
Preservation theorems and restrited onsistenystatements in bounded arithmeti�Arnold BekmannyInstitute of Algebra and Computational MathematisVienna University of TehnologyWiedner Hauptstr. 8-10, A-1040 Vienna, AustriazNovember 14, 2001AbstratIn this artile we will de�ne and study a new restrited onsistenynotion RCon�(T j2 ) for bounded arithmeti theories T j2 . It will be thestrongest 8�b1-statement over S12 provable in T j2 , similar to Con(Gi) in [13℄or RCon(T i1) in [14℄. The advantage of our notion over the others is thatRCon�(T j2 ) an diretly be used to onstrut models of T j2 . We apply thisby proving preservation theorems for theories of bounded arithmeti ofthe following well-known kind: The 8�b1-separation of bounded arithmetitheories Si2 from T j2 (1 � i � j) is equivalent to the existene of a modelof Si2 whih does not have a �b0-elementary extension to a model of T j2 .More spei�, letM � 
nst1 denote that there is a nonstandard element in M suh that the funtion n 7! 2log(n) is total in M . Let BL�b1 bethe bounded olletion shema for �b1-formulas. We obtain the followingpreservation results: The 8�b1-separation of Si2 from T j2 (1 � i � j) isequivalent to the existene of1. a model of Si2 +
nst1 whih is 1b-losed w.r.t. T j2 ,2. a ountable model of Si2 + BL�b1 without weak end extensions tomodels of T j2 .This artile is a ontribution to the investigation of the inuene of on-sisteny notions to the �nitely axiomatization question of bounded arithmeti.The usual notion of onsisteny is too strong to serve as a separating sentenefor bounded arithmeti theories beause S2 0 ConS�12 , .f. [21℄, where S�12 isthe indution-free fragment of bounded arithmeti S2. Also the weaker onsis-teny statement BDCon, whih refers to proofs that use only bounded formu-las, still is too strong: Buss in [6℄ proved that Si+12 ` BDConSi2 holds for atmost one i, and later Pudl�ak showed in [18℄ that S2 0 BDConS12 , hene onlyS2 ` BDConS02 remains to be possible. On the other hand I have been able to�A former version of this artile was entitled \Model-theoreti haraterizations of 8�b1-separations in bounded arithmeti"ySupported in part by the Deutshen Akademie der Naturforsher Leopoldina grant#BMBF-LPD 9801-7 with funds from the Bundesministeriums f�ur Bildung, Wissenshaft,Forshung und Tehnologie, and by a Marie Curie Individual Fellowship #MCFI-2000-02005from the European Commissionzemail: Arnold.Bekmann�logi.at 1



show in [4℄ that S12 an prove the onsisteny of equational theories whih baseonly on the reursive de�nition of the underlying funtion symbols. In partiu-lar S12 ` Con(S�12 ), where S�12 is the equational theory based on the reursivede�nition of the funtion symbols of bounded arithmeti. This result disprovesa plausible onjeture of Takeuti ([15℄ p.5 problem 9.). It gives hope that on-sisteny statements an lead to a negative answer of the �nitely axiomatizationquestion of bounded arithmeti.The fous of this paper are new restrited onsisteny statements for the-ories of bounded arithmeti and appliations of them for proving preservationtheorems for theories of bounded arithmeti in the manner of the following well-known one.1 Let L be a �rst order language, S � T be L-theories and � a lassof L-formulas whih is losed under onjuntion and negation. With 8� wedenote the universal losure of (all formulas in) �.Fat 1. S is 8�-separated from T if and only if there is a model M of S whihannot be extended �-elementarily to a model of T .Proof ideas. The diretion from left to right follows diretly from the assump-tions using the upwards persistene of 9�-formulas w.r.t. �-elementary exten-sions.For the diretion from right to left let M be a model of S whih annot beextended �-elementarily to a model of T . Then T plus the �-diagram of M isinonsistent. Using ompatness (and the losure of � under onjuntion) weobtain some '(~a) in the �-diagram of M suh that T + '(~a) is inonsistent,hene T ` :'(~a). Applying the lemma of new onstants we obtain T ` 8~x:'(~x).On the other hand M � '(~a), hene M � 9~x'(~x). Thus S 6=8� T .Introduing bounded arithmetiBefore we explain whih restrited onsisteny statements we will onsider andwhih preservation theorems will be proved by them let us briey introduebounded arithmeti. Bounded arithmeti is intended to haraterize low om-plexity omputability, i.e. the polynomial hierarhy. Every primitive reursivefuntion is provable total in I�1, hene I�1 is muh stronger than boundedarithmeti. By Parikh's Theorem ([16℄, or see [6℄, p.83, Theorem 11) the prov-able total funtions of I�0 (in the language LPA of Peano arithmeti) arebounded by polynomials. Hene I�0(LPA) is weaker than bounded arithmeti.Furthermore, only a onstant number of elements � n an be oded in a se-quene s = nO(1): If we try to ode l elements � n in s we gets = log n bitsz }| { : : : logn bitsz }| {| {z }l timeshene s onsists of l � logn bits, hene s � nl. Thus, metamathematial argu-ments are in general not formalizable in I�0(LPA).Allowing l = m many elements � n would result in an exponential growthrate, again too strong.1I am grateful to the anonymous referee of a predeessor of this artile for drawing myattention to general preservation theorems inluding Fat 1; and to Alex Wilkie for pointingout the simple proof of Fat 1 to me 2



As argued in [16℄ the right growth rate is obtained by allowing l = logmelements � n to be oded into one sequene. Thens = nlogm � 2jnj�jmj =: n#mwhere jmj is the number of bits in the binary representation of m. Boundedarithmeti an be formulated now as I�0 in the language LBA of boundedarithmeti, that is LPA extended by j:j;#, or, equivalently, as I�0+
1 (where
1 � 8x9y(jxj2 = jyj)), the latter being the original formulation of boundedarithmeti, see [21℄. The provable total funtions of bounded arithmeti are thefuntions omputable by a Turing mahine in polynomial time using oralesfrom �0(LBA), i.e. the polynomial hierarhy.A strati�ation of bounded arithmeti, whih orresponds to the strati�a-tion of the polynomial hierarhy, is obtained by putting restritions on indu-tion axioms; namely, allowing indution only for ertain lasses, �bi , of boundedformulas, and using length indution (LIND) in plae of suessor indution(IND). The most important sub-theories of bounded arithmeti are the theoriesSi2, axiomatized by �bi�LIND, and the theories T i2, axiomatized by �bi�IND.The following is known for these theories:S12 � T 12 �8�b2 S22 � T 22 �8�b3 S32 : : :and their union is the theory S2 = T2 = I�0(LBA) [6, 9℄. Here T �8�bi T 0means that T 0 is a 8�bi -onservative extension of T . Furthermore, the lass ofprediates de�nable by �bi (or �bi ) formulas is preisely the lass of prediatesin the ith level �pi (or �pi , resp.) of the polynomial hierarhy. In addition,the �bi -de�nable funtions of Si2 are preisely the pi -funtions, whih are thefuntions omputable in polynomial time using an orale for �pi�1 (f. [6℄).The main open problem for bounded arithmeti is the question if S2 is �nitelyaxiomatizable. As Si2 and T i2 are �nitely axiomatizable, this question is equiva-lent to ask if there exists an i with T i2 = Si+12 . This question is also onnetedto the open problem whether the polynomial hierarhy ollapses, hene also toP =?NP . The preise onnetion is that S2 is �nitely axiomatizable if and onlyif S2 an prove that the polynomial hierarhy ollapses [10, 23℄. The ommononjeture is that the answer to all these questions is NO!Restrited onsisteny notionsWe assume familiarity with [6℄. From now on let L be LBA, the �rst orderlanguage of bounded arithmeti. For onveniene we assume that L ontainssome more symbols for polytime funtions (�nitely many), e.g. for oding anddeoding sequenes (e.g. we ould take the language L2 from [17℄).Several restrited onsisteny notions are known from the literature. Abovewe have desribed some of them. The notion of restrited proof studied herewill be similar to the notions \i-regular proof" in [12, De�nition 10.5.2℄ and[14, De�nition 1.4℄, and \stritly i-normal proof" in [20, p.81℄, but ombinedwith a new idea. To explain this let us �rst explain why usual approahes forproving onsisteny do not work in weak arithmeti. The reason for this is thatin ase of the usual feasible oding of syntax (f. [6℄) it is impossible to feasiblyevaluate losed terms from the language of bounded arithmeti { their valuesgrow exponentially in their G�odel-numbers. What happens if we play with the3



