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SAFE RECURSIVE SET FUNCTIONS

ARNOLD BECKMANN1, SAMUEL R. BUSS2, AND SY-DAVID FRIEDMAN3

Abstract. We introduce the safe recursive set functions based on a Bellantoni-Cook

style subclass of the primitive recursive set functions. We show that the functions com-

puted by safe recursive set functions under a list encoding of finite strings by hereditarily

finite sets are exactly the polynomial growth rate functions computed by alternating ex-

ponential time Turing machines with polynomially many alternations. We also show that

the functions computed by safe recursive set functions under a more efficient binary tree

encoding of finite strings by hereditarily finite sets are exactly the quasipolynomial growth

rate functions computed by alternating quasipolynomial time Turing machines with poly-

logarithmic many alternations.

We characterize the safe recursive set functions on arbitrary sets in definability-theore-

tic terms. In its strongest form, we show that a function on arbitrary sets is safe recursive

if and only if it is uniformly definable in some polynomial level of a refinement of Jensen’s

J-hierarchy, relativized to the transitive closure of the function’s arguments.

We observe that safe recursive set functions on infinite binary strings are equivalent to

functions computed by infinite-time Turing machines in time less than ωω. We also give

a machine model for safe recursive set functions which is based on set-indexed parallel

processors and the natural bound on running times.

Introduction. Polynomial time computation on finite strings is a central
notion in complexity theory. Polynomial time in more general settings has been
considered by several authors [4, 10]. In this paper we discuss an attempt to
define polynomial time computation on sets in general, based on the Bellantoni-
Cook [2] scheme characterizing polynomial time on finite strings in terms of “safe
recursion” — we denote our class as safe recursive set functions (SRSF). The
Bellantoni-Cook approach, which is related to methods implicit in the work of
Leivant [15, 14], uses functions with “normal” arguments and “safe” arguments.
Functions may be defined by recursion on normal arguments but recursion on
safe arguments is not permitted. Our definition of safe recursive set functions
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uses the same distinction between normal and safe arguments to control the use
of set recursion to define functions that act on sets.

Our first results give polynomial upper bounds on the ranks of values computed
by general SRSF functions. Then, specializing to the setting of hereditarily finite
sets, we establish a double exponential bound on the size of the transitive closures
of values computed by SRSF functions. We next establish characterizations of
the functions that can be computed by SRSF functions on finite strings encoded
by hereditarily finite sets. Namely, using a natural interpretation of finite strings
as sets based on lists, we prove that the functions computed by safe recursive set
functions are exactly those of polynomial growth rate computed by alternating
exponential time Turing machine with polynomially many alternations. Using a
different, more efficient encoding of finite strings as sets based on binary trees,
we prove that the functions computed by safe recursive set functions are exactly
those of quasipolynomial growth rate computed by alternating quasipolynomial
time Turing machines with polylogarithmically many alternations. Alternating
exponential time Turing machines with polynomially many alternations have
been considered before, and were shown by Berman [3] to exactly characterize
the complexity of validity in the theory of the real numbers as an ordered additive
group.

To prove that SRSF functions on encoded words can be computed by alter-
nating Turing machines, we need a much more general result characterizing all
SRSF functions on hereditarily finite sets in terms of alternating Turing ma-
chines. The characterization is unusual, representing hereditarily finite sets by
finite trees, and SRSF functions on hereditarily finite sets as functions recogniz-
ing trees by testing whether a given path is present in a tree. We will show in
Theorem 2.23 that every such recognizer based on an SRSF functions can be
computed by some exponential time alternating Turing machine with polynomi-
ally many alternations.

Inspired by this part of our work, Arai [1] has subsequently defined the class of
predicatively computable set functions as a subset of our safe recursive set func-
tions. He replaced one of the basic functions (the rudimentary union scheme,
which we denote bounded union), which he considered to be impredicative,
by some weaker basic functions and schemes (which he denotes Null, Union,
Conditional∈, and Safe Separation Scheme.) With this, he obtains, under a nat-
ural interpretation of finite strings as sets similar to our list encoding, that the
problems decided by predicatively computable set functions are exactly those
computed by some polynomial time Turing machine.

Section 3 gives two characterizations of the safe recursive set functions acting
on arbitrary sets. The first characterization uses Gödel’s L-hierarchy of con-
structible sets, and the second is in terms of a slower growing hierarchy based
on Jensen’s S-hierarchy [12]. As a corollary, we prove that the safe recursive set
functions on binary ω-sequences are identical to those defined to be computable
in “polynomial time” by Schindler [17]. Section 4 gives a parallel machine model
for the safe recursive set functions.

We thank the three referees for helpful comments and remarks which helped
substantially improve this paper.
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§1. Safe recursive set functions. We consider a subclass of the primitive
recursive set functions [13]. As in Bellantoni and Cook’s characterization of the
polynomial time computable functions [2], we divide arguments of set functions
into normal and safe ones. By writing f(~x /~a) we indicate that ~x are f ’s normal
arguments, and ~a its safe arguments. Bellantoni and Cook use semicolon (;) in
place of slash (/), and write f(~x;~a). We use slash instead of semicolon, as we
find it improves readability. Set functions whose arguments are typed in this
way will be denoted safe set functions.

1.1. Safe rudimentary set functions. We first define safe rudimentary set
functions based on rudimentary set functions [12].

Definition 1.1 (Safe Rudimentary Set Functions). The set of safe rudimen-
tary set functions (SRud) is the smallest class of safe set functions that contains
the initial functions (i)–(iii) and is closed under bounded union (iv) and safe
composition (v):

(i) (Projection) πn,mj (x1, . . . , xn / xn+1, . . . , xn+m) = xj , for 1 ≤ j ≤ n+m,
is in SRud.

(ii) (Difference) d(/ a, b) = a \ b is in SRud.
(iii) (Pairing) p(/ a, b) = {a, b} is in SRud.
(iv) (Bounded Union) If g is in SRud, then

f(~x /~a, b) =
⋃
z∈b

g(~x /~a, z)

is in SRud.
(v) (Safe Composition) If h,~r,~t are in SRud, then

f(~x /~a) = h(~r(~x /) /~t(~x /~a))

is in SRud.

We list a few functions which are definable in SRud. Details of the definitions
of some of these can also be found in [12]. Let (a, b) denote Kuratowski’s ordered
pair {{a}, {a, b}}. The functions prl and prr extract the first and second element
from an ordered pair.

• Union(/ a) =
⋃
a and Intersec(/ a, b) = a ∩ b are in SRud, because

Union(/ a) =
⋃
z∈a π

0,1
1 (/ z) and

Intersec(/ a, b) = c \ ((c \ a) ∪ (c \ b)) for c = a ∪ b =
⋃
{a, b}.

• Succ(/ a) = a ∪ {a}, kop(/ a, b) = (a, b), prl(/ (a, b)) = a, prr(/ (a, b)) = b
are in SRud:

f(/ c) =
⋃
z∈c
⋃
y∈c(z \ y) satisfies f(/ (a, b)) =

{
{b} if a 6= b

∅ otherwise,

thus prl(/ c) =
⋃

(
⋃
c \ f(/ c)).

g(/ c) =
⋃

(c \ {
⋃
c}) satisfies g(/ (a, b)) =

{
{a} if a 6= b

∅ otherwise,

thus prr(/ c) =
⋃

(
⋃
c \ g(/ c)).

• Cond=(/ a, b, c, d) =

{
a if c = d

b otherwise
is in SRud:
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Let ḡ( / a, c, z) =
⋃
{a : u ∈ c\z ∪ z\c} and g( / a, c, z) = a \ ḡ(/ a, c, z),

then ḡ( / a, c, z) =

{
a if z 6= c

∅ otherwise
and g( / a, c, z) =

{
a if z = c

∅ otherwise.

Thus Cond=(/ a, b, c, d) = g(/ a, c, d) ∪ ḡ(/ b, c, d).

• Cond∈(/ a, b, c, d) =

{
a if c ∈ d
b otherwise

is in SRud:

Let h( / a, c, d) =
⋃
{g(/ a, c, z) : z ∈ d} (g as defined for Cond=),

and h̄( / b, c, d) = b \ h(/ b, c, d),

then h( / a, c, d) =

{
a if c ∈ d
∅ otherwise

and h̄( / b, c, d) =

{
b if c /∈ d
∅ otherwise.

Thus Cond∈(/ a, b, c, d) = h(/ a, c, d) ∪ h̄(/ b, c, d).
• Appl(/ a, b) = {y : (∃x ∈ b)(x, y) ∈ a} is in SRud:

Let g(/ b, c) =

{
{prr(/ c)} if prl(/ c) ∈ b
∅ otherwise,

then Appl(/ a, b) =
⋃
{g(/ b, c) : c ∈ a}.

• Prod(/ a, b) = {(x, y) : x ∈ a, y ∈ b} =: a × b is in SRud, by first observing
that

f(/ x, b) = {(x, y) : y ∈ b} =
⋃{
{(x, y)} : y ∈ b

}
is in SRud, and then that Prod(/ a, b) =

⋃{
f(x, b) : x ∈ a

}
.

1.2. Predicative set recursion. We extend the safe rudimentary set func-
tions by a predicative set recursion scheme.

Definition 1.2 (Safe Recursive Set Functions). The set of safe recursive set
functions (SRSF) is the smallest class which contains the safe rudimentary set
functions and is closed under safe composition, bounded union and the following
scheme:

(Predicative Set Recursion) If h is in SRSF, then

f(x, ~y /~a) = h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x})

is in SRSF. Observe that according to our convention for denoting functions,
x is a normal argument of f , and {f(z, ~y /~a) : z ∈ x} is substituted at a safe
argument of h.

For a usual function f(~x), that is one where we do not distinguish normal
and safe arguments, we say that f is in SRSF if the safe set function g(~x /),
given by g(~x /) := f(~x) for all ~x, is in SRSF. Since we work exclusively with set
functions, we henceforth use the terminology “safe recursive function” instead
of “safe recursive set function”.

We will show now that ordinal addition and multiplication are in SRSF. We
will see later that ordinal exponentiation cannot be defined in SRSF. In a set
context, let 0, 1, 2, . . . denote ordinals in the usual sense, e.g., 0 = ∅ and 1 = {∅}.
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• Add(x / a) =


a if x = 0

Succ(/
⋃
{Add(z / a) : z ∈ x}) if x = Succ(/

⋃
x)⋃

{Add(z / a) : z ∈ x} otherwise

is in SRSF. α+ β := Add(β /α) satisfies the usual recursive equations for
ordinal addition. Observe that for α+ β, β is a normal argument and α a
safe argument.

• Mult(x, y /) =


0 if x = 0

Add(y /
⋃
{Mult(z, y /) : z ∈ x}) if x = Succ(/

⋃
x)⋃

{Mult(z, y /) : z ∈ x} otherwise

is in SRSF. α · β := Mult(β, α /) satisfies the usual recursive equations for
ordinal multiplication. Observe that for α · β, both α and β are normal.

It should be pointed out here that we cannot similarly define exponentiation
via predicative set recursion as we did for Add and Mult, because Mult has no
safe arguments.

The rank of a set x can be defined as rk(x) =
⋃
{rk(y) + 1: y ∈ x}. It is easy

to see that rk(x /) is in SRSF.
In many situations it will be convenient to define predicates instead of func-

tions. In the following we provide the necessary background for this.

Definition 1.3 (Predicates). A predicateR(~x /~a) is in SRSF (in SRud, resp.)
if the function

χR(~x /~a) =

{
1 if R(~x /~a)

0 otherwise

is in SRSF (in SRud, resp.) Recall that 0 and 1 in a set theoretic context denote
ordinals.

