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Abstract

In this article we will define and study a new restricted consistency
notion RCon*(7Ty) for bounded arithmetic theories Ty. It will be the
strongest VII}-statement over S3 provable in T, similar to Con(G;) in [13]
or RCon(T}) in [14]. The advantage of our notion over the others is that
RCon™(T3) can directly be used to construct models of T3. We apply this
by proving preservation theorems for theories of bounded arithmetic of
the following well-known kind: The VIIS-separation of bounded arithmetic
theories S§ from T (1 < i < j) is equivalent to the existence of a model
of S3 which does not have a Ab-elementary extension to a model of T3 .

More specific, let M E Q7' denote that there is a nonstandard element
¢ in M such that the function n — 2'°8"° ig total in M. Let BLX? be
the bounded collection schema for $¢-formulas. We obtain the following
preservation results: The VIT}-separation of Si from TY (1 < i < j) is
equivalent to the existence of

1. a model of % + Q7% which is 1°-closed w.r.t. Tg,

2. a countable model of S% + BLY? without weak end extensions to
models of Tj.

This article is a contribution to the investigation of the influence of con-
sistency notions to the finitely axiomatization question of bounded arithmetic.
The usual notion of consistency is too strong to serve as a separating sentence
for bounded arithmetic theories because Sy ¥ Cong-1, cf. [21], where S5 is
the induction-free fragment of bounded arithmetic Ss. Also the weaker consis-
tency statement BDCon, which refers to proofs that use only bounded formu-
las, still is too strong: Buss in [6] proved that Sit' - BDCong; holds for at
most one i, and later PUDLAK showed in [18] that Sy ¥ BDCongy, hence only
S F BDCongg remains to be possible. On the other hand I have been able to
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show in [4] that Si can prove the consistency of equational theories which base
only on the recursive definition of the underlying function symbols. In particu-
lar S3  Con (S, °°), where S, * is the equational theory based on the recursive
definition of the function symbols of bounded arithmetic. This result disproves
a plausible conjecture of TAKEUTT ([15] p.5 problem 9.). It gives hope that con-
sistency statements can lead to a negative answer of the finitely axiomatization
question of bounded arithmetic.

The focus of this paper are new restricted consistency statements for the-
ories of bounded arithmetic and applications of them for proving preservation
theorems for theories of bounded arithmetic in the manner of the following well-
known one.! Let £ be a first order language, S C T be L-theories and A a class
of L-formulas which is closed under conjunction and negation. With VA we
denote the universal closure of (all formulas in) A.

Fact 1. S is VA-separated from T if and only if there is a model M of S which
cannot be extended A-elementarily to a model of T.

Proof ideas. The direction from left to right follows directly from the assump-
tions using the upwards persistence of IA-formulas w.r.t. A-elementary exten-
sions.

For the direction from right to left let M be a model of S which cannot be
extended A-elementarily to a model of T'. Then T plus the A-diagram of M is
inconsistent. Using compactness (and the closure of A under conjunction) we
obtain some ¢(d) in the A-diagram of M such that T + ¢(@) is inconsistent,
hence T' + —p(d@). Applying the lemma of new constants we obtain T' F VZ—(Z).
On the other hand M F ¢(@), hence M F 3Zp(F). Thus S #ya T O

Introducing bounded arithmetic

Before we explain which restricted consistency statements we will consider and
which preservation theorems will be proved by them let us briefly introduce
bounded arithmetic. Bounded arithmetic is intended to characterize low com-
plexity computability, i.e. the polynomial hierarchy. Every primitive recursive
function is provable total in 7Y, hence I¥; is much stronger than bounded
arithmetic. By PARIKH’s Theorem ([16], or see [6], p.83, Theorem 11) the prov-
able total functions of A, (in the language Lpa of PEANO arithmetic) are
bounded by polynomials. Hence TAg(Lp4) is weaker than bounded arithmetic.
Furthermore, only a constant number of elements < n can be coded in a se-
quence s = n°M: If we try to code [ elements < n in s we get

log n bits log n bits
—N —N—

N v
~~

s =

[ times

hence s consists of [ - logn bits, hence s ~ n!. Thus, metamathematical argu-

ments are in general not formalizable in TAg(Lpa).
Allowing | = m many elements < n would result in an exponential growth
rate, again too strong.

T am grateful to the anonymous referee of a predecessor of this article for drawing my
attention to general preservation theorems including Fact 1; and to Alex Wilkie for pointing
out the simple proof of Fact 1 to me



As argued in [16] the right growth rate is obtained by allowing I = logm
elements < n to be coded into one sequence. Then

s =nlo8m x2lnliml = pay

where |m| is the number of bits in the binary representation of m. Bounded
arithmetic can be formulated now as IAg in the language Lp4 of bounded
arithmetic, that is Lp4 extended by |.|, #, or, equivalently, as TAg + ; (where
Q0 = Vz3y(|z|> = |y|)), the latter being the original formulation of bounded
arithmetic, see [21]. The provable total functions of bounded arithmetic are the
functions computable by a TURING machine in polynomial time using oracles
from Ag(Lpa), i.e. the polynomial hierarchy.

A stratification of bounded arithmetic, which corresponds to the stratifica-
tion of the polynomial hierarchy, is obtained by putting restrictions on induc-
tion axioms; namely, allowing induction only for certain classes, ¥¢, of bounded
formulas, and using length induction (LIN D) in place of successor induction
(IND). The most important sub-theories of bounded arithmetic are the theories
Sk, axiomatized by %2 — LIN D, and the theories T4, axiomatized by 2 —IND.
The following is known for these theories:

Sy C Ty Zusy S5 C T3 Zusy S5 ...

and their union is the theory Sy = Ty = IAg(Lpa) [6, 9]. Here T' <yse T'
means that 7" is a VX!-conservative extension of T. Furthermore, the class of
predicates definable by X¢ (or TI?) formulas is precisely the class of predicates
in the ith level ¥ (or II¥, resp.) of the polynomial hierarchy. In addition,
the Y¢-definable functions of Si are precisely the (¥-functions, which are the
functions computable in polynomial time using an oracle for ¥¥_, (cf. [6]).

