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Abstract. We define a new class of total search problems as a subclass
of Megiddo and Papadimitriou’s class of total NP search problems, in
which solutions are verifiable in AC0. We denote this class ∀∃AC0. We
show that all total NP search problems are equivalent, wrt. AC0-many-
one reductions, to search problems in ∀∃AC0. Furthermore, we show that
∀∃AC0 contains well-known problems such as the Stable Marriage and
the Maximal Independent Set problems. We introduce the class of In-
flationary Iteration problems in ∀∃AC0, and show that it characterizes
the provably total NP search problems of the bounded arithmetic the-
ory corresponding to polynomial-time. Cook and Nguyen introduced a
generic way of defining a bounded arithmetic theory VC for complexity
classes C which can be obtained using a complete problem. For such C
we will define a new class KPT[C] of ∀∃AC0 search problems based on
Student-Teacher games in which the student has computing power lim-
ited to AC0. We prove that KPT[C] characterizes the provably total NP
search problems of the bounded arithmetic theory corresponding to C.
All our characterizations are obtained via “new-style” witnessing theo-
rems, where reductions are provable in a theory corresponding to AC0.

1 Introduction

The two-sorted bounded arithmetic theories VC [8] are well-known for their proof
theoretic strength corresponding to complexity classes C, for many C between
AC0 and PH. It is a fundamental open question in computer science whether any
two complexity classes within the following sequence

AC0(6) ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC ⊆ P ⊆ NP ⊆ PH,

are equal or not, a question which is a weaker version of the P versus NP ques-
tion. Likewise, it is a fundamental open problem whether any of the correspond-
ing bounded arithmetic theories are distinct. The difference in working with
bounded arithmetic theories instead directly with computational classes is that
the theories may possibly be shown to be distinct by combining logical con-
siderations of provability along with computational complexity considerations.
Another motivation for studying bounded arithmetic theories lies in their rela-
tion to propositional proof complexity, in that proving in bounded arithmetic
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theories corresponds to uniform provability in corresponding propositional proof
systems [8]. In this paper, we give characterizations of the total search problems
with AC0 graphs which are definable in bounded arithmetic theories VC for many
C between AC0 and P, where necessary reductions are proven in the weakest the-
ory of bounded arithmetic V0 related to AC0 reasoning. In particular, we give
improved “new-style” witnessing theorems for such theories.

A classical way to associate a theory T with a complexity class C is to show
that the provably total functions in T are precisely the functions in the function
class FC associated with C. This assertion splits into two parts: the first, usually
easier part shows that all function in FC can be suitably defined and proven total
in T (and thus are called provably total); the second, usually more involved part
often employs a witnessing theorem. Witnessing theorems in their original form
were introduced by Buss [5] to show that existential statements with parameters
provable in a bounded arithmetic theory T can be witnessed by functions from
a corresponding function class, and that this witnessing property is provable
in T . For example, one result of Buss [5], adapted to the two-sorted bounded
arithmetic theory V1, shows that given a ∀ΣB

1 -consequence of V1 we can find a
polynomial time computable function witnessing the existential quantifier, where
the correctness of the witnessing function is provable in V1. ΣB

1 formulas have
a certain syntactic form starting with a bounded existential quantifier — such
formulas express exactly NP properties over the domain of natural numbers. We
will denote the set of ∀ΣB

1 -consequences of a theory T by ∀ΣB
1 (T ).

Cook and Nguyen [8] have a generic way of defining a bounded arithmetic
theory VC for those complexity classes C which can be obtained using a complete
problem. They show that the set of provably total functions in VC corresponds
to FC. Their approach is to construct a universal conservative extension VC
of VC, where the terms of VC represent precisely functions in FC. They then apply
Herbrand’s theorem to obtain their desired correspondence. The correctness of
witnessing functions is proved in VC.

Recently the focus has turned to “new-style” witnessing theorems, in which
the correctness of the witnessing function is proved in a weaker theory than the
one proving the ∀ΣB

1 -statement [2–4,15,24]. Furthermore, the focus has shifted
to search problems, i.e. multifunctions, instead of functions. The class TFNP [20]
of total NP search problems, whose solutions are verifiable in polynomial-time,
has been extensively studied from the point of view of complexity theory and
contains a host of important problems like the Polynomial Local Search prob-
lems PLS [13]. For the theories Vi corresponding to the i-th level of the polyno-
mial time hierarchy PH, a host of characterizations of ∀ΣB

1 (Vi) have been given
in terms of subclasses of TFNP, using V1-provability for correctness of witnessing
functions. For instance, Buss and Kraj́ıček [6] characterized ∀ΣB

1 (V2) in terms
of PLS; Kraj́ıček, Skelley and Thapen [17] characterized ∀ΣB

1 (V3) in terms of
colored PLS (denoted CPLS), and, for 0 < i, Beckmann and Buss [2,3] character-
ized ∀ΣB

1 (Vi+1) in terms of some relativized notion of PLS called Πp
i -PLS with

Πp
0 -goals, which we denote Πp

i -PLS for the purpose of this introduction.
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The aim of this paper is to provide characterizations of ∀ΣB
1 (VC), for C

below P, and ∀ΣB
1 (V1) in terms of subclasses of TFNP, using new-style witnessing

theorems in which the correctness of witnessing functions is provable in V0 —
these new-style witnessing theorems are similar to the ones in [2–4,15,24], except
for the correctness of witnessing functions that is now proved over a weaker
theory. To achieve our aim, we define the class of total N-AC0 search problem as
those total NP search problems for which solutions are verifiable in AC0 rather
than in P. We denote this class as ∀∃AC0. From the point of view of bounded
arithmetic, ∀∃AC0 can be identified with the set of all true ∀ΣB

1 -sentences. We
will show that ∀∃AC0 is equivalent to TFNP under AC0-many-one reductions, and
that it contains many well-known problems like the problem of finding an inverse
of a square matrix, the Stable Marriage problem, or the Maximal Independent
Set problem.

