
A term rewriting characterization of the polytime

functions and related complexity classes

Arnold Beckmann and Andreas Weiermann

Institut für mathematische Logik und Grundlagenforschung

der Westfälischen Wilhelms-Universität Münster

Einsteinstr. 62

D-48149 Münster

Germany

February 23, 2004

Abstract

A natural term rewriting framework for the Bellantoni Cook schemata

of predicative recursion, which yields a canonical definition of the polyno-

mial time computable functions, is introduced. In terms of an exponential

function both, an upper bound and a lower bound are proved for the re-

sulting derivation lengths of the functions in question. It is proved that

any natural reduction strategy yields an algorithm which runs in expo-

nential time. We give an example in which this estimate is tight. It is

proved that the resulting derivation lengths become polynomially bounded

in the lengths of the inputs if the rewrite rules are only applied to terms

in which the safe arguments – no restrictions are assumed for the normal

arguments – consist of values, i.e. numerals, and not of names, i.e. non

numeral terms. It is proved that in the latter situation any inside first re-

duction strategy and any head reduction strategy yield algorithms, for the

function under consideration, for which the running time is bounded by

an appropriate polynomial in the lengths of the input. A feasible rewrite

system for predicative recursion with predicative parameter substitution

is defined. It is proved that the derivation lengths of this rewrite system

are polynomially bounded in the lengths of the inputs. As a corollary

we reobtain Bellantoni’s result stating that predicative recursion is closed

under predicative parameter recursion.

1 Introduction

This article is part of a general investigation on term rewriting applications to
(sub-) recursive function theory. The underlying idea of this program – which

1

has been initiated in Cichon and Weiermann 1995 [6] – is as follows. Fix an
inductively defined complexity class C of recursive functions. Assume that each
function F ∈ C is defined via an equation (or a system of equations) of the
following form

F(~x) = T (λ~y.F(~y), ~x)

where T involves some previously defined functions from C.
The corresponding rewrite system RC is defined as follows. The signature

SIG(C) consists of function symbols for the functions in C. It is assumed that
there is a map Φ which assigns to each f ∈ SIG(C) the function Φ(f) ∈ C. As
usual we assume that there is a constant O for 0 and a unary function symbol
S for the successor function. Numerals are defined by 0 := O; m + 1 := S(m).
(In case of dyadic strings one has to define formal analogues of 1 − 2 strings
in the natural way.) For each function symbol f ∈ SIG(C) \ {0, S} the rewrite
system RC contains a rule

f(~x) →RC
t(λ~y.f(~y), ~x).

In all non pathological cases the rewrite system RC will be terminating and
confluent (on ground terms). A successful analysis of RC will give intrinsic
information on (the computational complexity of the functions in) C. For illus-
tration, put for each l-ary function symbol f ∈ SIG(C)
DRC,f (m1, . . . ,ml) :≃
max{n : ∃t1, . . . , tn ∈ G(SIG(C)) : t1 →RC

· · · →RC
tn & t1 = f(m1, . . . ,ml)}

where G(SIG(C)) denotes the set of ground terms over SIG(C).
Then DRC,f (m1, . . . ,ml), if it is defined, measures the maximal possible lengths
of a rewrite computation ending in the numeral Φ(f)(m1, . . . ,ml).

Assume that C′ is another complexity class which is for the moment assumed
to be closed under “elementary recursive in” and that we want to prove for
example that C ⊆ C′. Then it suffices to show that DRC,f is bounded in C′,
since then each function Φ(f), which is computed by RC , is computable in
C′−TIME and hence is an element of C′. In Cichon and Weiermann 1995 [6] it
is shown how this method can be used in a straightforward way for showing that
the primitive recursive functions are closed under parameter recursion, simple
nested recursion, unnested multiple recursion and related schemata.

Even in the case that we know C ⊆ C′ in advance, the approach proposed
above yields the interesting information, that any non pathological rewrite based
algorithm, for example a head reduction or a inside first reduction algorithm,
for a function in C will run in C′ − TIME and yields an element of C′.

In the meantime this approach has been applied successfully to large com-
plexity classes like the elementary recursive functions, the primitive recursive
functions, the multiply recursive functions, the ordinal recursive functions, func-
tions which are defined via nested or unnested ≺-recursion, and the functions
definable in Gödes’s T [cf. for example [6, 8, 11, 14, 15, 16]].

2

It seems quite natural to ask if the term rewriting approach can also be
applied to the so called small complexity classes and a contribution to this
problem setting will be the goal of this article. We will provide some precise
classifications of the computational complexities of algorithms which are based
on natural rewriting strategies. It turns out that – in contrast to the large
complexity classes – in general we cannot expect that DRC,f will be bounded in
a feasible way even if C is a small complexity class like the polytime functions.
This phenomenon reflects the practical experience that a bad choice of the
evaluation strategy in an implementation of a rewrite algorithm may yield an
infeasible running time. Nevertheless, on the positive side it turns out that in
some interesting cases – for example in case of the rewriting framework for the
Bellantoni Cook schemata of predicative recursion – it is possible to introduce a
natural restriction RC

′ of RC so that the resulting derivation lengths DRC
′,f are

bounded in a feasible way. Thus even the slowest possible non pathological RC
′-

reduction strategy computes any Φ(f) ∈ C via RC
′ in a feasible time. Therefore,

and this seems to be of interest for practical implementations, there is a great
flexibility in programming algorithms for the functions in C. In particular it
is possible to write a feasible program without having knowledge of the fastest
algorithm.

The presentation of this paper is intended to cover a wide range of small
complexity classes. For expository reasons we concentrate on the complexity
class C = POLY TIME, the class of polynomial time computable functions.
[The methods developed in this paper, however, apply also to other complexity
classes, for example, the class LINSPACE of functions computable in linear
space. We conjecture that the methods developed in this paper can also be ap-
plied without much extra complication for derivation lengths classifications of
various interesting typed and untyped systems for predicative recursion which
have been comprehensively investigated by Leivant and others (cf., for example,
[10]). A derivation lengths classification for primitive recursive functionals of
finite type has already been obtained in [16].] It turns out that the Bellantoni
Cook schemata of predicative recursion are very convenient for the rewrite anal-
ysis since they do not refer to principles which depend on bounding functions.

In section 2 we give a formal definition of the canonical rewrite system RB for
these schemata and we prove termination and confluence (on ground terms) for
this rewrite system. We also introduce a restricted system RB

′ which computes
the same functions as RB. In RB

′ rewriting rules only apply to terms in which
all safe arguments are numerals. In section 3 we prove tight exponential bounds
(in a polynomial in the lengths of the inputs) on the RB-derivation lengths. It is
shown that the canonical head reduction strategy yields an algorithm which runs
in a time which is exponential (in a polynomial in the lengths of the inputs).
In section 4 we prove tight polynomial bounds (in the lengths of the inputs)
for the RB

′-derivation lengths and we prove that any canonical head reduction
strategy as well as any inside first reduction strategy yield algorithms which run
in polynomial time. In section 5 we reprove a non trivial closure property of

3

POLY TIME - which is due to Bellantoni - using the term rewriting approach.
The analyses of section 3 and 4 shed some additional light on the different

rôles of normal and safe arguments in the Bellantoni Cook schemata of predica-
tive recursion. (Further interesting applications of using the concept of normal
and safe arguments can be found in Simmons’ article [13].) Following Bellan-
toni’s exposition, the safe arguments ran over “impredicative values” which are
known to exist because we “assume the existence of an impredicative defined
set IN”. In the usual machine models this impredicativity of safe arguments
is controlled by “performing only operations on them which are constant-time
with respect to their size.” In the present approach it turns out that it is a
practical necessity for implementing an algorithm, which runs in feasible time,
to evaluate these impredicative arguments as soon as possible. Therefore calls
for safe arguments should be implemented as call by value calls. Calls for nor-
mal arguments can be implemented as call by name calls without disturbing the
feasibility of the running time of the resulting algorithm. Thus, the difference
of normal and safe arguments is also mirrored in the flexibility of feasible evalu-
ation possibilities. Our exposition is self-contained. No special experience with
term rewriting systems is assumed. An introduction into rewrite systems can
be found, for example, in [7]. We assume that the reader is familiar with the
Bellantoni Cook characterization [3, 4] of POLY TIME.