The main open problem for bounded arithmetic is the question if Ss is finitely
axiomatizable. As S and T4 are finitely axiomatizable, this question is equiva-
lent to ask if there exists an i with T§ = Si*'. This question is also connected
to the open problem whether the polynomial hierarchy collapses, hence also to
P =?NP. The precise connection is that Sy is finitely axiomatizable if and only
if Sy can prove that the polynomial hierarchy collapses [10, 23]. The common
conjecture is that the answer to all these questions is NO!

Restricted consistency notions

We assume familiarity with [6]. From now on let £ be Lpa, the first order
language of bounded arithmetic. For convenience we assume that £ contains
some more symbols for polytime functions (finitely many), e.g. for coding and
decoding sequences (e.g. we could take the language Lo from [17]).

Several restricted consistency notions are known from the literature. Above
we have described some of them. The notion of restricted proof studied here
will be similar to the notions “i-regular proof” in [12, Definition 10.5.2] and
[14, Definition 1.4], and “strictly i-normal proof” in [20, p.81], but combined
with a new idea. To explain this let us first explain why usual approaches for
proving consistency do not work in weak arithmetic. The reason for this is that
in case of the usual feasible coding of syntax (cf. [6]) it is impossible to feasibly
evaluate closed terms from the language of bounded arithmetic — their values

grow exponentially in their GODEL-numbers. What happens if we play with the



growth rate of GODEL numbering? On the one hand, as mentioned above the
usual “feasible coding” of syntax yields Sy ¥ BDC'onS%. On the other hand, if
we take a “very unfeasible” sequence coding, e.g. one based on exponentiation
like (ni,...,ng) = 2mFL.3n2t ety being the k-th prime number, then
soundness of Sg—pg)_gfican be proven in/\y\e_zik fragments of bounded arithmetic.
We have S - BDCong, where in BDCong, syntax is coded in the “very
unfeasible” way. Of course, in this setting we loose something, namely based on
the very unfeasible coding GODEL’s incompleteness theorems are not provable,
because substitution of terms grows exponentially.

What we will do in this paper is that we will adjust the growth rate in a
certain way which allows us to feasibly evaluate GODEL numbers of terms, with
the cost that GODEL’s incompleteness theorems will not be provable. But still
there will be available enough other properties of formalized provability RProv*Tzi

(Definition 9). We will have that S3 proves
* A *CA =) : * (m AT
RProvTé( A, ™) and RProszl( A, —¢7) implies RProvTé( AT
(Lemma 10); that Ti-proofs can be normalized
RProv}é (") if and only if Ti F ¢

(Theorem 11); and that a certain 3%¢-Completeness for S holds (Theorem 15),
which will be a refinement of

Sy b (@) — RProvye (o(1,))

for %0 -formulas ¢.

Preservation theorems

The main application of our restricted provability notion in this paper will be
that we will prove certain preservation theorems. Other applications may lie in
the construction of models of bounded arithmetic with certain properties. In
order to explain the preservation theorems we are heading for, let us first fix
some notions. For L-structures M, N we write M <§ N iff N is a A}-elementary
extension of M. We write M <% N iff N is an 3sX.%-elementary extension of M.
Here 3s¥¢ is the set of all formulas (3z)(Jy < t)¢ with p € Ab. By sX! we
always mean the prenex (or strict) version of X!, etc.

For the following definitions let M, N be L-structures and T,T" be L-theo-
ries. Let logM be {a € M : (3b € M)(a < |b|)}. Let |t|3 be |||t]|| and let
log M := {a € M : (3b € M)(a < |b3)}. Let us call an extension M C N
log®-proper, if log®> M # log® N.

The notion “weak end extension” to be defined next is the natural adaption

of the well known notion “end extension” to the setting of bounded arithmetic,
cf. [7].

Definition 2. (Weak end extension) N is called a weak end extension of M
(M C¥ N), if N is an extension of M and log N is an end extension of log M,
i.e. for all a €log M, b € log N with N Eb < a we have b € log M .



Weak end extensions for models of bounded arithmetic are in some aspects
similar to end extensions for (general) models of arithmetic. For example, weak
end extensions are always AS-elementary.

Let the function w; be defined by w;(z) = 2121 fe. wi(z) = zfx, and
wgy) be the y-fold iteration of w;. We want to define sentences QJ** and Qf°
such that Q% expresses that a nonstandard iteration of wy (or, equivalently,
of the smash function #) exists. Q$° should express that an upper bound to
all finite iterations of w; exists, but not necessarily a nonstandard iteration.
Now Vz3y(||z|| - ¢ = ||y]|]) expresses that Vz wgc‘)(x) exists. Hence we let the
L, o-sentences Q$°, Q5 be defined by

0 :=vady A (=l -k <|lyl)
kew

st = 3¢[( /\ (k < ¢)) AVzIy(||z]| - c = |ly]])]
kEw

where k is some canonical numeral associated with k.

In the next definition we adopt the notion “l-closeness” (cf. [2]) to the set-
ting of bounded arithmetic. 1-closed models of PEANO arithmetic PA satisfy
=Con(PA) [2]. We will show something similar for 1°-closed models of bounded
arithmetic and theories T4, namely that a model M of Si + Qps* which is 1°-
closed w.r.t. T4 cannot be a model of our restricted consistency notion for T3.

Definition 3. (1°-Closeness)
M s called 1°-closed w.r.t. T, if for any model N of T such that M <} N we
have M <} N.

With BLY? we denote the following bounded collection schema:

(Ve < [t))By)e(z,y) = (32)(Vz < |t))(Fy < 2)p(z,y)

for ¢ € %% which may contain parameters. Buss has shown in [8] that S} and
Si + BLY have the same VII?-consequences.
We are now ready to state the preservation theorems which we will prove.

Theorem 4. Let 1 <i < j. The following are equivalent:
1. Si s VI -separated from T .

2. There is a model of S} which does not have a log® -proper Ab-elementary
extension to a model of Ty .

3. There is a model of Si + Q! which is 1°-closed w.r.t. T2j.

4. There is a countable model of St + BLX! without weak end extensions to
models of T .

The equivalence between 1. and 2. is well-known, it is included just to com-
plete the list. One big impact of Theorem 4 is that solving the main open
problem of bounded arithmetic with consistency statements is reduced to con-
structing models of bounded arithmetic with certain properties.

