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Abstract We show that logics based on linear Kripke frames – with or without
constant domains – that have a scattered end piece are not recursively enumerable.
This is done by reduction to validity in all finite classical models.

1 Introduction

This article combines and extends (and fixes some errors) of [3] giving non recursive
enumerability results for Gödel logics, and [4], linking Gödel logics with logics
defined by countable Kripke frames. The extensions presented here are two-fold:

– extension to linear Kripke frames of arbitrary size,
– extension to the case of increasing domains.

Similar studies have been carried out by Takano [8], who provided an axiomatiza-
tion of the Kripke frame of R, and Minari et al. [5] who explored relations between
logics of Kripke frames based on ordinals.

2 Preliminaries

Definition 1 (Kripke frame) A Kripke frame is a triple (K,R,U) where (K,R) is
a quasi order (reflexive and transitive), and U is a mapping that associates with
each k ∈ K a non-empty set of objects Uk with the following conditions: if k R l

then Uk ⊆ Ul.
If U is the constant function, then it is a Kripke frame over constant domains,

otherwise normal, general, or increasing domains.
If R is a total order, then we say that the Kripke frame is linear.
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Henceforth, we will only deal with linear Kripke frames, and will drop “linear”
at will.

In standard Kripke style semantics evaluations are considered via forcing rela-
tions in the worlds, together with conditions that guarantee persistency, i.e., that
if A holds in a world w, it also holds in all worlds w′ such that w R w′. Instead
of following this approach we will consider the set of upward closed subsets as
co-domain of valuations. This definition of semantics will be equivalent to the
approach via forcing relations.

Definition 2 (upsets) The set Up(K) consists of all upward closed subsets of K.

In case of linear Kripke frames the set Up(K) is a complete total order with
respect to ⊆, i.e. a complete lattice. We will denote with 0K the empty set, 0K = ∅,
and with 1K the full frame, 1K = K. Clearly, 0K is the smallest element, and 1K

the largest element of this lattice.
We will furthermore freely use notations from linear orders, especially intervals

like [a, b] for a and b in Up(K), with the usual meaning [a, b] = {c ∈ Up(K) : a ⊆
c ⊆ b}.

We will base our definition of semantics on Up(K) instead of K itself. This is
straight-forward in the constant domain case, but in the increasing domain case we
have to take care that the evaluations honor the persistency condition mentioned
above.

Definition 3 (valuation) Let Ū be the union of all Uk for k ∈ K. A function ϕ

is called valuation if it is mapping atomic formulas with constant symbols for all
u ∈ Ū Into Up(K), such that for an n-ary predicate symbol P

∀w ∈ ϕ(P (u)) : u ∈ Un
w

Let LŪ be the set of all formulas with with constant symbols from Ū . It is easy
to show that the above condition ensures that the persistency condition holds for
all atomic formulas. In addition, ϕ can be extended to a valuation of all formulas
in LŪ into Up(K) in the following way:

ϕ(A ∨B) = ϕ(A) ∪ ϕ(B)

ϕ(A ∧B) = ϕ(A) ∩ ϕ(B)

ϕ(A→ B) =

{
1K if ϕ(A) ⊆ ϕ(B)

ϕ(B) otherwise

To extend the definition of valuation to quantifiers we introduce an auxiliary exis-
tance predicate: Let E(x) be a new unary predicate symbol, whose interpretation
in K is fixed according to K’s domains:

w ∈ ϕ(E(a)) iff a ∈ Uw

for all w ∈ K and a ∈ Ū . With this we define

ϕ(∃xA(x)) =
⋃
a∈Ū

ϕ(E(a) ∧A(a))

ϕ(∀xA(x)) =
⋂
a∈Ū

ϕ(E(a)→ A(a))
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Similar approaches have been taken by Scott [7] and are used for Skolemization
by Baaz and Iemhoff [1,2].