Examples of predicates in SRud are a ∈ b, a /∈ b, a = b, and a 6= b for safe
a, b, which can be seen using the safe rudimentary functions Cond∈ and Cond=

as provided before.
Predicates can be used to define functions by separation in the usual way.

E.g., assume R(~x /~a, b) is a predicate in SRSF, and B(~x /~a) a function in SRSF.
Then f(~x /~a) = {b ∈ B(~x /~a) : R(~x /~a, b)} is a function in SRSF. To see this,
let

sel(~x /~a, b) =

{
{b} if R(~x /~a, b)

∅ otherwise
= Cond=(/ ∅, {b}, χR(~x /~a, b), 0) .

Then f(~x /~a) can be defined by bounded union as
⋃
b∈B(~x /~a) sel(~x /~a, b).

Proposition 1.4 (Closure Properties of Predicates). Predicates in SRSF (in
SRud, resp.) are closed under Boolean operations and bounded quantification
over safe arguments.

Proof. Let Q, Q1 and Q2 be predicates in SRSF (in SRud, resp.). Then
¬Q1(~x /~a), Q1(~x /~a)∨Q2(~x /~a) and (∃c ∈ a1)Q(~x /~a, c) are predicates in SRSF
(in SRud, resp.):

• P (~x /~a) ⇔ ¬Q1(~x /~a) can be defined as χP (~x /~a) = {∅} \ χQ1
(~x /~a).



6 ARNOLD BECKMANN, SAMUEL R. BUSS, AND SY-DAVID FRIEDMAN

• P (~x /~a) ⇔ Q1(~x /~a) ∨Q2(~x /~a) can be defined as

χP (~x /~a) = Cond∈

(
/ 1, 0, 1,

{
χQ1

(~x /~a), χQ2
(~x /~a)

})
.

• P (~x /~a) ⇔ (∃c ∈ a1)Q(~x /~a, c) can be defined as

χP (~x /~a) = Cond∈

(
/ 1, 0, 0,

⋃
c∈a1

χQ(~x /~a, c)
)
.

a

Further examples of predicates in SRud are trans(/ a) (a is transitive) and
Ord(/ a) (a is an ordinal.) This can be seen using the previous proposition:

trans(/ a) ⇔ ∀b ∈ a ∀c ∈ b c ∈ a
Ord(/ a) ⇔ trans(/ a) ∧ ∀b ∈ a trans(/ b) .

1.3. Bounding ranks. A very important property of safe recursive functions
is that they increase ranks only polynomially. This can be proven similarly to
the corresponding Lemma 4.1 in [2]. It should be stressed that the next theorem
is not restricted to sets of finite rank. In particular, a multivariable polynomial
q(α1, . . . , αk) that takes ordinals as arguments is a sum of terms of the form
αi1αi2 · · ·αi`n where the coefficient n ∈ N is positive. This implies that it will
be a monotone polynomial on ordinals; i.e., if any of its arguments are increased,
leaving the other arguments the same, its value does not decrease. We observe
that this definition of polynomial is closed under taking sums and products using
the associative laws of addition and multiplication, and the distributive law of
multiplication. For a list of variables ~x = x1, . . . , x` we write rk(~x) instead of
rk(x1), . . . , rk(x`).

Theorem 1.5. Let f be a function in SRSF. There is a polynomial qf such
that

rk(f(~x /~a)) ≤ max
i

rk(ai) + qf (rk(~x))

for all sets ~x, ~a.

Theorem 1.5 will be generalized later by Theorem 3.5.

Proof. The proof is by induction on the definition of f in SRSF. We will
only consider the case that f is defined by predicative set recursion, the other
cases (base cases, bounded union, safe composition) are left to the reader. The
case of safe composition, though a straightforward calculation, is essential for
maintaining polynomial bounds obtained from the other cases.

If f(x, ~y /~a) is defined by predicative set recursion from h, then by induction
hypothesis we have qh bounding the rank of h in the above sense. Define qf as

qf (α, ~β) = (1 + qh(α, ~β)) · (1 + α) .
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We will show that rk(f(x, ~y /~a)) ≤ max{rk(~a)}+qf (rk(x), rk(~y)) by ∈-induction
on x.

rk(f(x, ~y /~a))

= rk
(
h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x})

)
≤ max

{
rk(~a), rk

(
{f(z, ~y /~a) : z ∈ x}

)}
+ qh(rk(x), rk(~y))

= max
{

rk(~a),
⋃{

rk(f(z, ~y /~a)) + 1: z ∈ x
}}

+ qh(rk(x), rk(~y))

≤ max
{

rk(~a),
⋃{

max{rk(~a)}+ qf (rk(z), rk(~y)) + 1: z ∈ x
}}

+ qh(rk(x), rk(~y))

= max{rk(~a)}+
⋃{

qf (rk(z), rk(~y)) + 1: z ∈ x
}

+ qh(rk(x), rk(~y))

= max{rk(~a)}+
⋃{

qf (rk(z), rk(~y)) + 1 + qh(rk(x), rk(~y)) : z ∈ x
}

where for the second “≤” we used the ∈-induction hypothesis. Let α be rk(x),
βi be rk(yi), and γ be rk(z). Assume γ < α, then we will show that

qf (γ, ~β) + 1 + qh(α, ~β) ≤ qf (α, ~β) .(1.1)

Using this we can continue our calculation showing

rk(f(x, ~y /~a)) ≤ max{rk(~a)}+ qf (rk(x), rk(~y)) .

We finish by proving (1.1):

qf (γ, ~β) + 1 + qh(α, ~β) = (1 + qh(γ, ~β)) · (1 + γ) + 1 + qh(α, ~β)

≤ (1 + qh(α, ~β)) · (1 + γ + 1)

≤ (1 + qh(α, ~β)) · (1 + α)

= qf (α, ~β) .

a

Corollary 1.6. Ordinal exponentiation cannot be computed by a safe recur-
sive function.

1.4. Safe recursive functions on hereditarily finite sets. In addition to
bounding ranks, we can also bound cardinalities for SRSF on hereditarily finite
sets. Before doing this, we will consider a special set recursion on hereditarily
finite sets which will be useful later. Let HF denote the set of hereditarily finite
sets.

On HF we will often drive a recursion by some special sets which we denote
skinny drivers. We define the skinny driver of rank n, sdn, inductively by sd0 = ∅
and sdn+1 = {sdn}. Turning our attention to skinny drivers on HF does not
extend the class SRSF, because the function sd(x /) = sdrk(x) is in SRSF. The
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latter can be seen by defining sd(x /) = sdrk(x) in the following way:

sd(x /) = sd(rk(x /) /) sd(α/) = h(/
{

sd(β) : β ∈ α
}

)

h(/ b) =
⋃
z∈b

g(/ z,
⋃
b) g(/ z, c) =

{
∅ if z ∈ c
{z} otherwise

Predicative set recursion based on skinny drivers gives rise to a special set
recursion which we call skinny predicative set recursion.

Proposition 1.7 (Skinny Predicative Set Recursion). Let g, h be in SRSF of
appropriate arities. Then there exists some f in SRSF which satisfies

f(∅, ~y /~a) = g(~y /~a)

f({d}, ~y /~a) = h({d}, ~y /~a, f(d, ~y /~a)) .

We say that f is defined from g and h by skinny predicative set recursion.

Proof. Let

H(x, ~y /~a, b) =

{
g(~y /~a) if x = ∅
h(x, ~y /~a,

⋃
b) otherwise.

Then f defined by predicative set recursion on x in H satisfies the required
equations. a

In the previous subsection, we have seen one important property of SRSF:
ranks of sets grow only polynomially under SRSF. Another important property
deals with cardinalities of sets, in particular their growth rate on HF under SRSF.
Since there are super-exponentially many sets of rank n, Theorem 1.5 implies
a super-exponential bound on the size of the transitive closure of f(~x /~a) for f
in SRSF. The following Theorem 1.9 will give a substantial improvement over
this by showing a double exponential size upper bound. Functions which satisfy
such a double exponential size upper bound will be called dietary – the following
definition will make this notion precise.

Let |a| denote the cardinality of set a, and tc(a) the transitive closure.

Definition 1.8. A function f(~x /~a) in SRSF is called dietary if for some
polynomial p,

| tc(f(~x /~a))| ≤ | tc({~x,~a})|2
p(rk(~x))

for all ~x,~a ∈ HF \ {∅}.

Over HF ranks are integers, so p is now an ordinary integer polynomial.

Theorem 1.9. All functions in SRSF are dietary.

Proof. The proof is by induction on the definition of f in SRSF. We will
construct polynomials qf , and show that they can serve as the polynomial p in the
bound of the assertion that f is dietary. We will only consider the case that f is
defined by predicative set recursion, the other cases (base cases, bounded union,
and safe composition) are left to the reader. The case of safe composition, though
a straightforward calculation employing Theorem 1.5, is essential for maintaining
the proposed bounds obtained from the other cases.
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If f is defined by predicative set recursion from h, then by induction hypothesis

we have that h is dietary, with bounding polynomial qh. Define qf (α, ~β) as

(1 + qh(α, ~β)) · (1 + α). We observe that qf (α, ~β) ≥ 1. We will show that

| tc(f(x, ~y /~a))| ≤ | tc({x, ~y,~a})|2
qf (rk(x),rk(~y))

by ∈-induction on x. We have

| tc(f(x, ~y /~a))| = | tc(h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x}))|

≤ | tc
(
{x, ~y,~a, {f(z, ~y /~a) : z ∈ x}}

)
|2
qh(rk(x),rk(~y))

≤
(
| tc({x, ~y,~a})|+

∑
z∈x
| tc(f(z, ~y,~a))|+ |x|+ 1

)2qh(rk(x),rk(~y))

.

Let α be rk(x) and βi be rk(yi). For z ∈ x we compute, using the induction
hypothesis,

| tc(f(z, ~y /~a))| ≤ | tc({x, ~y,~a})|2
qf (rk(z),~β)

≤ | tc({x, ~y,~a})|2
qf (α−1,~β)

.

We continue our computation from above:

| tc(f(x, ~y /~a))| ≤
(
| tc({x, ~y,~a})|+ |x| · | tc({x, ~y,~a})|2

qf (α−1,~β)

+ |x|+ 1
)2qh(α,~β)

≤
(

(|x|+ 1) · | tc({x, ~y,~a})|2
qf (α−1,~β)

)2qh(α,~β)

≤ | tc({x, ~y,~a})|2
qf (α−1,~β)+1·2qh(α,~β)

≤ | tc({x, ~y,~a})|2
qf (α,~β)

.

For the second inequality we use that qf (α − 1, ~β) ≥ 1. The last inequality is
derived by:

2qf (α−1,~β)+1 · 2qh(α,~β) = 2qf (α−1,~β)+1+qh(α,~β)

= 2(1+qh(α−1,~β))·(1+α−1)+1+qh(α,~β)

≤ 2(1+qh(α,~β))·(1+α−1)+1+qh(α,~β)

= 2(1+qh(α,~β))·(1+α) = 2qf (α,~β) .

a
The bounds given in the definition of “dietary” are sharp, which can be seen

in the following way. Let Sq(/ a) = Prod(/ a, a). Define f by skinny predicative
set recursion as follows: f(∅ / a) = a and f({d} / a) = Sq(/ f(d / a)). Then f is
in SRSF, and satisfies |f(sdn / a)| = |a|2n .

The fact that functions in SRSF are dietary is used in Section 2.2.1 to show
that certain safe set functions cannot be computed by SRSF.

§2. Computing on hereditarily finite sets. For this section, we restrict
our attention to the set HF of hereditarily finite sets. We are interested in
complexity classes of alternating time with a bounded number of alternations.
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An alternating Turing machine [6] is one that is allowed to make both existential
and universal moves.