Each known characterization of ∀ΣB
1 (Vi) as a subclass S of TFNP, which

can be found in the literature, is given in the form of a generic search principle
S ′(F1, . . . , Fn) such that S is obtained by instantiating F1, . . . , Fn in S ′ with
all possible choices of functions from FP. It is then natural to consider AC0-S
obtained by instantiating S ′ with functions from FAC0, and study the question
whether AC0-S still characterizes ∀ΣB

1 (Vi) under AC0-many-one reducibility,
provable in V0. For many characterisations, it is the case: Cook and Nguyen [8]
showed that AC0-PLS characterizes ∀ΣB

1 (V2) under AC0-many-one reducibility,
provable in V0. Furthermore, it is shown in [23] that AC0-(Πp

i -PLS) characterizes
∀ΣB

1 (Vi+1) under AC0-many-one reducibility, provable in V0. From that latter
result and the fact that CPLS characterizes ∀ΣB

1 (V3), it follows directly that
AC0-CPLS is AC0-many-one reducible to AC0-(Πp

1 -PLS). However, it is an open
problem whether the other direction holds. We conjecture that AC0-CPLS, based
on CPLS in its literal form as defined in [17], is not AC0-many-one reducible to
AC0-(Πp

1 -PLS) — we note here that proving this conjecture implies P 6= NP.

The outline of the paper is as follows: The next section is a preliminary
section providing the necessary background. In Section 3, we introduce the class
∀∃AC0 as a subclass of TFNP, and show that it is equivalent to TFNP w.r.t. AC0-
many-one reducibility, and that it contains a variety of well-known problems.

In Section 4, we define a class of total N-AC0 search problems which we
call KPT[C]. The class KPT[C] is a class of total search problems motivated by
the KPT witnessing theorem [16], where the process of finding a solution to an
instance of a problem in KPT[C] is carried out cooperatively between a student
S and a teacher T: the student computes a potential solution, that either T
accepts or rejects, and in the case that T rejects, then T must come up with
a counterexample that S can then use in order to compute the next candidate
solution. We use KPT[C] in order to characterize ∀ΣB

1 (VC), where the reduction
is provable in V0, using a new-style witnessing theorem for VC.

For ∀ΣB
1 (V1), we introduce, in Section 5, a class of total N-AC0 search prob-

lems that we call Inflationary Polynomial Local Search (IPLS). The class IPLS
is AC0-PLS, but with some restriction on its neighborhood function in that this
function must be inflationary. We show that IPLS has a complete problem class
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that we call Inflationary Iteration (IITER), which is based on the iteration princi-
ple [7] (which can be viewed as the problem of finding a sink in an exponentially
large directed acyclic graph). We show that IITER characterizes ∀ΣB

1 (V1), where
the reduction is provable in V0, using a new-style witnessing theorem for V1.

Acknowledgement: We would like to thank Noahi Eguchi. Our character-
isation of ∀ΣB

1 (V1) using inflationary iteration grew out of discussions with him
on his attempt to capture P via a two-sorted theory using axioms on inductive
definitions [10].

2 Preliminaries

We assume familiarity with bounded arithmetic in either its one-sorted [5] or
two-sorted [8] setting, but we will quickly review all necessary notation and re-
sults used in this paper. We assume a basic understanding of complexity classes
between AC0 and P. For circuit complexity classes covered here, the uniformity
we implicitly use is first-order uniformity [12, 21]. Overall, our exposition fol-
lows [8].

The Language of Two-sorted Bounded Arithmetic. In the two-sorted setting,
there are two kinds of variables: number variables x, y, z, . . . of the first sort,
intended to range over N, and string variables X,Y, Z, . . . of the second sort,
intended to range over finite subsets of N. We interpret finite subsets of N as
bit strings. The base language L2

A consists of the usual symbols 0, 1,+, ·,≤ of
arithmetic on N, the function |X| (whose intended meaning is 0 if X is empty,
and 1 plus the maximal element in X, otherwise), the set membership relation ∈,
and the relations =1 and =2, which are intended to be the equality on numbers
and strings respectively. Since there will be no confusion, the subscripts in =i

will often be omitted. We will usually write X(i) for i ∈ X and this is understood
to denote the i-th bit in X.

Terms over L2
A are built in the usual way. Note that the only string

terms are string variables. If L2
A is extended with additional string function

symbols, then other string terms are built as usual. Formulae over L2
A are

built using ∧,∨,¬, number quantifiers (i.e., ∃x and ∀x) and string quantifiers
(i.e., ∃X and ∀X). Bounded number quantifiers are defined as usual, whereas
the bounded string quantifer (∃X≤t)ϕ stands for ∃X(|X|≤t∧ϕ) and (∀X≤ t)ϕ
stands for ∀X(|X|≤t ⊃ ϕ), where ϕ ⊃ ψ stands for ¬ϕ ∨ ψ, and where X does
not appear in t.

The class ΣB
0 (or ΠB

0 ) consists of those L2
A-formulae with no string quanti-

fiers and only bounded number quantifiers. Inductively, ΣB
i+1 consists of those

formulae of the form (∃X1≤t1) . . . (∃Xk≤tk)ϕ, where ϕ ∈ ΠB
i , and ΠB

i+1 con-
sists of those formulae of the form (∀X1≤t1) . . . (∀Xk≤tk)ϕ, where ϕ ∈ ΣB

i .
In general, we write ΣB

i (L) to denote the class ΣB
i that allows function and

predicate symbols from L ∪ L2
A. Finally, a formula is in Σ1

1 if it is of the form
(∃X1) . . . (∃Xk)ϕ, where ϕ ∈ ΣB

0 .



Total Search Problems in Bounded Arithmetic and Improved Witnessing 5

Two-sorted Complexity Classes. Two-sorted complexity classes consist of rela-
tions R(x,X) that are taking arguments of both sorts, where the string argu-
ments X are the main inputs and x only play an auxiliary role. However, for our
purpose, it is convenient to assume that R only takes a single string argument,
as we can always pair x,X into one single string X. The following fact will be
frequently used:

Theorem 1 (ΣB
0 Representation Theorem [25]). A relation is in AC0 if,

and only if, it is represented by some ΣB
0 -formula.