We are considering valuations of formulas with parameters from all worlds Ū .
It is easy to show that a formula can only we evaluated to true in such worlds in
which all its parameters are present:

Proposition 1 Let ϕ be a valuation, w ∈ K, A ∈ LŪ and a ∈ Ū a parameter occurring

in A. Assume w ∈ ϕ(A). Then a ∈ Uw.

The above definition of semantics is equivalent to the more common definition
via a forcing relation: Let ϕ be a valuation, w ∈ K and A ∈ LŪ . We define w  A

inductively as follows: If A is atomic then w  A iff w ∈ ϕ(A).

w  A ∨B iff w  A or w  B.

w  A ∧B iff w  A and w  B.

w  A→ B iff for all u ∈ K such that w R u, u  A implies u  B.

w  ∃xA(x) iff there exists a ∈ Uw such that w  A(a).

w  ∀xA(x) iff for every u ∈ K such that w R u, and every a ∈ Uu , u  A(a).

Proposition 2 The two definitions of semantics are equivalent. That is, let ϕ be a

valuation, w ∈ K and A ∈ LŪ . Then

w  A iff w ∈ ϕ(A).

Proof by induction on the build-up of A. ut

Definition 4 (validity) The logic L(K) of a fixed Kripke frame K is the set of all
closed formulas such that for all valuations ϕ the valuation of A is 1K

At times we will use the notation ϕ |= A if ϕ(A) = 1K. In the following we
will give two related but independent proofs for the case where the Kripke frame
is scattered or not.

Definition 5 A Kripke frame is called scattered if Q cannot be embedded into the
Kripke frame as a linear order.

As a fact, K is scattered if and only if Up(K) is scattered: an embedding of
Q into K easily carries over to an embedding in Up(K), and conversely, given
an embedding into Up(K), one can construct a dense in itself subset of K, by
iteratively choosing levels of intermediate points of previous levels, together with
separating upsets.

In the logics of Kripke frames, not all quantifier shift rules are valid. To obtain
validity for some formulas, we consider ‘crisp’ formulas which behave classically.
This will be used in the following during our construction to give strict (crisp)
meaning to certain axioms.

Definition 6 A formula is called crisp if all occurrences of atomic formulas are
negated.
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Lemma 1 Let A and B be crisp formulas, K a Kripke frame. If A and B are classically

equivalent, then A ↔ B is valid in K, i.e. A ↔ B ∈ L(K). Moreover, if A(x) and B

are crisp, then

|= ∀xA(x)→ B ↔ ∃x(A(x)→ B) and

|= B → ∃xA(x)↔ ∃x(B → A(x)).

Proof By induction on the formula structure: Atomic formulas are either negated or
double-negated, and thus obtain as possible values only 0K or 1K. Gödel valuations
are truth-functional, thus compound formulas, too, obtain only the extremal truth
values.

Assume that A↔ B is not valid in L(K), by the above we can assume w.l.o.g.
that ϕK(A) = 0 and ϕK(B) = 1. Define a classical interpretation with universe
being the objects of the initial world, and ϕC(P (a)) holds iff ϕK(¬¬P (a)) = 1K.
We obtain that also ϕC disagrees on the values of A and B, and thus A ↔ B is
not classically valid.

While not completely reflecting the strict order, the following definition comes
very close.

Definition 7 We write A ≺ B for (B → A)→ B.

A ≺ B evaluates to 1K iff ϕ(A) ( ϕ(B), or ϕ(A) = ϕ(B) = 1K. Thus, with the
exception of 1K, ≺ behaves like a strict order.

In the following sections we will show that various subclasses of Kripke frames
generate a non-recursively enumerable logic, by reducing classical validity of a for-
mula in all finite models to the validity of a formula in the logic under discussion.
Since validity in all finite first-order classical structures is not recursively enumer-
able, we obtain that the logics under consideration are not recursively enumerable.

3 Scattered linear Kripke frames over constant domains

Following the layout described above, we are searching for something genuinely
finite in a scattered Kripke frame. The property of Q that is exploited here is that
for every two distinct elements of Q, there is another element strictly between these
two. On the contrary, if we cannot embed Q, i.e., if the Kripke frame is scattered,
then there are two elements with no other world in-between. We can find these
two elements by iterating a picking procedure: Start with two arbitrary distinct
elements, they form level 0; at each stage select two elements from previous levels,
and search for an element strictly between them. If it exists, select one for the
next level, otherwise terminate the process.