growth rate of G�odel numbering? On the one hand, as mentioned above theusual \feasible oding" of syntax yields S2 0 BDConS12 . On the other hand, ifwe take a \very unfeasible" sequene oding, e.g. one based on exponentiationlike hn1; : : : ; nki = 2n1+1 �3n2+1 �: : :�pnk+1k , pk being the k-th prime number, thensoundness of S2-proofs an be proven in weak fragments of bounded arithmeti.We have S12 ` B̂DConS2 where in B̂DConS2 syntax is oded in the \veryunfeasible" way. Of ourse, in this setting we loose something, namely based onthe very unfeasible oding G�odel's inompleteness theorems are not provable,beause substitution of terms grows exponentially.What we will do in this paper is that we will adjust the growth rate in aertain way whih allows us to feasibly evaluate G�odel numbers of terms, withthe ost that G�odel's inompleteness theorems will not be provable. But stillthere will be available enough other properties of formalized provability RProv�T i2(De�nition 9). We will have that S12 provesRProv�T i2 (p�; 'q) and RProv�T i2 (p�;:'q) implies RProv�T i2 (p�q)(Lemma 10); that T i2-proofs an be normalizedRProv�T i2 (p'q) if and only if T i2 ` '(Theorem 11); and that a ertain 9�b1-Completeness for S12 holds (Theorem 15),whih will be a re�nement ofS12 ` '(~u)! RProv�T 02 ('( ~Iu))for 9�b1-formulas '.Preservation theoremsThe main appliation of our restrited provability notion in this paper will bethat we will prove ertain preservation theorems. Other appliations may lie inthe onstrution of models of bounded arithmeti with ertain properties. Inorder to explain the preservation theorems we are heading for, let us �rst �xsome notions. For L-struturesM;N we writeM �b0 N i� N is a �b0-elementaryextension ofM . We writeM �b1 N i� N is an 9s�b1-elementary extension ofM .Here 9s�b1 is the set of all formulas (9x)(9y � t)' with ' 2 �b0. By s�bi wealways mean the prenex (or strit) version of �bi , et.For the following de�nitions let M;N be L-strutures and T; T 0 be L-theo-ries. Let logM be fa 2 M : (9b 2 M)(a � jbj)g. Let jtj3 be jjjtjjj and letlog3M := fa 2 M : (9b 2 M)(a � jbj3)g. Let us all an extension M � Nlog3-proper, if log3M 6= log3N .The notion \weak end extension" to be de�ned next is the natural adaptionof the well known notion \end extension" to the setting of bounded arithmeti,f. [7℄.De�nition 2. (Weak end extension) N is alled a weak end extension of M(M �we N), if N is an extension of M and logN is an end extension of logM ,i.e. for all a 2 logM , b 2 logN with N � b � a we have b 2 logM .4



Weak end extensions for models of bounded arithmeti are in some aspetssimilar to end extensions for (general) models of arithmeti. For example, weakend extensions are always �b0-elementary.Let the funtion !1 be de�ned by !1(x) = 2jxj2 , i.e. !1(x) = x#x, and!(y)1 be the y-fold iteration of !1. We want to de�ne sentenes 
nst1 and 
11suh that 
nst1 expresses that a nonstandard iteration of !1 (or, equivalently,of the smash funtion #) exists. 
11 should express that an upper bound toall �nite iterations of !1 exists, but not neessarily a nonstandard iteration.Now 8x9y(jjxjj �  = jjyjj) expresses that 8x!(jj)1 (x) exists. Hene we let theL!1!-sentenes 
11 ;
nst1 be de�ned by
11 := 8x9y k̂2!(jjxjj � k < jjyjj)
nst1 := 9�� k̂2!(k < )� ^ 8x9y(jjxjj �  = jjyjj)�where k is some anonial numeral assoiated with k.In the next de�nition we adopt the notion \1-loseness" (f. [2℄) to the set-ting of bounded arithmeti. 1-losed models of Peano arithmeti PA satisfy:Con(PA) [2℄. We will show something similar for 1b-losed models of boundedarithmeti and theories T i2, namely that a model M of S12 + 
nst1 whih is 1b-losed w.r.t. T i2 annot be a model of our restrited onsisteny notion for T i2.De�nition 3. (1b-Closeness)M is alled 1b-losed w.r.t. T , if for any model N of T suh that M �b0 N wehave M �b1 N .With BL�b1 we denote the following bounded olletion shema:(8x � jtj)(9y)'(x; y) ! (9z)(8x � jtj)(9y � z)'(x; y)for ' 2 �b1 whih may ontain parameters. Buss has shown in [8℄ that Si2 andSi2 +BL�b1 have the same 8�b1-onsequenes.We are now ready to state the preservation theorems whih we will prove.Theorem 4. Let 1 � i � j. The following are equivalent:1. Si2 is 8�b1-separated from T j2 .2. There is a model of Si2 whih does not have a log3-proper �b0-elementaryextension to a model of T j2 .3. There is a model of Si2 +
nst1 whih is 1b-losed w.r.t. T j2 .4. There is a ountable model of Si2 +BL�b1 without weak end extensions tomodels of T j2 .The equivalene between 1. and 2. is well-known, it is inluded just to om-plete the list. One big impat of Theorem 4 is that solving the main openproblem of bounded arithmeti with onsisteny statements is redued to on-struting models of bounded arithmeti with ertain properties.In the next setion we will prove the easy diretions of Theorem 4, i.e. theone from 1. to 2., 3., respetively 4. In setion 2 we will de�ne a restrited5