In the next section we will prove the easy directions of Theorem 4, i.e. the
one from 1. to 2., 3., respectively 4. In section 2 we will define a restricted



consistency notion of T2j - RCon*(Tg) — which will be the strongest consistency
statement (over S1) provable in Tj. That is, every VII’-consequence of T}
follows in S} from RCon* (T2]) Such consistency notions are known from the
literature, e.g. Con(G;) in [13] or RCon(T}) in [14], or see [12] for a treatment
of both. The advantage of our approach over the others is that our consistency
notion is for theories in the same language £ g 4, hence we can use RCon*(T3) to
(directly) construct models of TZj. This is needed in the following 3 sections to
complete the proof of Theorem 4. In section 6 we extend our results by adding
a V(X! U TI?)-sentence to the theories. In the last section we sketch how the
separation problem of bounded arithmetic can be connected to models without
proper weak end extensions. This is stressed because there is a similar (open)
question for models of TAg2: Are there models of A + BY; without proper
end extensions to models of TAy?3

Acknowledgments: I would like to thank SAM Buss for his hospitality
during my stay at the Department of Mathematics of the University of Califor-
nia, San Diego, and for a lot of discussions and remarks.

1 Basic Properties

From the definitions we directly obtain

Lemma 5. Models which do not have a Ab-elementary extension to a model of
T are 1°-closed w.r.t. T and do not have weak end extensions to models of T,
as weak end extension are A}-elementary. (|

Given an L-structure M there is always an elementary extension to an L-
structure N such that N F Q7St, This can be seen by a simple compactness
argument applied to

eldiaglM)U{n <c : new}U{VzIy(|z||-c=lyl})}

where eldiag(M) denotes the elementary diagram of M. Hence T, T + Qf°,
T + Qs all prove the same first order sentences.
A similar argumentation as in [2] Remark 1.2 using these observations yields

Lemma 6. Let T C T' be L-theories, where T C V3sXh, then there exists a
countable model of T + Q° which is 1°-closed w.r.t. T'.

Proof. We repeat the argument from [2] Remark 1.2 in an adapted form. Let

to,t1,... be an enumeration of all triples
<m7 <k1: e :kn>a 90)
where m,n, ky,... ,k, € N, ¢ € 3s¥% and the number of free variables in ¢ is

n. Wlo.g. ¢ = (m, (k1,... ,kn),p) implies m < [.

We define a tower My <5 M; <b ... of countable models of T + Q3°. Let
Mj be a countable model of T'+ Q7%t. Assume that we have defined My, ... , M,
and enumerations {z}* : k € N} of M, for m <. Let t; = (m, (k1,... ,kn), p).

2See [1] for a summary of the most important partial results on the end extension problem.
3To the authors best knowledge this question was raised by KirRBY and PARIS in 1977.



If there is a Ab-elementary extension M' of M; which is a model of T' +
o(xir, ...,z ), then we can find an elementary extension M" of M' satisfying
Qst (we can restrict ourselves to countable M', M"). Let M;;1 = M". Other-
wise let M1 = M;. We fix any enumeration {a:lk+1 : k € N} of Myy1. Now let
M =J{M; :1 € N}. Then M kT + Q$° which is 1°-closed w.r.t. T". O

This construction does not produce a model of T'+ Q% which is 1°-closed w.r.t.
T', because Q5 is “33”, where 5° is only “TI5”, and the model is constructed as
a union of a chain of models, which, in general, does not preserve ¥3-sentences.

One direction of our disired results is easy, that the VII?-separation yields
certain models. The argumentation follows the one from Fact 1.

Theorem 7. Let SY C T C T', T,T' L-theories. If T is Y11} -separated from
T', then there exists a countable model M of T + Q0" which does not have a
Ab-elementary extension to a model of T'. Hence M is also 1°-closed w.r.t. T',
and also M does not have weak end extensions to models of T'.

Proof. Under the assumption there is a ¢ € VsII? such that T' F ¢ and T ¥ ¢
as Si knows VII? = VsII?. The above remark shows T + Q§t ¥ ¢, hence there is
a countable model M of T 4 Q3¢ 4+ —p. Now M does not have a Aj-elementary
extension to a model of 7", because if M <} M', then M'E -y using upwards
persistency of IsX0-formulas, and therefore M' & T" as T' | .

By Lemma 5 every model which does not have a Aj-elementary extension
to a model of T" is already 1°-closed w.r.t. 7", and also does not have weak end
extensions to models of T". |

This proves directions 1. = 2. resp. 1. = 3. of Theorem 4. For 1. = 4.
observe that for ¢ € VsII? with Si ¥ ¢ and T3 + ¢ we also have Si + BLY! ¥ ¢
as S& + BLX!} is VII}-conservative over Si, hence there is a countable model M
of S§ + BLY} + =p. The same argument as in the proof of Theorem 7 shows
that there are no weak end extensions of M to models of T} .

We are going to prove converses of Theorem 7. That is, from the existence of
certain models we will derive the VII?-separation of bounded arithmetic theories.
The separating sentence will always be a restricted consistency notion of the
“stronger” theory which will be defined in the next section. .

2 Restricted proofs

Our notion of restricted proof will be similar to the notions “i-regular proof”
in [12, Definition 10.5.2] and [14, Definition 1.4], and “strictly i-normal proot”
in [20, p.81]. The main difference between these notions will be that we will
vary the coding of formal terms in order to make the coding more “unfeasible”
so that values of codes of closed terms are bounded by the codes themselves,
where e.g. in [20] restrictions of the provability notion to proofs of small and
very small sizes are considered.

We assume that we have constants ¢,, for each n € w in our language £, and
a suitable axiomatization of them in our theories, for example S;c¢, = cg,n for
i =0,1. Hence in this setting I,, from [6] can simply be defined by I, := ¢,,.



Let 7.7 be a usual feasible GODELisation as in [6], then sub(w,z*,n) — the
result of replacing the variable* z* in the string w by the numeral I,, — is a X}-
definable function in S3 and S can prove all necessary properties. We further
have I(sub(w,z*,n)) = l(w), where 1(w) denotes the length of the sequence
w, i.e. the number of elements forming w. For formal terms ¢ let 1(¢) denote
its formal length, i.e. the number of symbols forming ¢. Obviously we have
1(t) <1("tT).

