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tIn this arti
le we will de�ne and study a new restri
ted 
onsisten
ynotion RCon�(T j2 ) for bounded arithmeti
 theories T j2 . It will be thestrongest 8�b1-statement over S12 provable in T j2 , similar to Con(Gi) in [13℄or RCon(T i1) in [14℄. The advantage of our notion over the others is thatRCon�(T j2 ) 
an dire
tly be used to 
onstru
t models of T j2 . We apply thisby proving preservation theorems for theories of bounded arithmeti
 ofthe following well-known kind: The 8�b1-separation of bounded arithmeti
theories Si2 from T j2 (1 � i � j) is equivalent to the existen
e of a modelof Si2 whi
h does not have a �b0-elementary extension to a model of T j2 .More spe
i�
, letM � 
nst1 denote that there is a nonstandard element
 in M su
h that the fun
tion n 7! 2log(n)
 is total in M . Let BL�b1 bethe bounded 
olle
tion s
hema for �b1-formulas. We obtain the followingpreservation results: The 8�b1-separation of Si2 from T j2 (1 � i � j) isequivalent to the existen
e of1. a model of Si2 +
nst1 whi
h is 1b-
losed w.r.t. T j2 ,2. a 
ountable model of Si2 + BL�b1 without weak end extensions tomodels of T j2 .This arti
le is a 
ontribution to the investigation of the in
uen
e of 
on-sisten
y notions to the �nitely axiomatization question of bounded arithmeti
.The usual notion of 
onsisten
y is too strong to serve as a separating senten
efor bounded arithmeti
 theories be
ause S2 0 ConS�12 , 
.f. [21℄, where S�12 isthe indu
tion-free fragment of bounded arithmeti
 S2. Also the weaker 
onsis-ten
y statement BDCon, whi
h refers to proofs that use only bounded formu-las, still is too strong: Buss in [6℄ proved that Si+12 ` BDConSi2 holds for atmost one i, and later Pudl�ak showed in [18℄ that S2 0 BDConS12 , hen
e onlyS2 ` BDConS02 remains to be possible. On the other hand I have been able to�A former version of this arti
le was entitled \Model-theoreti
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show in [4℄ that S12 
an prove the 
onsisten
y of equational theories whi
h baseonly on the re
ursive de�nition of the underlying fun
tion symbols. In parti
u-lar S12 ` Con(S�12 ), where S�12 is the equational theory based on the re
ursivede�nition of the fun
tion symbols of bounded arithmeti
. This result disprovesa plausible 
onje
ture of Takeuti ([15℄ p.5 problem 9.). It gives hope that 
on-sisten
y statements 
an lead to a negative answer of the �nitely axiomatizationquestion of bounded arithmeti
.The fo
us of this paper are new restri
ted 
onsisten
y statements for the-ories of bounded arithmeti
 and appli
ations of them for proving preservationtheorems for theories of bounded arithmeti
 in the manner of the following well-known one.1 Let L be a �rst order language, S � T be L-theories and � a 
lassof L-formulas whi
h is 
losed under 
onjun
tion and negation. With 8� wedenote the universal 
losure of (all formulas in) �.Fa
t 1. S is 8�-separated from T if and only if there is a model M of S whi
h
annot be extended �-elementarily to a model of T .Proof ideas. The dire
tion from left to right follows dire
tly from the assump-tions using the upwards persisten
e of 9�-formulas w.r.t. �-elementary exten-sions.For the dire
tion from right to left let M be a model of S whi
h 
annot beextended �-elementarily to a model of T . Then T plus the �-diagram of M isin
onsistent. Using 
ompa
tness (and the 
losure of � under 
onjun
tion) weobtain some '(~a) in the �-diagram of M su
h that T + '(~a) is in
onsistent,hen
e T ` :'(~a). Applying the lemma of new 
onstants we obtain T ` 8~x:'(~x).On the other hand M � '(~a), hen
e M � 9~x'(~x). Thus S 6=8� T .Introdu
ing bounded arithmeti
Before we explain whi
h restri
ted 
onsisten
y statements we will 
onsider andwhi
h preservation theorems will be proved by them let us brie
y introdu
ebounded arithmeti
. Bounded arithmeti
 is intended to 
hara
terize low 
om-plexity 
omputability, i.e. the polynomial hierar
hy. Every primitive re
ursivefun
tion is provable total in I�1, hen
e I�1 is mu
h stronger than boundedarithmeti
. By Parikh's Theorem ([16℄, or see [6℄, p.83, Theorem 11) the prov-able total fun
tions of I�0 (in the language LPA of Peano arithmeti
) arebounded by polynomials. Hen
e I�0(LPA) is weaker than bounded arithmeti
.Furthermore, only a 
onstant number of elements � n 
an be 
oded in a se-quen
e s = nO(1): If we try to 
ode l elements � n in s we gets = log n bitsz }| { : : : logn bitsz }| {| {z }l timeshen
e s 
onsists of l � logn bits, hen
e s � nl. Thus, metamathemati
al argu-ments are in general not formalizable in I�0(LPA).Allowing l = m many elements � n would result in an exponential growthrate, again too strong.1I am grateful to the anonymous referee of a prede
essor of this arti
le for drawing myattention to general preservation theorems in
luding Fa
t 1; and to Alex Wilkie for pointingout the simple proof of Fa
t 1 to me 2



As argued in [16℄ the right growth rate is obtained by allowing l = logmelements � n to be 
oded into one sequen
e. Thens = nlogm � 2jnj�jmj =: n#mwhere jmj is the number of bits in the binary representation of m. Boundedarithmeti
 
an be formulated now as I�0 in the language LBA of boundedarithmeti
, that is LPA extended by j:j;#, or, equivalently, as I�0+
1 (where
1 � 8x9y(jxj2 = jyj)), the latter being the original formulation of boundedarithmeti
, see [21℄. The provable total fun
tions of bounded arithmeti
 are thefun
tions 
omputable by a Turing ma
hine in polynomial time using ora
lesfrom �0(LBA), i.e. the polynomial hierar
hy.A strati�
ation of bounded arithmeti
, whi
h 
orresponds to the strati�
a-tion of the polynomial hierar
hy, is obtained by putting restri
tions on indu
-tion axioms; namely, allowing indu
tion only for 
ertain 
lasses, �bi , of boundedformulas, and using length indu
tion (LIND) in pla
e of su

essor indu
tion(IND). The most important sub-theories of bounded arithmeti
 are the theoriesSi2, axiomatized by �bi�LIND, and the theories T i2, axiomatized by �bi�IND.The following is known for these theories:S12 � T 12 �8�b2 S22 � T 22 �8�b3 S32 : : :and their union is the theory S2 = T2 = I�0(LBA) [6, 9℄. Here T �8�bi T 0means that T 0 is a 8�bi -
onservative extension of T . Furthermore, the 
lass ofpredi
ates de�nable by �bi (or �bi ) formulas is pre
isely the 
lass of predi
atesin the ith level �pi (or �pi , resp.) of the polynomial hierar
hy. In addition,the �bi -de�nable fun
tions of Si2 are pre
isely the pi -fun
tions, whi
h are thefun
tions 
omputable in polynomial time using an ora
le for �pi�1 (
f. [6℄).The main open problem for bounded arithmeti
 is the question if S2 is �nitelyaxiomatizable. As Si2 and T i2 are �nitely axiomatizable, this question is equiva-lent to ask if there exists an i with T i2 = Si+12 . This question is also 
onne
tedto the open problem whether the polynomial hierar
hy 
ollapses, hen
e also toP =?NP . The pre
ise 
onne
tion is that S2 is �nitely axiomatizable if and onlyif S2 
an prove that the polynomial hierar
hy 
ollapses [10, 23℄. The 
ommon
onje
ture is that the answer to all these questions is NO!Restri
ted 
onsisten
y notionsWe assume familiarity with [6℄. From now on let L be LBA, the �rst orderlanguage of bounded arithmeti
. For 
onvenien
e we assume that L 
ontainssome more symbols for polytime fun
tions (�nitely many), e.g. for 
oding andde
oding sequen
es (e.g. we 
ould take the language L2 from [17℄).Several restri
ted 
onsisten
y notions are known from the literature. Abovewe have des
ribed some of them. The notion of restri
ted proof studied herewill be similar to the notions \i-regular proof" in [12, De�nition 10.5.2℄ and[14, De�nition 1.4℄, and \stri
tly i-normal proof" in [20, p.81℄, but 
ombinedwith a new idea. To explain this let us �rst explain why usual approa
hes forproving 
onsisten
y do not work in weak arithmeti
. The reason for this is thatin 
ase of the usual feasible 
oding of syntax (
f. [6℄) it is impossible to feasiblyevaluate 
losed terms from the language of bounded arithmeti
 { their valuesgrow exponentially in their G�odel-numbers. What happens if we play with the3