onsisteny notion of T j2 { RCon�(T j2 ) { whih will be the strongest onsistenystatement (over S12) provable in T j2 . That is, every 8�b1-onsequene of T j2follows in S12 from RCon�(T j2 ). Suh onsisteny notions are known from theliterature, e.g. Con(Gi) in [13℄ or RCon(T i1) in [14℄, or see [12℄ for a treatmentof both. The advantage of our approah over the others is that our onsistenynotion is for theories in the same language LBA, hene we an use RCon�(T j2 ) to(diretly) onstrut models of T j2 . This is needed in the following 3 setions toomplete the proof of Theorem 4. In setion 6 we extend our results by addinga 8(�bi [ �bi )-sentene to the theories. In the last setion we sketh how theseparation problem of bounded arithmeti an be onneted to models withoutproper weak end extensions. This is stressed beause there is a similar (open)question for models of I�02: Are there models of I�0 + B�1 without properend extensions to models of I�0?3Aknowledgments: I would like to thank Sam Buss for his hospitalityduring my stay at the Department of Mathematis of the University of Califor-nia, San Diego, and for a lot of disussions and remarks.1 Basi PropertiesFrom the de�nitions we diretly obtainLemma 5. Models whih do not have a �b0-elementary extension to a model ofT are 1b-losed w.r.t. T and do not have weak end extensions to models of T ,as weak end extension are �b0-elementary.Given an L-struture M there is always an elementary extension to an L-struture N suh that N � 
nst1 . This an be seen by a simple ompatnessargument applied toeldiag(M) [ fn <  : n 2 !g [ f8x9y(jjxjj �  = jjyjj)gwhere eldiag(M) denotes the elementary diagram of M . Hene T , T + 
11 ,T +
nst1 all prove the same �rst order sentenes.A similar argumentation as in [2℄ Remark 1.2 using these observations yieldsLemma 6. Let T � T 0 be L-theories, where T � 89s�b1, then there exists aountable model of T +
11 whih is 1b-losed w.r.t. T 0.Proof. We repeat the argument from [2℄ Remark 1.2 in an adapted form. Lett0; t1; : : : be an enumeration of all tripleshm; hk1; : : : ; kni; 'iwhere m;n; k1; : : : ; kn 2 N, ' 2 9s�b1 and the number of free variables in ' isn. W.l.o.g. tl = hm; hk1; : : : ; kni; 'i implies m � l.We de�ne a tower M0 �b0 M1 �b0 : : : of ountable models of T + 
11 . LetM0 be a ountable model of T +
nst1 . Assume that we have de�nedM0; : : : ;Mland enumerations fxmk : k 2 Ng of Mm for m � l. Let tl = hm; hk1; : : : ; kni; 'i.2See [1℄ for a summary of the most important partial results on the end extension problem.3To the authors best knowledge this question was raised by Kirby and Paris in 1977.6



If there is a �b0-elementary extension M 0 of Ml whih is a model of T 0 +'(xmk1 ; : : : ; xmkn), then we an �nd an elementary extension M 00 of M 0 satisfying
nst1 (we an restrit ourselves to ountable M 0;M 00). Let Ml+1 =M 00. Other-wise let Ml+1 = Ml. We �x any enumeration fxl+1k : k 2 Ng of Ml+1. Now letM = SfMl : l 2 Ng. Then M � T +
11 whih is 1b-losed w.r.t. T 0.This onstrution does not produe a model of T +
nst1 whih is 1b-losed w.r.t.T 0, beause 
nst1 is \�3", where 
11 is only \�2", and the model is onstruted asa union of a hain of models, whih, in general, does not preserve �3-sentenes.One diretion of our disired results is easy, that the 8�b1-separation yieldsertain models. The argumentation follows the one from Fat 1.Theorem 7. Let S12 � T � T 0, T; T 0 L-theories. If T is 8�b1-separated fromT 0, then there exists a ountable model M of T + 
nst1 whih does not have a�b0-elementary extension to a model of T 0. Hene M is also 1b-losed w.r.t. T 0,and also M does not have weak end extensions to models of T 0.Proof. Under the assumption there is a ' 2 8s�b1 suh that T 0 ` ' and T 0 'as S12 knows 8�b1 = 8s�b1. The above remark shows T +
nst1 0 ', hene there isa ountable model M of T +
nst1 +:'. Now M does not have a �b0-elementaryextension to a model of T 0, beause if M �b0 M 0, then M 0 � :' using upwardspersisteny of 9s�b1-formulas, and therefore M 0 6� T 0 as T 0 ` '.By Lemma 5 every model whih does not have a �b0-elementary extensionto a model of T 0 is already 1b-losed w.r.t. T 0, and also does not have weak endextensions to models of T 0.This proves diretions 1: ) 2: resp. 1: ) 3: of Theorem 4. For 1: ) 4:observe that for ' 2 8s�b1 with Si2 0 ' and T j2 ` ' we also have Si2+BL�b1 0 'as Si2 +BL�b1 is 8�b1-onservative over Si2, hene there is a ountable model Mof Si2 + BL�b1 + :'. The same argument as in the proof of Theorem 7 showsthat there are no weak end extensions of M to models of T j2 .We are going to prove onverses of Theorem 7. That is, from the existene ofertain models we will derive the 8�b1-separation of bounded arithmeti theories.The separating sentene will always be a restrited onsisteny notion of the\stronger" theory whih will be de�ned in the next setion. .2 Restrited proofsOur notion of restrited proof will be similar to the notions \i-regular proof"in [12, De�nition 10.5.2℄ and [14, De�nition 1.4℄, and \stritly i-normal proof"in [20, p.81℄. The main di�erene between these notions will be that we willvary the oding of formal terms in order to make the oding more \unfeasible"so that values of odes of losed terms are bounded by the odes themselves,where e.g. in [20℄ restritions of the provability notion to proofs of small andvery small sizes are onsidered.We assume that we have onstants n for eah n 2 ! in our language L, anda suitable axiomatization of them in our theories, for example Sin = Sin fori = 0; 1. Hene in this setting Iu from [6℄ an simply be de�ned by Iu := u.
7



Let p:q be a usual feasible G�odelisation as in [6℄, then sub(w; x�; n) { theresult of replaing the variable4 x� in the string w by the numeral In { is a �b1-de�nable funtion in S12 and S12 an prove all neessary properties. We furtherhave l(sub(w; x�; n)) = l(w), where l(w) denotes the length of the sequenew, i.e. the number of elements forming w. For formal terms t let l(t) denoteits formal length, i.e. the number of symbols forming t. Obviously we havel(t) � l(ptq).One problem with feasible G�odelisation is that the values of terms have abigger growth rate that their G�odel numbers, e.g. := p2# : : :#2| {z }jnj times q = 2O(jnj) = nO(1) but val() = 
(2n)Of ourse there annot be a G�odelisation G of losed L-terms suh that both1) val() � O(1) for  2 G, and2) sub(w; x�; n) � (w + n)O(1),beause then f(w; n) := val(sub(w; x�; n)) would be a universal bounding fun-tion for all polynomially growth rate funtions, whih itself grows polynomially.By diagonalisation this annot be possible.Let us review the growth rates whih are ahieved via feasibleG�odelisation.Assume that we have a funtion symbol !1 in L with !1(n) = n#n = 2jnj2 .With !(k)1 (n) we denote the k-fold iteration of !1. Then !(jmj)1 (n) = 2jnjm �22(jjnjj �m) with 22(n) = 22n . Hene a natural andidate for a G�odelisationwhih has property 1) but fails for 2) isptq� := 22(jjptqjj � 2l(ptq)) + ptq:(In this de�nition we an think of l(ptq) as the number of symbols l(t) in theformal term t { we have that l(ptq) is an upper bound to l(t).) Let rem(n)be n without its leading bit, then ptq = rem(ptq�). We de�ne val�() andsub�(w; x�; n) to be the value of the losed term  resp. the result of substitutingfor x� in w the numeral In, this time with respet to p:q�. I.e., with w0 = rem(w)we an write val�() := val(rem())sub�(w; x�; n) := 22(jj sub(w0; x�; n)jj � 2l(w0)) + sub(w0; x�; n)l�(w) := l(rem(w)):As argued above sub� annot be polynomially bounded as sub� and val� togetherdiagonalise 2jnjk . But we observe that for a �xed w with l�(w) standard thefuntion n 7! sub�(w; x�; n) is polytime beause sub�(w; x�; n) an be boundedby !(l�(w)+O(1))1 (n).Now we an prove property 1) for p:q�Lemma 8. val�() � .4We use x� to speak about odes indiating variables.8