One problem with feasible GODELisation is that the values of terms have a
bigger growth rate that their GODEL numbers, e.g.

ci=T24 .. #27=20(nD) = pOM) but val(c) = Q(2™)
———

|n| times
Of course there cannot be a GODELisation G of closed L-terms such that both
1) val(c) < M for ¢ € G, and
2) sub(w, z*,n) < (w +n)°W,

because then f(w,n) := val(sub(w, *,n)) would be a universal bounding func-
tion for all polynomially growth rate functions, which itself grows polynomially.
By diagonalisation this cannot be possible.

Let us review the growth rates which are achieved via feasible GODELisation.
Assume that we have a function symbol w; in £ with w;(n) = n#n = 2",
With wgk) (n) we denote the k-fold iteration of w;. Then wgm‘)(n) = 2" &
2,(||n|| - m) with 25(n) = 22". Hence a natural candidate for a GODELisation
which has property 1) but fails for 2) is

T 22(Hrt—|” . 21(rt1)) + T,

(In this definition we can think of 1("¢") as the number of symbols 1(¢) in the
formal term ¢ — we have that 1("¢t7) is an upper bound to 1(¢).) Let rem(n)
be n without its leading bit, then "t7 = rem("t™). We define val*(c) and
sub®(w, x*, n) to be the value of the closed term ¢ resp. the result of substituting
for z* in w the numeral I,, this time with respect to ".7*. L.e., with w' = rem(w)
we can write

val*(c) := val(rem(c))
sub*(w, z°, n) == 2,(||sub(w', 2*,n)|| - 2)) + sub(w', z*,n)
1" (w) := 1(rem(w)).

As argued above sub” cannot be polynomially bounded as sub® and val* together

diagonalise 2/"". But we observe that for a fixed w with 1* (w) standard the
function n — sub*(w, z*,n) is polytime because sub*(w, x*,n) can be bounded
by W’ (@)+0(1)

y Wi (n).

Now we can prove property 1) for ©.7*

Lemma 8. val*(c) < c.

4We use z® to speak about codes indicating variables.



Proof. We identify function symbols with the functions they represent. Then
the assertion follows from

1 < |t
for closed L-terms ¢. All function symbols f in £ represent polytime functions,
hence there are constants c¢ such that

(/)] < max(]7], 2)°/.

Assume t = fuy...ug, then ||7t7|| > max(]|["u7||) and, w.lo.g., 1("t7) >
max(1("u")) + |cs|, hence we obtain inductively

|t‘ < max(|ﬁ|,2)cf < QmaX(HﬂHJ)'Cf
Z< omax;—1,... i (|["ui 7|2 ) ¢
< Qmax(\\raw).max(gl“i’)).Cf

< QHrt-uH_Ql("t")

= [Tt

O

The form of restricted proofs we will consider here is similar to the notions
“j-regular proof” in [12, Definition 10.5.2] and [14, Definition 1.4], and “strictly
i-normal proof” in [20, p.81].

—

Definition 9. RProof}é((p, g,t,cif,ﬁ),A) holds if the following conditions
are satisfied:

1. p, E,A are coded via ".7; fd:f,l_j via 7.7,

2. pis a TAIT-style® derivation of the set A using the sX¢ — IN D-rule, and
all formulas in p are in X5 .

. . b b
3. All cut formulas in p are in s¥] U sII;.
4. p is in free variable normal form.

5. If @ are all parameters (i.e. free variables in A) and b = (by, ... ,bx_1) all
other variables in p, then

(a) if the elimination inference of b; is below the elimination inference of
bj, then i < j.
(b) tis a k-tuple of monotone terms with variables among a; d is a k-
tuple of proofs.
(c) the elimination inference of b; is one of
sX —IND ’ >
(s ) A, ~A(0), A(r(@ bo, b 1))

(V <) A,bl f’l“((_i, bo,... ,bi_l),A(bi)
- A,VZL' ST((_I:, bOa"- 7bi—1)A(w)

5With “TArT-style” we mean that sets (or formally: sequences) of formulas are derived,
and that negation is a syntactic operation, not a symbol of our formal language.



and d; is a proof of
bg ﬁ to(d), e ,bi,1 f ti,l(c'i),r(d', bg, e ,bifl) S t,((_i)

that is without the IND-rule, is quantifier-free and contains only the
variables by, ... ,bi—1. (E.g., t; = 0[r]pg,... biy(to,- .. ,ti1) with o
the metafunction defined in [6].)

(d) We define the set BdZ’F(T) for bounded ¢ via sets A, and B, which
are defined by recursion on p:

@ Ay B,

Pi atomic 0 {@}

oy Ad, U AX By U B,

Qr <up(z) (Ay)),(ap) U{a, £u}  (Byw)),(ap) U{u}
Then

BAE(T)={bi g t; - i<k}UA,U{ A\ (w<T)}
u€B,

expresses, that T is an upper bound to the “world” of . By this we
mean that all values which are considered by ¢ are bounded by T'.

T is a list of monotone terms with variables among a, D is a list of
proofs similar to 5c), such that for every ¢ in p there is some Ty in

T and a proof dy o]f Pd%E(Tw) in D, which contains only the same
free variables as Bdl'(Ty).

-,

This means that max(T) bounds the “world” of p, which allows us
to compute all values occuring in a soundness proof of a RProof*Tzi-

derivation, if we are able to compute val(max(T)).
Now we define

RProvy(A) := 3P RProof7; (P, A)
RCon*(Ty) := ﬁRProvi}é (T07).

If RProof}é (P," A7) then we say that P is a restricted-Ta-proof of A.

Lemma 10. (S1) If ¢ € sX?, RPrOV;«Qi(I_A,()O—I) and RProv}é-("A,—lgo—'), then
RProv}é (TA7). O

Theorem 11. (Normalizing)
RProvi. ("¢7) < Tt .

Proof. =: is clear.

«<: We give two proofs. We will sketch a prooftheoretic one, and give a
precise modeltheoretic one because we will extend the model-theoretic method
later on.

Prooftheoretic proof: Assume T§ F . Then there is a derivation d; of ¢
which has as axioms instances of BASIC and which uses the s£?-IND-rule. By
partial cutelimination and further normalisations (see [6] or [3, 5]) we obtain

10



a derivation da of ¢, in which cutformulas are in sX? U sII? and the only free
variables in dy are those occuring free in ¢ (the parameters) and the eigen-
variables of dy. By renaming eigenvariables and collecting data we obtain a
restricted-T4-proof of ¢.