Definition 2.1. Given functions t(n) and q(n), ATIME(t(n), q(n)) is the set
of languages which can be decided by some alternating Turing machine which
runs, on inputs of length n, in time bounded by t(n), such that the number of
alternations on each computation path is bounded by q(n).

Our main result for HF is that under an interpretation of finite strings as sets
based on lists, the SRSF functions acting on HF can be characterized in terms of

ATIME(2n
O(1)

, nO(1)); namely, the class of functions of polynomial growth rate
computed by alternating exponential time Turing machines with polynomially
many alternations. It is interesting to note that this complexity class is known
to characterize the decision problem for the theory of the reals with addition.
In particular, the theory of the reals with addition is many-one complete for

ATIME(2n
O(1)

, nO(1)) under polynomial time reductions [8, 5, 3]. Using a dif-
ferent, more efficient encoding of finite strings as sets based on binary trees,
the SRSF functions acting on HF can be characterized as the class of functions
of quasipolynomial growth rate computed by alternating quasipolynomial time
Turing machines with polylogarithmically many alternations.

In order to state our results precisely, we first have to define function classes
based on alternating Turing machines (ATMs), and encodings of binary strings,
or more generally words over a finite alphabet, into hereditarily finite sets.

2.1. Functions computed by alternating Turing machines. Let N de-
note the set of natural numbers starting from zero, N = {0, 1, 2, . . . }. Fix a
finite alphabet Σ. With Σ∗ we denote the set of words over Σ. Let λ denote the
empty word. Given a word w ∈ Σ∗, the length of w, denoted |w|, is the number
of symbols forming w.

There are several ways to define what it means for an ATM to compute a
function; these are mostly equivalent, at least as long as the function has suitably
bounded growth rate. We give two equivalent definitions below. Since the ATM
can non-deterministically guess its output value as its first computational step,
it suffices to define the computation of a function in terms of recognizing the
graph of the function.

Definition 2.2. Let Σ be the input/output alphabet of an ATM M . Let t
denote the symbol for a blank tape cell, and assume t /∈ Σ. Let f : Σ∗ → Σ∗.
We say that M computes the graph of f if

∀u, v ∈ Σ∗
(
M accepts (u, v) ⇔ f(u) = v

)
.

We say that M computes the bit-graph of f if

∀u ∈ Σ∗ ∀i ∈ N ∀x ∈ Σ
(
M accepts (u, i, x) ⇔

i ≤ |f(u)| and the i-th symbol in f(u) is x,

or i > |f(u)| and x = ‘t’
)
.

For the last part, we assume that i as an argument to M is given in some binary
encoding in M ’s alphabet.
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Definition 2.3 (Growth rates). Suppose r : N → N is non-decreasing and
f : Σ∗ → Σ∗. We say that f has growth-rate r if |f(w)| ≤ r(|w|) for all w ∈ Σ∗.

We implicitly assume that growth rate functions are time-constructible. The
runtime of M will be bounded by a function of only |u|. It is possible for M to
compute the bit-graph of f even if f has growth rate larger than the run time
of M ; however, we will not work with functions with such high growth rate.

Definition 2.4 (Functions computed by ATMs). Suppose t, q : N → N and
f : Σ∗ → Σ∗. Let f have growth rate t. We say that f is computed by an
ATM M in time t(|u|) with q(|u|) alternations if M(u, v) runs in time ≤ t(|u|)
with ≤ q(|u|) alternations and computes the graph of f .

For convenience, we henceforth abuse notation by referring to ATM’s that run
in time ≤ t(|u|) with ≤ q(|u|) alternations on every input (u, · · · ) as being in
ATIME(t, q). In other words, the time bound t and the alternation bound q are
implicitly required to be functions of (only) the length |u| of the first input to M .
A function f of growth rate t whose graph is computed by such an M is called
an ATIME(t, q) function.

We could equally well define the ATIME(t, u) functions in terms of their bit-
graph:

Theorem 2.5. Let f have growth rate t. If f is in ATIME(t, q), then there is a
Turing machine which uses time O(t(|u|)) and ≤ q(|u|)+O(1) many alternations,
and recognizes the bit-graph of f . In the other direction, if the bit-graph of f is
recognized by some ATM in time ≤ t(|u|) with ≤ q(|u|) alternations, then f is
in ATIME(O(t(|u|)), q(|u|) +O(1)).

For this theorem to hold, it is essential that we only consider functions of
growth rate at most the run time bound of the machine. The reason for this is
that any function computable in the sense of Definition 2.4 based on the graph of
the function will satisfy this growth rate bound, as the machine on input (u, v)
needs to read all of v if it computes the graph of a function: if the machine would
accept (u, v) without reading some bit in v, then we could flip this bit obtaining
v′ and the machine would still accept (u, v′) contradicting that a function has
to compute a unique value. On the other hand, using the bit-graph version of
Definition 2.4, in general functions with larger growth rates are computable, e.g.,
there are functions of exponential growth rate which are bit-graph computable
in polynomial time.

Proof of Theorem 2.5. Let t, q : N → N and f : Σ∗ → Σ∗. For the first
direction, let M ′ be in ATIME(t, q) computing the graph of f . We construct
a machine M computing the bit-graph of f as follows: On input (u, i, x), first
existentially guess v, and then verify that the i-th symbol in v is x, and that M ′

accepts (u, v).
For the other direction, let M ′ be in ATIME(t, q) computing the bit-graph

of f . We construct a machine M computing the graph of f as follows: On input
(u, v), universally verify for i ≤ |v| that M ′ accepts (u, i, xi) where xi is the i-th
symbol in v, and also that M ′ accepts (u, |v|+ 1,t). a
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2.2. Encoding words in HF. An encoding ν : Σ∗ → HF of finite words
into HF is any function which is injective. W.l.o.g., we assume that Σ ⊂ HF,
and that the elements in Σ do not conflict with our constructions of encodings
(the strongest assumption would be that Σ and the image of ν are disjoint, but
sometimes we want to allow that ν(x) = x for x ∈ Σ). Any encoding gives rise
to a class of computable functions over Σ∗ as those which can be represented in
the following sense:

Definition 2.6. Let F be a safe set function with normal arguments only, and
let f : Σ∗ → Σ∗. We say that F represents f under ν if the following diagram
commutes:

HF
F−−−−→ HFxν xν

Σ∗
f−−−−→ Σ∗

In general, for a function f : (Σ∗)k → Σ∗ with k arguments, we say that F
represents f under ν if

∀w1, . . . , wk ∈ Σ∗ ν(f(w1, . . . , wk)) = F (ν(w1), . . . , ν(wk) /) .

We let SRSFν denote the set of all functions representable under the encod-
ing ν by some function in SRSF.

Definition 2.7. We say that two encodings ν and ν′ are equivalent if they
can be transformed into each other with functions from SRSF, that is, if there
exist f, g ∈ SRSF such that

∀w ∈ Σ∗
(
f(ν(w) /) = ν′(w) & g(ν′(w) /) = ν(w)

)
.

The following lemma is an obvious consequence from the definitions.

Lemma 2.8. If ν and ν′ are equivalent, then SRSFν = SRSFν′ . a

Several encodings of Σ∗ in HF are possible, but not all will be suitable in the
sense that they lead to function classes with nice properties. We will discuss
some encodings mentioned in the literature.

2.2.1. The Ackermann encoding. The Ackermann encoding Ack: N → HF
(cf. [16]) is given by

Ack(2n1 + 2n2 + · · ·+ 2nk) = {Ack(n1),Ack(n2), . . . ,Ack(nk)}
for n1 > n2 > · · · > nk ≥ 0, k ≥ 0. It can be extended to binary words {0, 1}∗:
First, identify N in a natural way with the subset of {0, 1}∗ consisting of those
binary words which do not start with a leading 0. Then, define Ack: {0, 1}∗ →
HF in the following way: On N ⊂ {0, 1}∗ it has been defined above, and on
{0, 1}∗ \ N we set

Ack(0`n) = (Ack(`),Ack(n))

For ` > 0 and n ∈ N. This encoding does not give rise to a nice class SRSFAck

of functions. For example, SRSFAck does not include a function computing the
predecessor function on N, which can be seen as follows. Let 2n denote iterated
exponentiation to base 2 of height n. Then Ack(2n) = sdn. It is then easy
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to see that any safe set function F which satisfies F (Ack(x+1)) = Ack(x) for
x ∈ N cannot be dietary: By considering the behavior on x = 2n, we have
| tc(Ack(2n))| = n+1, but |Ack(2n − 1)| = 2n−1.

2.2.2. Two Feasible Encodings. We will now define two feasible encodings νl

and νm. We call them feasible, because the rank of the encoded word will be of
order the length of the word. Actually, both encodings will be equivalent and
thus give rise to the same class of functions.

The first encoding uses the data structure of lists based on ordered pairs to
encode words. We denote this encoding with νl where the subscript “l” stands for
“list”. We define νl recursively as follows (recall that λ denotes the empty word,
and (a, b) stands for Kuratowski’s ordered pair): Let νl(λ) = ∅ and νl(wx) =
(x, νl(w)). Observe that rk(νl(w)) = 2|w| + Θ(1). (The constant term comes
from the ranks contributed by elements x in Σ.)

The second encoding uses the concept of a map from the position of a letter in
a word to the letter. We denote this encoding with νm where the subscript “m”
stands for “map”. Let xn · · ·x1 denote a word over Σ of length n. We define

νm(xn · · ·x1) = {(sdj , xj) : j = 1, . . . , n}

Observe that rk(νm(w)) = |w|+ Θ(1).
We leave it to the reader to verify that νl and νm are equivalent in the sense

of Definition 2.7.

2.2.3. An Encoding based on Trees. We now define an encoding which is opti-
mal in the sense that it exhausts the limitations of SRSF in respect to polynomial
rank bounds and double exponential size bounds (since SRSF functions are di-
etary). Binary trees storing letters of words in their leaves have exactly this
property, as there are double exponentially many such trees for given rank. We
denote this encoding by νt where the subscript “t” stands for “tree”.

Let x1 · · ·x2d be a word over Σ ∪ {t} of length 2d. We define Tx
1
···x

2d
∈ HF

by recursion on d: Let Tx1 = x1, and let

Tx
1
···x

2d+1
= (Tx

1
···x

2d
, Tx

2d+1
···x

2d+1
) .

Then we define νt by pairing a skinny driver with a tree, with the skinny driver
encoding the height of the tree: Let νt(λ) = (∅,t). If x1 · · ·xn denotes a word
over Σ of length n > 0, let d = dlog2(n)e and let xn+1 = · · · = x2d = t, so
x

1
· · ·x2d is x1 · · ·xn padded by blanks. Define

νt(x1 · · ·xn) = (sdd, Tx1 ···x2d
) .

Then rk(νt(w)) = Θ(log(|w|)) and | tc(νt(w))| = Θ(|w|).
See Fig. 1 for examples of this encoding.

2.3. Results. We are now able to formulate our main results in this sec-
tion. The first characterizes SRSFνm as the polynomial growth-rate functions
computable by an ATM in exponential time with polynomial many alternations.

Theorem 2.9. A function f(x) is in SRSFνm if and only if, for some constant
c > 0, |f(x)| = O(|x|c) for all x, and f can be computed by some machine in
ATIME(2n

c

, nc).
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x1 x2
x1 x2 x3 t x1 x2 x3 x4

x1 x2 x3 x4 x5 t t t x1 x2 x3 x4 x5 x6 x7 x8

Figure 1. Five encodings of words by binary trees: νt(x1x2),
νt(x1x2x3), νt(x1 · · ·x4), νt(x1 · · ·x5) and νt(x1 · · ·x8).