Proof. We identify funtion symbols with the funtions they represent. Thenthe assertion follows from jtj < jptq�jfor losed L-terms t. All funtion symbols f in L represent polytime funtions,hene there are onstants f suh thatjf(~n)j < max(j~nj; 2)f :Assume t = fu1 : : : uk, then jjptqjj � max(jj ~puqjj) and, w.l.o.g., l(ptq) �max(l( ~puq)) + jf j, hene we obtain indutivelyjtj < max(j~uj; 2)f � 2max(jj~ujj;1)�fi:h:� 2maxi=1;::: ;k(jjpuiqjj�2l(puiq))�f� 2max(jj ~puqjj)�max(2l( ~puq))�f� 2jjptqjj�2l(ptq) = jptq�j:The form of restrited proofs we will onsider here is similar to the notions\i-regular proof" in [12, De�nition 10.5.2℄ and [14, De�nition 1.4℄, and \stritlyi-normal proof" in [20, p.81℄.De�nition 9. RProof�T i2 (hp;~b;~t; ~d; ~T ; ~Di;�) holds if the following onditionsare satis�ed:1. p;~b;� are oded via p:q; ~t; ~d; ~T ; ~D via p:q�.2. p is a Tait-style5 derivation of the set � using the s�bi � IND-rule, andall formulas in p are in �b1.3. All ut formulas in p are in s�bi [ s�bi .4. p is in free variable normal form.5. If ~a are all parameters (i.e. free variables in �) and ~b = (b0; : : : ; bk�1) allother variables in p, then(a) if the elimination inferene of bi is below the elimination inferene ofbj , then i < j.(b) ~t is a k-tuple of monotone terms with variables among ~a; ~d is a k-tuple of proofs.() the elimination inferene of bi is one of(s�bi � IND) �;:A(bi); A(bi + 1)�;:A(0); A(r(~a; b0; : : : ; bi�1))(8 �) �; bi � r(~a; b0; : : : ; bi�1); A(bi)�;8x � r(~a; b0; : : : ; bi�1)A(x)5With \Tait-style" we mean that sets (or formally: sequenes) of formulas are derived,and that negation is a syntati operation, not a symbol of our formal language.9



and di is a proof ofb0 � t0(~a); : : : ; bi�1 � ti�1(~a); r(~a; b0; : : : ; bi�1) � ti(~a)that is without the IND-rule, is quanti�er-free and ontains only thevariables b0; : : : ; bi�1. (E.g., ti = �[r℄b0 ;::: ;bi�1(t0; : : : ; ti�1) with �the metafuntion de�ned in [6℄.)(d) We de�ne the set Bd~b;~t' (T ) for bounded ' via sets A' and B', whihare de�ned by reursion on ':' A' B'P~u atomi ; f~ug Æ � A [ A� B [ B�Qx � u (x) �A (x)�x(a') [ fa' � ug �B (x)�x(a') [ fugThen Bd~b;~t' (T ) := fbi � ti : i � kg [ A' [ � ^u2B'(u � T )	expresses, that T is an upper bound to the \world" of '. By this wemean that all values whih are onsidered by ' are bounded by T .~T is a list of monotone terms with variables among ~a, ~D is a list ofproofs similar to 5), suh that for every  in p there is some T in~T and a proof d of Bd~b;~t' (T ) in ~D, whih ontains only the samefree variables as Bd~b;~t' (T ).This means that max(~T ) bounds the \world" of p, whih allows usto ompute all values ouring in a soundness proof of a RProof�T i2 -derivation, if we are able to ompute val(max(~T )).Now we de�ne RProv�T i2 (�) := 9P RProof�T i2 (P;�)RCon�(T i2) := :RProv�T i2 (p;q):If RProof�T i2 (P; p�q) then we say that P is a restrited-T i2-proof of �.Lemma 10. (S12) If ' 2 s�bi , RProv�T i2 (p�; 'q) and RProv�T i2 (p�;:'q), thenRProv�T i2 (p�q).Theorem 11. (Normalizing)RProv�T i2 (p'q), T i2 ` '.Proof. ): is lear.(: We give two proofs. We will sketh a prooftheoreti one, and give apreise modeltheoreti one beause we will extend the model-theoreti methodlater on.Prooftheoreti proof: Assume T i2 ` '. Then there is a derivation d1 of 'whih has as axioms instanes of BASIC and whih uses the s�bi -IND-rule. Bypartial utelimination and further normalisations (see [6℄ or [3, 5℄) we obtain10



a derivation d2 of ', in whih utformulas are in s�bi [ s�bi and the only freevariables in d2 are those ouring free in ' (the parameters) and the eigen-variables of d2. By renaming eigenvariables and olleting data we obtain arestrited-T i2-proof of '.Modeltheoreti proof: Assume :RProv�T i2 (p'q). Via modeltheoreti foring(f. [11℄) we onstrut a ountable model N of T i2 + :'. Hene T i2 0 '.We start adding new onstants (dn)n2! (the witnesses of our foring on-strution) to our language (all it L+). Again we all the formalized restritedproof prediates in this extended language RProof�T i2 and RProv�T i2 . Then again:RProv�T i2 (p'q), beause the new onstants an be replaed by 0.We shall de�ne an inreasing hain (Tn)n2! of �nite sets of L+-sentenes,suh that for every n :RProv�T i2 (p:Tnq): (1)In the end their union T+ := Sn Tn will be a Hintikka set for L+ (f. setion2.3 in [11℄), and the anonial model of the atomi sentenes in T+ will be amodel of T i2 + :'. To ensure that T+ will have these properties, we arry outseveral tasks as we build the hain. We onsider the following tasks:(T1) :' 2 T+(T2) For all s�bi (L+)-sentenes  ,  2 T+ or : 2 T+.(T3) (x);t (for  a s�bi (L+)-formula in one free variable and t 2 L+ losed.) (0);: (t) 2 T+ )  (s);: (s + 1) 2 T+ for some losed s 2 L+.The following tasks (together with (T2) will insure that T+ is a Hintikka set:(H1) ;�  ^ � 2 T+ )  ; � 2 T+(H2) ;�  _ � 2 T+ )  2 T+ or � 2 T+(H3)8x (x) 8x (x) 2 T+ )  (t) 2 T+ for every losed t 2 L+.(H4)9x (x) 9x (x) 2 T+ )  (t) 2 T+ for some losed t 2 L+.If these tasks are all arried out, then T+ is a Hintikka set. E.g. if  2 s�bi and 2 T+, then : 62 T+, beause otherwise  ;: 2 Tn for some n and obviouslyRProv�T i2 (p: ;  q) ontraditing ondition (1) for n. Or, if s = t 2 T+ for somelosed terms s; t 2 L+ then also t = s 2 T+ using (T2) and RProv�T i2 (ps 6= t; t =sq).Write N+ for the anonial model of the atomi sentenes in T+. Then N+is a model of T+. Using (T2) N+ is a model of the s�bi [ s�bi -onsequenes ofT i2. Also N+ ful�lls s�bi -IND, beause if  2 s�bi and N+ �  (0) ^ 9x: (x),then there is some losed term t suh that N+ �  (0) ^ : (t) as N+ is a termmodel. With (T2) we get  (0);: (t) 2 T+. By (T3) (x);t there is a losedL+-term s suh that  (s);: (s+1) 2 T+. Hene N+ � 9x( (x) ^: (x+1)).Altogether this showsN+ �  (0) ^ 9x: (x) ! 9x( (x) ^ : (x + 1));thus N+ �  (0) ^ 8x( (x)!  (x+ 1))! 8x (x):11