growth rate of G�odel numbering? On the one hand, as mentioned above theusual \feasible 
oding" of syntax yields S2 0 BDConS12 . On the other hand, ifwe take a \very unfeasible" sequen
e 
oding, e.g. one based on exponentiationlike hn1; : : : ; nki = 2n1+1 �3n2+1 �: : :�pnk+1k , pk being the k-th prime number, thensoundness of S2-proofs 
an be proven in weak fragments of bounded arithmeti
.We have S12 ` B̂DConS2 where in B̂DConS2 syntax is 
oded in the \veryunfeasible" way. Of 
ourse, in this setting we loose something, namely based onthe very unfeasible 
oding G�odel's in
ompleteness theorems are not provable,be
ause substitution of terms grows exponentially.What we will do in this paper is that we will adjust the growth rate in a
ertain way whi
h allows us to feasibly evaluate G�odel numbers of terms, withthe 
ost that G�odel's in
ompleteness theorems will not be provable. But stillthere will be available enough other properties of formalized provability RProv�T i2(De�nition 9). We will have that S12 provesRProv�T i2 (p�; 'q) and RProv�T i2 (p�;:'q) implies RProv�T i2 (p�q)(Lemma 10); that T i2-proofs 
an be normalizedRProv�T i2 (p'q) if and only if T i2 ` '(Theorem 11); and that a 
ertain 9�b1-Completeness for S12 holds (Theorem 15),whi
h will be a re�nement ofS12 ` '(~u)! RProv�T 02 ('( ~Iu))for 9�b1-formulas '.Preservation theoremsThe main appli
ation of our restri
ted provability notion in this paper will bethat we will prove 
ertain preservation theorems. Other appli
ations may lie inthe 
onstru
tion of models of bounded arithmeti
 with 
ertain properties. Inorder to explain the preservation theorems we are heading for, let us �rst �xsome notions. For L-stru
turesM;N we writeM �b0 N i� N is a �b0-elementaryextension ofM . We writeM �b1 N i� N is an 9s�b1-elementary extension ofM .Here 9s�b1 is the set of all formulas (9x)(9y � t)' with ' 2 �b0. By s�bi wealways mean the prenex (or stri
t) version of �bi , et
.For the following de�nitions let M;N be L-stru
tures and T; T 0 be L-theo-ries. Let logM be fa 2 M : (9b 2 M)(a � jbj)g. Let jtj3 be jjjtjjj and letlog3M := fa 2 M : (9b 2 M)(a � jbj3)g. Let us 
all an extension M � Nlog3-proper, if log3M 6= log3N .The notion \weak end extension" to be de�ned next is the natural adaptionof the well known notion \end extension" to the setting of bounded arithmeti
,
f. [7℄.De�nition 2. (Weak end extension) N is 
alled a weak end extension of M(M �we N), if N is an extension of M and logN is an end extension of logM ,i.e. for all a 2 logM , b 2 logN with N � b � a we have b 2 logM .4



Weak end extensions for models of bounded arithmeti
 are in some aspe
tssimilar to end extensions for (general) models of arithmeti
. For example, weakend extensions are always �b0-elementary.Let the fun
tion !1 be de�ned by !1(x) = 2jxj2 , i.e. !1(x) = x#x, and!(y)1 be the y-fold iteration of !1. We want to de�ne senten
es 
nst1 and 
11su
h that 
nst1 expresses that a nonstandard iteration of !1 (or, equivalently,of the smash fun
tion #) exists. 
11 should express that an upper bound toall �nite iterations of !1 exists, but not ne
essarily a nonstandard iteration.Now 8x9y(jjxjj � 
 = jjyjj) expresses that 8x!(j
j)1 (x) exists. Hen
e we let theL!1!-senten
es 
11 ;
nst1 be de�ned by
11 := 8x9y k̂2!(jjxjj � k < jjyjj)
nst1 := 9
�� k̂2!(k < 
)� ^ 8x9y(jjxjj � 
 = jjyjj)�where k is some 
anoni
al numeral asso
iated with k.In the next de�nition we adopt the notion \1-
loseness" (
f. [2℄) to the set-ting of bounded arithmeti
. 1-
losed models of Peano arithmeti
 PA satisfy:Con(PA) [2℄. We will show something similar for 1b-
losed models of boundedarithmeti
 and theories T i2, namely that a model M of S12 + 
nst1 whi
h is 1b-
losed w.r.t. T i2 
annot be a model of our restri
ted 
onsisten
y notion for T i2.De�nition 3. (1b-Closeness)M is 
alled 1b-
losed w.r.t. T , if for any model N of T su
h that M �b0 N wehave M �b1 N .With BL�b1 we denote the following bounded 
olle
tion s
hema:(8x � jtj)(9y)'(x; y) ! (9z)(8x � jtj)(9y � z)'(x; y)for ' 2 �b1 whi
h may 
ontain parameters. Buss has shown in [8℄ that Si2 andSi2 +BL�b1 have the same 8�b1-
onsequen
es.We are now ready to state the preservation theorems whi
h we will prove.Theorem 4. Let 1 � i � j. The following are equivalent:1. Si2 is 8�b1-separated from T j2 .2. There is a model of Si2 whi
h does not have a log3-proper �b0-elementaryextension to a model of T j2 .3. There is a model of Si2 +
nst1 whi
h is 1b-
losed w.r.t. T j2 .4. There is a 
ountable model of Si2 +BL�b1 without weak end extensions tomodels of T j2 .The equivalen
e between 1. and 2. is well-known, it is in
luded just to 
om-plete the list. One big impa
t of Theorem 4 is that solving the main openproblem of bounded arithmeti
 with 
onsisten
y statements is redu
ed to 
on-stru
ting models of bounded arithmeti
 with 
ertain properties.In the next se
tion we will prove the easy dire
tions of Theorem 4, i.e. theone from 1. to 2., 3., respe
tively 4. In se
tion 2 we will de�ne a restri
ted5




onsisten
y notion of T j2 { RCon�(T j2 ) { whi
h will be the strongest 
onsisten
ystatement (over S12) provable in T j2 . That is, every 8�b1-
onsequen
e of T j2follows in S12 from RCon�(T j2 ). Su
h 
onsisten
y notions are known from theliterature, e.g. Con(Gi) in [13℄ or RCon(T i1) in [14℄, or see [12℄ for a treatmentof both. The advantage of our approa
h over the others is that our 
onsisten
ynotion is for theories in the same language LBA, hen
e we 
an use RCon�(T j2 ) to(dire
tly) 
onstru
t models of T j2 . This is needed in the following 3 se
tions to
omplete the proof of Theorem 4. In se
tion 6 we extend our results by addinga 8(�bi [ �bi )-senten
e to the theories. In the last se
tion we sket
h how theseparation problem of bounded arithmeti
 