For each two-sorted complexity C of interest, there is a corresponding function
class FC. For a string function F (X) to be in FC, F (X) needs to be p-bounded
(i.e., |F (X)| is bounded by some polynomial in |X|) and its bit graph (i.e., the
relation BF (i,X) that holds if, and only if, the i-th bit of F (X) is 1) is in C.

Two-sorted Bounded Arithmetic Theories. The theory BASIC consists of some
finite set of axioms defining the non-logical symbols in L2

A. Then, for i = 0, 1,
the theory Vi is BASIC plus the ΣB

i -comprehension axiom scheme, denoted ΣB
i -

COMP, which is (∃X≤y)(∀z < y)[X(z)↔ ϕ(z)], where ϕ ∈ ΣB
i and X does not

occur free in ϕ. For Φ = ΣB
i , the following axiom schemes are provable in Vi:

Φ-IND: [ϕ(0) ∧ ∀x(ϕ(x) ⊃ ϕ(x+ 1))] ⊃ ∀xϕ(x),
Φ-MAX: ϕ(0) ⊃ (∃x≤y)(ϕ(x) ∧ (∀z≤y)(x < z ⊃ ¬ϕ(z))).

We will usually be working with a universal conservative extension V
0

of V0,
whose language L

V
0 has a symbol for each function in FAC0.

A string function F (X) is provably total in a theory T if its graph Y = F (X)
is represented by a ΣB

1 -formula ϕ(X,Y ) and T proves ∀X∃!Y ϕ(X,Y ).
For certain complexity classes C within P, Cook and Nguyen [8] showed how

to construct a theory VC corresponding to FC (i.e., the provably total functions
in VC are precisely those in FC). Before we give the definition of VC, let us first
review the notion of AC0-reduction.

A relation R is AC0-reducible to a collection L of functions if there is a se-
quence of string functions G1, . . . , Gn such that each Gi is p-bounded and its bit
graph is represented by a ΣB

0 (L∪{G1, . . . , Gi−1})-formula and R is represented
by a ΣB

0 (L ∪ {G1, . . . , Gn})-formula.
For a two-sorted complexity class C of interest, fix a function F so that C is

the class of all relations that are AC0-reducible to {F} (we keep F fixed in what
follows) and so that there is a ΣB

0 -formula δF (X,Y ) and some L2
A-term t(X)

such that the graph Y = F (X) of F is represented by |Y |≤t(X) ∧ δF (X,Y ).
Furthermore, assume that V0 proves the uniqueness of the value of F . Let the
aggregate function F ∗(b,X) of F (X) be the function that gathers the values of
F for a polynomially long sequence of arguments. Thus, F ∗ is defined so that

∀i<b, F ∗(b,X)[i] = F (X [i]),

where X [i](j) holds if and only if j < |X| ∧ X(i, j) holds — we obtain arrays
of more than one dimension by using a suitable pairing function 〈x, y〉 on num-
bers x, y, e.g. X(i, j) stands for X(〈i, j〉). Let GF (b,X, Y ) be a ΣB

0 -formula
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that represents the graph of F ∗(b,X). The theory VC is then V0 plus the ΣB
1 -

statement (∃Y≤〈b, t〉)GF (b,X, Y ).

Two-sorted Search Problems. A total search problem (or simply a search problem)
is a binary relation R(X,Y ) such that ∀X∃Y R(X,Y ) holds (we also call R the
graph of the search problem). The search task associated with R is the following:
given an instance X of R, find a solution Y such that R(X,Y ) holds.

The class TFNP [20] consists of those search problems R(X,Y ) such that R
is polynomial-time computable and |Y | is bounded by a polynomial in |X|.

Let R be a search problem. R is provably total in a theory T if the graph of
R is represented by a ΣB

1 -formula ϕ(X,Y ) and T proves ∀X∃Y ϕ(X,Y ).
Let C be a complexity class. Then a search problem R is C-many-one reducible

to a search problem Q, denoted R ≤C
m Q, if there are functions F,G ∈ FC such

that Q(F (X), Y ) implies R(X,G(X,Y )), for all X,Y . For two classes Γ and ∆ of
search problems, we say that Γ is C-many-one reducible to ∆, denoted Γ ≤C

m ∆,
if for all R ∈ Γ , there is some Q ∈ ∆ such that R ≤C

m Q. We say that Γ and ∆
are C-equivalent if Γ ≤C

m ∆ and ∆ ≤C
m Γ . Finally, we say that Γ is C-many-one

complete for ∆ if Γ ⊆ ∆ and ∆ ≤C
m Γ .

3 The Class ∀∃AC0

Definition 2. A search problem R is said to be in ∀∃AC0 if R can be expressed
as a TFNP problem with AC0 graph.

We observe that ∀∃AC0 is AC0-many-one equivalent to TFNP. To see this,
note that the statement “string W is a valid encoding of the full computation
of a fixed polynomial-time Turing machine on a given input” can be expressed
by a ΣB

0 -formula. From that, and the ΣB
0 representation theorem, we can turn

R into a ∀∃AC0 problem Q, whose solution can then be mapped into a solution
for R.

Another motivation for studying ∀∃AC0 is the fact that it contains a host of
well-known problems. As already noted in the introduction, Cook and Nguyen [8]
show that PLS is equivalent to AC0-PLS. Another example [8] stems from linear
algebra: (?) given an n×n matrix A over some field, find an n×n matrix B 6= 0
such that AB = I ∨AB = 0. Observe that the provability of (?) in VNC1 is still
an open problem.

In what follows, we demonstrate that the Stable Marriage problem and the
Maximal Independent Set problem are ∀∃AC0 problems.