Modeltheoretic proof: Assume ﬂRProv}z,-("go"). Via modeltheoretic forcing
(cf. [11]) we construct a countable model N of Ti + —¢. Hence Ti ¥ .

We start adding new constants (d,)new (the witnesses of our forcing con-
struction) to our language (call it L1). Again we call the formalized restricted
proof predicates in this extended language RProof’, ; and RProsz. Then again
- RProvTé( 1), because the new constants can be replaced by 0

We shall define an increasing chain (T}, )ne, of finite sets of LT -sentences,
such that for every n

= RProvi, ("=T,"7). (1)

In the end their union T" := J,, T}, will be a HINTIKKA set for LT (cf. section
2.3 in [11]), and the canonical model of the atomic sentences in 7% will be a
model of T¢ + . To ensure that T will have these properties, we carry out
several tasks as we build the chain. We consider the following tasks:

(T1) —p € T+
(T2) For all sX!(LT)-sentences ¢, ¢ € TT or —p € T™.

(T3)y(a),t (for ¢ a sX2(LT)-formula in one free variable and ¢ € L closed.)
¥(0),(t) € TT = 9(s), (s + 1) € T for some closed s € LT.

The following tasks (together with (7'2) will insure that T is a HINTIKKA set:
(Hl)yy YAXETT =>p,x €T

(H2)yy YVXET T =>peT T or xeT™

(H3)vay(z) Yap(z) € T = 1p(t) € T for every closed t € L+.

(H4)34y(z) Jxtp(z) € T = 1p(t) € T for some closed ¢t € L.

If these tasks are all carried out, then T+ is a HINTIKKA set. E.g. if ¢ € sX! and
¢ € T, then -1 € T, because otherwise v, ) € T}, for some n and obviously
RProv}é ("), 97) contradicting condition (1) for n. Or, if s = € T for some
closed terms s,t € L then also t = s € T using (72) and RProvy, ("s # ¢, t =
s7).

Write N7 for the canonical model of the atomic sentences in T. Then N
is a model of T*. Using (T2) N+ is a model of the sX! U sII’-consequences of
Ti. Also N7 fulfills s£2-IND, because if ¢ € sX? and Nt E ¢(0) A Jz—p(z),
then there is some closed term ¢ such that N £ ¢(0) A —1)(t) as Nt is a term
model. With (T2) we get 4(0),—)(t) € T*. By (T'3)y(s),; there is a closed
Lt -term s such that 1(s),—9)(s + 1) € TT. Hence N* E Jz(¢p(x) A —¢p(x + 1)).
Altogether this shows

NTE(0)ATz—p(z) = Iz(h(x) A p(z + 1)),

thus
NT E(0) AVz((z) = p(z + 1)) = Vay(z).

11



By (T'1) we further get N* E —p. Hence N7 is the desired model.

It remains to show that all the countable tasks are enforceable. This means
that for any task T and any infinite set X C w such that w\ X is also infinite
and 0 ¢ X, we consider the following game G(7, X). The player, V and 3, pick
the sets T, in turn; player 9 makes the choice of T}, if and only if n € X. Player
3 wins if T has property T, otherwise V wins. Now “enforceable” means that
in all these games player 3 has a winning strategy.

Consider a task. We describe an expert (feminine by convention) handling
this task. Let X C w be her subset and assume n € X.

(T1) Let Ty := {—p} (one expert is allowed to have 0 in her set X).

(T2) Let her list as (1), : n € X) all sentences of sX2(L7T).
If ﬂRProv}é("ﬂ 1, Un "), let T, := Ty,_1 U {1, }. Otherwise she sets
Ty :=Tp_1 U{—=,}. Thus she fulfills her task.
We have to check that condition (1) is not violated. Suppose for the
sake of contradiction that we have RProv};("—'Tn"), then by construc-
tion RProv*Tzi("ﬂ n—1,"Un") and T, = T,_1 U {9, }. Now we obtain

RPrOV;«Qi ("=T}—17) using Lemma 10 contradicting condition (1) for n — 1.

(T'3)y(a),e I (0),(t) € Ty, then she chooses some witness d not occurring

in Ty,—1 and sets T, := Ty,—1 U {¢(d),p(d + 1)}. Otherwise she does
nothing. This strategy works, because her subset X contains arbitrarily
large numbers.
Condition (1) is fulfilled, because if we have ¢(0), - (t) € T,—1 and
RProv};("—'Tn"), then by construction we can replace d in T, by a fresh
variable a obtaining RProv*Tzi ("=Th—1,(a),¥(a+1)7), hence one appli-
cation of formalized s%2-IND (in RProv}é) yields RProv}é ("=Th-17).

Tasks (H1)—(H4) are treated in a similar way. O

Theorem 12. (i > 0) ' )
T3 + RCon* (T3).

Proof. The argument is similar to [12] Theorem 10.5.3.

Suppose for the sake of contradiction P = (p, 5, t, J f, 5) is a restricted-T4-
proof of the empty set, then by the sub formula property all formulas in p are in
sXUsTIY. Now S} can evaluate all 7, T (cf. Lemma 8). Consider a partial truth
definition Tr;(x,y) for sX!-formulas, (Tr; € sX!), then Si can prove TARSKI’s
conditions for all formulas in p with 53 fusing T and D. Extend Tr; to STr;
for sets of s U sI!-formulas (STr; € A?,,), and consider the sII?, ,-formula
©(s)

-

Vr S S\V/bo S to .. ka S tk STI“Z'(S,«, b) (2)

where p = (So, ..., Si). Local correctness, i.e. p(s) — p(s+1), is provable in T4.
With sI12,, — LIND we can show ¢(l) which implies Tr; () — a contradiction.

Hence S5 proves RCon*(T}), and as Si™! is VX!, -conservative over T4, the
same holds for T7;. O

12



Remark 13. The GODEL sentences as proved in [6] as well as the following
results in this article admit another kind of restricting proof predicates. By
adding weights we can force the depth dp(p) of proofs p to be bounded by ||p|/,

dp(p) < Ipll.