an be 
onne
ted to models withoutproper weak end extensions. This is stressed be
ause there is a similar (open)question for models of I�02: Are there models of I�0 + B�1 without properend extensions to models of I�0?3A
knowledgments: I would like to thank Sam Buss for his hospitalityduring my stay at the Department of Mathemati
s of the University of Califor-nia, San Diego, and for a lot of dis
ussions and remarks.1 Basi
 PropertiesFrom the de�nitions we dire
tly obtainLemma 5. Models whi
h do not have a �b0-elementary extension to a model ofT are 1b-
losed w.r.t. T and do not have weak end extensions to models of T ,as weak end extension are �b0-elementary.Given an L-stru
ture M there is always an elementary extension to an L-stru
ture N su
h that N � 
nst1 . This 
an be seen by a simple 
ompa
tnessargument applied toeldiag(M) [ fn < 
 : n 2 !g [ f8x9y(jjxjj � 
 = jjyjj)gwhere eldiag(M) denotes the elementary diagram of M . Hen
e T , T + 
11 ,T +
nst1 all prove the same �rst order senten
es.A similar argumentation as in [2℄ Remark 1.2 using these observations yieldsLemma 6. Let T � T 0 be L-theories, where T � 89s�b1, then there exists a
ountable model of T +
11 whi
h is 1b-
losed w.r.t. T 0.Proof. We repeat the argument from [2℄ Remark 1.2 in an adapted form. Lett0; t1; : : : be an enumeration of all tripleshm; hk1; : : : ; kni; 'iwhere m;n; k1; : : : ; kn 2 N, ' 2 9s�b1 and the number of free variables in ' isn. W.l.o.g. tl = hm; hk1; : : : ; kni; 'i implies m � l.We de�ne a tower M0 �b0 M1 �b0 : : : of 
ountable models of T + 
11 . LetM0 be a 
ountable model of T +
nst1 . Assume that we have de�nedM0; : : : ;Mland enumerations fxmk : k 2 Ng of Mm for m � l. Let tl = hm; hk1; : : : ; kni; 'i.2See [1℄ for a summary of the most important partial results on the end extension problem.3To the authors best knowledge this question was raised by Kirby and Paris in 1977.6



If there is a �b0-elementary extension M 0 of Ml whi
h is a model of T 0 +'(xmk1 ; : : : ; xmkn), then we 
an �nd an elementary extension M 00 of M 0 satisfying
nst1 (we 
an restri
t ourselves to 
ountable M 0;M 00). Let Ml+1 =M 00. Other-wise let Ml+1 = Ml. We �x any enumeration fxl+1k : k 2 Ng of Ml+1. Now letM = SfMl : l 2 Ng. Then M � T +
11 whi
h is 1b-
losed w.r.t. T 0.This 
onstru
tion does not produ
e a model of T +
nst1 whi
h is 1b-
losed w.r.t.T 0, be
ause 
nst1 is \�3", where 
11 is only \�2", and the model is 
onstru
ted asa union of a 
hain of models, whi
h, in general, does not preserve �3-senten
es.One dire
tion of our disired results is easy, that the 8�b1-separation yields
ertain models. The argumentation follows the one from Fa
t 1.Theorem 7. Let S12 � T � T 0, T; T 0 L-theories. If T is 8�b1-separated fromT 0, then there exists a 
ountable model M of T + 
nst1 whi
h does not have a�b0-elementary extension to a model of T 0. Hen
e M is also 1b-
losed w.r.t. T 0,and also M does not have weak end extensions to models of T 0.Proof. Under the assumption there is a ' 2 8s�b1 su
h that T 0 ` ' and T 0 'as S12 knows 8�b1 = 8s�b1. The above remark shows T +
nst1 0 ', hen
e there isa 
ountable model M of T +
nst1 +:'. Now M does not have a �b0-elementaryextension to a model of T 0, be
ause if M �b0 M 0, then M 0 � :' using upwardspersisten
y of 9s�b1-formulas, and therefore M 0 6� T 0 as T 0 ` '.By Lemma 5 every model whi
h does not have a �b0-elementary extensionto a model of T 0 is already 1b-
losed w.r.t. T 0, and also does not have weak endextensions to models of T 0.This proves dire
tions 1: ) 2: resp. 1: ) 3: of Theorem 4. For 1: ) 4:observe that for ' 2 8s�b1 with Si2 0 ' and T j2 ` ' we also have Si2+BL�b1 0 'as Si2 +BL�b1 is 8�b1-
onservative over Si2, hen
e there is a 
ountable model Mof Si2 + BL�b1 + :'. The same argument as in the proof of Theorem 7 showsthat there are no weak end extensions of M to models of T j2 .We are going to prove 
onverses of Theorem 7. That is, from the existen
e of
ertain models we will derive the 8�b1-separation of bounded arithmeti
 theories.The separating senten
e will always be a restri
ted 
onsisten
y notion of the\stronger" theory whi
h will be de�ned in the next se
tion. .2 Restri
ted proofsOur notion of restri
ted proof will be similar to the notions \i-regular proof"in [12, De�nition 10.5.2℄ and [14, De�nition 1.4℄, and \stri
tly i-normal proof"in [20, p.81℄. The main di�eren
e between these notions will be that we willvary the 
oding of formal terms in order to make the 
oding more \unfeasible"so that values of 
odes of 
losed terms are bounded by the 
odes themselves,where e.g. in [20℄ restri
tions of the provability notion to proofs of small andvery small sizes are 
onsidered.We assume that we have 
onstants 
n for ea
h n 2 ! in our language L, anda suitable axiomatization of them in our theories, for example Si
n = 
Sin fori = 0; 1. Hen
e in this setting Iu from [6℄ 
an simply be de�ned by Iu := 
u.
7



Let p:q be a usual feasible G�odelisation as in [6℄, then sub(w; x�; n) { theresult of repla
ing the variable4 x� in the string w by the numeral In { is a �b1-de�nable fun
tion in S12 and S12 
an prove all ne
essary properties. We furtherhave l(sub(w; x�; n)) = l(w), where l(w) denotes the length of the sequen
ew, i.e. the number of elements forming w. For formal terms t let l(t) denoteits formal length, i.e. the number of symbols forming t. Obviously we havel(t) � l(ptq).One problem with feasible G�odelisation is that the values of terms have abigger growth rate that their G�odel numbers, e.g.
 := p2# : : :#2| {z }jnj times q = 2O(jnj) = nO(1) but val(
) = 
(2n)Of 
ourse there 
annot be a G�odelisation G of 
losed L-terms su
h that both1) val(
) � 
O(1) for 
 2 G, and2) sub(w; x�; n) � (w + n)O(1),be
ause then f(w; n) := val(sub(w; x�; n)) would be a universal bounding fun
-tion for all polynomially growth rate fun
tions, whi
h itself grows polynomially.By diagonalisation this 
annot be possible.Let us review the growth rates whi
h are a
hieved via feasibleG�odelisation.Assume that we have a fun
tion symbol !1 in L with !1(n) = n#n = 2jnj2 .With !(k)1 (n) we denote the k-fold iteration of !1. Then !(jmj)1 (n) = 2jnjm �22(jjnjj �m) with 22(n) = 22n . Hen
e a natural 
andidate for a G�odelisationwhi
h has property 1) but fails for 2) isptq� := 22(jjptqjj � 2l(ptq)) + ptq:(In this de�nition we 
an think of l(ptq) as the number of symbols l(t) in theformal term t { we have that l(ptq) is an upper bound to l(t).) Let rem(n)be n without its leading bit, then ptq = rem(ptq�). We de�ne val�(
) andsub�(w; x�; n) to be the value of the 
losed term 
 resp. the result of substitutingfor x� in w the numeral In, this time with respe
t to p:q�. I.e., with w0 = rem(w)we 
an write val�(
) := val(rem(
))sub�(w; x�; n) := 22(jj sub(w0; x�; n)jj � 2l(w0)) + sub(w0; x�; n)l�(w) := l(rem(w)):As argued above sub� 
annot be polynomially bounded as sub� and val� togetherdiagonalise 2jnjk . But we observe that for a �xed w with l�(w) standard thefun
tion n 7! sub�(w; x�; n) is polytime be
ause sub�(w; x�; n) 
an be boundedby !(l�(w)+O(1))1 (n).Now we 
an prove property 1) for p:q�Lemma 8. val�(
) � 
.4We use x� to speak about 
odes indi
ating variables.8