By (T1) we further get N+ � :'. Hene N+ is the desired model.It remains to show that all the ountable tasks are enforeable. This meansthat for any task T and any in�nite set X � ! suh that ! nX is also in�niteand 0 62 X , we onsider the following game G(T; X). The player, 8 and 9, pikthe sets Tn in turn; player 9 makes the hoie of Tn if and only if n 2 X . Player9 wins if T+ has property T, otherwise 8 wins. Now \enforeable" means thatin all these games player 9 has a winning strategy.Consider a task. We desribe an expert (feminine by onvention) handlingthis task. Let X � ! be her subset and assume n 2 X .(T1) Let T0 := f:'g (one expert is allowed to have 0 in her set X).(T2) Let her list as ( n : n 2 X) all sentenes of s�bi (L+).If :RProv�T i2 (p:Tn�1;: nq), let Tn := Tn�1 [ f ng. Otherwise she setsTn := Tn�1 [ f: ng. Thus she ful�lls her task.We have to hek that ondition (1) is not violated. Suppose for thesake of ontradition that we have RProv�T i2 (p:Tnq), then by onstru-tion RProv�T i2 (p:Tn�1;: nq) and Tn = Tn�1 [ f: ng. Now we obtainRProv�T i2 (p:Tn�1q) using Lemma 10 ontraditing ondition (1) for n�1.(T3) (x);t If  (0);: (t) 2 Tn�1, then she hooses some witness d not ourringin Tn�1 and sets Tn := Tn�1 [ f (d);: (d + 1)g. Otherwise she doesnothing. This strategy works, beause her subset X ontains arbitrarilylarge numbers.Condition (1) is ful�lled, beause if we have  (0);: (t) 2 Tn�1 andRProv�T i2 (p:Tnq), then by onstrution we an replae d in Tn by a freshvariable a obtaining RProv�T i2 (p:Tn�1;: (a);  (a+1)q), hene one appli-ation of formalized s�bi -IND (in RProv�T i2 ) yields RProv�T i2 (p:Tn�1q).Tasks (H1){(H4) are treated in a similar way.Theorem 12. (i � 0) T i2 ` RCon�(T i2):Proof. The argument is similar to [12℄ Theorem 10.5.3.Suppose for the sake of ontradition P = hp;~b;~t; ~d; ~T ; ~Di is a restrited-T i2-proof of the empty set, then by the sub formula property all formulas in p are ins�bi [s�bi . Now S12 an evaluate all ~t; ~T (f. Lemma 8). Consider a partial truthde�nition Tri(x; y) for s�bi -formulas, (Tri 2 s�bi ), then S12 an prove Tarski'sonditions for all formulas in p with ~b � ~t using ~T and ~D. Extend Tri to STrifor sets of s�bi [ s�bi -formulas (STri 2 �bi+1), and onsider the s�bi+1-formula'(s) 8r � s8b0 � t0 : : :8bk � tk STri(Sr;~b) (2)where p = (S0; : : : ; Sl). Loal orretness, i.e. '(s)! '(s+1), is provable in T i2.With s�bi+1 � LIND we an show '(l) whih implies Tri(;) { a ontradition.Hene Si+12 proves RCon�(T i2), and as Si+12 is 8�bi+1-onservative over T i2, thesame holds for T i2. 12



Remark 13. The G�odel sentenes as proved in [6℄ as well as the followingresults in this artile admit another kind of restriting proof prediates. Byadding weights we an fore the depth dp(p) of proofs p to be bounded by jjpjj,dp(p) � jjpjj:Then the assertion (2) in the proof of Theorem 12 an be reformulated as~'(s) :=8r1; r2 � l 8b0 � t0 : : :8bk � tk�r1 � r2 � r1 + 2s&8h � r18j � lh STri(Sj;h;~b)! 8h � r28j � lh STri(Sj;h;~b)�if p is written as (S0;0; S1;0; : : : ; Sl0;0; S0;1; : : : ; Sll;l) with j = depth of Si;j inp. Thus �bi+1 � L3IND suÆes to prove ~'(jlj) from '(0), as ~'(s) 2 �bi+1 andl � jjpjj. Hene for any theory T = �bi � LkIND we getT +�bi+1 � L3IND ` RCon�(T ):Remember that we have n 7! sub�(p�q�; x�; n) as a band of polytime fun-tions indexed by �. De�nel�(hp;~b;~t; ~d; ~T ; ~Di) := max � l�(~t); l�(~d); l�(~T ); l�( ~D)�where, e.g., l�(t1; : : : ; tk) means l�(t1); : : : ; l�(tk). An inspetion of [6, Lemma7.4.5℄ and [6, Theorem 7.4.4℄ showsLemma 14. For all terms t with free variables among x1; : : : ; xl there is aonstant kt 2 ! and a term st with free variables among x1; : : : ; xl suh thatS12 ` 9P � st(~u)� l�(P ) � kt ^RProof�T 02 (P; pt( ~Iu) = It(~u)q)�:Proof. Inspeting Lemma 7.4.5 in [6℄ shows that the lengths of all terms in thegenerated proof of t( ~Iu) = It(~u) is bounded by l(t) + o(1). Here it is importantthat in our setting we have Iu := u and hene l(Iu) = 1 for arbitrary u (evenif u is nonstandard).In the proof p of t( ~Iu) = It(~u) generated in Lemma 7.4.5 of [6℄ only equationsour. Thus we may take ~T as the sequene of all v + w for v = w ouringin p, and ~D as the sequene of simple proofs of v � v + w ^ w � v + w. Thenhppq; p;q; p;q�; p;q�; p~Tq�; p ~Dq�i is a restrited proof of pt( ~Iu) = It(~u)q.Hene we an hoose kt = l(ptq) + o(1).Theorem 15. (9�b1-Completeness for S12 w.r.t. p:q�)1. For ' 2 �b1 with free variables among x1; : : : ; xl there exists a onstantk' 2 ! and a term s' with free variables among x1; : : : ; xl suh thatS12 ` '(~u)! 9P � s'(~u)� l�(P ) � k' ^ RProof�T 02 (P; p'( ~Iu)q)�:2. For ' 2 9�b1 with free variables among x1; : : : ; xl there exists a onstantk' 2 ! suh thatS12 ` '(~u)! 9P � l�(P ) � k' ^RProof�T 02 (P; p'( ~Iu)q)�:13



Proof. An inspetion of Theorem 7.4.4 in [6℄ shows that the lengths of terms ingenerated proofs does not exeed those generated in Lemma 14. Hene we anhoose k' = l(p'q) + o(1).Furthermore, proofs are generated by indution on the omplexity of ',they do not ontain appliations of indution rules, and the struture of (8 �)-inferenes and their bounds reet the struture of the bounded 8-quanti�ersand their bounds in '. Thus we an de�ne "from the outside" lists ~b;~t and ~d(all standard objets), suh that if '(~u) holds, thenhppq; p~bq; p~tq�; p~dq�; p~Tq�; p ~Dq�i(where p; ~T ; ~D are olleted similar as in the proof of Lemma 14) is a restritedproof of p'( ~Iu)q.As a orollary we obtain that RCon�(T i2) is the strongest 8�b1-statement(over S12) provable in T i2, similar to Con(Gi) in [13℄ or RCon(T i1) in [14℄, or see[12℄ for a treatment of both.Theorem 16. (i � 1) For all ' 2 8�b1 suh that T i2 ` ' we have S12 `RCon�(T i2)! '.Proof. Let S12 ` ' $ 8x (x) with  2 s�b1, then we have T i2 `  (x), heneRProof�T i2 (P; p (x�)q) for some standard P using Normalizing (Theorem 11).S12 an hek that RProof�T i2 (IP ; p (x�)q) holds. Now l�(P ) is standard, henewe an substitute values for x� in P , beause u 7! sub�(P; x�; u) is polytime.Thus we obtain S12 ` 8uRProv�T i2 (p (Iu)q). The 9�b1-ompleteness of S12 showsS12 ` : (u)! RProv�T i2 (p: (Iu)q). Hene S12 ` : (u)! :RCon�(T i2).Corollary 17. Let i � 1.1. S12 +RCon�(T i2) =8�b1 T i2.2. Si2 6=8�b1 T j2 , Si2 0 RCon�(T j2 ).3 �b0-elementary extensionAs shown in Fat 1 it is well-known that the 8�b1-separation of Si2 from T j2(1 � i � j) is equivalent to the existene of a model of Si2 whih does not havea �b0-elementary extension to a model of T j2 .We repeat this argument in an adapted form to prove the next theorem. Wedo this also beause the proof of Theorem 18 is the bases of following proofs.Theorem 18. (i � 1) Assume M is a model of S12 whih does not have a log3-proper �b0-elementary extension to a model of T i2. Then M � :RCon�(T i2).Proof. Suppose for the sake of ontradition M � RCon�(T i2). Let LM be theextension of the onstants n : n 2 ! of our language L to d : d 2 M , plussome new onstant b. So Id = d for all d 2M . ConsiderT := T i2 +�b0-diag(M) + fjIdj3 < jbj3 : d 2Mg;14