2 A rewrite system for predicative recursion

Let IN = {0, 1, 2, . . .} be the set of natural numbers. For i ∈ {1, 2} we denote the
dyadic successor function m 7→ 2·m+i by Si. Every natural number can be built
up from 0 by iterated applications of S1 and S2, since every non zero natural
number m can be written uniquely as

∑n
l=1 2l−1 · dl, where dl ∈ {1, 2} for

1 ≤ l ≤ n. The dyadic length of a natural number m, |m| is defined recursively
by |0| := 0; |Si(m)| := |m| + 1.

Let k, l be natural numbers. For any 〈m1, . . . ,mk〉 ∈ INk and any
〈n1, . . . , nl〉 ∈ INl let 〈m1, . . . ,mk;n1, . . . , nl〉 := 〈〈m1, . . . ,mk〉, 〈n1, . . . , nl〉〉.
We write INk,l for INk × INl. For F : INk,l → IN we write
F(m1, . . . ,mk;n1, . . . , nl) instead of F(〈〈m1, . . . ,mk〉; 〈n1, . . . , nl〉〉).

For any i ∈ {1, 2} we denote by S0,1
i the number-theoretic function 〈;m〉 7→

Si(m). We denote by Ok,l the number-theoretic function 〈m1, . . . ,mk;
n1, . . . , nl〉 7→ 0. For any k, l, r so that 1 ≤ r ≤ k + l we denote by Uk,l

r

the number-theoretic function 〈m1, . . . ,mk;mk+1, . . . ,mk+l〉 7→ mr. By P0,1

we denote the unique number-theoretic function F : IN0,1 → IN which satis-
fies F(; 0) := 0; F(; 2 · m + 1) = m; F(; 2 · m + 2) = m. By C0,3 we de-
note the unique function F : IN0,3 7→ IN which satisfies F(; 0,m1,m2) := m2;
F(; 2 · m + 1,m1,m2) = m1; F(; 2 · m + 2,m1,m2) = m2. If k, k′, l, l′ ∈ IN and

F : INk′,l′ → IN and G1 : INk,0 → IN, . . . ,Gk′ : INk,0 → IN and H1 : INk,l →
IN, . . . ,Hl′ : INk,l → IN then SUB

k,l
k′,l′ [F ,G1, . . . ,Gk′ ,H1, . . . ,Hl′] denotes the

4

number-theoretic function 〈m1, . . . ,mk;n1, . . . , nl〉 7→ F(G1(m1, . . . ,mk;), . . . ,
Gk′(m1, . . . ,mk;);H1(m1, . . . ,mk;n1, . . . , nl), . . . ,Hl′(m1, . . . ,mk;n1, . . . , nl)).
If k, l ∈ IN and G : INk,l → IN and H1 : INk+1,l+1 → IN and H2 : INk+1,l+1 → IN
then PRECk+1,l[G,H1,H2] denotes the unique number-theoretic function F :
INk+1 × INl → IN so that
F(0,m1, . . . ,mk;n1, . . . , nl) = G(m1, . . . ,mk;n1, . . . , nl),
F(2 · m + 1;m1, . . . ,mk : n1, . . . , nl) = H1(m,m1, . . . ,mk;n1, . . . , nl,

F(m,m1, . . . ,mk;n1, . . . , nl)),
F(2 · m + 2;m1, . . . ,mk : n1, . . . , nl) = H2(m,m1, . . . ,mk;n1, . . . , nl,

F(m,m1, . . . ,mk;n1, . . . , nl)).

Definition 2.1 For any k, l ∈ IN we define a set B ⊆ {F : INk,l → IN} of
number-theoretic functions inductively as follows.

1. S0,1
i ∈ B0,1 for any i ∈ {1, 2}.

2. Ok,l ∈ Bk,l for all k, l ∈ IN.

3. Uk,l
r ∈ Bk,l for all k, l, r ∈ IN so that 1 ≤ r ≤ k + l.

4. P0,1 ∈ B0,1.

5. C0,3 ∈ B0,3.

6. If k, k′, l, l′ ∈ IN, F ∈ Bk′,l′ , G1 ∈ Bk,0, . . . ,Gk′ ∈ Bk,0, and H1 ∈
Bk,l, . . . ,Hl′ ∈ Bk,l then SUB

k,l
k′,l′ [F ,G1, . . . ,Gk′ ,H1, . . . ,Hl′] ∈ Bk,l.

7. If k, l ∈ IN and G ∈ Bk,l, H1 ∈ Bk+1,l+1 and H2 ∈ Bk+1,l+1 then
PRECk+1,l[G,H1,H2] ∈ Bk+1,l

B :=
⋃

k,l∈IN Bk,l is the set of predicative recursive functions.

Bellantoni has shown in [4] that B coincides with the complexity class
POLY TIME of polynomial time computable functions.

Definition 2.2 For any k, l ∈ IN we define a set Bk,l of function symbols in-
ductively as follows.

1. S
0,1
i ∈ B0,1 for i ∈ {0, 1}.

2. Ok,l ∈ Bk,l.

3. Uk,l
r ∈ Bk,l for any 1 ≤ r ≤ k + l.

4. P 0,1 ∈ B0,1.

5. C0,3 ∈ B0,3.

6. If k′, l′ ∈ IN and f ∈ Bk′,l′ and g1, . . . , gk′ ∈ Bk,0 and h1, . . . , hl′ ∈ Bk,l

then SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′] ∈ Bk,l.

5

7. If g ∈ Bk,l and h1, h2 ∈ Bk+1,l+1 then PRECk+1,l[g, h1, h2] ∈ Bk+1,l.

Let B :=
⋃

k,l∈IN Bk,l be the set of predicative recursive function symbols.

We often write O for O0,0 and Si for S
0,1
i for i ∈ {1, 2}.

Definition 2.3 For any f ∈ B we define recursively the length of f , lh(f), as
follows.

1. lh(S0,1
i) := 1 for i ∈ {1, 2}.

2. lh(Ok,l) := 1.

3. lh(Uk,l
r) := 1 for any 1 ≤ r ≤ k + l.

4. lh(P 0,1) := 1.

5. lh(C0,3) := 1.

6. lh(SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]) := 1+lh(f)+ lh(g1)+ . . .+ lh(gk′)+

lh(h1) + . . . + lh(hl′).