Proof. We identify fun
tion symbols with the fun
tions they represent. Thenthe assertion follows from jtj < jptq�jfor 
losed L-terms t. All fun
tion symbols f in L represent polytime fun
tions,hen
e there are 
onstants 
f su
h thatjf(~n)j < max(j~nj; 2)
f :Assume t = fu1 : : : uk, then jjptqjj � max(jj ~puqjj) and, w.l.o.g., l(ptq) �max(l( ~puq)) + j
f j, hen
e we obtain indu
tivelyjtj < max(j~uj; 2)
f � 2max(jj~ujj;1)�
fi:h:� 2maxi=1;::: ;k(jjpuiqjj�2l(puiq))�
f� 2max(jj ~puqjj)�max(2l( ~puq))�
f� 2jjptqjj�2l(ptq) = jptq�j:The form of restri
ted proofs we will 
onsider here is similar to the notions\i-regular proof" in [12, De�nition 10.5.2℄ and [14, De�nition 1.4℄, and \stri
tlyi-normal proof" in [20, p.81℄.De�nition 9. RProof�T i2 (hp;~b;~t; ~d; ~T ; ~Di;�) holds if the following 
onditionsare satis�ed:1. p;~b;� are 
oded via p:q; ~t; ~d; ~T ; ~D via p:q�.2. p is a Tait-style5 derivation of the set � using the s�bi � IND-rule, andall formulas in p are in �b1.3. All 
ut formulas in p are in s�bi [ s�bi .4. p is in free variable normal form.5. If ~a are all parameters (i.e. free variables in �) and ~b = (b0; : : : ; bk�1) allother variables in p, then(a) if the elimination inferen
e of bi is below the elimination inferen
e ofbj , then i < j.(b) ~t is a k-tuple of monotone terms with variables among ~a; ~d is a k-tuple of proofs.(
) the elimination inferen
e of bi is one of(s�bi � IND) �;:A(bi); A(bi + 1)�;:A(0); A(r(~a; b0; : : : ; bi�1))(8 �) �; bi � r(~a; b0; : : : ; bi�1); A(bi)�;8x � r(~a; b0; : : : ; bi�1)A(x)5With \Tait-style" we mean that sets (or formally: sequen
es) of formulas are derived,and that negation is a synta
ti
 operation, not a symbol of our formal language.9



and di is a proof ofb0 � t0(~a); : : : ; bi�1 � ti�1(~a); r(~a; b0; : : : ; bi�1) � ti(~a)that is without the IND-rule, is quanti�er-free and 
ontains only thevariables b0; : : : ; bi�1. (E.g., ti = �[r℄b0 ;::: ;bi�1(t0; : : : ; ti�1) with �the metafun
tion de�ned in [6℄.)(d) We de�ne the set Bd~b;~t' (T ) for bounded ' via sets A' and B', whi
hare de�ned by re
ursion on ':' A' B'P~u atomi
 ; f~ug Æ � A [ A� B [ B�Qx � u (x) �A (x)�x(a') [ fa' � ug �B (x)�x(a') [ fugThen Bd~b;~t' (T ) := fbi � ti : i � kg [ A' [ � ^u2B'(u � T )	expresses, that T is an upper bound to the \world" of '. By this wemean that all values whi
h are 
onsidered by ' are bounded by T .~T is a list of monotone terms with variables among ~a, ~D is a list ofproofs similar to 5
), su
h that for every  in p there is some T in~T and a proof d of Bd~b;~t' (T ) in ~D, whi
h 
ontains only the samefree variables as Bd~b;~t' (T ).This means that max(~T ) bounds the \world" of p, whi
h allows usto 
ompute all values o

uring in a soundness proof of a RProof�T i2 -derivation, if we are able to 
ompute val(max(~T )).Now we de�ne RProv�T i2 (�) := 9P RProof�T i2 (P;�)RCon�(T i2) := :RProv�T i2 (p;q):If RProof�T i2 (P; p�q) then we say that P is a restri
ted-T i2-proof of �.Lemma 10. (S12) If ' 2 s�bi , RProv�T i2 (p�; 'q) and RProv�T i2 (p�;:'q), thenRProv�T i2 (p�q).Theorem 11. (Normalizing)RProv�T i2 (p'q), T i2 ` '.Proof. ): is 
lear.(: We give two proofs. We will sket
h a prooftheoreti
 one, and give apre
ise modeltheoreti
 one be
ause we will extend the model-theoreti
 methodlater on.Prooftheoreti
 proof: Assume T i2 ` '. Then there is a derivation d1 of 'whi
h has as axioms instan
es of BASIC and whi
h uses the s�bi -IND-rule. Bypartial 
utelimination and further normalisations (see [6℄ or [3, 5℄) we obtain10



a derivation d2 of ', in whi
h 
utformulas are in s�bi [ s�bi and the only freevariables in d2 are those o

uring free in ' (the parameters) and the eigen-variables of d2. By renaming eigenvariables and 
olle
ting data we obtain arestri
ted-T i2-proof of '.Modeltheoreti
 proof: Assume :RProv�T i2 (p'q). Via modeltheoreti
 for
ing(
f. [11℄) we 
onstru
t a 
ountable model N of T i2 + :'. Hen
e T i2 0 '.We start adding new 
onstants (dn)n2! (the witnesses of our for
ing 
on-stru
tion) to our language (
all it L+). Again we 
all the formalized restri
tedproof predi
ates in this extended language RProof�T i2 and RProv�T i2 . Then again:RProv�T i2 (p'q), be
ause the new 
onstants 
an be repla
ed by 0.We shall de�ne an in
reasing 
hain (Tn)n2! of �nite sets of L+-senten
es,su
h that for every n :RProv�T i2 (p:Tnq): (1)In the end their union T+ := Sn Tn will be a Hintikka set for L+ (
f. se
tion2.3 in [11℄), and the 
anoni
al model of the atomi
 senten
es in T+ will be amodel of T i2 + :'. To ensure that T+ will have these properties, we 
arry outseveral tasks as we build the 
hain. We 
onsider the following tasks:(T1) :' 2 T+(T2) For all s�bi (L+)-senten
es  ,  2 T+ or : 2 T+.(T3) (x);t (for  a s�bi (L+)-formula in one free variable and t 2 L+ 
losed.) (0);: (t) 2 T+ )  (s);: (s + 1) 2 T+ for some 
losed s 2 L+.The following tasks (together with (T2) will insure that T+ is a Hintikka set:(H1) ;�  ^ � 2 T+ )  ; � 2 T+(H2) ;�  _ � 2 T+ )  2 T+ or � 2 T+(H3)8x (x) 8x (x) 2 T+ )  (t) 2 T+ for every 
losed t 2 L+.(H4)9x (x) 9x (x) 2 T+ )  (t) 2 T+ for some 
losed t 2 L+.If these tasks are all 
arried out, then T+ is a Hintikka set. E.g. if  2 s�bi and 2 T+, then : 62 T+, be
ause otherwise  ;: 2 Tn for some n and obviouslyRProv�T i2 (p: ;  q) 
ontradi
ting 
ondition (1) for n. Or, if s = t 2 T+ for some
losed terms s; t 2 L+ then also t = s 2 T+ using (T2) and RProv�T i2 (ps 6= t; t =sq).Write N+ for the 
anoni
al model of the atomi
 senten
es in T+. Then N+is a model of T+. Using (T2) N+ is a model of the s�bi [ s�bi -
onsequen
es ofT i2. Also N+ ful�lls s�bi -IND, be
ause if  2 s�bi and N+ �  (0) ^ 9x: (x),then there is some 
losed term t su
h that N+ �  (0) ^ : (t) as N+ is a termmodel. With (T2) we get  (0);: (t) 2 T+. By (T3) (x);t there is a 
losedL+-term s su
h that  (s);: (s+1) 2 T+. Hen
e N+ � 9x( (x) ^: (x+1)).Altogether this showsN+ �  (0) ^ 9x: (x) ! 9x( (x) ^ : (x + 1));thus N+ �  (0) ^ 8x( (x)!  (x+ 1))! 8x (x):11