The Stable Marriage Problem. The Stable Marriage problem (SM) was first
introduced by Gale and Shapley [11]. Besides having practical applications, SM
is of importance for the NC vs P question: It has been shown that SM is complete
for Subramanian’s complexity class CC [19], a subclass of P based on comparator
circuits. Furthermore, Cook, Filmus and Lê [9] gave strong evidence that CC and
NC, which is also a subclass of P, are incomparable.
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An instance of size n of SM involves two sets of n men and n women. As-
sociated with each person p is a strictly ordered preference list l = q1, . . . , qn
containing all the members of the opposite sex: person p prefers person q to r
if, and only if, there is a qi and a qj in l such that qi = q and qj = r and i < j.

Given an instance of SM, a matching M is a bijection between the sets of
men and women. A man m and a woman w are called partners in M if, and
only if, they are matched in M ; we write pM (m) to denote the partner of m in
M (similarly for pM (w)). A matching M is called unstable if there is a man m
and a woman w such that m and w are not partners in M , but m prefers w to
pM (m) and w prefers m to pM (w); otherwise, M is called stable.

The search task associated with SM is as follows: given an instance of SM,
find a matching that is stable. Gale and Shapley showed that such a stable
matching always exists. Hence, SM is a total search problem.

We argue that the SM search problem is in ∀∃AC0. Let {0, 1, . . . , n−1} cor-
responds to the set of men and {n, n+1, . . . , 2n−1} to the set of women. Then a
preference list for a person p can be encoded in bounded arithmetic as a three-
dimensional array L(p, j, qj), which holds if and only if qj sits at j-th position
in person p’s preference list. A matching can be encoded as a two-dimensional
array M(p, q) with size bounded by 〈n, n〉. It is easy to see that the statement
“M is a stable matching for (n,L)” can be expressed as a ΣB

0 -formula. Thus, by
the representation theorem for ΣB

0 , SM is a ∀∃AC0 search problem.

The Maximal Independent Set Problem. Another example for a problem in
∀∃AC0 is the Maximal Independent Set problem (MIS), which is a fundamen-
tal problem in Graph Theory since several important problems can be reduced
to it. For instance, Karp and Widgerson [14] show that the maximal set pack-
ing and the maximal matching problems are NC1-reducible to MIS, and that
the 2-satisfiability problem is NC2-reducible to MIS. In terms of its complex-
ity, Luby [18] and, independently, Alon et al. [1] proved the existence of NC2-
algorithms that solve MIS. However, it is still open whether MIS can be solved
by an NC1-algorithm.

Let G be a graph. An independent set in G is a set of vertices such that no
two of them are adjacent. A maximal independent set I in G is an independent
set such that for every vertex v in G, either v belongs to I or v has at least one
neighbor vertex that belongs to I.

The MIS problem is the following computational problem: given a graph G,
find a maximal independent set in G. MIS is a total search problem, since for a
given graph G, a maximal independent set I is always guaranteed to exist.

The MIS problem is in ∀∃AC0. For that, we specify a graph G by a pair
(n,E), where 0, 1, . . . , n−1 are the vertices in G and E(u, v) holds if, and only
if, there is an edge between vertex u and v in G. Then the statement “U is a
maximal independent set in G” can be written as a ΣB

0 -formula. Note that the
size of U is bounded by n.
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4 The Class KPT[C] and VC

For this section, we fix a function F (X) in FC so that C is the AC0-closure
of F . Let GF (b,X, Y ) be a ΣB

0 -formula that states that Y is the value for the
aggregate function F ∗(b,X) of F (X). In the following we will identify F with
F ∗ — it will be clear from the context which of the two is meant.

The following lemma is an application of the KPT witnessing theorem [16].
It says that if the theory VC proves ∀X∃Y ϕ(X,Y ), where ϕ is a ΣB

0 -formula,
then for a given X, we can construct a witness for ∃Y ϕ(X,Y ) in a collaborative
fashion by using F and some AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Fk−1).

Lemma 3. Let ϕ(X,Y ) be a ΣB
0 -formula and θ(X,Y, Z) denote

GF (|Y [1]|, Y [2], Z) ⊃ ϕ(X,Y [0]).

Suppose that the theory VC proves ∀X∃Y ϕ(X,Y ). Then there exist some AC0-

functions F1(X), . . . , Fk(X,Z1, . . . , Zk−1) such that V
0

proves

k∨
i=1

θ(X,Fi(X,Z1, . . . , Zi−1), Zi). (1)

Proof. The theory VC is defined as V0 plus a ∀ΣB
1 sentence expressing the exis-

tence of a solution of a complete problem in C. Applying the deduction theorem
of first-order logic to a VC proof of ∀X∃Y ϕ(X,Y ) and working in a conserva-

tive extension V
0

of V0, we obtain a V
0

proof of a statement to which the KPT
witnessing theorem is applicable. �

We can think of Lemma 3 as a game about the formula

∃Y ∀Zθ(X,Y, Z) (2)

between a student E and a teacher U, where E’s role is to find a witness Y
to the existential quantifier in (2), but has computing power limited to FAC0,
whereas U’s role is to find a counterexample Z to the universal quantifier in (2),
if it exists. More precisely, the game starts with E producing a potential witness
Y1 = F1(X), which U either approves or rejects – U approves Y1 if ∀Zθ(X,Y1, Z)
is true, otherwise U rejects Y1 and has to provide a counterexample Z1 such

that ¬θ(X,Y1, Z1) holds, that is to say, Z1 = F (|Y [1]
1 |, Y

[2]
1 ) and ¬ϕ(X,Y

[0]
1 )

is true. If U rejects Y1 by producing a counterexample Z1, then E can use Z1

in order to compute the next potential witness Y2 = F2(X,Z1). Again, either
U approves or rejects Y2. As before, if U rejects Y2, then he has to provide E
with a counterexample Z2. This process will continue for at most k steps, after
which E finds a witness to the existential quantifier in (2). Note that E cannot
compute F , since F is beyond E’s computing power.