The second characterizes SRSFνt as the quasi-polynomial growth-rate func-
tions computable by an ATM in quasi-polynomial time with polylogarithmically
many alternations.

Theorem 2.10. A function f(x) is in SRSFνt if and only if, for some constant
c > 0, f has growth rate O(2logc |x|), and f is in ATIME(2logc n, logc n).

The proofs for these Theorems will be given in the following two subsections:
Theorems 2.11 and 2.12 will provide the “if” directions of Theorems 2.9 and
2.10, respectively. Theorems 2.24 and 2.25 will give the “only if” directions of
Theorems 2.9 and 2.10, respectively.

2.4. Simulating alternating Turing machines by safe recursive func-
tions. In order to describe a way of simulating alternating Turing machine com-
putations by safe recursive functions, we will make the definition of an alternating
Turing machine, and notations relating to how they compute, more precise. We
will consider Turing machines with two one-way tapes, where both heads are
always at the same position. A one-way tape is a tape that is one-way infinite
to the right and does not restrict the left/right motion of the tape head (except
at the left end). We will consider Turing machines which recognize the graph of
a function and take two inputs; for technical reasons each input will be stored
on a different tape. Formally, an alternating Turing machine (ATM) is given by
an 8-tuple (Q,Σ,Γ, δ, qstart, qaccept, qreject, g) where the first 7 components form
the ingredients of a nondeterministic Turing machine in the usual way. That
is, Q is a finite set of states which includes three designated states: the start
state qstart, the accepting state qaccept, and the rejecting state qreject, Σ is the
input alphabet, Γ is the work tape alphabet which includes Σ and an additional
symbol t denoting a blank tape cell, and δ ⊂ Q× Γ× Γ×Q× Γ× Γ× {L,R}
is the transition relation. In addition to this, g : Q → {∨,∧} divides the set of
states into universal (∧) and existential (∨) states.

We assume that one-way tapes extend infinitely to the right. A configuration
is given by a quadruple (q, p, u, v) where q is a state in Q, p is a natural number,
and u and v are (finite) words over Γ. The triple (q, p, u, v) indicates the machine
configuration in which the current state is q, the content of the first tape is u
followed by blanks, that of the second tape v followed by blanks, and the heads
are positioned on the p-th cell on each tape. The label of (q, p, u, v) is given by
g(q).
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We will not define the behavior of an ATM in full detail, it will be implicit from
our discussion. We do use three special conventions, however, that might lead to
confusion if not stated explicitly. First, we assume that initially the two input
words are written as the first entries from the left on the two one-way tapes, with
the heads positioned on the first symbol of each tape. As said before, we assume
that the heads are moving in lock-step, thus are always at the same position on
each tape. Second, when we mention a time bound for an ATM, then we assume
that the ATM is equipped with a counter, and enters the reject state should
the time bound be exceeded. Third, as we are only considering time bounded
computation, we will also impose a similar space bound for the tape. This will
have no effect on computations in which the head starts from the leftmost tape
cell (like in initial configurations), as the space bound will be as big as the time
bound.

For the following, we fix an ATM (Q,Σ,Γ, δ, qstart, qaccept, qreject, g), and as-
sume that Γ and Q consist only of sets, and that ∅ /∈ Γ ∪Q.

Representing configurations. Taking into consideration that functions in SRSF
are dietary, and increase ranks of sets only polynomially, we represent config-
urations as sets in the following way: The content of a single tape will be en-
coded as a full binary tree (the tape tree) whose leaves are labeled with elements
from Γ; and the head position will be encoded as a binary sequence (the head
path) of length corresponding to the height of the tape tree. For this, we de-
fine the empty sequence by ∅, and in general the binary sequence 〈i1, . . . , in〉 of
length n by (i1, (i2, . . . , (in, ∅) . . . )). Let T Γ

n be the set of all tape trees of height
n, and Pn be the set of all head paths of length n. Observe that a tape tree
of height n stores tapes of length 2n. The set of all configurations of size 2n

is then given as CMn = Q × Pn × T Γ
n × T Γ

n . All these sets can be defined by
functions in SRSF: By skinny predicative set recursion, we can choose HP in
SRSF satisfying HP(∅ /) = {∅} and HP({d} /) = Prod(/ {0, 1},HP(d /)). Then

HP(sdn /) = Pn. Again by skinny predicative set recursion, we can choose TTM

in SRSF such that TTM (∅ /) = Γ and TTM ({d} /) = Sq(/ TTM (d /)). Then

TTM (sdn /) = T Γ
n . (“TT” stands for “Tree-encoded Tape-contents”.) Define

ConfM (d /) as Prod(/Q,Prod(/ HP(d /),Prod(/ TTM (d /),TTM (d /)))), then

ConfM (sdn /) = CMn .

Computing successor configurations. We define a predicate nextM for describ-
ing successor configurations according to M : nextM (sdn / c, c

′) will be true if
c, c′ ∈ CMn and c′ is a possible next configuration from c according to M . It can
be defined as a predicate in SRSF in the following way. Here q is the state, p is
the tape head position, t1 and t2 are the two tape contents encoded as binary
trees, and d is a skinny driver.

nextM (d / (q, p, t1, t2),(q′, p′, t′1, t
′
2)) ⇔∨

(q,s1,s2,q′,s′1,s
′
2,o)∈δ

[
Read(d / p, t1) = s1 ∧ Read(d / p, t2) = s2

∧ Moveo(d / p) = p′ ∧ Prt(d / p, t1, s
′
1) = t′1

∧ Prt(d / p, t2, s
′
2) = t′2

]
.
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〈0, 0, 0〉 〈1, 0, 0〉 〈0, 1, 0〉 〈1, 1, 0〉 〈0, 0, 1〉 〈1, 0, 1〉 〈0, 1, 1〉 〈1, 1, 1〉

Figure 2. A tape of length 8 with pointers. Note that the cells
are indexed by binary strings in reversed bit order.

Here, Read(d / p, t) outputs the symbol at position p in the tape contents t:

Read(∅ / p, t) = t

Read({d} / (i, p), (t0, t1)) = Read(d / p, ti) .

Moveo(d / p) computes the head position obtained by moving from position p
in direction o ∈ {L,R}, where 〈0, . . . , 0〉 denotes the leftmost position (see Fig-
ure 2):

Moveo(∅ / p) = 0

MoveL({d} / (i, p)) =


〈0, . . . , 0〉 if (i, p) = 〈0, . . . , 0〉 ; otherwise

(0, p) if i = 1

(1,MoveL(d / p)) if i = 0

MoveR({d} / (i, p)) =


〈1, . . . , 1〉 if (i, p) = 〈1, . . . , 1〉 ; otherwise

(1, p) if i = 0

(0,MoveR(d / p)) if i = 1

Prt(d / p, t, s′) computes the tape contents obtained by printing the symbol s′ at
position p in the tape contents t:

Prt(∅ / p, t, s) = s

Prt({d} / (0, p), (t0, t1), s) = (Prt(d / p, t0, s), t1)

Prt({d} / (1, p), (t0, t1), s) = (t0,Prt(d / p, t1, s)) .

Our next aim is to define iterations of the successor relation. As the situation
of iterating a binary relation R on a set A will occur at various places, we
will define this more generally in SRSF. Given two sets r and s (we think of
r ⊆ A × B and s ⊆ B × C) we define their composition r ◦ s to be the set
{(x, z) ∈ A× C : (∃y ∈ B)(x, y) ∈ r ∧ (y, z) ∈ s}. This can be defined in SRud
as Comp(/ r, s) = r ◦ s because SRud is closed under Boolean connectives and
bounded quantification. Let A and R be sets (we think of R being a binary
relation on A.) We define the iteration of R on A as

Iter(sdn /R,A) = { (x, y) ∈ A×A : there is a path from x to y

of length ≤ 2n according to R },

which can be defined by skinny recursion in SRSF as follows:

Iter(∅ /R,A) = R ∪ {(x, x) : x ∈ A}
Iter({d} /R,A) = Comp(/ Iter(d /R,A), Iter(d /R,A)) .
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Let

NextM,g(d /) =
{

(c, c′) ∈ ConfM (d /) : nextM (d / c, c′) and g(c) = g(c′)
}

be the binary relation storing successor configurations according to M for which
the label according to g does not change. We define the iteration of NextM,g by

itNextM,g(d /) = Iter(d / NextM,g(d /),ConfM (d /)) .

Let NEXTM (sdn / c, c
′) denote the predicate on configurations c, c′ ∈ CMn

which is true if and only if c′ follows from c according to M such that either c, c′

and all intermediate configurations have the same label and c′ is an accepting or
rejecting configuration, or c and all intermediate configurations have the same
label and c′ is the first with a different label. NEXTM and the binary relation
NEXTM based on NEXTM can be defined as follows:

NEXTM (d / c, (q′, p′, t′))

⇔ (∃c′′ ∈ ConfM (d /))
[
(c, c′′) ∈ itNextM,g(d /)

∧ nextM (d / c′′, (q′, p′, t′))

∧ [g(c) 6= g(q′) ∨ q′ ∈ {qaccept, qreject}]
]

NEXTM (d /) =
{

(c, c′) ∈ ConfM (d /)× ConfM (d /) : NEXTM (d / c, c′)
}

.

Computing accepting configurations. We define the accepting states of an al-
ternating computation according to M . Let C be a set (the set of configurations)
and N a binary relation on C (taking configurations to a next alternating config-

uration.) AcceptM (sdn / c, C,N) will be true if c has an accepting computation
of at most n alternations.

AcceptM (∅ / c, C,N) ⇔ c ∈ C ∧ state(c) = qaccept

AcceptM ({d} / c, C,N) ⇔
AcceptM (d / c, C,N)

∨ [g(c) =“∧” ∧ (∀c′ ∈ C)((c, c′) ∈ N → AcceptM (d / c′, C,N))]

∨ [g(c) =“∨” ∧ (∃c′ ∈ C)((c, c′) ∈ N ∧ AcceptM (d / c′, C,N))]

AcceptM (d /c) ⇔ AcceptM (d / c,ConfM (d /),NEXTM (d /)) .

Thus, AcceptM (sdn /c) will be true if and only if c is a configuration which uses
tape trees of height n, such that c has an accepting M -computation whose run
time and space is bounded by 2n, and which uses at most n alternations.

Preparing initial configurations. The final part for describing which ATM com-
putations can be simulated in SRSF is to compute initial configurations from
encoded input words. This will be different for the two encodings under consid-
eration, νm and νt. We start with some safe recursive functions with are used
by both.

We start by defining a suitable bounding functions which, depending on the
polynomial part in run time and alternation bounds and size parameters of the
inputs, provides the height of the tape trees which suffices to capture the whole
computation.
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Let the polynomial be given by xc+c. Since ordinal addition and multiplication
is in SRSF, so is fc(α/) = αc+c for ordinals α. We define the bounding function
by

bdc(s /) = sd(fc(rk(s /) /) /) .

Then bdc(νm(w) /) = sdl for some l ≥ |w|c + c, and bdc(νt(w) /) = sdl for some
l ≥ logc(|w|) + c.

Next, null(sdn /) = 〈0, . . . , 0〉 points to the first position of a tape:

null(∅ /) = ∅ null({d} /) = (0,null(d /)) .

The function blank(sdn /) computes the blank tape tree of height n (remember,
t denotes the blank tape cell):

blank(∅ /) = t blank({d} /) = (blank(d /),blank(d /)) .