By (T1) we further get N+ � :'. Hen
e N+ is the desired model.It remains to show that all the 
ountable tasks are enfor
eable. This meansthat for any task T and any in�nite set X � ! su
h that ! nX is also in�niteand 0 62 X , we 
onsider the following game G(T; X). The player, 8 and 9, pi
kthe sets Tn in turn; player 9 makes the 
hoi
e of Tn if and only if n 2 X . Player9 wins if T+ has property T, otherwise 8 wins. Now \enfor
eable" means thatin all these games player 9 has a winning strategy.Consider a task. We des
ribe an expert (feminine by 
onvention) handlingthis task. Let X � ! be her subset and assume n 2 X .(T1) Let T0 := f:'g (one expert is allowed to have 0 in her set X).(T2) Let her list as ( n : n 2 X) all senten
es of s�bi (L+).If :RProv�T i2 (p:Tn�1;: nq), let Tn := Tn�1 [ f ng. Otherwise she setsTn := Tn�1 [ f: ng. Thus she ful�lls her task.We have to 
he
k that 
ondition (1) is not violated. Suppose for thesake of 
ontradi
tion that we have RProv�T i2 (p:Tnq), then by 
onstru
-tion RProv�T i2 (p:Tn�1;: nq) and Tn = Tn�1 [ f: ng. Now we obtainRProv�T i2 (p:Tn�1q) using Lemma 10 
ontradi
ting 
ondition (1) for n�1.(T3) (x);t If  (0);: (t) 2 Tn�1, then she 
hooses some witness d not o

urringin Tn�1 and sets Tn := Tn�1 [ f (d);: (d + 1)g. Otherwise she doesnothing. This strategy works, be
ause her subset X 
ontains arbitrarilylarge numbers.Condition (1) is ful�lled, be
ause if we have  (0);: (t) 2 Tn�1 andRProv�T i2 (p:Tnq), then by 
onstru
tion we 
an repla
e d in Tn by a freshvariable a obtaining RProv�T i2 (p:Tn�1;: (a);  (a+1)q), hen
e one appli-
ation of formalized s�bi -IND (in RProv�T i2 ) yields RProv�T i2 (p:Tn�1q).Tasks (H1){(H4) are treated in a similar way.Theorem 12. (i � 0) T i2 ` RCon�(T i2):Proof. The argument is similar to [12℄ Theorem 10.5.3.Suppose for the sake of 
ontradi
tion P = hp;~b;~t; ~d; ~T ; ~Di is a restri
ted-T i2-proof of the empty set, then by the sub formula property all formulas in p are ins�bi [s�bi . Now S12 
an evaluate all ~t; ~T (
f. Lemma 8). Consider a partial truthde�nition Tri(x; y) for s�bi -formulas, (Tri 2 s�bi ), then S12 
an prove Tarski's
onditions for all formulas in p with ~b � ~t using ~T and ~D. Extend Tri to STrifor sets of s�bi [ s�bi -formulas (STri 2 �bi+1), and 
onsider the s�bi+1-formula'(s) 8r � s8b0 � t0 : : :8bk � tk STri(Sr;~b) (2)where p = (S0; : : : ; Sl). Lo
al 
orre
tness, i.e. '(s)! '(s+1), is provable in T i2.With s�bi+1 � LIND we 
an show '(l) whi
h implies Tri(;) { a 
ontradi
tion.Hen
e Si+12 proves RCon�(T i2), and as Si+12 is 8�bi+1-
onservative over T i2, thesame holds for T i2. 12



Remark 13. The G�odel senten
es as proved in [6℄ as well as the followingresults in this arti
le admit another kind of restri
ting proof predi
ates. Byadding weights we 
an for
e the depth dp(p) of proofs p to be bounded by jjpjj,dp(p) � jjpjj:Then the assertion (2) in the proof of Theorem 12 
an be reformulated as~'(s) :=8r1; r2 � l 8b0 � t0 : : :8bk � tk�r1 � r2 � r1 + 2s&8h � r18j � lh STri(Sj;h;~b)! 8h � r28j � lh STri(Sj;h;~b)�if p is written as (S0;0; S1;0; : : : ; Sl0;0; S0;1; : : : ; Sll;l) with j = depth of Si;j inp. Thus �bi+1 � L3IND suÆ
es to prove ~'(jlj) from '(0), as ~'(s) 2 �bi+1 andl � jjpjj. Hen
e for any theory T = �bi � LkIND we getT +�bi+1 � L3IND ` RCon�(T ):Remember that we have n 7! sub�(p�q�; x�; n) as a band of polytime fun
-tions indexed by �. De�nel�(hp;~b;~t; ~d; ~T ; ~Di) := max � l�(~t); l�(~d); l�(~T ); l�( ~D)�where, e.g., l�(t1; : : : ; tk) means l�(t1); : : : ; l�(tk). An inspe
tion of [6, Lemma7.4.5℄ and [6, Theorem 7.4.4℄ showsLemma 14. For all terms t with free variables among x1; : : : ; xl there is a
onstant kt 2 ! and a term st with free variables among x1; : : : ; xl su
h thatS12 ` 9P � st(~u)� l�(P ) � kt ^RProof�T 02 (P; pt( ~Iu) = It(~u)q)�:Proof. Inspe
ting Lemma 7.4.5 in [6℄ shows that the lengths of all terms in thegenerated proof of t( ~Iu) = It(~u) is bounded by l(t) + o(1). Here it is importantthat in our setting we have Iu := 
u and hen
e l(Iu) = 1 for arbitrary u (evenif u is nonstandard).In the proof p of t( ~Iu) = It(~u) generated in Lemma 7.4.5 of [6℄ only equationso

ur. Thus we may take ~T as the sequen
e of all v + w for v = w o

uringin p, and ~D as the sequen
e of simple proofs of v � v + w ^ w � v + w. Thenhppq; p;q; p;q�; p;q�; p~Tq�; p ~Dq�i is a restri
ted proof of pt( ~Iu) = It(~u)q.Hen
e we 
an 
hoose kt = l(ptq) + o(1).Theorem 15. (9�b1-Completeness for S12 w.r.t. p:q�)1. For ' 2 �b1 with free variables among x1; : : : ; xl there exists a 
onstantk' 2 ! and a term s' with free variables among x1; : : : ; xl su
h thatS12 ` '(~u)! 9P � s'(~u)� l�(P ) � k' ^ RProof�T 02 (P; p'( ~Iu)q)�:2. For ' 2 9�b1 with free variables among x1; : : : ; xl there exists a 
onstantk' 2 ! su
h thatS12 ` '(~u)! 9P � l�(P ) � k' ^RProof�T 02 (P; p'( ~Iu)q)�:13