In the student-teacher game interpretation of Lemma 3, the student is al-
ways guaranteed to find a value Y such that ∀Zθ(X,Y, Z) holds after at most k
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steps. However, if ϕ(X,Y ) and F1(X), . . . , Fk(X,Z1, . . . , Fk) were to be picked
arbitrarily, then there is no guarantee that the student would still win, that
is to say that he would find a value Y that satisfies ∀Zθ(X,Y, Z). This is be-
cause, for an arbitrary X, it is not always the case that there is a Y such that
ϕ(X,Y ) is true. Also, even if ∀X∃Y ϕ(X,Y ) happened to be true, nothing tells
us that ∀Zθ(X,Fj(X,Z1, . . . , Zj−1), Z) will hold, for some Fj in F1, . . . , Fk. The
class KPT[C] will be defined with the student-teacher game interpretation of
Lemma 3 in mind, but where ϕ and F1, . . . , Fk are given arbitrarily. There-
fore, some care needs to be taken when defining KPT[C] in order to ensure
its totality. More precisely, if in case there is no Fj in F1, . . . , Fk such that
∀Zθ(X,Fj(X,Z1, . . . , Zj−1), Z) holds, then we will just force part of the for-
mula that defines the graph of a KPT[C] search problem to be trivially true.

In the following, we write F̂i(X,W ) for Fi(X,W
[1], . . . ,W [i−1]).

Definition 4. A KPT[C] search problem Q(X,W ) is specified by a k ∈ N, a ΣB
0 -

formula ϕ(X,Y ) and AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Zk−1). A string
W is a solution to an instance X of Q if, and only if, the following hold:

1. For all i from 1 to k,

GF (|F̂i(X,W )[1]|, F̂i(X,W )[2],W [i]). (3)

2. There exists an i between 1 and k such that the following holds:

[W [0] = F̂i(X,W )[0] ∧ [i < k ⊃ ϕ(X,W [0])] ∧
∧
j<i

¬ϕ(X, F̂j(X,W )[0]). (4)

We will call ϕ and F1, . . . , Fk the components of Q.

We will explain (3) and (4) here. The formula in (3) says that W [i] stores the
counterexample F (|F̂i(X,W )[1]|, F̂i(X,W )[2]) given by the teacher to the student
– in fact, note that even if ϕ(X, F̂i(X,W )[0]) is true, then W [i] always stores
F (|F̂i(X,W )[1]|, F̂i(X,W )[2]). Next, the formula in (4) guarantees the totality
of Q. If there is no Fj in F1, . . . , Fk such that ϕ(X, F̂j(X,W )[0]) is true, then
the above formula trivially holds by taking i = k and W [0] to be equal to
F̂i(X,W )[0], and in case there is an Fi in F1, . . . , Fk such that ϕ(X, F̂i(X,W )[0])
is true, then the formula in (4) tells us that i is the least value in {1, . . . , k} such
that ϕ(X, F̂i(X,W )[0]) is true. Finally, using the ΣB

0 representation theorem, it
is easy to see that the graph of a KPT[C] search problem is in AC0.

Lemma 5. Let Q be a KPT[C] search problem. Then VC proves that Q is total.

Proof. The proof is a straightforward case analysis. �

The next theorem is a converse of Lemma 5.

Theorem 6 (New-style Witnessing Theorem for VC). Let ϕ(X,Y ) be a
Σ1

1 -formula such that VC proves ∀X∃Y ϕ(X,Y ). Then there is a KPT[C] search

problem Q and an AC0-function H such that V
0

proves

Q(X,W ) ⊃ ϕ(X,H(X,W )). (5)
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Proof. W.l.o.g. we can assume that ϕ ∈ ΣB
0 . By Lemma 3, we obtain some

AC0-functions F1(X), . . . , Fk(X,Z1, . . . , Zk) such that V
0

proves

∀X∀Z1 . . . ∀Zk

k∨
i=1

θ(X,Fi(X,Z1, . . . , Zi−1), Zi), (6)

where θ(X,Y, Z) is the formula GF (|Y [1]|, Y [2], Z) ⊃ ϕ(X,Y [0]). Define a KPT[C]
search problem Q using ϕ and F1, . . . , Fk.

Arguing in V
0
, we want to show (5). Suppose that Q(X,W ) holds. Then (4)

is true for some i ≤ k. If i < k, then ϕ(X,W [0]) follows directly. Otherwise,
i = k, and we have that ∧

j<k

¬ϕ(X,Fj(X,W
[1,...,j−1])[0])

holds. Combining this with (6), it is easy to see that ϕ(X,Fk(X,W [1,...,k−1])[0])
and W [0] = Fk(X,W [1,...,k−1])[0]. By letting H(X,W ) = W [0] the assertion
follows. �

Combining Lemma 5, Theorem 6 and the fact that V
0

is a universal conser-
vative extension of V0, we obtain the following theorem:

Theorem 7. KPT[C] is AC0-many-one complete for the provably total NPsearch
problems in VC. Furthermore, the reduction is provable in the theory V0.

5 The Class of Inflationary Iteration Problems and V1

Finite subsets of N can be viewed as finite binary strings with no leading zeros
by letting an element in the set indicate whether the corresponding bit in the
string is set to one. Using this identification of strings with finite sets, we define
the notion of an “inflationary” string function:

Definition 8. A string function F (X,Z) is said to be inflationary if, and only
if, for all X,Z, we have that Z ⊆ F (X,Z).

The complexity class PLS [13] is based on the principle that every finite
directed acyclic graph has a sink. Additionally, if the local search function is
given by an inflationary FAC0-function, then we obtain the class IPLS:

Definition 9. An IPLS problem Q(X,Y ) is specified by the following:

1. An AC0-relation FQ(X,Y ) and an L2
A-term t(X) such that the following

conditions hold:

FQ(X, ∅),
FQ(X,Z) ⊃ |Z| ≤ t(X).

The set of all Y with FQ(X,Y ) is the set of all candidate solutions for Q on
instance X.
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2. An FAC0-function PQ(X,Y ), which computes the profit of Y , and an infla-
tionary FAC0-function NQ(X,Y ), which computes the neighbor of Y , such
that for any Y that satisfies FQ(X,Y ), the following holds:

[NQ(X,Y ) = Y ] ∨ [FQ(X,NQ(X,Y )) ∧ PQ(X,Y ) < PQ(X,NQ(X,Y ))].

where X < Y is the less than relation on strings. A solution to an instance X
of Q is any string Y such that

FQ(X,Y ) ∧NQ(X,Y ) = Y

holds. We will usually refer to FQ, PQ, NQ and t as the components of Q.