7. lh(PRECk+1,l[g, h1, h2]) := 1 + lh(g) + lh(h1) + lh(h2).

Definition 2.4 For any f ∈ B we define recursively Φ(f) ∈ B as follows.

1. Φ(S0,1
i) := S0,1

i for i ∈ {1, 2}.

2. Φ(Ok,l) := Ok,l.

3. Φ(Uk,l
r) := Uk,l

r for any 1 ≤ r ≤ k + l.

4. Φ(P 0,1) := P0,1.

5. Φ(C0,3) := C0,3.

6. Φ(SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]) :=

SUB
k,l
k′,l′ [Φ(f],Φ(g1), . . . ,Φ(gk′),Φ(h1), . . . ,Φ(hl′)).

7. Φ(PRECk+1,l[g, h1, h2]) := PRECk+1,l[Φ(g],Φ(h1),Φ(h2)).

Lemma 2.5 For any F ∈ Bk,l there exists an f ∈ Bk,l so that F = Φ(f).

Proof. The assertion is easy to see. 2

Definition 2.6 Let X be a countable infinite set of variables which is disjoint
from B. We define the set of predicative recursive terms, T (B), over the signa-
ture B inductively as follows.

6

1. If x ∈ X then x ∈ T (B).

2. If k, l ∈ IN and f ∈ Bk,l and s1, . . . , sk, t1, . . . , tl ∈ T (B)
then f(s1, . . . , sk; t1, . . . , tl) ∈ T (B).

We denote the set of variables, which occur in t ∈ T (B), by FV (t). A term t is
called ground, if FV (t) = ∅. The set of ground terms is denoted by G(B).
For any t ∈ G(B) we define Φ(t) ∈ IN recursively as follows. If k, l ∈ IN,
f ∈ Bk,l and s1, . . . , sk, t1, . . . , tl ∈ G(B) then Φ(f(s1, . . . , sk; t1, . . . , tl)) :=
Φ(f)(Φ(s1), . . . ,Φ(sk); Φ(t1), . . . ,Φ(tl)).

For every natural number m we define recursively a numeral m as follows:

1. 0 := O.

2. S0,1
1 (;m) := S1(;m).

3. S0,1
2 (;m) := S2(;m).

Then m ∈ T (B) and Φ(m) = m for any m ∈ IN. For t ∈ T (B) we de-
fine the length of t, lh(t), recursively as follows. If k, l ∈ IN, f ∈ Bk,l and
s1, . . . , sk, t1, . . . , tl ∈ T (B) then lh(f(s1, . . . , sk; t1, . . . , tl)) := lh(f) + lh(s1) +
. . .+lh(sk)+lh(t1)+. . .+lh(tl). A mapping σ : X → T (B) is called substitution.
For any t ∈ T (B) we define tσ recursively as follows:

1. xσ := σ(x).

2. tσ := f(s1σ, . . . , skσ; t1σ, . . . , tlσ) if t = f(s1, . . . , sk; t1, . . . , tl).

Then tσ ∈ T (B) for any t ∈ T (B).

A rewrite system R over B is a set consisting of ordered pairs of elements from
T (B). The rewrite relation →R is the least binary relation on T (B) so that

1. If 〈l, r〉 ∈ R and σ : X → T (B) then lσ →R rσ.

2. If k, l, r ∈ IN and 1 ≤ r ≤ k and s1, . . . , sk, t1, . . . , tl ∈ T (B) and if sr →R

s′r then f(s1, . . . , sr, . . . , sk; t1, . . . , tl) →R f(s1, . . . , s
′
r, . . . , sk; t1, . . . , tl)

3. If k, l, r ∈ IN and 1 ≤ r ≤ l and s1, . . . , sk, t1, . . . , tl ∈ T (B) and if tr →R t′r
then f(s1, . . . , sk; t1, . . . , tr, . . . , tl) →R f(s1, . . . , sk; t1, . . . , t

′
r, . . . , tl).

R is called terminating if there is no infinite sequence (tn)n∈IN of elements in
T (B) so that tn →R tn+1 holds for all n ∈ IN. Let →∗

R be the transitive reflexive
closure of →R. R is called confluent if for all s, t, u ∈ T (B) so that s →∗

R t and
s →∗

R u there is a v ∈ T (B) so that t →∗
R v and u →∗

R v. R is called confluent
on ground terms if for all s, t, u ∈ G(B) so that s →∗

R t and s →∗
R u there is

a v ∈ G(B) so that t →∗
R v and u →∗

R v. A term t ∈ T (B) is called a normal
form if there is no u ∈ T (B) so that t →R u. It is easy to see that, if R is
terminating and confluent on ground terms then for every t ∈ G(B) there is a

7

unique normal form u ∈ G(B) so that t →∗
R u.

For any s, t ∈ T (B) we denote by s → t the ordered pair 〈s, t〉.

Definition 2.7 Definition of a set RB of non feasible rewrite rules for predica-
tive recursion.

1. Ok,l(x1, . . . , xk; y1, . . . , yl) → O for any k, l ∈ IN so that k + l > 0.

2. Uk,l
r (x1, . . . , xk;xk+1, . . . , xk+l) → xr for any 1 ≤ r ≤ k + l.

3. P 0,1(;O) → O.

4. P 0,1(;Si(; y)) → y for i ∈ {1, 2}.

5. C0,3(;O, y1, y2) → y1.

6. C0,3(;Si(; y), y1, y2) → yi for i ∈ {1, 2}.

7. SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′](x1, . . . , xk; y1, . . . , yl) →

f(g1(x1, . . . , xk;), . . . , gk′(x1, . . . , xk;);
h1(x1, . . . , xk; y1, . . . , yl), . . . , hl′(x1, . . . , xk; y1, . . . , yl)).

8. PRECk+1,l[g, h1, h2](O, x1, . . . , xk; y1, . . . , yl) →
g(x1, . . . , xk; y1, . . . , yl).

9. PRECk+1,l[g, h1, h2](Si(;x), x1, . . . , xk; y1, . . . , yl) →
hi(x, x1, . . . , xk; y1, . . . , yl, PRECk+1,l[g, h1, h2](x, x1, . . . , xk; y1, . . . , yl))
for any i ∈ {1, 2}.

Lemma 2.8 RB is terminating.

Proof. The rules of RB are reducing under the multiset path ordering. To see
this we define as a suitable well-founded precedence ≻ on B

f ≻ g :⇐⇒ lh(f) > lh(g).

Then the induced multiset path ordering ≻mpo on T (B) is well-founded [7, 9].
It is easily shown that l ≻mpo r holds for all rules l → r of RB.

An alternative termination proof is given in section 3. 2

Lemma 2.9 RB is confluent on ground terms.

Proof. RB is orthogonal, i.e. RB does not contain critical pairs. Termination of
RB then yields confluence (in general).

Alternatively, we could argue directly as follows. RB is terminating. The
rules of RB respect the intended semantics given by the evaluation function Φ.
Every ground normal form is a numeral. Putting things together the assertion
follows. 2

8

Definition 2.10 Definition of a set RB
′ of feasible rewrite rules for predicative

recursion.