Proof. An inspe
tion of Theorem 7.4.4 in [6℄ shows that the lengths of terms ingenerated proofs does not ex
eed those generated in Lemma 14. Hen
e we 
an
hoose k' = l(p'q) + o(1).Furthermore, proofs are generated by indu
tion on the 
omplexity of ',they do not 
ontain appli
ations of indu
tion rules, and the stru
ture of (8 �)-inferen
es and their bounds re
e
t the stru
ture of the bounded 8-quanti�ersand their bounds in '. Thus we 
an de�ne "from the outside" lists ~b;~t and ~d(all standard obje
ts), su
h that if '(~u) holds, thenhppq; p~bq; p~tq�; p~dq�; p~Tq�; p ~Dq�i(where p; ~T ; ~D are 
olle
ted similar as in the proof of Lemma 14) is a restri
tedproof of p'( ~Iu)q.As a 
orollary we obtain that RCon�(T i2) is the strongest 8�b1-statement(over S12) provable in T i2, similar to Con(Gi) in [13℄ or RCon(T i1) in [14℄, or see[12℄ for a treatment of both.Theorem 16. (i � 1) For all ' 2 8�b1 su
h that T i2 ` ' we have S12 `RCon�(T i2)! '.Proof. Let S12 ` ' $ 8x (x) with  2 s�b1, then we have T i2 `  (x), hen
eRProof�T i2 (P; p (x�)q) for some standard P using Normalizing (Theorem 11).S12 
an 
he
k that RProof�T i2 (IP ; p (x�)q) holds. Now l�(P ) is standard, hen
ewe 
an substitute values for x� in P , be
ause u 7! sub�(P; x�; u) is polytime.Thus we obtain S12 ` 8uRProv�T i2 (p (Iu)q). The 9�b1-
ompleteness of S12 showsS12 ` : (u)! RProv�T i2 (p: (Iu)q). Hen
e S12 ` : (u)! :RCon�(T i2).Corollary 17. Let i � 1.1. S12 +RCon�(T i2) =8�b1 T i2.2. Si2 6=8�b1 T j2 , Si2 0 RCon�(T j2 ).3 �b0-elementary extensionAs shown in Fa
t 1 it is well-known that the 8�b1-separation of Si2 from T j2(1 � i � j) is equivalent to the existen
e of a model of Si2 whi
h does not havea �b0-elementary extension to a model of T j2 .We repeat this argument in an adapted form to prove the next theorem. Wedo this also be
ause the proof of Theorem 18 is the bases of following proofs.Theorem 18. (i � 1) Assume M is a model of S12 whi
h does not have a log3-proper �b0-elementary extension to a model of T i2. Then M � :RCon�(T i2).Proof. Suppose for the sake of 
ontradi
tion M � RCon�(T i2). Let LM be theextension of the 
onstants 
n : n 2 ! of our language L to 
d : d 2 M , plussome new 
onstant b. So Id = 
d for all d 2M . ConsiderT := T i2 +�b0-diag(M) + fjIdj3 < jbj3 : d 2Mg;14



where �b0-diag(M) is the �b0-diagram of M�b0-diag(M) := f�(Ia1 ; : : : ; Ian) : � 2 �b0; a1; : : : ; an 2M;M � �(~a)g:We will show that T is 
onsistent. Suppose for the sake of 
ontradi
tion T isin
onsistent. Then by 
ompa
tness there is a �nite subset D � �b0-diag(M) andsome �nite N � M su
h that T i2 +D + fjIdj3 < jbj3 : d 2 Ng is in
onsistent.Let d0 = max(N) and d1 = d0#d0 2 M . As b has been new, we 
an repla
e itby Id1 . Now jd1j3 > jd0j3 � jdj3 for any d 2 N , hen
e we 
an assume w.l.o.g.that T i2+D is in
onsistent. Using that �b0 is 
losed under 
onjun
tion, we even
an assume w.l.o.g. that there is one �(Ia1 ; : : : ; Ian) 2 �b0-diag(M) su
h thatT i2 + �(Ia1 ; : : : ; Ian) is in
onsistent. Hen
eT i2 ` :�(Ia1 ; : : : ; Ian):Using Normalizing (Theorem 11) there is a standard restri
ted-T i2-proof withparameters from M deriving this formula, hen
eM � RProv�T i2 (p:�(Ia1 ; : : : ; Ian)q):By �b1-Completeness (Theorem 15) we have M � RProv�T i2 (p�(Ia1 ; : : : ; Ian)q).Hen
e using a bounded 
ut (i.e. a re�nement of Lemma 10) we obtain M �RProv�T i2 (;) 
ontradi
ting our assumption M � RCon�(T i2). Thus T is 
onsis-tent.Let N be a model of T , then (up to isomorphism) M �b0 N be
ause Tin
ludes the �b0-diagram of M . Furthermore N � T i2 + fjIdj3 < jbj3 : d 2 Mg,hen
e N is a log3-proper extension of M and N is a model of T i2, 
ontradi
tingour assumption that M does not have a log3-proper �b0-elementary extensionto a model of T i2.Thus our assumption was wrong, and we have M � :RCon�(T i2).This theorem 
an be used to reobtain Fa
t 1 (and, therefore, 2. ) 1. ofTheorem 4), i.e. that if there is a model of Si2 whi
h does not have a log3-proper�b0-elementary extension to a model of T j2 then Si2 is 8�b1-separated from T j2(1 � i � j). Be
ause, under the assumption the last Theorem shows that Si2does not prove RCon�(T j2 ), while T j2 does prove it (
f. Theorem 12).4 1b-
losed models1-
losed models of PA satisfy :Con(PA) [2℄. Here we show something similarfor 1b-
losed models of bounded arithmeti
 and theories T i2.Theorem 19. (i � 1) Assume M is a model of S12 + 
nst1 whi
h is 1b-
losedw.r.t. T i2. Then M � :RCon�(T i2).Proof. The proof is similar to that of Theorem 1.1 in [2℄.Suppose for the sake of 
ontradi
tion M � RCon�(T i2). Fix a nonstandardb 2M su
h that M � 8x9y(jjxjj � b = jjyjj). Let  (z; p'q; x) be the formula8P � l�(P ) < jzj ! :RProof�T i2 (P; p:'(Iz ; Ix; y�)q)�where ' 2 s�b1. 15



We assert that  is universal for (standard) 9s�b1-formulas with one freevariable and parameter b, i.e.M �  (b; p'q; a)$ 9y'(b; a; y) (3)for ' 2 s�b1 and a 2M .Fix ' 2 s�b1 and a 2M .(: Assume there exists some d 2 M su
h that M � '(b; a; d). By �b1-Completeness (Theorem 15) there exists P 2M withM � RProof�T i2 (P; p'(Ib; Ia; Id)q): (4)Suppose for the sake of 
ontradi
tionM 6�  (b; p'q; a), i.e. there is a Q 2Msu
h that M � l�(Q) < jbj and M � RProof�T i2 (Q; p:'(Ib; Ia; y�)q). As M �l�(Q) < jbj and M � 8x9y(jjxjj � b = jjyjj), we 
an substitute y� in Q by Idobtaining some Q0 2M su
h thatM � RProof�T i2 (Q0; p:'(Ib; Ia; Id)q):Now a bounded 
ut with (4) (
f. Lemma 10) yields M � RProv�T i2 (;) whi
h
ontradi
ts our assumption M � RCon�(T i2).): Assume M �  (b; p'q; a). Let LM be the extension of the 
onstants
n : n 2 ! of our language L to 
d : d 2M . So Id = 
d for all d 2M .Consider T := T i2 +�b0-diag(M) + 9y'(Ib; Ia; y):We will show that T is 
onsistent. Suppose for the sake of 
ontradi
tion T isin
onsistent. By 
ompa
tness and the 
losure of �b0 under 
onjun
tion there issome �(Ia1 ; : : : ; Ian) 2 �b0-diag(M) su
h that T i2+�(Ia1 ; : : : ; Ian)+9y'(Ib; Ia; y)is in
onsistent, hen
e T i2 ` :�(Ia1 ; : : : ; Ian);:'(Ib; Ia; y):Using Normalizing (Theorem 11) there is a standard restri
ted-T i2-proof withparameters from M for this set of formulas, hen
e there is some P 2 M su
hthat M � l�(P ) < jbj andM � RProof�T i2 (P; p:�1(Ia1 ; : : : ; Ian);:'(Ib; Ia; y)q):By �b1-Completeness (Theorem 15) there exist P 0 2 M su
h that l�(P 0) isstandard and M � RProof�T i2 (P 0; p�(Ia1 ; : : : ; Ian)q):Hen
e using a bounded 
ut (i.e. a re�nement of Lemma 10) yields a Q 2 Msu
h that M � l�(Q) < jbj andM � RProof�T i2 (Q; p:'(Ib; Ia; y)q)
ontradi
ting our assumption M �  (b; p'q; a). Thus T is 
onsistent.Let N be a model of T , then (up to isomorphism) M �b0 N be
ause Tin
ludes the �b0-diagram of M . Furthermore N � T i2 + 9y'(b; a; y), hen
e M �16