This process can be continued ad infinitum only if the starting set was dense
in itself, that is contains a copy of Q. If this is not the case, the process will
terminate at a finite stage, for any choice of intermediate points.. By relativizing
all quantifiers to indices of non-empty levels we are quantifying over arbitrary but
finite domains.

For the reverse direction (translating validity from Kripke logics to classical
logic) we need to make sure that we can find a picking order in a way that the
process iterates to an arbitrary but finite number. This can be achieved in the
case the original Kripke frame was infinite by selecting the initial points with
sufficiently many points in-between (2n + 1).
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Theorem 1 If K is scattered and infinite, then L(K) is not recursively enumerable.

Proof We associate to every sentence A another sentence A+ in a way that A+ is
valid in L(K) iff A is true in every finite (classical) first-order structure. Note that
the underlying languages are the same.

To formalize the procedure laid out above we use the following notions and
special predicate symbols, where we assume that the underlying language contains
infinitely many predicate symbols for any arity:

Level definition We select a binary predicate L that divides a subset of the domain
into levels. We write x ∈ i as an abbreviation for ¬¬L(x, i). Note that this
formula is crisp, i.e., evaluates to 0K or 1K.

Order We select a unary predicate P that acts as ‘valuator’ in the sense that when
we compare variables x and y, we actually compare the valuations of P (x)
and P (y). That is, we write

x ≺ y ↔ (P (x) ≺ P (y)).

Recall that if ϕ(P (x)) 6= 1K, x ≺ y evaluates to 1K iff ϕ(P (x)) ⊂ ϕ(P (y)). In
particular, if ϕ(∃xP (x)) 6= 1K, this always holds.

Emptiness predicate Let R(i) express the fact that the level i is not empty, i.e.,
R(i)↔ ∃x(x ∈ i).

The general layout of our formula A+ is

A+ = Construction → (A′ ∨ ∃xP (x)) (1)

The ingredients of A+ are:

Construction A formula realizing the picking process. Besides the actual picking
process, we also need to add the (finite) set of standard axioms for Robin-
son’s Q [6].

A′ The original formula A with two changes: (i) Putting double negations in front
of every atomic formula to obtain a crisp formula; and (ii) relativizing all
quantifiers to the predicate R(i).

∃xP (x) This formula is necessary to ensure that when translating counter exam-
ples, the ≺ relation provides an actual strict relation.

Let us now turn our attention to the Construction part: It will contain the
following formulae:

– crispified (double negations in front of atomic predicates) (finite) set of stan-
dard axioms for Robinson’s Q for 0, successor, and the less-than-or-equal rela-
tion. In the following we will denote with “≤” the formula obtained by double-
negation of the less-than-or-equal relation.

– assumption that the level 0 is not empty and contains two different objects
– an assumption that if level j is not empty, then all previous levels are also not

empty. This is necessary to deal with non-standard domains of models of Q.
– the description of the process: let

D ≡ (j ≤ i ∧ x ∈ j ∧ k ≤ i ∧ y ∈ k ∧ x ≺ y)→
→ (z ∈ s(i) ∧ x ≺ z ∧ z ≺ y)
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which will be used to express that for any two elements x ≺ y of levels ≤ i

there is an element between x and y in the next level i + 1.
We use this formula to state that either the above mentioned picking process
can be done, or the following level is empty:

∀i
[
∀x, y∀j∀k∃z D ∨ ∀x¬(x ∈ s(i))

]
Combining these we obtain the following formula

Construction =


Q ∧ c1 ∈ 0 ∧ c2 ∈ 0 ∧ c2 ≺ c1
∧ ∀i, j(i ≤ j ∧R(j)→ R(i))
∧ ∀i

[
∀x, y∀j∀k∃z D ∨ ∀x¬(x ∈ s(i))

]
 (2)

If Construction is true, then the true Q axioms force the domain to be a model
of arithmetic, which could be either a standard model (isomorphic to N) or a non-
standard model (N followed by copies of Z). P orders the elements of the domain
which fall into one of the levels in a subordering of the truth values.