1. Ok,l(x1, . . . , xk; y1, . . . , yl) → O for any k, l ∈ IN so that k + l > 0.

2. Uk,l
r (x1, . . . , xk;xk+1, . . . , xk+l) → xr for any 1 ≤ r ≤ k + l.

3. P 0,1(;O) → O.

4. P 0,1(;Si(; y)) → y for i ∈ {1, 2}.

5. C0,3(;O, y1, y2) → y1.

6. C0,3(;Si(; y), y1, y2) → yi for i ∈ {1, 2}.

7. SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′](x1, . . . , xk;n1, . . . , nl) →

f(g1(x1, . . . , xk;), . . . , gk′(x1, . . . , xk;);
h1(x1, . . . , xk;n1, . . . , nl), . . . , hl′(x1, . . . , xk;n1, . . . , nl)) for any sequence
〈n1, . . . , nl〉 of numerals.

8. PRECk+1,l[g, h1, h2](O, x1, . . . , xk;n1, . . . , nl) →
g(x1, . . . , xk;n1, . . . , nl) for any sequence 〈n1, . . . , nl〉 of numerals.

9. PRECk+1,l[g, h1, h2](Si(;x), x1, . . . , xk;n1, . . . , nl) →

hi(x, x1, . . . , xk;n1, . . . , nl, PRECk+1,l[g, h1, h2](x, x1, . . . , xk;n1, . . . , nl))
for any i ∈ {1, 2} and any sequence 〈n1, . . . , nl〉 of numerals.

Lemma 2.11 Let s, t ∈ T (B). If s →R′
B

t then s →RB
t.

Proof. This follows from the definition. 2

Lemma 2.12 RB
′ is terminating.

Proof. This follows from the termination of RB and Lemma 2.11. 2

Lemma 2.13 RB
′ is confluent on ground terms.

Proof. RB
′ is orthogonal. Termination of RB

′ then yields confluence (in gen-
eral).

Alternatively, we could argue directly as follows. RB
′ is terminating. The

rules of RB
′ respect the intended semantics given by the evaluation function Φ.

Every ground normal form is a numeral. Putting things together the assertion
follows. 2

9

3 A number-theoretic interpretation for the non-

feasible rewrite schemes of predicative recur-

sion

In this section it is shown that the RB-derivation lengths are bounded expo-
nentially (in a polynomial in the lengths of the inputs). It turns out that in the
worst case the freedom to evaluate subterms in any order leads to a derivation
tree (i.e. the tree obtained by parallelizing reductions whenever possible) that
has exponential size.

Definition 3.1 For f ∈ Bk,l we define the derivation length function DRB ,f as
follows: DRB ,f (m1, . . . ,mk;n1, . . . , nl) := max{n|∃t1, . . . , tn ∈ G(B) : t1→RB

. . .→RB
tn & t1 = f(m1, . . . ,mk;n1, . . . , nl)}.

Since RB is terminating under the multiset path ordering, we know in ad-
vance by Hofbauer’s result [9] that for any f ∈ Bk,l the derivation length func-
tion DRB ,f is bounded by a primitive recursive function. In fact, it can be
shown by a simple calculation that for any f ∈ Bk,l the derivation length func-
tion DRB ,f is bounded by an elementary recursive function. In this section we
prove tight bounds on DRB ,f .

Let us fix monotone polynomials qf , i.e. polynomials with nonnegative co-
efficients, for every f ∈ B:

1. For f = Ok,l, Uk,l
r with 1 ≤ r ≤ k + l, S

0,1
i , P 0,1, C0,3, where f ∈ Bk,l, we

set qf (m1, . . . ,mk) = 1 +
∑k

d=1 md.

2. For f = SUB
k,l
k′,l′ [f̃ , g1, . . . , gk′ , h1, . . . , hl′] we set qf (m1, . . . ,mk) =

qf̃

(

qg1
(m1, . . . ,mk), . . . , qgk′ (m1, . . . ,mk)

)

+
∑l′

d=1 qhd
(m1, . . . ,mk).

3. For f = PRECk+1,l[g, h1, h2] we set qf (m,m1, . . . ,mk) =

m ·
(

qh1
(m,m1, . . . ,mk) + qh2

(m,m1, . . . ,mk)
)

+ qg(m1, . . . ,mk)

As in [4] the following polymax bounding lemma is proved:

Lemma 3.2

|Φ(f)(m1, . . . ,mk;n1, . . . , nl)| ≤ qf (|m1|, . . . , |mk|) + max
1≤d≤l

|nd|

for f ∈ Bk,l and m1, . . . ,mk, n1, . . . , nl ∈ IN. 2

Let Ψ be an unary function and u1, . . . , uk be a sequence of elements in the
domain of Ψ. In the sequel we write Ψ(~u) for Ψ(u1), . . . ,Ψ(uk). For example
|Φ(~u)| abbreviates |Φ(u1)|, . . . , |Φ(uk)|.

10

For f ∈ Bk,l we will define a number-theoretic interpretation I0(f) : INk −→
IN which is a monotone polynomial. Then the interpretation of the terms in
T (B) is defined as follows. For a variable x ∈ X we set I(x) = 1. For f ∈ Bk,l

and s1, . . . , sk, t1, . . . , tl ∈ T (B) we define

I(f(s1, . . . , sk; t1, . . . , tl)) := 2I0(f)
(

|Φ(~s)|
)

·
(

k
∑

d=1

I(sd) +

l
∑

d=1

I(td) + lh(f)
)

.

Obviously we have I(f(~s,~t)) ≥
∑k

d=1 I(sd) +
∑l

d=1 I(td) + lh(f) ≥ 1. By induc-
tion on lh(t) we get I(t) ≥ lh(t) for any t ∈ T (B).

Definition 3.3 Recursive definition of I0(f) for f ∈ B.

1. For f = Ok,l, Uk,l
r with 1 ≤ r ≤ k + l, S

0,1
i , P 0,1, C0,3, where f ∈ Bk,l, we

set I0(f)(m1, . . . ,mk) = 0

2. I0

(

SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]

)

(m1, . . . ,mk)

= I0(f)
(

qg1
(~m), . . . , qgk′ (~m)

)

+

k′
∑

d=1

I0(gd)(~m) +

l′
∑

d=1

I0(hd)(~m) + 1

3. I0

(

PRECk+1,l[g, h1, h2]
)

(m,m1, . . . ,mk)

= m ·
(

I0(h1)(m, ~m) + I0(h2)(m, ~m)
)

+ I0(g)(~m)

From the definition we easily see that I0(f) is a monotone polynomial for any
f ∈ B.

We compute I(Si(; s)) = 2I0(Si) · (I(s) + lh(Si)) = I(s) + 1, so I(m) = |m|+ 1
for every numeral m.

Using 2m + 2n ≤ 2m+n for m,n ≥ 1 we see

I
(

f(m1, . . . ,mk;n1, . . . , nl)
)

= 2I0(f)(|Φ(~m)|) ·
(

k
∑

d=1

I(md) +
l

∑

d=1

I(nd) + lh(f)
)

≤ 2I0(f)(|~m|) ·
(

k
∑

d=1

(|md| + 1) +

l
∑

d=1

(|nd| + 1) + lh(f)
)

≤ 2I0(f)(|~m|)+
∑

k

d=1
|md|+

∑

l

d=1
|nd|+lh(f)

Therefore I(f(m1, . . . ,mk;n1, . . . , nl)) is bounded by an exponential of a
monotone polynomial in the lengths of the inputs m1, . . . ,mk, n1, . . . , nl.