Any IPLS problem is a total search problem. Moreover, checking if a string
is a solution to an instance of an IPLS problem is an AC0-property. Thus every
IPLS problem is a ∀∃AC0 search problem.

We will next introduce the class IITER, which is based on the iteration princi-
ple [7]. The iteration principle is also based on the fact that every finite directed
acyclic graph G = (V, E) has a sink. In an exponential sized graph G, it may take
exponentially many steps to find a sink following a path through the graph. How-
ever, if the edge relation is given by an inflationary function, paths are bound
to be of polynomial length.

Definition 10. An IITER QF (X,Y ) is specified by an inflationary FAC0-
function F (X,Y ) and an L2

A-term t(X). A solution to an instance X of QF

is a string Y satisfying the formula ψF (X,Y ), which is (omitting the parameter
X) given as follows:

[Y = ∅ ∧ F (Y ) = Y ] ∨
[|Y | ≤ t ∧ Y < F (Y ) ∧ [t < |F (Y )| ∨ F (F (Y )) ≤ F (Y )]]. (7)

We will usually refer to F and t as the components of QF . We say that a string Y
is a candidate solution to QF on instance X if Y satisfies the following condition:

|Y | ≤ t ∧ (Y = ∅ ∨ Y < F (X,Y )). (8)

It is known that the iteration principle is AC0-many-one complete for PLS
[8,22]. In what follows, we show that IITER is AC0-many-one complete for IPLS.

Lemma 11. Every IITER problem is an IPLS problem.

Proof. The proof is a direct adaptation of the one for [8, Lemma VIII.5.7]. �

Lemma 12. Every IPLS problem is AC0-many-one reducible to an IITER prob-
lem.

Proof. The proof is easier than the one for [8, Theorem VIII.5.8]. Observe that
X ⊆ Y implies X ≤ Y . Given a IPLS problem Q with components FQ, NQ, PQ

and t, we can define an IITER problem QF using NQ on FQ and t. Given an
instance X, it is easy to see that a solution Y to QF is one step beyond a
solution to Q, the latter being given by NQ(X,Y ). �
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From Lemmas 11 and 12, we immediately obtain the following corollary:

Corollary 13. IITER is AC0-many-one complete for IPLS. �

Theorem 14. Let Q be an IITER problem. Then Q is provably total in V1.

Proof. Let Q be an IITER problem with components F and t. Let numones(y, Y )
be the function that computes the total number of elements in Y that are strictly
less than y. The function numones is a polytime function definable in V1. Con-
sider η(X,Z) to be the formula Z = ∅ ∨ Z < F (X,Z) and η̄(X, z) to be

∃Z ≤ t(X)[z = numones(Z) ∧ η(X,Z)].

Then η is in ΣB
0 , and η̄ equivalent to a formula in ΣB

1 . Using maximisation
on z, which is available in V1, we obtain a Z with maximal number of elements
amongst those satisfying η. It is easy to see that this Z is a solution to Q. �

The converse of Theorem 14 is the new-style witnessing theorem for V1.

Theorem 15 (New-style Witnessing Theorem for V1). Suppose that
ϕ(X,Y ) is a Σ1

1 -formula such that

V1 ` ∀X∃Y ϕ(X,Y ).

Then there is an IITER problem QF with graph ψF (X,Y ) (as in (7)), and an
FAC0-function G(X,Y ), such that

V
0 ` ψF (X,Y ) ⊃ ϕ(X,G(X,Y )). (9)

Proof (Proof Idea). The idea of this proof is to construct the required search
problem by induction on an appropriate sequent calculus derivation of the orig-
inal statement. For this we will have to redefine V1 in terms of an appropriate
induction scheme, and use a corresponding inference rule in the definition of the
sequent calculus. The main step in the construction is to deal with applications
of this induction rule. From an IITER problem given for the premise of the induc-
tion rule, we obtain one for the conclusion by iterating the former polynomially
many times, creating in each step an additional entry in a polynomially long
board in order to guarantee the result to be inflationary.

Further details can be found in Appendix A. �

Combining Theorems 14 and 15 and the fact that V
0

is a universal conser-
vative extension of V0, we obtain the following corollary:

Corollary 16. IITER is AC0-many-one complete for the provably total NPsearch
problems in V1. Furthermore, the reduction is provable in the theory V0. �



Total Search Problems in Bounded Arithmetic and Improved Witnessing 13

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (Dec 1986),
http://dx.doi.org/10.1016/0196-6774(86)90019-2

2. Beckmann, A., Buss, S.R.: Polynomial local search in the polynomial hierarchy
and witnessing in fragments of bounded arithmetic. J. Math. Log. 9(1), 103–138
(2009), http://dx.doi.org/10.1142/S0219061309000847

3. Beckmann, A., Buss, S.R.: Characterising definable search problems in bounded
arithmetic via proof notations. In: Ways of proof theory, Ontos Math. Log., vol. 2,
pp. 65–133. Ontos Verlag, Heusenstamm (2010)

4. Beckmann, A., Buss, S.R.: Improved witnessing and local improvement principles
for second-order bounded arithmetic. ACM Trans. Comput. Log. 15(1), Art. 2, 35
(2014), http://dx.doi.org/10.1145/2559950

5. Buss, S.R.: Bounded arithmetic, Studies in Proof Theory. Lecture Notes, vol. 3.
Bibliopolis, Naples (1986)
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18. Luby, M.: A simple parallel algorithm for the maximal independent set prob-
lem. In: Proceedings of the Seventeenth Annual ACM Symposium on The-
ory of Computing. pp. 1–10. STOC ’85, ACM, New York, NY, USA (1985),
http://doi.acm.org/10.1145/22145.22146