As laid out above, if we cannot continue the picking process at infinitum,
the levels above some i are empty. Clearly, this condition can be satisfied in an
interpretation ϕ only for finitely many levels if Up(K) does not contain a dense
subset, i.e., K is scattered, since if infinitely many levels are non-empty, then⋃

i{ϕ(P (d)) : ϕ |= d ∈ i} gives a dense subset of Up(K). By relativizing the
quantifiers in A to the indices of non-empty levels, we in effect relativize to a finite
subset of the domain.

In the following we show that validity of A in all finite classical models coin-
cides with validity of A+ in L(K) by translating counter-examples. The following
Lemma 2 is the easy direction where we translate a counter example in a finite
structure into a counter example in Kripke frames. The later Lemma 3 is the
core of the proof, as it translates a counter example from Kripke frames to finite
structures.

Lemma 2 If A is classically false in some finite structure ϕC , then there is a model ϕK

based on constant domains in which A+ does not hold.

Proof Suppose A is classically false in some finite structure ϕC . W.l.o.g. we may
assume that the domain of this structure are the natural numbers 0, . . . , n. We
extend ϕC to an Up(K)-interpretation ϕK with constant domain N as follows:
Since Up(K) contains infinitely many subsets (we assumed that K is infinite), we
can choose c1, c2, L and P so that ∃x(x ∈ i) is true for i = 0, . . . , n and false
otherwise, and so that ϕK(∃xP (x)) 6= 1K.

One way to do this is to start with two points c1 and c2 such that there are
at least 2n+1 points between them. By reusing already selected points as far as
possible, we need

∑n
i=0 2n = 2n+1 − 1 points. Trivial observation shows that in

this case we can always assign values to ϕK(L(x, i)) in a way that the picking
process can continue exactly to the n-th stage, and breaks exactly at stage n + 1
from where on all levels are empty.

The number-theoretic symbols receive their natural interpretation. By this we
see that Construction, the antecedent of A+, receives the valuation 1K, and the
consequent receives ϕK(∃xP (x)) 6= 1K, so ϕ+ 2 A+. Since every model of constant
domain is also a model of increasing domain, this direction is shown.

(End of proof of Lemma 2)
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We continue with the reverse direction where we want to show that if ϕK is a
counter model of A+, we can find a counter model of A in a finite structure. To
this end we start with showing the following fact:

Fact If ϕK is a counter model for A+, then ϕK(Construction) = 1K.

Proof Suppose that ϕK 2 A+, that is that

ϕK(Construction → (A′ ∨ ∃xP (x))) < 1K.

Thus, both ϕK(A′) and ϕ(∃xP (x)) are < 1K. In this case, ϕK(x ≺ y) = 1K iff
ϕK(P (x)) ⊂ ϕK(P (y)), so ≺ defines a strict order.

Next, let us inspect the possible valuations of sub-formulas of Construction:
– Q is a crisp formula, thus evaluates to 0K or 1K;
– formulas with ∈ or ≤ as main predicates are also crisp – this includes also

those containing R(i); remember that ≤ denotes the double-negated less-than-
or-equal relation;

– the remaining formulas in D are of the form x ≺ y, which is a shorthand
for P (x) ≺ P (y).

Thus, all the sub-formulas evaluate either crisp, i.e., to 0K or 1K, or are evaluated
≤ ϕK(∃xP (x)), which in turn guarantees that the whole Construction also evalu-
ates to either 1K or ≤ ϕK(∃xP (x)). Since we assume that ϕK is a counter model
(the antecedent needs to be greater than the succedent), it must be 1K. ut

Lemma 3 If ϕK is a countermodel of A+, then there is a finite structure ϕC such

that A does not hold in ϕC .