11

Theorem 3.4 RB is terminating and for every f ∈ B the derivation length
function DRB ,f is bounded by an exponential of a monotone polynomial in the
lengths of the inputs.

This theorem is an immediate consequence of

Lemma 3.5 If s, t ∈ G(B) and s →RB
t then I(s) > I(t).

Proof of Theorem 3.4. If t1, . . . , tn ∈ G(B) with t1→RB
. . .→RB

tn then Lemma
3.5 implies n ≤ I(t1). Therefore DRB ,f (m1, . . . ,mk, n1, . . . , nl) ≤
I(f(m1, . . . ,mk;n1, . . . , nl)) and this is bounded by an exponential of a mono-
tone polynomial in the lengths of the inputs. 2

Proof of Lemma 3.5. It is easy to check that I(f(. . . s . . .)) > I(f(. . . t . . .))
provided that I(s) > I(t). So we only have to prove that I(sσ) > I(tσ) for all
〈s, t〉 ∈ RB and all ground substitutions σ. To do this we only consider the
nontrivial cases.

1. Let f̃ = SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]. We consider the case

f̃(s1, . . . , sk; t1, . . . , tl)

→RB
f
(

g1(~s;), . . . , gk′(~s;);h1(~s;~t), . . . , hl′(~s;~t)
)

.

Using lh(f), lh(g1), . . . , lh(gk′), lh(h1), . . . , lh(hl′) < lh
(

f̃
)

we compute

I
(

f
(

g1(~s;), . . . , gk′(~s;);h1(~s;~t), . . . , hl′(~s;~t)
)

)

= 2I0(f)
(

|Φ(g1(~s;))|,...,|Φ(gk′ (~s;))|
)

·
(

k′
∑

d=1

2I0(gd)(|Φ(~s)|) ·
[

k
∑

d=1

I(sd) + lh(gd)
]

+
l′

∑

d=1

2I0(hd)(|Φ(~s)|) ·
[

k
∑

d=1

I(sd) +
l

∑

d=1

I(td) + lh(hd)
]

+ lh(f)
)

< 2I0(f)
(

qg1
(|Φ(~s)|),...,qg

k′ (|Φ(~s)|)
)

·
(

k′
∑

d=1

2I0(gd)(|Φ(~s)|) +

l′
∑

d=1

2I0(hd)(|Φ(~s)|) + 1
)

·
(

k
∑

d=1

I(sd) +

l
∑

d=1

I(td) + lh
(

f̃
)

)

≤ 2I0(f)
(

qg1
(|Φ(~s)|),...,qg

k′ (|Φ(~s)|)
)

+
∑

k′

d=1
I0(gd)(|Φ(~s)|)+

∑

l′

d=1
I0(hd)(|Φ(~s)|)+1

·
(

k
∑

d=1

I(sd) +

l
∑

d=1

I(td) + lh
(

f̃
)

)

= I
(

f̃(~s;~t)
)

12

2. Let f = PRECk+1,l[g, h1, h2] and consider the case

f(Si(; s), s1, . . . , sk; t1, . . . , tl)

→RB
hi

(

s, s1, . . . , sk; t1, . . . , tl, f(s, s1, . . . , sk; t1, . . . , tl)
)

for i ∈ {1, 2}. Using lh(hi) < lh(f) we compute:

I
(

hi

(

s, s1, . . . , sk; t1, . . . , tl, f(s, s1, . . . , sk; t1, . . . , tl)
))

= 2I0(hi)(|Φ(s,~s)|) ·
(

I(s) +

k
∑

d=1

I(sd) +

l
∑

d=1

I(td)

+ 2I0(f)(|Φ(s,~s)|) ·
[

I(s) +

k
∑

d=1

I(sd) +

l
∑

d=1

I(td) + lh(f)
]

+ lh(hi)
)

< 2I0(hi)(|Φ(s,~s)|) ·
(

1 + 2I0(f)(|Φ(s,~s)|)
)

·
(

I(s) +
k

∑

d=1

I(sd) +
l

∑

d=1

I(td) + lh(f)
)

≤ 2(I0(hi)(|Φ(s,~s)|)+1)+|Φ(s)|·
(

I0(h1)(|Φ(s,~s)|)+I0(h2)(|Φ(s,~s)|)
)

+I0(g)(|Φ(~s)|)

·
(

I(s) +

k
∑

d=1

I(sd) +

l
∑

d=1

I(td) + lh(f)
)

≤ I
(

f(Si(; s), ~s;~t)
)

2

In the following we give an example of a function f so that the derivation
length function DRB ,f is not bounded by a polynomial in the lengths of the
inputs. To do so we define a function symbol

g := PREC1,1[U0,1
1 , SUB

1,2
0,2[U

0,2
1 , U

1,2
3 , U

1,2
3], SUB

1,2
0,2[U

0,2
1 , U

1,2
3 , U

1,2
3]]

and terms T0(x) := x and Tn+1(x) := U
0,2
1 (;Tn(x), Tn(x)). The connection

between g and the Tn’s is

Lemma 3.6 g(m; s) →∗
RB

T|m|(s) for all m ∈ IN and s ∈ T (B).

Proof. The assertion is proved by induction on m. First we see g(0; s)→RB

U
0,1
1 (; s)→RB

s = T|0|(s). In the induction step we compute

g(Si(;m); s) = g(Si(;m); s)

→RB
SUB

1,2
0,2[U

0,2
1 , U

1,2
3 , U

1,2
3](m; s, g(m; s))

13

i.h.

→∗
RB

SUB
1,2
0,2[U

0,2
1 , U

1,2
3 , U

1,2
3](m; s, T|m|(s))

→RB
U

0,2
1

(

;U1,2
3 (m; s, T|m|(s)), U

1,2
3 (m; s, T|m|(s))

)

→2
RB

U
0,2
1 (;T|m|(s), T|m|(s)) = T|m|+1(s) = T|Si(;m)|(s)

2

Consider some term s which has some derivation with length greater than
0. Then the following lemma shows that Tk(s) has a derivation with length at
least 2k.

Lemma 3.7 lk(m) := max{n|∃t1, . . . , tn ∈ G(B) : t1→RB
. . .→RB

tn & t1 =

Tk(O1,0(m;)) & tn = O} ≥ 2k.

Proof. The assertion is proved by induction on k for any m. Let s be the term
O1,0(m;). We see T0(s) = s→RB

O, so l0(m) ≥ 20. For the induction step we
compute

Tk+1(s) = U
0,2
1 (;Tk(s), Tk(s))→

lk(m)
RB

U
0,2
1 (; 0, Tk(s))→

lk(m)
RB

U
0,2
1 (;O,O)→RB

O,

so lk+1(m) > 2 · lk(m) and the induction hypothesis leads to lk+1(m) ≥ 2k+1.
2

We define f = SUB
1,0
1,1[g, U

1,0
1 , O1,0] and prove

Theorem 3.8 DRB ,f (m) > 2|m| for all m ∈ IN.

Proof. We give a derivation of f(m)→∗
RB

O which has a length greater than

2|m|.

f(m) →RB
g
(

U
1,0
1 (m;);O1,0(m;)

)

→RB
g
(

m;O1,0(m;)
)

→∗
RB

T|m|(O
1,0(m;)) →

l|m|(m)

RB
O.