Representing functions based on νm. We now turn to encoding initial config-
urations based on νm. The function, moveR, will be used to compute the head
position after some steps to the right. moveR(sdk, sdn / p) computes the head
position after moving k steps to the right from position p, assuming that p is of
length n:

moveR(∅, b / p) = p moveR({d}, b / p) = MoveR(b / moveR(d, b / p)) .

moveR(sdk, b /) = moveR(sdk, b / null(b /)) then computes the head position af-
ter moving k steps to the right from the first position.

We compute initial configurations based on νm as follows. “InTT” stands for
“Initial Tree-encoded Tape-contents”.

InitMm (s1, s2 /) =
(
qstart, null(bdc(s1 /) /), InTTMm (sd(s1 /),bdc(s1 /) / s1),

InTTMm (sd(s2 /),bdc(s1 /) / s2)
)

InTTMm (∅, b / s) = blank(b /)

InTTMm ({d}, b / s) = Prt(b / moveR(d, b /), InTTMm (d, b / s),Applt(/ s, {d}))

Applt(/ s, d) =

{
t if Appl(/ s, {d}) = ∅
Union(/ Appl(/ s, {d})) otherwise .

Thus, InitMm (νm(u), νm(v) /) computes the (encoded) initial configuration using
tape trees of height bdc(νm(u) /) ≥ |u|c + c with u standing at the left end of
the first tape tree, and v at the left end of the second tape tree, assuming that
|v| ≤ |u|c + c.

Theorem 2.11. Assume for some constant c > 0, that |f(x)| = O(|x|c) for
all x, and that f can be computed by some machine in ATIME(2n

c

, nc). Then f
is in SRSFνm .

Proof. Without loss of generality, we assume that |f(x)| ≤ |x|c + c for all x,
and that f is computed by some ATMM computing the graph of f which satisfies
our assumptions at the beginning of this subsection, such that the run time of M
on input (u, v) is bounded by 2|u|

c+c and the number of alternations is bounded
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by |u|c+ c. We will construct some F in SRSF such that F (νm(u) /) = νm(f(u))
which proves the claim.

To this end, we first define a suitable superset of all possible outputs of F as
a function in SRSF. “mw” stands for “map-encoded words”.

mwM (∅ /) = {∅}

mwM ({d} /) = mwM (d /) ∪
⋃
a∈Σ

{
s ∪ {(sd({d} /), a)} : s ∈ mwM (d /)

}
.

Then we define F by

F (x /) =
⋃{

y ∈ mwM (bdc(x /) /) : AcceptM (bdc(x /) / InitMm (x, y /))
}
.

Given u ∈ Σ∗, let ` = bdc(νm(u)), then ` ≥ |u|c + c. We compute

F (νm(u) /) = s

⇔ s ∈ mwM (` /) and AcceptM (` / InitMm (νm(u), s /))

⇔ ∃v ∈ Σ≤` (M accepts (u, v) and s = νm(v))

⇔ ∃v ∈ Σ≤` (f(u) = v and s = νm(v))

⇔ s = νm(f(u))

a
Representing functions based on νt. We now consider encoding initial config-

urations based on νt.

InitMt (s1, s2 /) =
(
qstart, null(bdc(s1 /) /),

InTTMt (bdc(s1 /) / s1), InTTMt (bdc(s1 /) / s2)
)

InTTMt (∅ / s) =

{
prr(/ s) if prl(/ s) = ∅
t otherwise

InTTMt ({d} / s) = h(d / prl(/ s),prr(/ s), InTTMt (d / s))

h(d / d′, t, r) =

{
t if {d} = d′

(r, blank(d /)) otherwise

Thus, InTTMt (sd` / νt(w)), for ` ≥ log |w|, will be a tape tree of height ` with w

standing at the left end. Hence, InitMt (νm(u), νm(v) /) computes the (encoded)
initial configuration using tape trees of height bdc(νm(u) /) ≥ logc(|u|) + c with
u standing at the left end of the first tape, and v at the left end of the second
tape, assuming that |v| ≤ 2logc(|u|)+c.

Theorem 2.12. Assume for some constant c > 0, that |f(x)| = O(2logc |x|) for
all x, and that f can be computed by some machine in ATIME(2logc n, logc n).
Then f is in SRSFνt .

Proof. Without loss of generality, we assume that |f(x)| ≤ 2logc |x|+c for
all x, and that f is computed by some ATM M computing the graph of f
which satisfies our assumptions at the beginning of this subsection, such that
the run time of M on input (u, v) is bounded by 2logc |u|+c and the number of
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alternations is bounded by logc |u|+ c. We will construct some F in SRSF such
that F (νt(u) /) = νt(f(u)) which proves the claim.

To this end, we first define a suitable superset of all possible outputs of F as
a function in SRSF, that is, a set containing νt(w) for w ∈ Σ∗ in some “unique”
way. “tw” stands for “tree-encoded words”.

twM (∅ /) = {∅} × TTM (∅ /)

twM ({d} /) = twM (d /) ∪
{

({d}, (u, v)) : (u, v) ∈ TTM ({d} /) ∧ v 6= blank(d /)
}

Then we define F by

F (x /) =
⋃{

y ∈ twM (bdc(x /) /) : AcceptM (bdc(x /) / InitMt (x, y /))
}
.

Given u ∈ Σ∗, let ` = bdc(νt(u)), then ` ≥ logc |u|+ c. We compute

F (νt(u) /) = s

⇔ s ∈ twM (` /) and AcceptM (` / InitMt (νt(u), s /))

⇔ ∃v ∈ Σ≤` (M accepts (u, v) and s = νt(v))

⇔ ∃v ∈ Σ≤` (f(u) = v and s = νt(v))

⇔ s = νt(f(u))

a
2.5. Simulating safe recursive functions by alternating Turing ma-

chines. The aim of this subsection is to prove the converses of Theorems 2.11
and 2.12. For example, we want to show that all functions in SRSFνm can be
computed by some machine in ATIME(2n

c

, nc), for some constant c. The proof
of this result will use induction on the formation of SRSFνm functions, with the
main induction step being the definition by predicative set recursion. However,
the definition of an SRSFνm function may use intermediate SRSF functions which
may not be SRSFνm functions. Even worse, these intermediate functions may

output sets which have double exponential size 22n
c

. For instance, the SRSF
function ConfM (sdn /) defined above computes a set of double exponential size.
For this reason, it is necessary to state and prove a generalized form of the above
assertion that will apply to all SRSF functions, not just SRSFνm functions. This
will be done by introducing a notion of “AEP-computability” based on alternat-
ing Turing machines which recognize sets via a tree representation, culminating
in Theorem 2.23 showing that every SRSF function is AEP-computable.

Definition 2.13. A set A has local cardinality N provided N is the smallest
number such that A and each member of tc(A) has cardinality ≤ N .

Definition 2.14. An indexed tree T is a finite rooted tree in which, for a
given node x in T , the children of x are indexed by non-negative integers. That
is, for each i ≥ 0, there is at most one node y which is the child of x of index i.
We call y the i-th child of x, however it should be noted that some children may
be missing; for example, x might have a third child, but no second child.

Definition 2.15. An indexed tree T has local index size N provided N is the
smallest number such that all nodes in T have their children indexed by numbers
< N .
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Definition 2.16. Let A be a set with local cardinality N . A can be (non-
uniquely) represented by an indexed finite tree T of local index size N as follows.
The subtree of T rooted at the i-th child of the root of T is called the i-th subtree
of T . If A is empty, then T is the tree with a single node. For A a general set, T
represents A is defined by the condition that the elements of A are precisely the
sets B for which there is some i < N such that the i-th subtree of T represents
B. That is, T represents A provided:

A = {B : for some i, the i-th subtree of T exists and represents B} .

Definition 2.17. Let 〈i1, . . . , i`〉 be a sequence of integers and T be a tree.
We say that path 〈i1, . . . , i`〉 exists in T if and only if either ` = 0, or ` > 0 the
i1-st node of T exists and the path 〈i2, . . . , i`〉 exists in the i1-st subtree of T .
If I = 〈i1, . . . , i`〉 exists in T , we write TI for the subtree of T rooted at the end
of the path I in T . If I does not exist in T , we let TI be undefined.

The rank of an indexed tree T is defined by assigning the tree with a single
node rank 0, and inductively assigning a general tree rank the supremum of the
successors of ranks of children of T ’s root, i.e.,

max
{

(rank of T〈i〉) + 1: i-th node in T exists
}
.

We observe that a set of local cardinality N and rank R can be represented by
an indexed tree of local index size N and rank R. Conversely, an indexed tree
of local index size N and rank R represents a set of local cardinality ≤ N and
rank R.

Definition 2.18. An algorithm M recognizes a tree T provided that on input
〈i1, . . . , i`〉, M returns a Boolean value indicating whether the path 〈i1, . . . , i`〉
exists in T .

When working with an algorithm M that recognizes a tree T of local index
size N , we shall often have N equal to the value 22p for some p ≥ 0. Note
that if the rank of T is bounded by R, then any path 〈i1, . . . , i`〉 in T will have
` ≤ R and ij ≤ N for j = 1, . . . , `, and hence is coded by a bit string of length
O(R logN) = O(R · 2p).

More generally, we may have N = q2p for some value q, at least for the
intermediate parts of some of our proofs. In our applications, we will have both
p and R equal to nO(1), where n will denote the size of the input, and we usually
have q = 2. Logarithms are always base 2.

Lemma 2.19. There are algorithms M= and M∈ which take as input value
p > 0 and oracles recognizing trees S and T both with local index size ≤ N = 22p

and rank ≤ R, and which output Boolean values indicating whether A = B
and A ∈ B, respectively, where A and B are the sets represented by S and T ,
respectively. Furthermore, the algorithms M= and M∈ run in time 2p · RO(1)

using O(R) many alternations.

Proof. We define two slightly more general algorithms MS,T
= (p, I, J) and

MS,T
∈ (p, I, J) which decide whether AI = BJ and AI ∈ BJ , where AI and BJ

are the sets represented by SI and TJ .
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MS,T
= (p, I, J) universally calls two algorithms for checking AI ⊆ BJ and

AI ⊇ BJ . The algorithm for AI ⊆ BJ first universally chooses i < N and
checks whether path I ∗ 〈i〉 exists in S. If not, it accepts. Otherwise, it then
existentially chooses j < N , checks that J ∗ 〈j〉 in T exists and rejects if not.
Otherwise, it verifies whether MS,T

= (p, I ∗ 〈i〉 , J ∗ 〈j〉). This determines whether
AI ⊆ BJ . The same algorithm is used to determine whether AI ⊇ BJ .

MS,T
∈ (p, I, J) existentially chooses j < N , and checks whether J ∗ 〈j〉 is in T .

If not, it rejects, otherwise it determines whether MS,T
= (p, I, J ∗ 〈j〉). a

The proof of Lemma 2.19 actually proves a better bound on the number of
alternations used by the two algorithms. Namely,

Lemma 2.20. Lemma 2.19 still holds if the algorithm M is required to use
O(min{RS , RT }) alternations, where RS and RT are the ranks of S and T ,
respectively.

Proof. The algorithms as described already have alternations bounded in
this way. a

Definition 2.21. A safe set function f(~x /~a) is said to be AEP-computable
(where “AEP” stands for “ATIME(Exp,Poly)”) provided there are polynomials

p, q and r, and an oracle ATM M , such that the following holds. Let ~X and
~A be trees which represent sets ~x and ~a. Let the local index size of ~X and ~A
be bounded by Nx and Na, respectively, and their ranks be bounded by Rx and

Ra, respectively. W.l.o.g., Ra ≥ 1. Let Nxa = max{Nx, Na, 2}. Then M
~X, ~A

recognizes a tree T which represents the set f(~x /~a) such that T has local index

size ≤ N = N2p(Rx)

xa and rank ≤ R = Ra + r(Rx). Furthermore, M
~X, ~A runs in

time (Ra · logN)O(1) with ≤ Q = Ra · q(Rx) many alternations.