Proof By the previous fact we see that ϕK(Construction) = 1K, and as a conse-
quence we obtain that Construction actually codifies the picking process as de-
scribed, i.e., that x ∈ i defines a series of levels and any level i > 0 is either empty,
or for all x, and y occurring in some smaller level there is a z with x ≺ z ≺ y and
z ∈ i.

Due to the fact that we are considering increasing domains, we cannot proceed
directly to the definition of the counter model ϕC , but have to base the model on
the set of objects that are present in all worlds. Let U+ be the set of objects that
are present in all universes Uk, i.e. U+ =

⋂
k∈K Uk. Due to the presence of the

Q axioms that are evaluated under ϕK to 1K, U+ must contain a copy of N. For
i ∈ N, let Li be the set of all elements of U+ of levels i:

Li :=
{
u ∈ U+ : ϕK(u ∈ i) = 1K

}
and let L≤i :=

⋃
j≤i Lj .

The next fact shows that the picking process is faithful, in the sense that
levels are non-empty only if for any two elements of the previous levels an element
in-between can be found, and otherwise empty:

Fact For a counter model ϕK of A+, and all i ∈ N, one of the following two
statements hold:
1. Li+1 = ∅
2. For all x and y from L≤i such that ϕK(x ≺ y) = 1K, there is a z ∈ Li+1 such

that ϕK(x ≺ z ≺ y) = 1K
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Proof Consider the relevant part of Construction,

B = ∀i
[
∀x, y∀j∀k∃z D ∨ ∀x¬(x ∈ s(i))

]
.

If ϕK(B) = 1K, then for all i ∈ U+, either ϕK(∀x, y∀j∀k∃z D) = 1K or ϕK(∀x¬(x ∈
s(i))) = 1K.

Case ϕ(∀x, y ∀j∀k∃z D) = 1K: Note that this holds for all x, y, j, and k in U+.

Now suppose that for all z ∈ U+, ϕ(D) 6= 1K, yet ϕK(∃z D) = 1K. This
requires a sequence of v ∈ U+ such that ϕK(v,D) converges to 1K. Then for at
least some z that also has to be in U+, the value of that formula would have to
be ⊃ ϕK(∃z P (z)), which is impossible. Thus, for every x, y, j, k in U+, there is
some z ∈ U+ such that ϕK(D) = 1K. But this means that for all x, y s.t. x ∈ j,
y ∈ k with j, k ≤ i and x ≺ y there is a z with x ≺ z ≺ y and z ∈ Li+1.

Case ϕ(∀x¬(x ∈ i)) = 1K: In this case we immediately obtain that ϕK(¬(x ∈ i)) =
1K for all x ∈ U+, hence ϕK(x ∈ i) = 0K and Li is empty.

(End of proof of Fact)

Assume that at least the first ω level sets are non-empty, and consider Lω :=⋃
i<ω Li. Lω is dense wrt ≺M, hence {ϕC(P (u)) : u ∈ Lω} is dense wrt ⊂, and we

obtain a nontrivial dense subset of Up(K) which cannot exists.

As a consequence, we obtain that for some i in the (possible non-standard)
model of Q, the level i is empty, i.e., Li = ∅.

Let i0 be minimal with Li0 = ∅. Then the additional assumption in the an-
tecedent of A+ shows for i ∈ U+

ϕK(R(i)) = 1K ⇒ ϕK(i < i0) = 1K ⇒ i < i0

Note that since there are only finitely many non-empty levels, the first non-
empty level i0 needs to be element of the standard part of a (possibly non-standard)
model. Thus, A is false in the classical interpretation ϕC obtained from ϕK by
restricting ϕK to the domain {i : i < i0} and ϕC(Q) = ϕK(¬¬Q) for atomic Q,
i.e., A is false in the finite model ({0, . . . , i0 − 1}) by letting

ϕC(Q) = true ⇔ ϕK(¬¬Q) = 1K

The very same proof applies to both increasing and constant domain case,
which proves the theorem.