With Lemma 3.7 this shows DRB ,f (m) > l|m|(m) ≥ 2|m|. 2

Corollary 3.9 DRB ,f is not bounded by a polynomial in the lengths of the in-
puts. 2

As a matter of fact we know that for every monotone polynomial p(m) there
is a polytime function symbol gp ∈ B1,0 so that |Φ(gp)(m;)| = p(|m|) for all
m ∈ IN. With Theorem 3.8 we see

DRB ,SUB
1,0

1,0
[f,gp](m) ≥ DRB ,f (Φ(gp)(m;)) > 2|Φ(gp)(m;)| = 2p(|m|).

14

Corollary 3.10 Let k ∈ IN and f ∈ Bk,0. Any reasonable RB–head reduction
strategy yields an algorithm for Φ(f) which runs in exponential time. (More
generally, any reasonable RB reduction strategy yields an algorithm for Φ(f)
which runs in exponential time.)

Proof. By folklore, there exists a polytime algorithm which, if possible, rewrites
any ground term s ∈ G(B) via an RB–head reduction step into its reduct.
Consider any deterministic head reduction sequence f(m1, . . . ,mk) = t1→RB

· · ·
→RB

tn = Φ(f)(m1, . . . ,mk). Then, by Theorem 3.4 and the remark before
Definition 3.3, n and the lengths of any ti for i ∈ {1, . . . , n} are bounded by
an exponential in a polynomial in the dyadic lengths of m1, . . . ,mk. Putting
things together, the assertion follows. 2

4 A number-theoretic interpretation for the fea-

sible rewrite schemes of predicative recursion

In this section it is shown that the R′
B-derivation lengths are bounded by a

polynomial in the lengths of the inputs. Since in R′
B the reduction system is

forced to evaluate safe positions first the size of the derivation tree is polynomial.

Definition 4.1 For f ∈ Bk,l we define the derivation length function DR′
B

,f as
follows: DR′

B
,f (m1, . . . ,mk;n1, . . . , nl) := max{n|∃t1, . . . , tn ∈ G(B) : t1→R′

B

. . .→R′
B

tn & t1 = f(m1, . . . ,mk;n1, . . . , nl)}.

For f ∈ Bk,l we will define a number-theoretic interpretation J0(f) : INk −→
IN which is a monotone polynomial. Then the interpretation of the terms in
T (B) is defined as follows. For a variable x ∈ X we set J(x) = 1. For f ∈ Bk,l

and s1, . . . , sk, t1, . . . , tl ∈ T (B) we define

J(f(~s;~t)) := J0(f)
(

|Φ(~s)|
)

·
(

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(td)| + 1
)

+
l

∑

d=1

J(td) + lh(f).

Definition 4.2 Recursive definition of J0(f) for f ∈ B.

1. For f = O,S
0,1
i , P 0,1, C0,3 we set J0(f) = 0

2. For f = Ok,l, Uk,l
r , where 1 ≤ r ≤ k + l, we set J0(f)(m1, . . . ,mk) = 1

3. J0

(

SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]

)

(m1, . . . ,mk)

= J0(f)
(

qg1
(~m), . . . , qgk′ (~m)

)

·
(

k′
∑

d=1

[J0(gd)(~m) + lh(gd)]

15

+
l′

∑

d=1

qhd
(~m) + 1

)

+
l′

∑

d=1

J0(hd)(~m) + l · l′

4. J0

(

PRECk+1,l[g, h1, h2]
)

(m,m1, . . . ,mk)

= m ·
(

[J0(h1)(m, ~m) + J0(h2)(m, ~m)] · qf (m, ~m) + l +

max{lh(h1), lh(h2)}
)

+ J0(g)(~m)

From the definition we easily see that J0(f) is a monotone polynomial for

any f ∈ B. Obviously we have J(f(~s,~t)) ≥
∑k

d=1 J(sd)+
∑l

d=1 J(td)+lh(f) ≥ 1.
By induction on lh(t) we get J(t) ≥ lh(t) for any t ∈ T (B).

We compute J(Si(; s)) = J0(Si) · (|Φ(s)| + 1) + J(s) + 1 = J(s) + 1, so
J(m) = |m| + 1 for every numeral m.

We see that J(f(m1, . . . ,mk, n1, . . . , nl)) is bounded by a monotone polyno-
mial in the lengths of the inputs m1, . . . ,mk, n1, . . . , nl, because

J
(

f(m1, . . . ,mk;n1, . . . , nl)
)

= J0(f)
(

|Φ(~m)|
)

·
(

k
∑

d=1

J(md) + max
1≤d≤l

|Φ(nd)| + 1
)

+

l
∑

d=1

J(nd) + lh(f)

≤
(

J0(f)
(

|~m|
)

+ 1
)

·
(

k
∑

d=1

(|md| + 1) +

l
∑

d=1

(|nd| + 1) + lh(f)
)

.

Theorem 4.3 R′
B is terminating and for every f ∈ B the derivation length

function DR′
B

,f is bounded by a monotone polynomial in the lengths of the inputs.

The same argumentation as in section 3 yields that this theorem is an im-
mediate consequence of

Lemma 4.4 If s, t ∈ G(B) and s →R′
B

t then J(s) > J(t).

Proof. It is easy to check that J(f(. . . s . . .)) > J(f(. . . t . . .)) provided that
J(s) > J(t). So we only have to prove that J(sσ) > J(tσ) for all 〈s, t〉 ∈ R′

B and
all ground substitutions σ. To do this we only consider the nontrivial cases.

1. Let f̃ = SUB
k,l
k′,l′ [f, g1, . . . , gk′ , h1, . . . , hl′]. We consider the case

f̃(s1, . . . , sk;n1, . . . , nl) →R′
B

f
(

g1(~s;), . . . , gk′(~s;);h1(~s;~n), . . . , hl′(~s;~n)
)

.

16

Using J(n) = |Φ(n)| + 1 for every numeral n we compute

J
(

f
(

g1(~s;), . . . , gk′(~s;);h1(~s;~n), . . . , hl′(~s;~n)
)

)

= J0(f)
(

|Φ(g1(~s;))|, . . . , |Φ(gk′(~s;))|)
)

·
(

k′
∑

d=1

J(gd(~s;)) + max
1≤d≤l′

|Φ(hd(~s;~n))| + 1
)

+

l′
∑

d=1

J(hd(~s;~n)) + lh(f)

≤
(

J0(f)(qg1
(|Φ(~s)|), . . . , qgk′ (|Φ(~s)|)

)

·
(

k′
∑

d=1

[

J0(gd)(|Φ(~s)|)

·
(

k
∑

d=1

J(sd) + 1
)

+ lh(gd)
]

+ max
1≤d≤l′

[

qhd
(|Φ(~s)|) + max

1≤d≤l
|Φ(nd)|

]

+ 1
)

+

l′
∑

d=1

(

J0(hd)(|Φ(~s)|) ·
[

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
]

+

l
∑

d=1

J(nd) + lh(hd)
)

+ lh(f)

≤
[(

J0(f)(qg1
(|Φ(~s)|), . . . , qgk′ (|Φ(~s)|))

)