9y'(b; a; y) by our assumption that M is 1b-
losed w.r.t. T i2. This �nishes theproof of (3).Considering : (z; x; x) there is some ' 2 s�b1 su
h that S12 ` 9y'(z; x; y)$: (z; x; x). By (3) we haveM �  (b; p'q; a)$ 9y'(b; a; y)$ : (b; a; a)for all a 2M . Instantiating this with a := p'q we getM �  (b; p'q; p'q)$ : (b; p'q; p'q);a 
ontradi
tion.Thus our assumption was wrong, and we have M � :RCon�(T i2).Corollary 20. (1 � i � j) Assume that there is a model of Si2 +
nst1 whi
h is1b-
losed w.r.t. T j2 . Then Si2 6=8�b1 T j2 .Proof. Under the assumption the last Theorem shows that Si2 does not proveRCon�(T j2 ), while T j2 does prove it (
f. Theorem 12).This proves 3. ) 1. of Theorem 4.Corollary 21. There is no model M of T i2 +
nst1 whi
h is 1b-
losed w.r.t. T i2.Proof. Otherwise we would get M � :RCon�(T i2) by Theorem 19, whi
h 
on-tradi
ts M � T i2 as T i2 ` RCon�(T i2).The author 
onje
tures that there also is no model M of Si2 +
nst1 whi
h is1b-
losed w.r.t. Si2.5 Weak end extensionsUp to now our restri
ted 
onsisten
y notion yielded �b0-elementary extensions.We will 
hange this so that weak end extensions are obtained. To this endwe extend our formal language to Lex adding uniform small 
onjun
tions anddisjun
tions: '(x) 2 Lex ) _b�jaj'(Ib); ^b�jaj'(Ib) 2 Lex:The formal Tait-style rules for deriving them are given by(_) �; '(Ib) for some b � jaj ) �; _b�jaj'(Ib)(^) �; '(Ib) for all b � jaj ) �; ^b�jaj'(Ib):We de�ne �b;ex0 , s�b;exi et
. analogous to �b0, s�bi et
. 
ounting small 
on-jun
tions and small disjun
tions as sharply bounded quanti�ers. Now we de�neRProof�T i2+WEnd similar to RProof�T i2 in the language Lex with additional rules(W), (V) and an additional axiom s
hema8x � jIaj _b�jajx = Ib17



for all a. Furthermore 
uts are extended to s�b;exi [ s�b;exi -formulas. Indu
tionneed not to be extended to s�b;exi .We haveTheorem 22. T i2 ` RCon�(T i2 +WEnd).Proof. There is a polytime transformation elex : Lex ! L given by � _b�jaj'(Ib) 7! 9x � jIaj'(x ) � ^b�jaj'(Ib) 7! 8x � jIaj'(x )whi
h 
an be formalized in S12 . We haveelex(�b;ex0 ) = �b0 elex(s�b;exi ) = s�bi et
.Furthermoreelex �8x � jIaj _b�jajx = Ib� � 8x � jIaj9y � jIajx = yand x 6= I0 ^ : : : ^ x 6= Ijaj ! x 6� Ijajhave simple proofs in T 02 of size linear in jaj resp. jaj2. Hen
eS12 ` RProv�T i2+WEnd(p�q)! RProv�T i2 (pelex(�)q)and therefore S12 ` RCon�(T i2)! RCon�(T i2 +WEnd):Now Theorem 12, T i2 ` RCon�(T i2), yields the assertion.Theorem 23. Assume M is a 
ountable model of S12+BL�b1 without weak endextensions to models of T i2. Then M � :RCon�(T i2 +WEnd).Proof. Suppose for the sake of 
ontradi
tion thatM � RCon�(T i2+WEnd). Weextend our for
ing 
onstru
tion from the proof of Theorem 11. Again we startextending our languages L;Lex to in
lude witnesses (dn)n2! (we 
all them L+resp. Lex+). We 
all the formalized restri
ted proof predi
ate in the languageLex+ again RProof�T i2+WEnd, obtainingM � :RProv�T i2+WEnd(p;q):We de�ne an in
reasing 
hain (Tn)n2! of �nite sets of L+-senten
es, su
h thatfor every n M � :RProv�T i2+WEnd(p:Tnq): (5)In the end their union T+ := Sn Tn will be a Hintikka set for L+, and the
anoni
al model N of the atomi
 senten
es in T+ will be a weak end extensionof M and a model of T i2, 
ontradi
ting our assumption.To ensure that T+ will have these properties, we 
arry out several tasks aswe build the 
hain. Beside tasks (T2)-(T3), (H1)-(H4) des
ribed in the proofof Theorem 11 we need also the following task:18



(T10)a;t (for a 2M; t 2 L+ 
losed) If (t � jIaj) 2 T+, then there is some b 2Msu
h that (t = Ib) 2 T+.If (T10) is ful�lled, then N is a weak end extension ofM . To see this, let a 2Mand b 2 N su
h that N � b � jaj, then we have to show b 2 M . As N isthe 
anoni
al model, there is some 
losed t 2 L+ su
h that N � b = t, hen
eN � t � jaj. T+ is s�bi -
omplete (by (T2)), hen
e (t � jIaj) 2 T+. Now (T10)a;tyields the existen
e of some e 2 M su
h that (t = Ie) 2 T+, hen
e N � t = eand therefore b = e 2M .It remains to show that (T10)a;t is enfor
eable. Therefore we need to des
ribean expert handling this task. Let X � ! be her subset and assume n 2 X . Lether list f(a; t) : a 2M; t 2 L+ 
losedg using her set X . Of 
ourse here we needthat M is 
ountable. Assume that (a; t) is the element indexed by n in her list.If (t � jIaj) 62 Tn�1 let Tn := Tn�1. Otherwise (t � jIaj) 2 Tn�1. Supposefor the sake of 
ontradi
tion thatM � 8b � jaj9pRProof�T i2+WEnd(p; p:Tn�1; t 6= Ibq):As M is a model of S12 +BL�b1 we obtainM � 9P8b � jajRProof�T i2+WEnd((P )b; p:Tn�1; t 6= Ibq);hen
e by (V) M � RProv�T i2+WEnd(p:Tn�1; ^b�jaj t 6= Ibq):As (t � jIaj) 2 Tn�1 we getM � RProv�T i2+WEnd(p:Tn�1; t � jIajq);hen
e M � RProv�T i2+WEnd(p:Tn�1; 9x � jIaj ^b�jajx 6= Ibq)thus M � RProv�T i2+WEnd(p:Tn�1q) by a �b;ex0 -
ut 
ontradi
ting (5) for n� 1.Hen
e there is some b � jaj in M su
h thatM � :RProv�T i2+WEnd(p:Tn�1; t 6= Ibq):Let Tn := Tn�1 [ ft 6= Ibg.Using this strategy she ful�lls her task as X is in�nite.Corollary 24. (1 � i � j) Assume that there is a 
ountable model of Si2+BL�b1without weak end extensions to models of T j2 . Then Si2 6=8�b1 T j2 .Proof. Under the assumption the last Theorem shows that Si2 does not proveRCon�(T j2 +WEnd), while T j2 does prove it (
f. Theorem 22).This proves 4. ) 1. of Theorem 4.
19