Then the assertion (2) in the proof of Theorem 12 can be reformulated as

@(8) ::VT‘l,’I“Q S l ng S to...ka S tr [7‘1 S ro S r1 +28&
Vh < r1Vj < 1y STri(Sjn, b) = Vh < 7oV < 1, STri(Sj . b)]

if p is written as (So0,0,51,0,--- 51,0, 50,1, -- ,Si,,1) with j = depth of S;; in
p. Thus N7, , — L*IND suffices to prove ¢(|l]) from ¢(0), as ¢(s) € 12, and
1 <|lp||. Hence for any theory T = ¥2 — L*XIND we get

T +1%,, — L*IND I RCon*(T).

k3

O

Remember that we have n — sub®*(T67* 2* n) as a band of polytime func-
tions indexed by 6. Define

- -

I*((p, b, £, d, T, D)) := max (1 (£),1"(d),1"(T),1*(D))

where, e.g., 1" (t1,... ,tx) means 1" (¢1),... ,1" (). An inspection of [6, Lemma
7.4.5] and [6, Theorem 7.4.4] shows

Lemma 14. For all terms t with free variables among x1,...,x; there is a
constant k; € w and a term s; with free variables among x1, ... ,x; such that

Sy AP < s,(i0) [1"(P) < ky ARProofie (P, "H(I) = Iy )]

Proof. Inspecting Lemma 7.4.5 in [6] shows that the lengths of all terms in the
generated proof of t(I) = I is bounded by 1(t) 4+ o(1). Here it is important
that in our setting we have I, := ¢, and hence 1(I,) = 1 for arbitrary u (even
if u is nonstandard).

In the proof p of t(I_;) = I;(g) generated in Lemma 7.4.5 of [6] only equations
occur. Thus we may take T as the sequence of all v + w for v = w occuring
in p, and D as the sequence of simple proofs of v < v+ w Aw < v+ w. Then
(Tp7, 77, T TY7* TT* T D7) s a restricted proof of T¢(I,) = L™

Hence we can choose k; =1("t7) + o(1). O

Theorem 15. (IX2-Completeness for Sy w.r.t. ©.7%)

1. For ¢ € X% with free variables among x1,... ,x; there exists a constant
k, € w and a term s, with free variables among x1,... ,x; such that

Sy b (i) = 3P < s, (@) [1*(P) < k, ARProofye (P, "(L,)7)].

2. For ¢ € 3%% with free variables among x1,... ,x; there exists a constant
k, € w such that

Sy b (i) = 3P[1*(P) < k, ARProofya (P, "¢(,)7)].

13



Proof. An inspection of Theorem 7.4.4 in [6] shows that the lengths of terms in
generated proofs does not exceed those generated in Lemma 14. Hence we can
choose k, =1("¢7) + o(1).

Furthermore, proofs are generated by induction on the complexity of ¢,
they do not contain applications of induction rules, and the structure of (V <)-
inferences and their bounds reflect the structure of the bounded V-quantifiers
and their bounds in ¢. Thus we can define ”from the outside” lists g,fand d
(all standard objects), such that if ¢ (@) holds, then

(Tp7, I'g‘l} a I'JLI*’ I'T‘"I*} F51*>

(where p, f, D are collected similar as in the proof of Lemma 14) is a restricted
proof of T¢(I,,)™. O

As a corollary we obtain that RCon*(7%) is the strongest VII’-statement
(over S3) provable in T4, similar to Con(G;) in [13] or RCon(T}) in [14], or see
[12] for a treatment of both.

Theorem 16. (i > 1) For all ¢ € VII} such that Ti + ¢ we have Si +
RCon*(T%) — .

Proof. Let S} F ¢ < Vay(z) with ¢ € sII}, then we have T4 F ¢(z), hence
RProof}é-(P, T4p(x*)7) for some standard P using Normalizing (Theorem 11).

SJ can check that RProofﬁ}é(Ip, T(z®*)™) holds. Now 1*(P) is standard, hence

we can substitute values for z® in P, because u — sub*(P,z°®,u) is polytime.
Thus we obtain Si - Vu RProvi: ("(1,)7). The 3%%-completeness of S shows

Sa —p(u) — RPrOV;«Qi(r_"(p(Iu)j). Hence Si F —(u) — = RCon*(T¥). O
Corollary 17. Leti > 1.

2. S5 #ym T3 & S ¥ RCon™(TY).

3 Al-elementary extension

As shown in Fact 1 it is well-known that the VII%-separation of S} from T2j
(1 <i < j) is equivalent to the existence of a model of S§ which does not have
a Aj-elementary extension to a model of Tj.

We repeat this argument in an adapted form to prove the next theorem. We
do this also because the proof of Theorem 18 is the bases of following proofs.

Theorem 18. (i > 1) Assume M is a model of S3 which does not have a log’-
proper Ab-elementary extension to a model of Té. Then M E = RCon*(T¥).

Proof. Suppose for the sake of contradiction M E RCon*(T3). Let Ly be the
extension of the constants ¢, : n € w of our language £ to ¢4 : d € M, plus
some new constant b. So I; = ¢4 for all d € M. Consider

T := Ty + Ab-diag(M) + {|1a]3 < |b|s : d € M},
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where Ab-diag(M) is the Aj-diagram of M
Ab-diag(M) := {08(1,,,... . 1,,) : 0 € Ad,ar,... ,a, € M, M E 6(d)}.

We will show that T is consistent. Suppose for the sake of contradiction T is
inconsistent. Then by compactness there is a finite subset D C A}-diag(M) and
some finite N C M such that T3 + D + {|I4|3 < |b|3 : d € N} is inconsistent.
Let dy = max(N) and dy = do#dp € M. As b has been new, we can replace it
by I4,. Now |di|3 > |dg|s > |d|s for any d € N, hence we can assume w.l.0.g.
that T§ + D is inconsistent. Using that A} is closed under conjunction, we even
can assume w.l.o.g. that there is one 6(I,,,... ,I,,) € A}-diag(M) such that
T +0(I4,,...,1,,) is inconsistent. Hence

Tik—=0(I,,,...,1,,).

Using Normalizing (Theorem 11) there is a standard restricted-Ti-proof with
parameters from M deriving this formula, hence

M E RProvi, ("=0(La,, .+ 1a,) 7).

By Y!-Completeness (Theorem 15) we have M F RProv}é('—H(Ial, vy Do ).
Hence using a bounded cut (i.e. a refinement of Lemma 10) we obtain M F
RProv*TQi(@) contradicting our assumption M E RCon*(Ty§). Thus T is consis-
tent.