·
(

k′
∑

d=1

[J0(gd)(|Φ(~s)|) + lh(gd)]

+

l′
∑

d=1

qhd
(|Φ(~s)|) + 1

)

+

l′
∑

d=1

J0(hd)(|Φ(~s)|)
]

·
(

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+ l · l′ · (max
1≤d≤l

|Φ(nd)| + 1) +

l′
∑

d=1

lh(hd) + lh(f)

< J0

(

f̃
)

(|Φ(~s)|) ·
(

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+ lh
(

f̃
)

= J
(

f̃(~s;~n)
)

2. Let f = PRECk+1,l[g, h1, h2] and consider the case

f(Si(; s), s1, . . . , sk;n1, . . . , nl)

→R′
B

hi

(

s, s1, . . . , sk;n1, . . . , nl, f(s, s1, . . . , sk;n1, . . . , nl)
)

17

for i ∈ {1, 2}. Again using J(n) = |Φ(n)| + 1 for every numeral n we compute

J
(

hi

(

s, s1, . . . , sk;n1, . . . , nl, f(s, s1, . . . , sk;n1, . . . , nl)
))

= J0(hi)(|Φ(s,~s)|) ·
(

J(s) +

k
∑

d=1

J(sd) + max{|Φ(~n)|, |Φ(f(s,~s;~n))|} + 1
)

+

l
∑

d=1

J(nd) + J
(

f(s,~s;~n)
)

+ lh(hi)

≤ J0(hi)(|Φ(s,~s)|) ·
(

J(s) +
k

∑

d=1

J(sd) + qf (|Φ(s,~s)|) + max
1≤d≤l

|Φ(nd)| + 1
)

+ J0(f)(|Φ(s,~s)|) ·
(

J(s) +

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+

l
∑

d=1

J(nd) + lh(f) + l · (max
1≤d≤l

|Φ(nd)| + 1) + lh(hi)

≤
[

J0(hi)(|Φ(s,~s)|) · (1 + qf (|Φ(s,~s)|)) + l + lh(hi)

+ |Φ(s)| ·
(

[J0(h1)(|Φ(s,~s)|) + J0(h2)(|Φ(s,~s)|)] · qf (|Φ(s,~s)|)

+ l + max{lh(h1), lh(h2)}
)

+ J0(g)(|Φ(~s)|)
]

·
(

J(s) +

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+

l
∑

d=1

J(nd) + lh(f)

≤
[

|Φ(Si(; s))| ·
(

[J0(h1)(|Φ(s,~s)|) + J0(h2)(|Φ(s,~s)|)] · qf (|Φ(Si(s), ~s)|)

+ l + max{lh(h1), lh(h2)}
)

+ J0(g)(|Φ(~s)|)
]

·
(

J(s) +

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+

l
∑

d=1

J(nd) + lh(f)

< J0(f)
(

|Φ(Si(; s), ~s)|
)

·
(

J(Si(; s)) +

k
∑

d=1

J(sd) + max
1≤d≤l

|Φ(nd)| + 1
)

+

l
∑

d=1

J(nd) + lh(f)

= J
(

f(Si(; s), ~s;~n)
)

2

Corollary 4.5 Let k ∈ IN and f ∈ Bk,0. Any reasonable R′
B–head reduction

18

strategy yields an algorithm for Φ(f) which runs in polynomial time. Any rea-
sonable R′

B–inside first reduction strategy yields an algorithm for Φ(f) which
runs in polynomial time. (More generally, any reasonable R′

B reduction strat-
egy yields an algorithm for Φ(f) which runs in polynomial time.)

Proof. By folklore, there exists a polytime algorithm which, if possible, rewrites
any ground term s ∈ G(B) via an R′

B–head reduction step into its reduct. Con-
sider any deterministic head reduction sequence f(m1, . . . ,mk) = t1→R′

B

· · ·

→R′
B

tn = Φ(f)(m1, . . . ,mk). Then, by Theorem 4.3 and the remark after Def-

inition 4.2, n and the lengths of any ti for i ∈ {1, . . . , n} are bounded by a
polynomial in the dyadic lengths of m1, . . . ,mk. Putting things together, the
assertion follows. 2

5 A non trivial closure property of POLY TIME

In this section we give a non trivial application of the theory developed in the
previous sections. We reprove Bellantoni’s result stating that B is closed under
predicative recursion with parameter substitution. For simplicity we restrict
ourselves to the case of one parameter function.

Theorem 5.1 Assume that G ∈ B1,1, Hi ∈ B2,2 and P ∈ B2,1. Then there
exists a unique polytime function F : IN2,1 → IN so that
F(0,m1;n) = G(m1;n)
F(Si(m),m1;n) = Hi(m,m1;n,F(m,m1;n,P(m,m1;n)).

The corresponding rewrite system is defined as follows.

Definition 5.2 Assume that g ∈ B1,1, hi ∈ B2,2 for i ∈ {1, 2} and p ∈ B2,1.
Let f be a new function symbol of arity 2, 1 and length 1.
Then RBPS(g, h1, h2, p) consists of R′

B plus the rules:
f(0, x1;n) → g(x1;n)
f(Si(;x), x1;n) → hi(x, x1;n, f(x, x1;n, p(x, x1;n))) for i ∈ {1, 2}.

Using the lexicographic path ordering it can easily be shown that
RBPS(g, h1, h2, p) is terminating. An alternative and more informative ter-
mination proof is given by the following theorem.

Theorem 5.3 Let R be the rewrite systems given in Definition 5.2. Let f be
the corresponding function symbol. Then DR,f and

max{lh(t) : f(m1,m2;n)→∗
RBP S

t}

are bounded by a polynomial in the lengths of the inputs m1,m2, n.

19

Proof. We expand the number-theoretic interpretation J0 from section 4 respect-
ing the new function symbol f . Following [4] we define an appropiate monotone
polynomial qf for majorizing the normal arguments of f :

qf (m1,m2) = m1 ·
(

qh1
(m1,m2)+ qh2

(m1,m2)+ qp(m1,m2)+1
)

+ qg(m1,m2).

Again the polymax bounding Lemma 3.2 holds.
In addition to the clauses of the Definition 4.2 we define:

Jf (m1,m2)

= m1 ·
(

[J0(h1)(m1,m2) + J0(h2)(m1,m2)] · qf (m1,m2)

+ 2 + max{lh(h1), lh(h2)} + lh(p) + J0(p)(m1,m2)
)

+ J0(g)(m2)

J0(f)(m1,m2)

= Jf (m1,m2) ·
(

1 + m1 · qp(m1,m2)
)

Then the interpretation J(t) of terms t ∈ T (B) which are not of the form
f(s1, s2; t1) is defined in the usual way. In the new case we define and observe

J
(

f(s1, s2; t)
)

= Jf (|Φ(s1)|, |Φ(s2)|) ·
(

J(s1) + J(s2) + |Φ(t)| + 1

+ |Φ(s1)| · qp(|Φ(s1)|, |Φ(s2)|)
)

+ J(t) + 1

≤ J0(f)(|Φ(s1)|, |Φ(s2)|) ·
(

J(s1) + J(s2) + |Φ(t)| + 1
)

+ J(t) + lh(f)