6 Extending resultsFirst let us remark that if we modify our restri
ted provability notion to in
ludetrue s�bk [ s�bk-formulas as axioms we would 
hara
terize the 8�bk-separation ofSi2 from T j2 . Also it is obvious how to adjust the 
oding p:q� to in
lude fun
tionswith stronger but sub-exponential growth rates like #3;#4; : : : .Now let � be an 8(�bi [�bi )-senten
e. We are going to argue that the previ-ously obtained results 
an be extended by adding � to the theories.W.l.o.g. let � = 8y� 0(y) for some � 0 2 s�bi [ s�bi , be
ause we are adding � toT i2, and T i2 knows �bi = s�bi . We extend RProof�T i2 to RProof�T i2+� by allowingall instan
es of 8y� 0(y) as additional axioms, i.e. axioms of the form � 0(t) forany L-term t. Then RProv�T i2+� and RCon�(T i2 + �) are de�ned in the obviousway.Theorem 25. T i2 + � ` RCon�(T i2 + �).Proof. See also Theorem 12.S12 proves Tarski's 
onditions for all formulas in a restri
ted-T i2 + � -proofP of the emptyset, therefore we have for all axioms � 0(t) o

uring in P =hp;~b;~t; ~d; ~T ; ~Di 8y� 0(y)! 8b0 � t0 : : :8bk � tk Tri(p� 0(t)q;~b):Thus the argument runs the same way as in the proof of Theorem 12, i.e. we
an show T i2 ` 8y� 0(y)! RCon�(T i2 + �):Again we have that RCon�(T i2+ �) is the strongest 8�b1-statement (over S12)provable in T i2 + � .Corollary 26. For all ' 2 8�b1 su
h that T i2+� ` ' we have S12 ` RCon�(T i2+�)! '.Theorem 27. Assume M is a 
ountable model of S12+BL�b1 without weak endextensions to models of T i2 + � . Then M � :RCon�(T i2 + � +WEnd).Proof. Assuming M � RCon�(T i2+ � +WEnd) we modify our for
ing 
onstru
-tion obtaining a Hintikka set T+ su
h that� 0(t) 2 T+ for all 
losed L+-terms t:Then the 
anoni
al model N generated from T+ ful�lls N � 8y� 0(y), thus N �T i2 + � and N is a weak end extension of M 
ontradi
ting our assumption.Similarily we 
an prove the following Theorems.Theorem 28. Assume M is a model of S12 whi
h does not have a log3-proper�b0-elementary extension to a model of T i2+� . Then M � :RCon�(T i2+�).Theorem 29. Assume M is a model of S12 + 
nst1 whi
h is 1b-
losed w.r.t.T i2 + � . Then M � :RCon�(T i2 + �).Hen
e we obtain 20



Corollary 30. Let 1 � i � j. The following are equivalent:1. Si2 + � is 8�b1-separated from T j2 + � .2. There is a model of Si2+� whi
h does not have a log3-proper �b0-elementaryextension to a model of T j2 + � .3. There is a model of Si2 + � + 
nst1 whi
h is 1b-
losed w.r.t. T j2 + � .4. There is a 
ountable model of Si2+ � +BL�b1 without weak end extensionsto models of T j2 + � .Remark 31. Considering 
nst1 we 
an extend the results allowing � to be an98(�bi [�bi )-senten
es whi
h has as a parameter the nonstandard element givenby 
nst1 . I.e., assume that our language L is extended by a new 
onstant 
. Let~
nst1 (
) be the following L!1!-senten
e:~
nst1 (
) := � k̂2!(k < 
)� ^ 8x9y(jjxjj � 
 = jjyjj):Thus 
nst1 = 9z ~
nst1 (z). Then we 
an 
onsider �(
) instead of � in the previouslyobtained results where 
nst1 is repla
ed by ~
nst1 (
).7 Towards proper weak end extensionsIn se
tion 5 we have 
onne
ted the 8�b1-separation of Si2 from T j2 with models ofSi2+BL�b1 whi
h do not have weak end extensions to models of T j2 . But we arereally interested in a 
onne
tion to models without proper weak end extensions,be
ause there is a similar (open) question for models of I�0: are there modelsof I�0 + B�1 without proper end extensions to models of I�0? Furthermore,there exists a �1-senten
e � (a version of the Tableau 
onsisten
y of I�0) anda model of I�0 +
1 + � +B�1 whi
h has no proper end extensions to modelsof I�0 +
1 + � (
f. [1℄).Up to now we have not a
hieved a 
onne
tion to proper weak end extensions.We will des
ribe two possible ways in this dire
tion now.Wilkie and Paris in [22℄ de�ned a �3-senten
e  su
h thatI�0 +B�1 I�0 +B�1 +  I�0 +B�1 + : all have the same �1-
onsequen
es. This 
an be improved toProposition 32. There is a 89�b1-senten
e � su
h that for S12 � T � S2T T + � T + :�all have the same �1-
onsequen
es.Proof. Let Loga(z) := �u:z � 2jaju , then Loga(z) = u has a �b1-des
ription inS12 . Let � be the senten
e equivalent to8a8z(2jaj2Loga(z) exists):21



Then T T + � T + :�all have the same �1-
onsequen
es. To see this, supposeT + :� ` 8x�(x); � 2 �0but T 0 8x�(x):Then we �nd a model K � T + :�(a) su
h that a�t exists in K for someN < �; t < a. LetLK(a; �) := fx 2 K : x � 2jaj�n some n 2 Ng �e Kthen LK(a; �) � T+:�(a) (this is true for arbitrary �). Furthermore, LK(a; �) �:�, be
ause b := 2jaj� 2 LK(a; �) and Loga(b) = �, but 2jaj2� 6� 2jaj�n for alln 2 N.The 
ase for � is similar, taking 2 in pla
e of � and observing LK(a; 2) ��.Remark 33. The same � from the proof of the last proposition also ful�lls thatT +BL�b1 T +BL�b1 + � T +BL�b1 + :�have the same �1-
onsequen
es. This 
an be seen by adapting Theorem 1 from[22℄ in the form M �e K � S12 ) M � BL�b1:Open Problem 1. Can this be improved to �nding a senten
e � su
h thatProposition 32 holds for � instead of � and su
h that the formalized proof pred-i
ate 
an be extended to � and :� ful�llingT j2 + � ` RCon�(T j2 + �) T j2 + :� ` RCon�(T j2 + :�) ?Having this, we would getT j2 ` RCon�(T j2 + �) ^ RCon�(T j2 + :�)using Proposition 32.On the other hand we would be able to show that if M is a model of S12 +BL�b1 without proper weak end extensions to models of T j2 , thenM � :RCon�(T j2 + �) _ :RCon�(T j2 + :�):To see this observeM � �_:�. W.l.o.g. we may assumeM � �. Now assumingM � RCon�(T j2 + :�) would produ
e a weak end extension N of M whi
h is amodel of T j2 +:�. But thenM 6= N asM � � and N � :�, hen
e the extensionis a proper one 
ontradi
ting our assumption. Hen
eSi2 0 RCon�(T j2 + �) ^ RCon�(T j2 + :�):22



The se
ond possibility bases on an ultrapower 
onstru
tion des
ribed byBuss in [7℄. Suppose M � Si2 +BL�bi +BB�biwhere BB�bi is the sharply bounded repla
ement s
hema(8x � jaj)(9y � b)'(x; y)! (9w)(8x � jaj)'(x; (w)x)for ' 2 �bi . Note that by results of Buss [8℄ and Ressayre [19℄ the theorySi2 + BL�bi + BB�bi is 8�bi+1-
onservative over Si2. Buss shows in [7℄ thatthere is a proper (�bi \ �bi )-elementary weak end extension N of M su
h thatlogN = logM and N � T i�12 .Open Problem 2. Can this be improved su
h that N � BL�b1 and N is a8�b1-elementary extension of M?Then we 
ould argue as follows: If M does not have proper weak end ex-tensions to models of T j2 , then M � :RCon�(T j2 ). Be
ause assuming M �RCon�(T j2 ) would imply N � RCon�(T j2 ), and our 
onstru
tion from se
tion 5would yield a weak end extensions of N to a model N 0 of T j2 , but N 0 would nowbe a proper weak end extension of M { 
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