where �b0-diag(M) is the �b0-diagram of M�b0-diag(M) := f�(Ia1 ; : : : ; Ian) : � 2 �b0; a1; : : : ; an 2M;M � �(~a)g:We will show that T is onsistent. Suppose for the sake of ontradition T isinonsistent. Then by ompatness there is a �nite subset D � �b0-diag(M) andsome �nite N � M suh that T i2 +D + fjIdj3 < jbj3 : d 2 Ng is inonsistent.Let d0 = max(N) and d1 = d0#d0 2 M . As b has been new, we an replae itby Id1 . Now jd1j3 > jd0j3 � jdj3 for any d 2 N , hene we an assume w.l.o.g.that T i2+D is inonsistent. Using that �b0 is losed under onjuntion, we evenan assume w.l.o.g. that there is one �(Ia1 ; : : : ; Ian) 2 �b0-diag(M) suh thatT i2 + �(Ia1 ; : : : ; Ian) is inonsistent. HeneT i2 ` :�(Ia1 ; : : : ; Ian):Using Normalizing (Theorem 11) there is a standard restrited-T i2-proof withparameters from M deriving this formula, heneM � RProv�T i2 (p:�(Ia1 ; : : : ; Ian)q):By �b1-Completeness (Theorem 15) we have M � RProv�T i2 (p�(Ia1 ; : : : ; Ian)q).Hene using a bounded ut (i.e. a re�nement of Lemma 10) we obtain M �RProv�T i2 (;) ontraditing our assumption M � RCon�(T i2). Thus T is onsis-tent.Let N be a model of T , then (up to isomorphism) M �b0 N beause Tinludes the �b0-diagram of M . Furthermore N � T i2 + fjIdj3 < jbj3 : d 2 Mg,hene N is a log3-proper extension of M and N is a model of T i2, ontraditingour assumption that M does not have a log3-proper �b0-elementary extensionto a model of T i2.Thus our assumption was wrong, and we have M � :RCon�(T i2).This theorem an be used to reobtain Fat 1 (and, therefore, 2. ) 1. ofTheorem 4), i.e. that if there is a model of Si2 whih does not have a log3-proper�b0-elementary extension to a model of T j2 then Si2 is 8�b1-separated from T j2(1 � i � j). Beause, under the assumption the last Theorem shows that Si2does not prove RCon�(T j2 ), while T j2 does prove it (f. Theorem 12).4 1b-losed models1-losed models of PA satisfy :Con(PA) [2℄. Here we show something similarfor 1b-losed models of bounded arithmeti and theories T i2.Theorem 19. (i � 1) Assume M is a model of S12 + 
nst1 whih is 1b-losedw.r.t. T i2. Then M � :RCon�(T i2).Proof. The proof is similar to that of Theorem 1.1 in [2℄.Suppose for the sake of ontradition M � RCon�(T i2). Fix a nonstandardb 2M suh that M � 8x9y(jjxjj � b = jjyjj). Let  (z; p'q; x) be the formula8P � l�(P ) < jzj ! :RProof�T i2 (P; p:'(Iz ; Ix; y�)q)�where ' 2 s�b1. 15



We assert that  is universal for (standard) 9s�b1-formulas with one freevariable and parameter b, i.e.M �  (b; p'q; a)$ 9y'(b; a; y) (3)for ' 2 s�b1 and a 2M .Fix ' 2 s�b1 and a 2M .(: Assume there exists some d 2 M suh that M � '(b; a; d). By �b1-Completeness (Theorem 15) there exists P 2M withM � RProof�T i2 (P; p'(Ib; Ia; Id)q): (4)Suppose for the sake of ontraditionM 6�  (b; p'q; a), i.e. there is a Q 2Msuh that M � l�(Q) < jbj and M � RProof�T i2 (Q; p:'(Ib; Ia; y�)q). As M �l�(Q) < jbj and M � 8x9y(jjxjj � b = jjyjj), we an substitute y� in Q by Idobtaining some Q0 2M suh thatM � RProof�T i2 (Q0; p:'(Ib; Ia; Id)q):Now a bounded ut with (4) (f. Lemma 10) yields M � RProv�T i2 (;) whihontradits our assumption M � RCon�(T i2).): Assume M �  (b; p'q; a). Let LM be the extension of the onstantsn : n 2 ! of our language L to d : d 2M . So Id = d for all d 2M .Consider T := T i2 +�b0-diag(M) + 9y'(Ib; Ia; y):We will show that T is onsistent. Suppose for the sake of ontradition T isinonsistent. By ompatness and the losure of �b0 under onjuntion there issome �(Ia1 ; : : : ; Ian) 2 �b0-diag(M) suh that T i2+�(Ia1 ; : : : ; Ian)+9y'(Ib; Ia; y)is inonsistent, hene T i2 ` :�(Ia1 ; : : : ; Ian);:'(Ib; Ia; y):Using Normalizing (Theorem 11) there is a standard restrited-T i2-proof withparameters from M for this set of formulas, hene there is some P 2 M suhthat M � l�(P ) < jbj andM � RProof�T i2 (P; p:�1(Ia1 ; : : : ; Ian);:'(Ib; Ia; y)q):By �b1-Completeness (Theorem 15) there exist P 0 2 M suh that l�(P 0) isstandard and M � RProof�T i2 (P 0; p�(Ia1 ; : : : ; Ian)q):Hene using a bounded ut (i.e. a re�nement of Lemma 10) yields a Q 2 Msuh that M � l�(Q) < jbj andM � RProof�T i2 (Q; p:'(Ib; Ia; y)q)ontraditing our assumption M �  (b; p'q; a). Thus T is onsistent.Let N be a model of T , then (up to isomorphism) M �b0 N beause Tinludes the �b0-diagram of M . Furthermore N � T i2 + 9y'(b; a; y), hene M �16