Therefore all observations from section 4 transfer to the new system, e.g. J(m) =
|m| + 1 and J(t) ≥ lh(t). Also we see that J(f(m1,m2;n)) is bounded by a
monotone polynomial in the lengths of the inputs m1,m2, n. Again it is easy
to check that J(ψ(. . . s . . .)) > J(ψ(. . . t . . .)) provided that J(s) > J(t). So we
only have to prove that J(sσ) > J(tσ) for all 〈s, t〉 ∈ RBPS and all ground
substitutions σ. As the estimations in the proof of Lemma 4.4 carry over to the
new interpretation we only have to consider the new case:

f(Si(; s1), s2;n) →R′
B

hi

(

s1, s2;n, f(s1, s2; p(s1, s2;n))
)

for i ∈ {1, 2}. Using J(n) = |Φ(n)| + 1 for every numeral n we compute

J
(

hi

(

s1, s2;n, f(s1, s2; p(s1, s2;n))
)

)

≤ J0(hi)(|Φ(s1)|, |Φ(s2)|) ·
(

J(s1) + J(s2) + qf (|Φ(s1)|, |Φ(s2)|)

+ qp(|Φ(s1)|, |Φ(s2)|) + |Φ(n)| + 1
)

+ J(n) + lh(hi)

20

+ Jf (|Φ(s1)|, |Φ(s2)|) ·
(

J(s1) + J(s2) + qp(|Φ(s1)|, |Φ(s2)|) + |Φ(n)| + 1

+ |Φ(s1)| · qp(|Φ(s1)|, |Φ(s2)|)
)

+ J0(p)(|Φ(s1)|, |Φ(s2)|) ·
(

J(s1) + J(s2) + |Φ(n)| + 1
)

+ J(n) + lh(p) + 1

≤
[

J0(hi)(|Φ(s1)|, |Φ(s2)|) · (1 + qf (|Φ(s1)|, |Φ(s2)|)) + 1 + lh(hi) + lh(p)

+ J0(p)(|Φ(s1)|, |Φ(s2)|) + Jf (|Φ(s1)|, |Φ(s2)|)
]

·
(

J(s1) + J(s2) + |Φ(n)| + 1 + (|Φ(s1)| + 1) · qp(|Φ(s1)|, |Φ(s2)|)
)

+ J(n) + 1

< J
(

f(Si(; s1), s2;n)
)

2

Corollary 5.4 Any reasonable RBPS(g, h1, h2, p)–head reduction strategy yields
an algorithm for Φ(f) which runs in polynomial time. Any reasonable
RBPS(g, h1, h2, p)–inside first reduction strategy yields an algorithm for Φ(f)
which runs in polynomial time. (More generally, any reasonable
RBPS(g, h1, h2, p) reduction strategy yields an algorithm for Φ(f) which runs
in polynomial time.)

Proof. By folklore, there exists a polytime algorithm which, if possible, rewrites
any ground term s ∈ G(B) via an RBPS(g, h1, h2, p)–head reduction step into
its reduct. Consider any deterministic head reduction sequence f(m1,m2;n) =
t1→R′

B

· · ·→R′
B

tk = Φ(f)(m1,m2;n). Then, by Theorem 5.3 and the remark

in the proof of Theorem 5.3, k and the length of any ti for i ∈ {1, . . . , k} are
bounded by a polynomial in the dyadic lengths of m1,m2, n. Putting things
together, the assertion follows. 2

Possible extensions: The term rewriting approach based on derivation lengths
classifications can easily be adapted for showing that predicative recursion is also
closed - even with respect to derivation lengths - under simultaneous predicative
recursion.

Using derivation lengths classifications of appropriate term graph rewriting
systems or appropriate logic programs the authors were able to show that pred-
icative recursion is closed - with respect to derivation or computation lengths -
under predicative course of values recursion and more generally under predica-
tive descent recursion [2].

The distinction between normal and safe arguments can be used to define
fragments of bounded predicative arithmetic which are related to the well-known
fragments of bounded arithmetic Si

2 and T i
2 introduced in [5]. In [1] the first

21

author was recently able to seperate these predicative fragments by adapting
methods of ordinal analysis for fragments of PA [12].

Acknowledgements: The second author would like to thank E.A. Cichon and
Pierre Lescanne for their hospitality during his stay at Nancy as a member of the
Eureca group from 1/10/94 - 31/3/95 under HCM-grant 293F0740051507126.
He would like to thank S.S. Wainer for his hospitality while visiting Leeds Uni-
versity under this grant from 19/3/95-25/3/95. The possibility of a rewrite
analysis of the polytime functions was suggested to the second author in stim-
ulating discussions on proof and recursion theory by Stan Wainer during the
second author’s stay in Leeds. (The results of this paper have been presented at
the workshop on Termination (Nancy 1995) and the Amsterdam Münster Inter-
city seminar (Amsterdam 1995).) The authors would like to thank the referees
for their detailed and helpful comments.

References

[1] Beckmann, A.: Seperating fragments of bounded predicative arithmetic. Dis-
sertation (1996).

[2] Beckmann, A. and Weiermann, A.: Investigations on subrecursion via logic
programming. Preprint, Münster (1995).

[3] Bellantoni, S. and Cook, S.: A new recursion-theoretic characterization of
the polytime functions. Comput. Complexity 2, No. 2 (1992), 97-110.

[4] Bellantoni, S.: Predicative recursion and computational complexity. Disser-
tation, Toronto (1992).

[5] Buss, S.: Bounded arithmetic. Bibliopolis 1986.

[6] Cichon, E.A. and Weiermann, A.: Term rewriting theory for the primitive
recursive functions. To appear in: Ann. Pure Appl. Logic.

[7] Dershowitz, N. & Jouannaud, J.P.: Rewrite systems. In: Handbook of Theo-
retical Computer Science B: Formal Methods and Semantics, J. van Leeuwen
(ed.) North-Holland 1990, pp. 243-320.

[8] Handley,W.G. and Wainer, S.S.: Equational derivation vs. computation.
Ann. Pure Appl. Logic 70 (1994), 17-49.

[9] Hofbauer, D.: Termination proofs by multiset path orderings imply primitive
recursive derivation lengths. Proc. 2nd ALP. Lecture Notes in Computer
Science 463 (1990), 347-358.

22

[10] Leivant, D.: Predicative recurrence in finite type. In A. Nerode and Y.V.
Matiyasevich (eds.), Logical Foundations of Computer Science. Springer Lec-
ture Notes in Computer Science 813 (1994), 227-239.

[11] Möllerfeld, M. and Weiermann, A.: A uniform approach to ≺-recursion.
Preprint, Münster (1995) (submitted).

[12] Pohlers, W.: Proof theory: An Introduction. Springer Lecture Notes in
Mathematics 1407, 1989.

[13] Simmons, H.: The realm of primitive recursion. Arch. Math. Logic 27
(1988), 177-188.

[14] Weiermann, A.: Termination proofs for term rewriting systems by lexico-
graphic path orderings yield multiply recursive derivation lengths. Theoretical
Computer Science 139 (1995), 355-362.

[15] Weiermann, A.: Rewriting theory for the Hydra battle and the extended
Grzegorczyk hierarchy, Preprint, Nancy and Münster (1995) (submitted).

[16] Weiermann, A.: A proof of strongly uniform termination for Gödel’s T by
methods from local predicativity. Preprint, Münster (1995) (submitted).

23