(End of proof of Lemma 3)

The combination of Lemma 2 and 3 provides a proof of Theorem 1. ut

As a consequence we obtain for example that for every ordinal, the logic of the
Kripke frame based on it is not recursively enumerable.
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4 Not-scattered but scattered end piece

Considering the case where the Kripke frame is not scattered, we know that there
are axiomatizable logics, e.g., L(Q) or L(R) [8]. But we can show that if the Kripke
frame has a scattered end piece, or equivalently the complete linear order Up(K)
has a scattered initial segment, a proof similar to the preceeding section can exhibit
that logics for such Kripke frames also are non-recursive enumerable.

If the linear order Up(K) has a scattered initial segment, then for any sequence
of (an)n∈N with limes equal 0K = ∅, and for sufficiently large n, the initial segment
[0K, an] is scattered.

As with the proof of Theorem 1, we formalize a picking process. But depending
on the starting elements we cannot be sure that it actually terminates after finitely
many steps. Thus, we adjust the procedure by parallelizing the previous picking
process in all intervals [0K, an] for some decreasing sequence. In some of these
intervals the picking process might continue ad infinitum, but due to the end piece
of the Kripke frame being scattered, for sufficiently large N , the picking process
in all intervals [0K, an] for n > N will terminate. By guaranteeing that if for one
interval a certain level is empty, then for all intervals this level (and all following)
are empty, we obtain a finite set of not empty levels to which we relativize the the
formula.

Theorem 2 If for an infinite Kripke frame K, K has an initial segment that is scat-

tered, then L(K) is not recursively enumerable.

Proof The definition of A∗ mirrors the definition of A+ in the proof of Theorem 1,
except that the construction there is carried out infinitely many times for [0K, an]
(in Up(K)), where (an)n∈N is a strictly descending sequence, an > 0K for all n,
which converges to 0K in the linear order Up(K).

The basic concepts of the previous proof remain unchanged (level definitions,
order, emptiness predicate), with one change: All the involved predicates (P , R, L)
obtain another position referring to the current interval in which the construction
is carried out. Thus we have:

Level definition We select a ternary predicate L, and write x ∈` i ≡ ¬¬L(x, i, `).
Order We select a binary predicate P that acts as valuator in the current interval.

We write
x ≺` y ≡ (P (y, `)→ P (x, `))→ P (y, `).

Emptiness predicate Let R(i, `) express the fact that the level i for the interval `

is not empty, i.e., R(i, `) = ∃x(x ∈` i). The formula we will use to relativize is
defined as R∗(i) = ∀`R(i, `).

To formalize the decreasing sequence of intervals, we introduce a new concept:

Interval definition We select a unary predicate symbol Q(`) to define the decreasing
sequence of intervals. Note that ϕK(¬∀`Q(`)) = 1K iff inf{ϕK(Q(d)) : d ∈
U+} = 0K and ϕK(∀`¬¬Q(`)) = 1K iff 0K /∈ {ϕK(Q(d)) : d ∈ U+}.
Note that as before, for a fixed `, provided ϕk(∃xP (x, `)) < 1K, ϕK(x ≺` y) =

1K iff ϕK(P (x, `)) < ϕK(P (y, `)), and ϕK(x ∈` y) is always either 0K or 1K.
The general layout is again that we codify the construction in a formula Con-

struction, and define A∗ as:

Construction → (A′ ∨ ∃`∃xP (x, `) ∨ ∃`Q(`)) (3)
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The ingredients of A∗ are:

Construction The parallelized picking process, see below.
A′ The original formula A with two changes: (i) Putting double negations in front

of every atomic formula to obtain a crisp formula; and (ii) relativizing all
quantifiers to the predicate R∗(`) which states that all levels in the interval `
are not empty.

∃`∃xP (x, `), ∃`Q(`) These formulae are again necessary to ensure that when trans-
lating counter examples, the ≺ relation provides an actual strict relation.

The list of assumptions going into Construction mirrors the list from the previous
proof, but contains in addition the necessary properties to force Q(`) to have a
limit at 0. The important part of the construction formula is in the last line,
where for all levels we assume that either we can pick a new element (left part
involving E), or for all intervals (`) the level set is empty.