9y'(b; a; y) by our assumption that M is 1b-losed w.r.t. T i2. This �nishes theproof of (3).Considering : (z; x; x) there is some ' 2 s�b1 suh that S12 ` 9y'(z; x; y)$: (z; x; x). By (3) we haveM �  (b; p'q; a)$ 9y'(b; a; y)$ : (b; a; a)for all a 2M . Instantiating this with a := p'q we getM �  (b; p'q; p'q)$ : (b; p'q; p'q);a ontradition.Thus our assumption was wrong, and we have M � :RCon�(T i2).Corollary 20. (1 � i � j) Assume that there is a model of Si2 +
nst1 whih is1b-losed w.r.t. T j2 . Then Si2 6=8�b1 T j2 .Proof. Under the assumption the last Theorem shows that Si2 does not proveRCon�(T j2 ), while T j2 does prove it (f. Theorem 12).This proves 3. ) 1. of Theorem 4.Corollary 21. There is no model M of T i2 +
nst1 whih is 1b-losed w.r.t. T i2.Proof. Otherwise we would get M � :RCon�(T i2) by Theorem 19, whih on-tradits M � T i2 as T i2 ` RCon�(T i2).The author onjetures that there also is no model M of Si2 +
nst1 whih is1b-losed w.r.t. Si2.5 Weak end extensionsUp to now our restrited onsisteny notion yielded �b0-elementary extensions.We will hange this so that weak end extensions are obtained. To this endwe extend our formal language to Lex adding uniform small onjuntions anddisjuntions: '(x) 2 Lex ) _b�jaj'(Ib); ^b�jaj'(Ib) 2 Lex:The formal Tait-style rules for deriving them are given by(_) �; '(Ib) for some b � jaj ) �; _b�jaj'(Ib)(^) �; '(Ib) for all b � jaj ) �; ^b�jaj'(Ib):We de�ne �b;ex0 , s�b;exi et. analogous to �b0, s�bi et. ounting small on-juntions and small disjuntions as sharply bounded quanti�ers. Now we de�neRProof�T i2+WEnd similar to RProof�T i2 in the language Lex with additional rules(W), (V) and an additional axiom shema8x � jIaj _b�jajx = Ib17



for all a. Furthermore uts are extended to s�b;exi [ s�b;exi -formulas. Indutionneed not to be extended to s�b;exi .We haveTheorem 22. T i2 ` RCon�(T i2 +WEnd).Proof. There is a polytime transformation elex : Lex ! L given by � _b�jaj'(Ib) 7! 9x � jIaj'(x ) � ^b�jaj'(Ib) 7! 8x � jIaj'(x )whih an be formalized in S12 . We haveelex(�b;ex0 ) = �b0 elex(s�b;exi ) = s�bi et.Furthermoreelex �8x � jIaj _b�jajx = Ib� � 8x � jIaj9y � jIajx = yand x 6= I0 ^ : : : ^ x 6= Ijaj ! x 6� Ijajhave simple proofs in T 02 of size linear in jaj resp. jaj2. HeneS12 ` RProv�T i2+WEnd(p�q)! RProv�T i2 (pelex(�)q)and therefore S12 ` RCon�(T i2)! RCon�(T i2 +WEnd):Now Theorem 12, T i2 ` RCon�(T i2), yields the assertion.Theorem 23. Assume M is a ountable model of S12+BL�b1 without weak endextensions to models of T i2. Then M � :RCon�(T i2 +WEnd).Proof. Suppose for the sake of ontradition thatM � RCon�(T i2+WEnd). Weextend our foring onstrution from the proof of Theorem 11. Again we startextending our languages L;Lex to inlude witnesses (dn)n2! (we all them L+resp. Lex+). We all the formalized restrited proof prediate in the languageLex+ again RProof�T i2+WEnd, obtainingM � :RProv�T i2+WEnd(p;q):We de�ne an inreasing hain (Tn)n2! of �nite sets of L+-sentenes, suh thatfor every n M � :RProv�T i2+WEnd(p:Tnq): (5)In the end their union T+ := Sn Tn will be a Hintikka set for L+, and theanonial model N of the atomi sentenes in T+ will be a weak end extensionof M and a model of T i2, ontraditing our assumption.To ensure that T+ will have these properties, we arry out several tasks aswe build the hain. Beside tasks (T2)-(T3), (H1)-(H4) desribed in the proofof Theorem 11 we need also the following task:18



(T10)a;t (for a 2M; t 2 L+ losed) If (t � jIaj) 2 T+, then there is some b 2Msuh that (t = Ib) 2 T+.If (T10) is ful�lled, then N is a weak end extension ofM . To see this, let a 2Mand b 2 N suh that N � b � jaj, then we have to show b 2 M . As N isthe anonial model, there is some losed t 2 L+ suh that N � b = t, heneN � t � jaj. T+ is s�bi -omplete (by (T2)), hene (t � jIaj) 2 T+. Now (T10)a;tyields the existene of some e 2 M suh that (t = Ie) 2 T+, hene N � t = eand therefore b = e 2M .It remains to show that (T10)a;t is enforeable. Therefore we need to desribean expert handling this task. Let X � ! be her subset and assume n 2 X . Lether list f(a; t) : a 2M; t 2 L+ losedg using her set X . Of ourse here we needthat M is ountable. Assume that (a; t) is the element indexed by n in her list.If (t � jIaj) 62 Tn�1 let Tn := Tn�1. Otherwise (t � jIaj) 2 Tn�1. Supposefor the sake of ontradition thatM � 8b � jaj9pRProof�T i2+WEnd(p; p:Tn�1; t 6= Ibq):As M is a model of S12 +BL�b1 we obtainM � 9P8b � jajRProof�T i2+WEnd((P )b; p:Tn�1; t 6= Ibq);hene by (V) M � RProv�T i2+WEnd(p:Tn�1; ^b�jaj t 6= Ibq):As (t � jIaj) 2 Tn�1 we getM � RProv�T i2+WEnd(p:Tn�1; t � jIajq);hene M � RProv�T i2+WEnd(p:Tn�1; 9x � jIaj ^b�jajx 6= Ibq)thus M � RProv�T i2+WEnd(p:Tn�1q) by a �b;ex0 -ut ontraditing (5) for n� 1.Hene there is some b � jaj in M suh thatM � :RProv�T i2+WEnd(p:Tn�1; t 6= Ibq):Let Tn := Tn�1 [ ft 6= Ibg.Using this strategy she ful�lls her task as X is in�nite.Corollary 24. (1 � i � j) Assume that there is a ountable model of Si2+BL�b1without weak end extensions to models of T j2 . Then Si2 6=8�b1 T j2 .Proof. Under the assumption the last Theorem shows that Si2 does not proveRCon�(T j2 +WEnd), while T j2 does prove it (f. Theorem 22).This proves 4. ) 1. of Theorem 4.
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6 Extending resultsFirst let us remark that if we modify our restrited provability notion to inludetrue s�bk [ s�bk-formulas as axioms we would haraterize the 8�bk-separation ofSi2 from T j2 . Also it is obvious how to adjust the oding p:q� to inlude funtionswith stronger but sub-exponential growth rates like #3;#4; : : : .Now let � be an 8(�bi [�bi )-sentene. We are going to argue that the previ-ously obtained results an be extended by adding � to the theories.W.l.o.g. let � = 8y� 0(y) for some � 0 2 s�bi [ s�bi , beause we are adding � toT i2, and T i2 knows �bi = s�bi . We extend RProof�T i2 to RProof�T i2+� by allowingall instanes of 8y� 0(y) as additional axioms, i.e. axioms of the form � 0(t) forany L-term t. Then RProv�T i2+� and RCon�(T i2 + �) are de�ned in the obviousway.Theorem 25. T i2 + � ` RCon�(T i2 + �).Proof. See also Theorem 12.S12 proves Tarski's onditions for all formulas in a restrited-T i2 + � -proofP of the emptyset, therefore we have for all axioms � 0(t) ouring in P =hp;~b;~t; ~d; ~T ; ~Di 8y� 0(y)! 8b0 � t0 : : :8bk � tk Tri(p� 0(t)q;~b):Thus the argument runs the same way as in the proof of Theorem 12, i.e. wean show T i2 ` 8y� 0(y)! RCon�(T i2 + �):Again we have that RCon�(T i2+ �) is the strongest 8�b1-statement (over S12)provable in T i2 + � .Corollary 26. For all ' 2 8�b1 suh that T i2+� ` ' we have S12 ` RCon�(T i2+�)! '.Theorem 27. Assume M is a ountable model of S12+BL�b1 without weak endextensions to models of T i2 + � . Then M � :RCon�(T i2 + � +WEnd).Proof. Assuming M � RCon�(T i2+ � +WEnd) we modify our foring onstru-tion obtaining a Hintikka set T+ suh that� 0(t) 2 T+ for all losed L+-terms t:Then the anonial model N generated from T+ ful�lls N � 8y� 0(y), thus N �T i2 + � and N is a weak end extension of M ontraditing our assumption.Similarily we an prove the following Theorems.Theorem 28. Assume M is a model of S12 whih does not have a log3-proper�b0-elementary extension to a model of T i2+� . Then M � :RCon�(T i2+�).Theorem 29. Assume M is a model of S12 + 
nst1 whih is 1b-losed w.r.t.T i2 + � . Then M � :RCon�(T i2 + �).Hene we obtain 20