19. Mayr, E.W., Subramanian, A.: The complexity of circuit value and network stabil-
ity. J. Comput. System Sci. 44(2), 302–323 (1992), http://dx.doi.org/10.1016/0022-
0000(92)90024-D

20. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and com-
putational complexity. Theoret. Comput. Sci. 81(2, Algorithms Automat. Com-
plexity Games), 317–324 (1991), http://dx.doi.org/10.1016/0304-3975(91)90200-L

21. Mix-Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within nc1.
J. Comput. Syst. Sci. 41(3), 274–306 (Dec 1990), http://dx.doi.org/10.1016/0022-
0000(90)90022-D

22. Morioka, T.: Classification of search problems and their definability in bounded
arithmetic (2001)

23. Razafindrakoto, J.J.: Witnessing theorems in bounded arithmetic and appli-
cations (2016), http://cs.swan.ac.uk/∼csjjr/Papers/thesis.pdf, thesis (Ph.D.)–
Swansea University

24. Thapen, N.: Higher complexity search problems for bounded arithmetic and
a formalized no-gap theorem. Arch. Math. Logic 50(7-8), 665–680 (2011),
http://dx.doi.org/10.1007/s00153-011-0240-0

25. Zambella, D.: Notes on polynomially bounded arithmetic. J. Symbolic Logic 61(3),
942–966 (1996), http://dx.doi.org/10.2307/2275794

Appendix A Proof of Theorem 15

In what follows, when we say that a theory T proves a sequent

ϕ1, . . . , ϕk −→ ψ1, . . . ψl,

we mean that T proves
k∧

i=1

ϕi ⊃
l∨

j=1

ψj .

Buss [5] originally proved his witnessing theorem for V1 via a witnessing
lemma. Here, we do the same; that is to say, we use a new-style witnessing
lemma in order to prove Theorem 15.

Lemma 17 (New-style Witnessing Lemma for V1). Suppose that the the-
ory V1 proves a sequent Γ (A) −→ ∆(A) of the form

. . . ,∃Xiφ
′
i(Xi), . . . , Λ −→ Π, . . . , ∃Yjψ′j(Yj), . . . (10)

where φ′i, ψ
′
j , Λ and Π are ΣB

0 -formulae. Then there is an IITER problem QF

with graph ψF and FAC0-functions G such that V
0

proves the sequent Γ ′ −→ ∆′,
which is

. . . , φ′i(βi), . . . , Λ, ψF (A,β, γ) −→ Π, . . . , ψ′j(Gj(A,β, γ)), . . . (11)
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We will use a version of the sequent calculus to prove this lemma. Given a
sequent calculus proof π of (10) we try to show the conclusion of Lemma 17 by
structural induction on the depth of a sequent S in π. If we use directly a sequent
calculus for V1, we have the issue that the ΣB

1 -COMP axiom is in general not
equivalent to a ΣB

1 -formula. As a result, the proof π may contain formulae that
are not Σ1

1 . To circumvent this obstacle, we need to work with a slightly different

theory Ṽ1 equivalent to V1. For that, first consider the following definition:

Definition 18 (Cook, Nguyen [8]). Let ψ(X) be an L2
A-formula. Then ψ is

a single-Σ1
1 -formula if ψ is of the form ∃Y ϕ(X,Y ), where ϕ is a ΣB

0 -formula. If
ψ is of the form (∃Y≤t)ϕ(X,Y ), where ϕ is a ΣB

0 -formula and t is an L2
A-term

not involving Y , then ψ is a single-ΣB
1 -formula.

Definition 19 (Cook, Nguyen [8]). The theory Ṽ1 is axiomatized by the ax-
ioms of V0 plus the single-ΣB

1 -IND axiom scheme.

Below, we merely state that Ṽ1 = V1 without proof. A full proof of it can be
found in [8, Theorem VI.4.8].

Theorem 20 (Cook, Nguyen [8]). The theories Ṽ1 and V1 are the same.

The sequent calculus LK-Ṽ1 for Ṽ1 is essentially the sequent calculus LK-V0

for V0 (c.f. [8]) augmented with the single-ΣB
1 -IND rule, which is

χ(b), Γ −→ ∆,χ(b+ 1)

χ(0), Γ −→ ∆,χ(t)
,

where χ ∈ ΣB
1 , and b is an eigenvariable and cannot appear in the lower sequent.

The sequent calculus LK-Ṽ1 satisfies the following property, whose proof can
be found in [8]:

Theorem 21 (Cook, Nguyen [8]). Suppose that Ṽ1 proves a sequent Γ −→ ∆

consisting only of single-Σ1
1 -formulae. Then there is an LK-Ṽ1 proof π of Γ −→

∆ such that every formula in π is a single-Σ1
1 -formula.

We are now ready to prove Lemma 17. The proof technique we use to prove
Lemma 17 is similar to the one used for Theorem VI.4.1 in [8, page 154] (which
is a witnessing theorem for V1), which adopts the same proof technique as
Buss (cf. [5, Theorem 5]).

Proof (of the New-style Witnessing Lemma for V1, Lemma 17). Since Ṽ1 and V1

are the same, it follows that Ṽ1 proves (10). By Theorem 21, let π be an LK-Ṽ1

proof of (10) such that every formula in π is a single-Σ1
1 -formula. We show that

V
0

proves the conclusion of Lemma 17 by induction on the depth of a sequent S
in π. The inductive proof splits into cases, depending on whether S is an initial
sequent or generated by the use of an inference rule. The most crucial case is
the case of the single-ΣB

1 -IND rule.
Suppose that S is obtained by the application of the single-ΣB

1 -IND rule.
Then S is the bottom sequent of
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ψ(b), Λ −→ Π,ψ(b+ 1)

ψ(0), Λ −→ Π,ψ(t)

where (omitting the parameters A) ψ(b) is of the form (∃X≤r(b))ψ0(b,X) and

Π = Π ′,∃Y1ψ′1(Y1), . . . ,∃Ylψ′l(Yl).