Note that Q depends on Ra multiplicatively, and N depends on Rx but not
on Ra. The runtime bound depends polynomially on Ra and exponentially on Rx
(via N). Without making this explicit, we tacitly assume that some information
on local index sizes of input trees is passed on to an AEP-algorithm, e.g. in form
of a bound on log logNxa. From this the algorithm can compute bounds on local
index sizes of any intermediate tree it needs in the computation. For example,
when computing the composition of two AEP-algorithms, it needs to compute
information on the local index size of the intermediate tree computed by the first
AEP-algorithm, and pass it on to the second algorithm for computing the final
tree. Without passing information about local index sizes to AEP-algorithms,
testing for the empty set for example would not be (AEP-)computable (only
“semi-computable”).

Lemma 2.22. The set equality relation on safe arguments, the set membership
relation on safe arguments, the projection functions πn,mj (~x /~a), the difference

function d(/ a, b), and the pairing function p(/ a, b) are AEP-computable.

Proof. For set equality and set membership, use the algorithm from the
proof of Lemma 2.19 above. The lemma is obvious for the projection functions
since M just computes the same function as one of its oracles. Next consider the
pairing function p(/ a, b) = {a, b}. If A and B are trees representing the sets a
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and b, then the tree representing the pair {a, b} is

{〈i〉 ∗ I : I is a path in A if i = 0, or a path in B if i = 1 } .

The property “I is a path in A” (resp., “in B”) is computed by invoking one of
the oracle inputs. Finally, consider the set difference function d(/ a, b) = a \ b.
The tree representing the set difference a \ b consists of the following paths:{
I = 〈i1, i2, ..., i`〉 : I is a path in A, and for all j, A〈i1〉 is not equal to B〈j〉

}
.

M computes this property by universally branching to verify both (a) check
that I ∈ A using the oracle for A, and (b) universally choosing j (this takes
logNb time where Nb bounds the local index size of tree B) and invoking M= to
verify that A〈i1〉 is not equal to B〈j〉. a

We are now able to state and prove a general characterization of how SRSF
functions can be computed by alternating Turing machines. This will be applied
later in Theorems 2.24 and 2.25 to obtain the specific characterizations that a
function in SRSFνm can be computed by ATIME(2n

c

, nc), for some c, and that
a function in SRSFνt can be computed by ATIME(2logc n, logc n), for some c.

Theorem 2.23. Every SRSF function is AEP-computable.

The proof of Theorem 2.23 will show that the formation methods of bounded
union, safe composition, and predicative set recursion preserve the property of
being AEP-computable. An important ingredient in the construction is how one
composes algorithms that use alternation without losing control of the number
of alternations. Specifically, suppose that f and g are algorithms that use run
times tf and tg, and have number of alternations bounded by qf and qg. Then,
loosely speaking, their composition f ◦g can be computed in time approximately
tf + tg with qf + qg +O(1) many alternations. The basic idea for the algorithm
for f ◦ g is to simulate the algorithm for f as follows. The algorithm for f
makes queries to its input; namely, it queries whether a path 〈i1, . . . , i`〉 exists
in the tree representing its input. Each such query during the execution of f is
handled by first existentially guessing the needed (Boolean) answer to the query
and then branching universally to both (a) verify the correctness of the guessed
answer by executing the algorithm for g, and (b) continue the computation of f .
(Alternately, it could branch first universally and then existentially.) Note that
the algorithm for g is run only once in any given execution path, and thus
contributes only additively to the run time. However, this “basic idea” can
increase the number of alternations by the number of times f reads its input
(which is more than we can allow); and a better construction is needed. The
better construction is described next.

Algorithm for f ◦ g: Let Mf be the algorithm for f which recognizes the tree
representing the set computed by f ; let Mg be a similar algorithm for g. Simulate
Mf by splitting the computation up into existential portions and universal por-
tions. There are at most qf many such portions by assumption. When starting
the simulation of an existential portion, initially guess the entire computation
for this existential portion including guessing all answers to queries asked to Mg

during this part of the computation. Check that the guessed computation repre-
sents a valid computation, modulo the correctness of the guessed answers to the
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queries to Mg, and (temporarily) write the entire computation for this existential
portion to a tape. Then branch universally to both (a) universally select one
of the guessed answers to the queries to Mg, and check the correctness of that
query by running Mg and accept if it confirms the guessed answer and otherwise
reject; and (b) proceed to the next, universal portion of the computation of Mf .
For (a), it is important that the guessed computation for the existential portion
has been written to tape (this is possible since there is no separate space bound
on the computation of f), as this means that all queries to Mg and their guessed
answers are available to be selected for verification of correctness.

Universal portions of the computation of Mf are handled dually to existential
portions.

The run time for the algorithm is clearly O(tf + tg). And, the number of
alternations is at most qf + qg +O(1). The “+O(1)” is needed for an alternation
that may occur as g is invoked; it is also needed to handle the case where f is
deterministic and qf = 0.

Clearly, this construction can be iterated for repeated compositions. This will
allow us to handle predicative set recursion.

Proof of Theorem 2.23. The argument splits into cases of bounded union,
safe composition, and predicative set recursion. The basic idea is to use the
method described above for nesting calls to functions, along with the bounds
established in the proofs of Theorems 1.5 and 1.9.

Case: Bounded Union. f(~x /~a, b) =
⋃
z∈b g(~x /~a, z). The induction hypothe-

sis that g is AEP-computable gives polynomials pg, qg and rg, and an ATM Mg.

Let ~X, ~A, B be trees representing sets ~x, ~a, b, with local index sizes bounded
by Nx, Na and Nb, respectively, and ranks bounded by Rx, Ra and Rb, respec-
tively. W.l.o.g. Nx, Na, Nb ≥ 2 and Ra, Rb ≥ 1. Let Nxab = max{Nx, Na, Nb},
and Rab = max{Ra, Rb}.

We describe the behavior of M
~X, ~A,B on input 〈i〉 ∗ I: M treats i as a pair

(j1, j2), and universally (a) checks that 〈j1〉 is a path in B, and (b) runs

M
~X, ~A,B〈j1〉
g on input 〈j2〉 ∗ I. By construction, M

~X, ~A,B computes a tree T
representing f(~x /~a, b). Let Ng be an upper bound to the local index size of

the tree computed by M
~X, ~A,B〈j1〉
g , and Rg an upper bound to its rank. Let Qg

bound the number of alternations for M
~X, ~A,B〈j1〉
g .

T has local index size bounded byO(Ng·Nb) = O(N2pg(Rx)

xab ·Nb) = N2pg(Rx)+O(1)

xab

and rank bounded by Rg ≤ Rab+rg(Rx) . The first part of the algorithm, which
decomposes the first entry i of the input into two parts of a pair j1 and j2, runs in

time |i|O(1) which can be bounded by (logN2pg(Rx)+O(1)

xab )O(1) = (logN2pg(Rx)

xab )O(1).
Thus, overall the algorithm runs in time bounded by

(logN2pg(Rx)

xab )O(1) + (Rab logNg)
O(1) ≤ (Rab logN2pg(Rx)

xab )O(1)

with Qg + 1 ≤ Rab · (qg(Rx) + 1) many alternations.

Case: Safe composition. f(~x /~a) = h(s(~x/)/t(~x/~a)). Here s and t may be
vectors of functions, but we omit this for simplicity (nothing essential is changed
in the proof). The induction hypotheses give polynomials ph, ps, pt, qh, qs, qt,
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rh, rs and rt, and machines Mh, Ms and Mt. Let ~X and ~A be trees representing
sets ~x and ~a with local index sizes bounded by Nx and Na, and ranks bounded
by Rx and Ra, respectively. W.l.o.g. Nx, Na ≥ 2 and Ra ≥ 1. Let Nxa =
max(Nx, Na), Nst = max(Ns, Nt), pst = ps+pt, and qst = qs+ qt. We have that

Nst ≤ N2pst(Rx)

xa .
Let M be the algorithm for f , based on composing the algorithms for h, s

and t using the above-described algorithm for composition. M
~X, ~A will recognize

a tree T whose rank is bounded by

Rt + rh(Rs) ≤ Ra + rt(Rx) + rh(rs(Rx))

so we can choose rf = rt + rh ◦ rs. The local index size of T is bounded by

N2ph(Rs)

st ≤
(
N2pst(Rx)

xa

)2ph(rs(Rx))

= N2pst(Rx)+ph(rs(Rx))

xa .

The run time of M is bounded by, for some c = O(1),

O(max{runtime(s), runtime(t)}+ runtime(h))

≤ O
(

max{(logNx) · 2ps(Rx), Ra · (logNxa) · 2pt(Rx)}c

+
(
Rt · (logNst) · 2ph(Rs)

)c)
≤ O

((
Ra · (logNxa) · 2pst(Rx)

)c
+
(
(Ra + rt(Rx)) · (logNxa) · 2pst(Rx)+ph(rs(Rx))

)c)
≤
(
Ra · (logNxa) · 2pf (Rx)

)c
for an appropriately chosen polynomial pf . Say, pf = ps+pt+rt+ph ◦rs+O(1).

The number of alternations of this algorithm is bounded by

max{alternations(s), alternations(t)}+ alternations(h) +O(1)

≤ max{qs(Rx), Ra · qt(Rx)}+Rt · qh(Rs) +O(1)

≤ Ra · qst(Rx) + (Ra + rt(Rx)) · qh(rs(Rx)) +O(1)

≤ Ra · qf (Rx)

for an appropriate polynomial qf .

Case: Predicative set recursion. f(x, ~y /~a) = h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x}).
The induction hypothesis gives polynomials ph, qh, rh, and a machine Mh.

Let X, ~Y and ~A be trees representing sets x, ~y and ~a, respectively, with lo-
cal index sizes bounded by Nx, Ny and Na, respectively, and ranks bounded
by Rx, Ry and Ra, respectively. W.l.o.g. Nx, Ny, Na ≥ 2 and Ra ≥ 1. Let
Nxya = max(Nx, Ny, Na), and Rxy = max(Rx, Ry). With M we denote the (yet
to be defined) algorithm for computing f .

Let f̄(x, ~y /~a) be the set {f(z, ~y /~a) : z ∈ x}. This set can be recognized by

a machine MX,~Y , ~A

f̄
which on input 〈i〉 ∗ I first tests whether 〈i〉 is a path in X,

and if so calls MX〈i〉,~Y , ~A on input I. Then, MX,~Y , ~A computes the composition
of h with f̄ using the earlier-described algorithm. Let Rf̄ (Nf̄ , respectively)
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denote a bound to the rank (local index size, respectively) of the tree computed

by MX,~Y , ~A

f̄
.

Clearly, MX,~Y , ~A computes a tree T which represents f(x, ~y /~a). To obtain a
bound for the rank of T we can choose rf similar to the proof of Theorem 1.5:
Let rf (z) = r′f (z, z) with r′f (z, z′) = (1 + rh(z′))(1 + z). The same calculation
done in that proof carries over here to show by induction on Rx that the rank
of T is ≤ Ra + r′f (Rx, Rxy).

In order to bound the local index size of T we choose pf similar to the proof of
Theorem 1.9. Let pf (z) = p′f (z, z) for p′f (z, z′) = (ph(z′)+rf (z′)+O(1)) ·(1+z).
We show by induction on Rx that the local index size of T is bounded by N
defined as

N2
p′f (Rx,Rxy)

xya

and that the run time is ≤ (Ra logN)O(1). In case Rx = 0 both assertions follow
easily. For Rx > 0, we calculate as a bound for the local index size of T

max{Nxya, Nf̄}2
ph(Rxy)

≤ max{Nxya, Nx, N2
p′f (Rx−1,Rxy)

xya }2
ph(Rxy)

≤ N2
p′f (Rx−1,Rxy)+ph(Rxy)

xya ≤ N2
p′f (Rx,Rxy)

xya .

