ical Computer Science 139 (1995), 355-362.

[15] Weiermann, A.: Rewriting theory for the Hydra battle and the extended

Grzegorczyk hierarchy, Preprint, Nancy and Münster (1995) The Journal
of Symbolic Logic (to appear).

[16] Weiermann, A.: A proof of strongly uniform termination for Gödel’s T by

methods from local predicativity. Archive for Mathematical Logic 36 (1997),
445-460.

[17] Weiermann, A.: How is it that infinitary methods can be applied to finitary

mathematics. Gödel’s T: a case study. The Journal of Symbolic Logic 63,
Number 4, (1998), 1348-1370.

18

[18] Wilken, G. and Weiermann, A.: Sharp upper bounds for the depths of re-

duction trees of typed lambda calculus with recursors. Preprint, Münster
(1998) (submitted).

19