– Q (with double negations in front of atomic formulas) as before
– an assumptions that Q(`) describes a strictly descending sequence to 0K, with

limes 0K but non of the elements being 0K

– an assumption that all evaluations for interval ` are happening in the inter-
val [0K, ϕK(Q(`))]

– an assumption that level 0 for each interval ` contains two different objects
– an assumption that if for interval ` level j is not empty, then previous levels for

this interval are also not empty. This is necessary to deal with non-standard
models of Q

– the description of the process as before, but with additional quantifier for all
stages and relativized to these stages:

E ≡ (j ≤ i ∧ x ∈` j ∧ k ≤ i ∧ y ∈` k ∧ x ≺` y)→
→ (z ∈` s(i) ∧ x ≺` z ∧ z ≺` y)

Combining the above items we obtain:

Construction =


Q ∧ ¬∀`Q(`) ∧ ∀`¬¬Q(`) ∧
∀`∀x(P (x, `) ≺ Q(`)) ∧
∀`∀i, j(i ≤ j ∧R(j, `)→ R(i, `)) ∧
∀`∃x∃y(x ∈` 0 ∧ y ∈` 0 ∧ x ≺` y) ∧
∀i
[
∀`∀x, y∀j∀k∃z E ∨ ∀x∀`¬(x ∈` s(i))

]

 (4)

Recall from the proof of the former theorem that we collect all objects that are
present in domains at all worlds in U+. The idea here is that an interpretation ϕK

will contain a sequence (an)n∈N → 0K given by an = ϕK(Q(`n)) for some elements
`n in the domain. We have an > an+1 (which is an ⊃ an+1), and 0K < an < 1K for
all n. Let Li

` = {x ∈ U+ : ϕK(x ∈` i)} be the i-th level for interval `. P (x, `n) orders
the set

⋃
i L

i
`n

= {x ∈ U+ : ϕ(∃i(x ∈`n i)) = 1K} in a sub-ordering of [0K, an]:

x ≺`n y iff ϕ(x ≺`n y) = 1K. Again we force that whenever x, y ∈ Li
` with x ≺` y,

there is a z ∈ Li+1
` with x ≺` z ≺` y, or, if no possible such z exists, Li+1

` = ∅. In

addition, in this case also the level sets for all other intervals are empty, Li+1
`′ = ∅

for all `.
Now if A is classically false in some finite structure ϕC , we can again choose a

Up(K)-interpretation ϕK in which the interpretations of P , Q, L are as intended,
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the number theoretic predicates and functions receive their standard interpreta-
tion, and the interpretation works in every interval as in the previous proof.

On the other hand, if ϕ 2 A∗, then the value of the consequent is < 1K. Then
as required, for all x, `, ϕ(P (x, `)) < 1K and ϕK(Q(`)) < 1K. Since the antecedent,
as before, must be = 1K, this means that x ≺` y expresses a strict ordering of the
elements of Li

`. and ϕK(Q(`)) for ` contains a strictly descreasing sequence towards
0K. As K has scattered end-piece, the interval [0K, ϕK(Q(`))] must be scattered
for some `. For this interval, some level set must be empty, thus the same level is
also empty for all other intervals. The other conditions are likewise seen to hold
as intended, so that we can extract a finite counter model for A based on the
interpretation of the predicate symbols of A on {i : ϕK(R(i)) = 1K}, which must
be finite. ut

5 Conclusions

This note shows that the method originally employed in [3] can successfully be
extended to a much larger class. In fact, forthcoming work will extend this to
logics with the 4-operator, an indicator operator for 1K.

This leads to the question whether it might be possible to extended the results
to the case of non-linear Kripke frames. At least if we can restrict the branching
degree it might be possible to show that if all branches in a (non-linear) Kripke
frame are scattered, then the respective logic is not r.e.
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Pure and Applied Logic, 147:23–47, 2007.

4. Arnold Beckmann and Norbert Preining. Linear Kripke frames and Gödel logics. Journal
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