The run time of M can be bounded by, for some c = O(1),

O(runtime(Mh) + runtime(Mf̄ ))

≤ O
((

max{Ra, Rf̄} · (log max{Nxya, Nf̄}) · 2ph(Rxy)
)c

+
(
Ra · (logNf̄ ) +Ra · (logNxya) · 2p

′
f (Rx−1,Rxy)

)c)
≤ O

((
(Ra + rf (Rxy)) · (logNxya) · 2p

′
f (Rx−1,Rxy) · 2ph(Rxy)

)c
+
(
Ra · (logNxya) · 2p

′
f (Rx−1,Rxy) +Ra · (logNxya) · 2p

′
f (Rx−1,Rxy)

)c)
≤
(
Ra · log(Nxya) · 2ph(Rxy)+rf (Rxy)+O(1)+p′f (Rx−1,Rxy)

)c
=
(
Ra · log(Nxya) · 2p

′
f (Rx,Rxy)

)c
.

Let q′f (z, z′) = (rf (z′) +O(1)) · qh(z′) · (1 + z). We will show that the overall

number of alterations of MX,~Y , ~A is bounded by Ra · q′f (Rx, Rxy) by induction

on Rx. Then choosing qf (z) = q′f (z, z) gives the desired bound. If Rx = 0, the
overall number of alterations can be calculated as

alternations(Mh) ≤ Ra · qh(Rxy) ≤ Ra · q′f (0, Rxy) .

If Rx > 0 we obtain

alternations(Mh) + alternations(Mf̄ ) +O(1)

≤ max{Ra, Rf̄} · qh(Rxy) +Ra · q′f (Rx − 1, Rxy) +O(1)

≤ (Ra + rf (Rxy)) · qh(Rxy) +Ra · q′f (Rx − 1, Rxy) +O(1)

≤ Ra · ((rf (Rxy) +O(1)) · qh(Rxy) + q′f (Rx − 1, Rxy))

= Ra · q′f (Rx, Rxy) .
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a
We are now ready to prove the converses of Theorems 2.11 and 2.12, and thus

finishing the proofs of Theorems 2.9 and 2.10, respectively.

Theorem 2.24. Assume f is in SRSFνm . Then there is some constant c > 0
such that |f(x)| = O(|x|c) for all x, and that f can be computed by some machine
in ATIME(2n

c

, nc).

Proof. Assume f(x) is in SRSFνm , then there is some F in SRSF such
that F (νm(u) /) = νm(f(u)) for all u ∈ Σ∗. Using Theorem 1.5 together with
rk(νm(u)) = Θ(|u|), we obtain some polynomial q such that |f(u)| ≤ q(|u|).

Let u ∈ Σ∗. νm(u) can be represented by some canonical tree Tνm(u) of local
index size O(|u|) and rank O(|u|). Furthermore, there is a (deterministic) Turing
machine Mνm taking two inputs such that, if the first input is fixed to u, Mνm acts
as a recognizer for Tνm(u) and runs in time O(|u|) (independent of the second
input).

By Theorem 2.23, F is AEP-computable. Thus, there is some ATM MX and
polynomial p such that MTνm(u) recognizes a tree T representing F (νm(u) /), the
tree T has local index size ≤ 2p(|u|) and rank ≤ p(|u|), and MTνm(u) runs in time
≤ 2p(|u|) with ≤ p(|u|) many alternations. Using Mνm(u) to answer queries to
Tνm(u), we obtain a machine M which takes two inputs such that, if the first

input is fixed to u, M acts as a recognizer for T and runs in time ≤ 2p(|u|)+1

with ≤ p(|u|) many alternations.
We define a machineM deciding the graph of f as follows: On inputs u, v ∈ Σ∗,

M first verifies that |v| ≤ q(|u|) and rejects if this is not the case. Then, M runs

M
T,Tνm(v)
= , using M(u) for recognizing T , and Mνm(v) for recognizing Tνm(v). By

Lemma 2.19, this algorithm runs in time ≤ 2p(|u|)+1·p(|v|)O(1) with O(p(|u|)+|v|)
many alternations. a

Theorem 2.25. Assume f is in SRSFνt . Then there is some constant c > 0
such that |f(x)| = O(2logc |x|) for all x, and that f can be computed by some
machine in ATIME(2logc n, logc n).

Proof. The proof is similar to the previous one. Assume f(x) is in SRSFνt ,
then there is some F in SRSF such that F (νt(u) /) = νt(f(u)) for all u ∈ Σ∗.
Using Theorem 1.5 together with rk(νt(u)) = Θ(log(|u|)), we obtain some poly-
nomial q such that |f(u)| ≤ 2q(log |u|).

Let u ∈ Σ∗. νt(u) can be represented by some canonical tree Tνt(u) of local
index size O(1) and rank O(log |u|). Furthermore, there is a (deterministic)
Turing machine Mνt taking two inputs, such that if the first is set to u, acts as
a recognizer for this tree, and runs in time O(|u|) (independent of the second
input).

The constructions of machines is now the same as in the previous proof, with
the difference that Mνm is replaced with Mνt . Only the resulting bounds on
running time and alternations are changed due to the different input encoding.
The tree T representing the value of f will have local index size ≤ 2p(log |u|) and
rank ≤ p(log |u|) for some polynomial p, and the machine M which on input u
acts as a recognizer for T can be constructed with running time ≤ 2p(log |u|) using
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≤ p(log |u|) many alternations. We then obtain a machine deciding the graph
of f with the required bounds on run time and alternations as before. a

§3. Computing on arbitrary sets. Our goal in this section is to charac-
terize the safe recursive functions (i.e., the functions in SRSF) in definability-
theoretic terms. To achieve this we will use a relativization of Gödel’s L-
hierarchy. Our result breaks into two parts: an upper bound result, showing
that every safe recursive function satisfies our definability criterion, and a lower
bound result, showing that any function satisfying our definability criterion is in
fact safe recursive. First we introduce:

3.1. The relativized Gödel hierarchy. For a transitive set T , define the
LT -hierarchy as follows:

LT0 = T

LTα+1 = Def(LTα)

LTλ =
⋃
α<λ

LTα for limit λ ,

where for any set X, Def(X) denotes the set of all subsets of X which are first-
order definable over the structure (X,∈) with parameters. The following facts
are easily verified:

Lemma 3.1. For any transitive set T :

1. T is an element of LT1 .
2. Each LTα is transitive and α ≤ β implies LTα ⊆ LTβ .

3. Ord(LTα) = Ord(T ) + α, where Ord(X) denotes Ord∩X for any set X.

Gödel demonstrated the following definability result for the L-hierarchy: For
limit α, the sequence (Lβ : β < α) is definable over (Lα,∈) and the definition is
independent of α. (See for example [7, Chapter II, Lemma 2.8].) His argument
readily yields the following refinement, which will be needed for our upper bound
result.

Lemma 3.2. Let k < ω be sufficiently large, and let T be transitive, α an
ordinal and ϕ(~x, ~y) a formula. Let D consist of all triples (U, β, ~p) such that for
some γ, U is a transitive element of LTγ+1, γ + k · β < α, and ~p is a sequence

(with the same length as ~y) of elements of LUβ . Then the function with domain D
sending (U, β, ~p) to (LUβ , {~x : LUβ � ϕ(~x, ~p)}) is definable over LTα via a definition
independent of T, α.

For our lower bound result we will need the following (see [11, Corollary 13.8]):

Lemma 3.3. (Gödel) There exists a list of functions G1(x, y), . . . , G10(x, y)
such that for transitive T ,

⋃
1≤i≤10 range(Gi � T×T ) is a transitive set containing

T as a subset and Def(T ) consists of those subsets of T which belong to the
closure of T ∪ {T} under the Gi’s. Moreover, for each i the associated function
G∗i defined by G∗i (/ x, y) = Gi(x, y) belongs to SRud.
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3.2. The upper bound result. Recall that we identify finite sequences ~x of
sets with individual sets, using Kuratowski pairing. For any set x let tc(x) denote
the transitive closure of x. The rank of tc(x) (in the von Neumann hierarchy of
Vα’s) is the same as rk(x), the rank of x. Given two finite sequences ~x, ~y, we
write ~x ∗ ~y for their concatenation.

Definition 3.4. For sequences ~x, ~y and 0 < n ≤ ω we define SRn(~x / ~y) as

L
tc(~x∗~y)
(2+rk(~x))n .

Our upper bound result is the following refinement of Theorem 1.5:

Theorem 3.5. If f(~x / ~y) is safe recursive then for some finite n, f(~x / ~y) is
uniformly definable in SRn(~x / ~y), i.e., for some formula ϕ(~x, ~y, z) we have

1. f(~x / ~y) belongs to SRn(~x / ~y) for all ~x, ~y;
2. f(~x / ~y) = z if and only if (SRn(~x / ~y),∈) � ϕ(~x, ~y, z).

To see that this implies Theorem 1.5, note that all elements of SRn(~x / ~y) have
rank at most rk(~x ∗ ~y) + (2 + rk(~x))n ≤ max(rk(~x), rk(~y)) + k + (2 + rk(~x))n for
some finite k, which is bounded by maxi rk(yi) + a polynomial in rk(~x).

Proof of Theorem 3.5. As in the proof of Theorem 1.5 we proceed by
induction on the clauses that generate f as a safe recursive function. The base
cases of projection, difference and pairing are left to the reader. For bounded
union we have

f(~x / ~y, z) =
⋃
w∈z

g(~x / ~y, w) ,

and by induction there is a finite n such that g(~x / ~y, w) is uniformly definable
in SRn(~x / ~y, w). By the definability of union, it then follows from Lemma 3.2
that f(~x / ~y, z) is uniformly definable in SRn+k(~x / ~y, z) for sufficiently large k.

Safe Composition. Suppose

f(~x / ~y) = h(~r(~x /) /~t(~x / ~y)) .

The induction hypothesis gives values nh, nri and ntj witnessing the theo-
rem for the functions h, ri for each i and tj for each j, respectively. By
Lemma 3.2 we can choose a large n and combine the uniform definitions of
the ri(~x /)’s in the SRnri

(~x /)’s, of the tj(~x / ~y)’s in the SRntj
(~x / ~y)’s and of

h(~r(~x /) /~t(~x / ~y)) in SRnh(~r(~x /) /~t(~x / ~y)) to produce a uniform definition of
f(~x / ~y) inside SRn(~x / ~y).

Predicative Set Recursion. Suppose

f(x, ~y / ~z) = h(x, ~y / ~z, {f(w, ~y / ~z) : w ∈ x}) .