Corollary 30. Let 1 � i � j. The following are equivalent:1. Si2 + � is 8�b1-separated from T j2 + � .2. There is a model of Si2+� whih does not have a log3-proper �b0-elementaryextension to a model of T j2 + � .3. There is a model of Si2 + � + 
nst1 whih is 1b-losed w.r.t. T j2 + � .4. There is a ountable model of Si2+ � +BL�b1 without weak end extensionsto models of T j2 + � .Remark 31. Considering 
nst1 we an extend the results allowing � to be an98(�bi [�bi )-sentenes whih has as a parameter the nonstandard element givenby 
nst1 . I.e., assume that our language L is extended by a new onstant . Let~
nst1 () be the following L!1!-sentene:~
nst1 () := � k̂2!(k < )� ^ 8x9y(jjxjj �  = jjyjj):Thus 
nst1 = 9z ~
nst1 (z). Then we an onsider �() instead of � in the previouslyobtained results where 
nst1 is replaed by ~
nst1 ().7 Towards proper weak end extensionsIn setion 5 we have onneted the 8�b1-separation of Si2 from T j2 with models ofSi2+BL�b1 whih do not have weak end extensions to models of T j2 . But we arereally interested in a onnetion to models without proper weak end extensions,beause there is a similar (open) question for models of I�0: are there modelsof I�0 + B�1 without proper end extensions to models of I�0? Furthermore,there exists a �1-sentene � (a version of the Tableau onsisteny of I�0) anda model of I�0 +
1 + � +B�1 whih has no proper end extensions to modelsof I�0 +
1 + � (f. [1℄).Up to now we have not ahieved a onnetion to proper weak end extensions.We will desribe two possible ways in this diretion now.Wilkie and Paris in [22℄ de�ned a �3-sentene  suh thatI�0 +B�1 I�0 +B�1 +  I�0 +B�1 + : all have the same �1-onsequenes. This an be improved toProposition 32. There is a 89�b1-sentene � suh that for S12 � T � S2T T + � T + :�all have the same �1-onsequenes.Proof. Let Loga(z) := �u:z � 2jaju , then Loga(z) = u has a �b1-desription inS12 . Let � be the sentene equivalent to8a8z(2jaj2Loga(z) exists):21



Then T T + � T + :�all have the same �1-onsequenes. To see this, supposeT + :� ` 8x�(x); � 2 �0but T 0 8x�(x):Then we �nd a model K � T + :�(a) suh that a�t exists in K for someN < �; t < a. LetLK(a; �) := fx 2 K : x � 2jaj�n some n 2 Ng �e Kthen LK(a; �) � T+:�(a) (this is true for arbitrary �). Furthermore, LK(a; �) �:�, beause b := 2jaj� 2 LK(a; �) and Loga(b) = �, but 2jaj2� 6� 2jaj�n for alln 2 N.The ase for � is similar, taking 2 in plae of � and observing LK(a; 2) ��.Remark 33. The same � from the proof of the last proposition also ful�lls thatT +BL�b1 T +BL�b1 + � T +BL�b1 + :�have the same �1-onsequenes. This an be seen by adapting Theorem 1 from[22℄ in the form M �e K � S12 ) M � BL�b1:Open Problem 1. Can this be improved to �nding a sentene � suh thatProposition 32 holds for � instead of � and suh that the formalized proof pred-iate an be extended to � and :� ful�llingT j2 + � ` RCon�(T j2 + �) T j2 + :� ` RCon�(T j2 + :�) ?Having this, we would getT j2 ` RCon�(T j2 + �) ^ RCon�(T j2 + :�)using Proposition 32.On the other hand we would be able to show that if M is a model of S12 +BL�b1 without proper weak end extensions to models of T j2 , thenM � :RCon�(T j2 + �) _ :RCon�(T j2 + :�):To see this observeM � �_:�. W.l.o.g. we may assumeM � �. Now assumingM � RCon�(T j2 + :�) would produe a weak end extension N of M whih is amodel of T j2 +:�. But thenM 6= N asM � � and N � :�, hene the extensionis a proper one ontraditing our assumption. HeneSi2 0 RCon�(T j2 + �) ^ RCon�(T j2 + :�):22



The seond possibility bases on an ultrapower onstrution desribed byBuss in [7℄. Suppose M � Si2 +BL�bi +BB�biwhere BB�bi is the sharply bounded replaement shema(8x � jaj)(9y � b)'(x; y)! (9w)(8x � jaj)'(x; (w)x)for ' 2 �bi . Note that by results of Buss [8℄ and Ressayre [19℄ the theorySi2 + BL�bi + BB�bi is 8�bi+1-onservative over Si2. Buss shows in [7℄ thatthere is a proper (�bi \ �bi )-elementary weak end extension N of M suh thatlogN = logM and N � T i�12 .Open Problem 2. Can this be improved suh that N � BL�b1 and N is a8�b1-elementary extension of M?Then we ould argue as follows: If M does not have proper weak end ex-tensions to models of T j2 , then M � :RCon�(T j2 ). Beause assuming M �RCon�(T j2 ) would imply N � RCon�(T j2 ), and our onstrution from setion 5would yield a weak end extensions of N to a model N 0 of T j2 , but N 0 would nowbe a proper weak end extension of M { ontradition.Referenes[1℄ Adamowiz, Z.: A ontribution to the end-extension problem and the �1onservativeness problem. Annals of Pure and Applied Logi 61: 3-48, 1993.[2℄ Adamowiz, Z., and Bigorajska, T.: Existentially losed strutures andG�odel's seond inompleteness theorem. Preprint, 1999.[3℄ Bekmann, A.: Separating fragments of bounded arithmeti. PhD thesis,WWU M�unster, 1996.[4℄ Bekmann, A.: Proving onsisteny of equational theories in bounded arith-meti. aepted for publiation in JSL, 1999.[5℄ Bekmann, A.: Dynami ordinal analysis. submitted to Arh. Math. Logi,2001.[6℄ Buss, S.R.: Bounded arithmeti. Studies in Proof Theory. Leture Notes,3. Bibliopolis, Naples, 1986.[7℄ Buss, S.R.: Weak End Extensions of Models of Bounded Arithmeti. Un-published preprint, 1986.[8℄ Buss, S.R.: A onservation result onerning bounded theories and the ol-letion axiom. Pro. Amer. Math. So. 100, no. 4, 709-715, 1987.[9℄ Buss, S.R.: Axiomatizations and onservation results for fragments ofbounded arithmeti. in: Logi and Computation, Contemporary Mathemat-is, 106: 57 { 84. Providene, AMS. 1990.[10℄ Buss, S.R.: Relating the bounded arithmeti and the polynomial time hier-arhies. Annals of Pure and Applied Logi 75: 67-77. 1995.23
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