Let N be a model of T, then (up to isomorphism) M <} N because T
includes the Ab-diagram of M. Furthermore N E T4 + {|I4]3 < |b3 : d € M},
hence N is a log3-proper extension of M and N is a model of T4, contradicting
our assumption that M does not have a log®-proper Aj-elementary extension
to a model of T3.

Thus our assumption was wrong, and we have M F = RCon*(T%). O

This theorem can be used to reobtain Fact 1 (and, therefore, 2. = 1. of
Theorem 4), i.e. that if there is a model of S§ which does not have a log3-proper
Ab-elementary extension to a model of Ty then S} is VII’-separated from Ty
(1 <i < j). Because, under the assumption the last Theorem shows that Si
does not prove RCon™ (7Y ), while T3 does prove it (cf. Theorem 12).

4 1'-closed models

1-closed models of PA satisfy =Con(PA) [2]. Here we show something similar
for 1°-closed models of bounded arithmetic and theories Ty.

Theorem 19. (i > 1) Assume M is a model of S} + QU which is 1°-closed
w.r.t. Ti. Then M £ = RCon*(T3).

Proof. The proof is similar to that of Theorem 1.1 in [2].
Suppose for the sake of contradiction M E RCon*(T%). Fix a nonstandard
b € M such that M E Vz3y(||z|| - b= ||yl|). Let ¥(z, ¢, z) be the formula

VP[1'(P) < |2| = = RProofy (P, "=¢(I:, I, y*)7)]

where ¢ € sXb.
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We assert that ¢ is universal for (standard) 3sX?-formulas with one free
variable and parameter b, i.e.

M E (b, " a) + Jyp(d,a,y) (3)

for p € s¥% and a € M.

Fix p € s} and a € M.

<: Assume there exists some d € M such that M E ¢(b,a,d). By X%-
Completeness (Theorem 15) there exists P € M with

M E RProofy (P, "(Iy, Ia, Ta)7). (4)

Suppose for the sake of contradiction M ¥ (b, ¢, a), i.e. thereisa Q € M
such that M F 17(Q) < [b| and M F RProofr; (Q, ~¢(Ly, Io,y*)7). As M F

1"(Q) < |b| and M E VaIy(||z]| - b = ||y||), we can substitute y* in Q by I,
obtaining some Q' € M such that

M F RProofy; (Q',"~¢(Iy, Ln, 1) 7).

Now a bounded cut with (4) (cf. Lemma 10) yields M FE RProv};(@) which

contradicts our assumption M E RCon*(T%).

=: Assume M F ¢(b,"p",a). Let Ly be the extension of the constants
cn 1 € w of our language L to cg:d € M. So I = cq for all d € M.

Consider

T = T5+ Ag-diag(M) + 3yp(ly, Lo, y).

We will show that T is consistent. Suppose for the sake of contradiction T is

inconsistent. By compactness and the closure of A} under conjunction there is
some §(I,,,..., I, ) € Ab-diag(M) such that Ti+6(L,,, ... , L., )+3yp(ly, L., y)
is inconsistent, hence

TQZ + —|9(Ia1:- .. ;Ia"): _'()O(Ib"[""y)'

Using Normalizing (Theorem 11) there is a standard restricted-T4-proof with
parameters from M for this set of formulas, hence there is some P € M such
that M E1*(P) < |b| and

ME RProof*TZi (P,"=61(Iay, .- s 1a,),~o(Ip, Lo, y) 7).

By ¥%-Completeness (Theorem 15) there exist P’ € M such that 1*(P') is
standard and
M E RProofly (P!, 0(Ia, .. . 1o,)7).

Hence using a bounded cut (i.e. a refinement of Lemma 10) yields a Q € M
such that M F1*(Q) < |b] and

ME RPrOOf*zi (Q, I—_'(p(Ib: Ia: y)—l)
contradicting our assumption M E 1(b,"¢",a). Thus T is consistent.

Let N be a model of T, then (up to isomorphism) M <} N because T
includes the Ab-diagram of M. Furthermore N & T4 + Jyp(b, a,y), hence M E
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Jye(b,a,y) by our assumption that M is 1°-closed w.r.t. T4. This finishes the
proof of (3).

Considering (2, z, ) there is some ¢ € s¥% such that S3 F Jyp(z,z,y) <
—(z,z,z). By (3) we have

M E(b,"¢™, a) < Jyp(b, a,y) < (b, a,a)
for all a € M. Instantiating this with a := "¢ we get
ME (b, "™ ¢ (b, "™, "),

a contradiction.
Thus our assumption was wrong, and we have M E = RCon*(T%). O

Corollary 20. (1 <i < j) Assume that there is a model of Si + Q" which is
1°-closed w.r.t. T§. Then S} #yme T3

Proof. Under the assumption the last Theorem shows that Si does not prove
RCon*(Ty), while Ty does prove it (cf. Theorem 12). O

This proves 3. = 1. of Theorem 4.
Corollary 21. There is no model M of T§ + Q¢ which is 1°-closed w.r.t. T}.

Proof. Otherwise we would get M £ = RCon*(T3§) by Theorem 19, which con-
tradicts M F TJ as T§ - RCon™(T¥). O

The author conjectures that there also is no model M of S§ + Q%! which is
1b-closed w.r.t. Si.

5 Weak end extensions

Up to now our restricted consistency notion yielded Aj-elementary extensions.
We will change this so that weak end extensions are obtained. To this end
we extend our formal language to L adding uniform small conjunctions and
disjunctions:
p(z) € L™= \/ o), \ @) € L™
b<|al b<al

The formal TAIT-style rules for deriving them are given by

\\/) A, o(Iy) for some b < |a] = A, \/ @(I})
b<|al

(A\) A () for all b < [a] = A, /\ o(Iy).
b<|al

We define £5°“, s0" etc. analogous to A, sT¢ etc. counting small con-
junctions and small disjunctions as sharply bounded quantifiers. Now we define
RProof}§+WEnd similar to RProofi}é- in the language L with additional rules

(\V), (A) and an additional axiom schema

v=TS|I(L| \/ z =1
b<|a|
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for all a. Furthermore cuts are extended to sE?’” U sH?’ez—formulas. Induction
need not to be extended to SZ?’BZ.
We have