Choose n > 1 to witness the Theorem for h, i.e., so that h(x, ~y / ~z, u) is uniformly
definable in SRn(x, ~y / ~z, u). Fix ~y and ~z. We first show by induction on rk(x)

that f(x, ~y / ~z) is an element of L
tc(〈x〉∗~y∗~z)
k·(2+rk(〈x〉∗~y))n·(rk(x)+1) (where k > n is fixed as

in Lemma 3.2). If rk(x) is 0 then we want to show that f(0, ~y / ~z) = h(0, ~y / ~z, 0) is

an element of L
tc(〈0〉∗~y∗~z)
k·(2+rk(〈0〉∗~y))n , which is true by the choice of n. If rk(x) > 0 then

by induction we know that for w ∈ x, f(w, ~y / ~z) is in L
tc(〈w〉∗~y∗~z)
k·(2+rk(〈w〉∗~y))n·(rk(w)+1);

it follows that {f(w, ~y / ~z) : w ∈ x} is in L
tc(〈x〉∗~y∗~z)
k·(2+rk(〈x〉∗~y))n·rk(x). By choice of n,
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f(x, ~y / ~z) = h(x, ~y / ~z, {f(w, ~y / ~z) : w ∈ x}) is in L
tc(〈x〉∗~y∗~z∗〈{f(w,~y / ~z) : w∈x}〉)
(2+rk(〈x〉∗~y))n

and therefore by Lemma 3.2 also in L
tc(〈x〉∗~y∗~z)
k·(2+rk(〈x〉∗~y))n·(rk(x)+1). This completes

the induction step. That f(x, ~y / ~z) is uniformly definable in x, ~y, ~z follows im-
mediately by considering

f̄(x, ~y / ~z) = {(w, f(w, ~y / ~z)) : w ∈ tc({x})}
because we can express f̄(x, ~y / ~z) = s as the formula

domain(s) = tc({x}) ∧ ∀w ∈ tc({x})
(
s(w) = h(w, ~y / ~z, {s(v) : v ∈ w})

)
,

using the uniform definition of h(x, ~y / ~z, u).
Now by choosing m large enough so that k · (2 + rk(〈x〉 ∗ ~y))n · (rk(x) + 1)

is less than (2 + rk(〈x〉 ∗ ~y))m we have that f(x, ~y / ~z) is uniformly definable in
SRm(x, ~y / ~z), as desired. a

Note that if there are no safe arguments then SRn(~x /) takes a particularly
nice form and we have:

Corollary 3.6. Suppose that f(~x /) is safe recursive. Then for some finite
n and some formula ϕ we have :

1. f(~x /) belongs to L
tc(~x)
(2+rk(~x))n .

2. f(~x /) = y if and only if L
tc(~x)
(2+rk(~x))n � ϕ(~x, y).

For any transitive set T let SR(T ) denote LT(2+rk(T ))ω .

Corollary 3.7. For transitive T , SR(T ) contains T∪{T} and is closed under
SRSF functions (i.e., T contains f(~x / ~y) whenever f is safe recursive and T
contains the components of ~x, ~y).

We shall soon see that SR(T ) is in fact the smallest such set.

3.3. The lower bound result. Now we aim for a converse of Theorem 3.5.
We begin by showing that a certain initial segment of the LT -hierarchy can be
generated by iteration of a safe recursive function.

Lemma 3.8. Suppose that f(x /) is safe recursive with ordinal values and
g(/ x) is safe recursive with the property that x ⊆ g(/ x) for all x. By induc-
tion on α define gα(/ x) by: g0(/ x) = x, gα+1(/ x) = g(/ gα(/ x)), gλ(/ x) =⋃
α<λ g

α(/ x) for limit λ. Then the function h(x /) = gf(x /)(/ x) is safe recur-
sive.

Proof. Imitating the proof that multiplication can be defined from addition
via a predicative set recursion, first define the function k(x, y /) via a predicative
set recursion as follows:

k(x, y /) =


y if x = 0

g(/
⋃
{k(z, y /) : z ∈ x}) if x = Succ(/

⋃
x)⋃

{k(z, y /) : z ∈ x} otherwise.

Then k is safe recursive and note that for each ordinal α, k(α, y /) = gα(/ y),
because α ≤ β implies gα(/ y) ⊆ gβ(/ y). It follows from safe composition that
h(x /) = k(f(x /), x /) is also safe recursive. a
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Recall from Section 1.2 that the rank function rk(x /) is safe recursive. We
say that a function f(~x / ~y) is safe recursive with parameter p if, for some safe
recursive function g(~x, z / ~y), we have f(~x / ~y) = g(~x, p / ~y) for all ~x, ~y.

Corollary 3.9. 1. The function tc(x /) computing the transitive closure
of x, is safe recursive.

2. The function L(x, T /) = LTrk(x) is safe recursive with parameter ω.

3. For each finite n, the function SRn(~x /) is safe recursive with parameter ω.

Proof. 1. The transitive closure of x is obtained by iterating the SRud
function g(/ x) = (x ∪ (

⋃
x)) rk(x) times. So the result follows from the

previous lemma.
2. The function

g(/ a) = a ∪
⋃

1≤i≤10

range(Gi � a× a)

(see Lemma 3.3) belongs to SRud. It follows from the previous lemma that
the function

g∗(T /) = the closure of T ∪ {T} under g

(restricted to transitive T ) is safe recursive with parameter ω, as it is ob-
tained by iterating g ω times. Similarly, as the function rk(x /) is safe
recursive, an application of the previous lemma gives the safe recursiveness
of L(x, T /).

3. This follows from 1 and 2, using the fact that ordinal multiplication is safe
recursive.

a
We therefore get the following partial converse to Theorem 3.5.

Theorem 3.10. Suppose that for some finite n, f(~x / ~y) is uniformly definable
in SRn(~x / ~y). Then f(~x / ~y) is safe recursive with parameter ω. Moreover there
is a safe recursive function g(~x / ~y) such that f(~x / ~y) = g(~x / ~y) whenever ~x has
a component of infinite rank (i.e., whenever rk(~x) is infinite.)

Proof. By Corollary 3.9 (3), the function SRn(~x / ~y) is safe recursive with
parameter ω. For any formula ϕ(~x, ~y, z), the function

g(/ T, p) = {(~x, ~y) : T � ϕ(~x, ~y, p)}
is in SRud (see for example [7, Chapter VI, Lemma 1.17]). It follows that any
function which is uniformly definable in SRn(~x / ~y) is also safe recursive with
parameter ω. For the “moreover” clause, note that there is a safe recursive
function f(x /) whose value is ω for x of infinite rank, and therefore ω can be
eliminated as a parameter when ~x has a component of infinite rank. a

Corollary 3.11. The safe recursive functions with parameter ω are exactly
the functions f(~x / ~y) which are uniformly definable in SRn(~x∗ 〈ω〉 / ~y) for some
finite n.

Note that the closure of {0} under safe recursive functions is Lω, the set of
hereditarily finite sets. Furthermore, when T is transitive of infinite rank, then
ω belongs to the safe recursive closure of T . Therefore we have:
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Corollary 3.12. For transitive T , SR(T ) = LT(2+rk(T ))ω is the smallest set

which contains T ∪ {T} as a subset and is closed under safe recursive functions.

We therefore obtain the following hierarchy of iterated safe recursive closures.
Define:

SR0 = ∅
SRα+1 = SR(SRα)

SRλ =
⋃
α<λ

SRα for limit λ .

Corollary 3.13. For every α, SR1+α = Lωωα .

To eliminate the parameter ω from Corollary 3.11 we redefine SRn slightly,
using a slower hierarchy for LT . Define MT

α inductively as follows:

MT
0 = T

MT
α+1 = MT

α ∪ {MT
α } ∪

⋃
1≤i≤10

range(Gi � ((MT
α ∪ {MT

α })× (MT
α ∪ {MT

α }))

MT
λ =

⋃
α<λ

MT
α for limit λ .

This hierarchy is very close to Jensen’s S-hierarchy, a refinement of his J-
hierarchy (see [12, page 244]). We have the following (see [12, page 255]):

Lemma 3.14. For any transitive set T :

1. T is an element of MT
1 .

2. Each MT
α is transitive and α ≤ β implies MT

α ⊆MT
β .

3. Ord(MT
λ ) = Ord(T ) + λ for limit λ.

4. MT
α = LTα if α is ω or ω · α = α. In particular, MT

rk(x)ω = LTrk(x)ω if x has

rank greater than 1.

Definition 3.15. For sequences ~x, ~y and 0 < n ≤ ω we define SR∗n(~x / ~y) to

be M
tc(~x∗~y)
(2+rk(~x))n .

Lemma 3.2 and Theorem 3.5 (the upper bound result) go through with L
replaced by M and SRn(~x / ~y) replaced by SR∗n(~x / ~y). But now the lower bound
result can be improved, as the parameter ω can be dropped in the versions of
Corollary 3.9 (2), (3) in which L is replaced by M and SR is replaced by SR∗:
Whereas obtaining LTα+1 from LTα requires a predicative set recursion of length

ω, MT
α+1 is obtained from MT

α by a single application of a function in SRud. In
conclusion, we get the following characterization:

Theorem 3.16. The safe recursive functions are exactly the functions f(~x / ~y)
which are uniformly definable in SR∗n(~x / ~y) for some finite n.

3.4. Safe recursive functions on binary ω-sequences. We let {0, 1}ω
denote all ω-sequences of 0’s and 1’s. Note that if x belongs to {0, 1}ω then x

has rank ω. It follows that SRn(x /) is equal to L
tc(x)
ωn for 0 < n ≤ ω. Moreover

the latter can be equivalently written as Lωn [x], where Lα[x] is the α-th level
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of the relativized Gödel’s L-hierarchy in which x is introduced as a new unary
predicate.

Thus the safe recursive functions restricted to elements of {0, 1}ω as normal
inputs take the following form:

f(x /) = y iff Lωn [x] � ϕ(x, y)

for some formula ϕ.
We obtain the following Theorem, where the equivalence between 1 and 2

is implicit in the analysis of the “Theory Machine”, the universal infinite-time
Turing machine considered in [9].

Theorem 3.17. For any function g : {0, 1}ω → {0, 1}ω, the following are
equivalent:

1. g is computable by an infinite-time Turing machine (see [10]) in time β for
some β < ωω.

2. g is of the form

g(x) = y iff Lβ [x] � ϕ(x, y)

for some formula ϕ and some β < ωω.
3. g(x) = G(x /) for some G ∈ SRSF.

This shows that the safe recursive functions restricted to normal inputs in
{0, 1}ω with values in {0, 1}ω are equivalent to the functions computed by an
infinite-time Turing machine in time less than ωω. Interestingly, these are exactly
the functions which are computable in polynomial time on an infinite-time Turing
machine in the sense of [17].

§4. A machine model for safe recursive functions. We finish by briefly
describing a simple machine model with parallel processors which with the nat-
ural bound on running times yields the class of safe recursive functions.

To each set x assign a processor Px, which computes in ordinal stages. The
value computed by Px at stage α is denoted by Pαx . The entire machine M is
determined by a function h(/ x) in SRud and a finite n > 0. We write M = Mn

h .
Pαx is defined by induction on α as follows. For any x and α, we denote

{(y, β, P βy ) : y ∈ x, β ≤ α} by P≤α∈x and {(x, β, P βx ) : β < α} by P<αx . Now
define:

Pαx = h(/P≤α∈x ∪ P<αx ) .(4.1)

Thus the value computed by processor Px at stage α is determined by the history
of the values of processors Py for y ∈ x at stages ≤ α together with the values
of processor Px itself at stages < α.

The function f(x /) computed by Mn
h is given by: f(x /) = P

rk(x)n

x .

Theorem 4.1. The safe recursive functions f(x /) are exactly those computed
by a machine Mn

h for some h(/ x) in SRud and some finite n > 0.

Proof. It follows from the predicative set recursion scheme that the function

g(x, y /) = P
rk(y)n

x is safe recursive (where Pαx is defined as above, using h).
It follows that f(x /) = g(x, x /), the function computed by Mn

h , is also safe
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recursive. Conversely, in view of the improved characterization of safe recursive
functions given by Theorem 3.16, it suffices to observe that the M -hierarchy,
given by applying the Gödel functions iteratively, is obtained by iteration of a
function in SRud and therefore is captured by Definition (4.1) above. a
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