Here Π ′, ψ′1, . . . , ψ
′
l is a sequence of ΣB

0 -formulae. Let η(b, β) denote the formula
|β| ≤ r(b)∧ ψ0(b, β). By the induction hypothesis, let QF1

be an IITER problem
specified by F1 and t1, with graph ψF1 , and G1

1, . . . , G
1
l and G1

l+1 be the witness-

ing functions for the formulae in Π,ψ(b + 1) such that V
0

proves the following
(omitting the parameters A, λ, where λ are witnesses for the formulae in Λ):

η(b, β), Λ′, ψF1(b, β, γ) −→ Π ′′(G1
j (b, β, γ)), η(b+ 1, G1

l+1(b, β, γ)) (12)

where Λ′ is the result of witnessing Σ1
1 -formulae in Λ and leaving the rest

unchanged and Π ′′(G1
j (b, β, γ)) = Π ′, ψ′1(G1

1(b, β, γ)), . . . , ψ′l(G
1
l (b, β, γ)). Our

goal is to constuct an IITER problem QF (with graph ψF ) and FAC0-functions

G1, . . . , Gl and Gl+1 such that V
0

proves the following:

η(0, β0), Λ′, ψF (β0, γ) −→ Π ′′(Gj(β0, γ)), η(t, Gl+1(β0, γ)). (13)

The intuitive idea behind the definition of QF is that, assuming that η(0, β0)
is true, we will repeatedly use QF1

and G1
l+1 in order to generate witnesses

β1, . . . , βn for ψ(1), . . . , ψ(n), respectively, for n ≤ t. If n < t, then QF1
failed to

generate a witness to ψ(n+ 1). Therefore, assuming that the hypothesis for (13)
is true and using (12), we obtain our desired goal.

In what follows, the string concatenation function X ∗z Y is an FAC0 string
function that concatenates the first z bits of X with Y and can be recursively
extended in the natural way. Omitting the subscripts to ∗, we write Y0 ∗ . . . ∗ y ∗
. . . ∗ Yk for Y0 ∗ . . . ∗ Y ∗ . . . ∗ Yk, where Y is the string representing the unary
notation of the number value y.

We assume that the search variable for QF is of the form

γ = 〈A, β0,λ〉 ∗s S0 ∗2s S1 ∗3s . . . ∗(m+1)s Sm,

where s (s is obtained from t and the bounding term r, in the induction-
formula ψ, and the bounding term t1 for QF1

) is a suitable L2
A-term that bounds

|〈A, β0,λ〉|, |S0|, . . . , |Sm|; the symbol Si denotes i ∗ βi ∗ γi ∗ 1 and m ≤ t. Note
here that, even though we omitted the subscripts to ∗ in Si, they are somehow
implicit. Let us now define the transition function F for QF . In the following,
we again omit the parameters A,λ for F . As usual, we will drop the subscripts
to ∗ in F (β0, γ). If γ = ∅, then

F (β0, γ) = 〈A, β0,λ〉 ∗ 0 ∗ β0 ∗ ∅ ∗ 1. (14)

Assume now that γ 6= ∅ and suppose that m < t and η(m,βm) is true. Then
there are two cases to consider. First, if |γm| ≤ t1 ∧ γm < F1(m,βm, γm) ∧
¬ψF1(m,βm, γm) is true, then

F (β0, γ) = 〈A, β0,λ〉 ∗ S0 ∗ . . . ∗ Sm−1 ∗m ∗ βm ∗ F1(m,βm, γm) ∗ 1. (15)
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Second, if |γm| ≤ t1 ∧ γm < F1(m,βm, γm) ∧ ψF1
(m,βm, γm), then

F (β0, γ) = 〈A, β0,λ〉 ∗ S0 ∗ . . . ∗ Sm ∗ (m+ 1) ∗G1
l+1(m,βm, γm) ∗ ∅ ∗ 1. (16)

In all other cases, F (β0, γ) = γ. Let tQF
be (t+ 2) · s and QF be specified by F

and tQF
. Finally, we define the FAC0-functions Gi, for i = 1, . . . , l+1, as follows:

Gj(β0, γ) =

{
β0 if t = 0

G1
j (m,βm, γm) otherwise,

The fact that V
0

proves (13) follows from (13)’s assumptions, from the fol-
lowing claim, the induction hypothesis and the definition of Gj above. As a side

remark, note that if t = 0, then V
0

proves (13) trivially.

Claim. We reason in V
0
. Suppose that t 6= 0, η(0, β0) is true and

γ = 〈A, β0,λ〉 ∗ S0 ∗ . . . ∗ Sm is a solution to QF (β0), where Si is again of the
form i ∗ βi ∗ γi ∗ 1. Then η(m,βm) is true; γm is a solution to QF1(m,βm); and
either ¬η(m+ 1, G1

l+1(m,βm, γm)) or η(t, Gl+1(β0, γ)) is true.

Proof of Claim. Since γ is a solution to QF (β0), then we have two possibilities:
either γ = ∅ and F (β0, γ) = γ, or

|γ| ≤ tQF
∧ γ < F (β0, γ) ∧ [|F (β0, γ)| > tQF

∨ F (β0, F (β0, γ)) = F (β0, γ)].

Note that, by the definition of F , ∅ cannot be a solution to QF (β0) and
|F (β0, γ)| ≤ tQF

. Therefore, we have that

γ 6= ∅ ∧ γ < F (β0, γ) = F (β0, F (β0, γ)). (17)

The only way for (17) to hold is if (16) is true. This implies that η(m,βm) holds
and ψF1(m,βm, γm) is true; that is to say, γm is a solution QF1(m,βm). Hence,
we are left with proving the following:

¬η(m+ 1, G1
l+1(m,βm, γm)) ∨ η(t, Gl+1(β0, γ)).

If m + 1 = t, then we are done. So, assume that m + 1 < t. For the sake of
contradiction, assume that η(m + 1, G1

l+1(m,βm, γm)) holds. This means that
F (β0, γ) < F (β0, F (β0, γ)), which is a contradiction. Thus, we are done with the
proof of the claim. �

This finishes the proof of Lemma 17.