Theorem 22. Ti - RCon* (T + W End).
Proof. There is a polytime transformation elex : L — L given by
v =\ o) = Fwy <|L]e(xy)
b<]a|

A o) = Vay <|Llg(xy)
b<]al

(8

which can be formalized in S}. We have

elex(Te) = ©f elex(sE0 %) = 3¢ etc.
Furthermore
elex (Vz < |I,] \/ r=10) = Ve<|L|By<|Llz=y
b<lal

and
x;éfg/\.../\x;zéf‘a‘ —)xﬁf‘a‘
have simple proofs in Ty of size linear in |a| resp. |a|?. Hence
Sy - RPrOV;«2i+WEnd(I_A_|) - RProv*Tzi (Telex(A)™)
and therefore } »
S3 FRCon*(T§) — RCon* (T + W End).
Now Theorem 12, Ti - RCon*(TY), yields the assertion. O

Theorem 23. Assume M is a countable model of Sy + BLY} without weak end
extensions to models of Ti. Then M & —RCon*(Ti + W End).

Proof. Suppose for the sake of contradiction that M E RCon*(T§ +W End). We
extend our forcing construction from the proof of Theorem 11. Again we start
extending our languages £, L to include witnesses (d,)new (we call them L7
resp. L), We call the formalized restricted proof predicate in the language
L% again RP1oof 7 | 4, Obtaining

M E = RProvy y ypna(07).

We define an increasing chain (T},)ne. of finite sets of LT -sentences, such that
for every n

M E =RProvy wppa("Tn 7). (5)

In the end their union T" := J,, T, will be a HINTIKKA set for LT, and the
canonical model N of the atomic sentences in 77 will be a weak end extension
of M and a model of T}, contradicting our assumption.

To ensure that 77 will have these properties, we carry out several tasks as
we build the chain. Beside tasks (7'2)-(T'3), (H1)-(H4) described in the proof

of Theorem 11 we need also the following task:
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(T1)ay (fora € M,t € LT closed) If (t < |I,|) € T, then there is some b € M
such that (t = 1) € T+.

If (T1') is fulfilled, then N is a weak end extension of M. To see this, let a € M
and b € N such that N F b < |a|, then we have to show b € M. As N is
the canonical model, there is some closed ¢t € L1 such that N F b = ¢, hence
N Et <la|l. T* is sX!-complete (by (72)), hence (t < |I,]) € T*. Now (T1')4,
yields the existence of some e € M such that (t = I,) € TT, hence NEt=c¢
and therefore b =e € M.

It remains to show that (T'1'),; is enforceable. Therefore we need to describe
an expert handling this task. Let X C w be her subset and assume n € X. Let
her list {(a,t) :a € M,t € LT closed} using her set X. Of course here we need
that M is countable. Assume that (a,t) is the element indexed by n in her list.

If (t <L) € Th—1 let T, :== T,_1. Otherwise (¢t < |I,|) € T,,—1. Suppose
for the sake of contradiction that

M E Vb S \a|3pRPr00f}2,-+WEnd(p, M= n—l;t 7£ Ib—l).
As M is a model of S} + BLE!} we obtain

M E 3PVYb S |a\ RPI“OOf;—g:_i_WEnd((P)b, M= n—l;t 7£ Ib—l)

hence by (A)

M E RProvyy g (" Tty [\ t#17).
b<lal

As (t < |I,]) € Th—1 we get

M E RProvyi (" Tn1,t < [1]7)

3

hence
M E RProvy (T Tnm1,F2 < L) N\ ©# 1,7)
b<la|

thus M F RProvi:  y p,q("=Tn-17) by a $he_cut contradicting (5) for n — 1.
Hence there is some b < |a| in M such that

M E ~RProvi:  ypng (" Tn-1,t # I7).

Let T), :=Tp_1 U{t # I }.
Using this strategy she fulfills her task as X is infinite. O

Corollary 24. (1 <i < j) Assume that there is a countable model of Si+BLY?
without weak end extensions to models of Ty. Then S} Fyme Ty.

Proof. Under the assumption the last Theorem shows that Si does not prove
RCon*(Ty + W End), while Ty does prove it (cf. Theorem 22). O

This proves 4. = 1. of Theorem 4.
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6 Extending results

First let us remark that if we modify our restricted provability notion to include
true SZZ U sHZ-formulas as axioms we would characterize the VHZ—separa‘cion of
S3 from T4 . Also it is obvious how to adjust the coding ™. 7 to include functions
with stronger but sub-exponential growth rates like #3, #4,....

Now let 7 be an V(X! UTI?)-sentence. We are going to argue that the previ-
ously obtained results can be extended by adding 7 to the theories.

W.lo.g. let 7 = Vyr'(y) for some 7' € sX¢ UsII?, because we are adding T to
Ti, and T4 knows X! = 522, We extend RProof7; to RProofy, . by allowing
all instances of Vy7'(y) as additional axioms, i.e. axioms of the form 7'(t) for
any L-term ¢. Then RProv}é and RCon* (T4 + 7) are defined in the obvious
way.

+7

Theorem 25. TJ + 7+ RCon* (T3 + 7).

Proof. See also Theorem 12.

S3 proves TARSKI's conditions for all formulas in a restricted-T4 + 7-proof
P of the emptyset, therefore we have for all axioms 7/(¢) occuring in P =
(p.b,%,d, T, D)

Vyr'(y) — Voo < tg...Vb < tp Try("7'(¢)7, g)

Thus the argument runs the same way as in the proof of Theorem 12, i.e. we
can show ' '
Ty - Vy7'(y) — RCon*(Ty + 7).

O

Again we have that RCon* (T4 + 7) is the strongest VII}-statement (over S3)
provable in T§ + 7.

Corollary 26. For all € VIIY such that T +7 F ¢ we have S F RCon* (T3 +
T) = . O

Theorem 27. Assume M is a countable model of S3 + BLX! without weak end
extensions to models of Ty + 7. Then M £ ~RCon™ (T3 + 7 + W End).

Proof. Assuming M E RCon* (T3 + 7 + W End) we modify our forcing construc-
tion obtaining a HINTIKKA set 7T such that

7'(t) € TT  for all closed LT -terms ¢.

Then the canonical model N generated from T fulfills N E Vy7'(y), thus N E
Ti + 7 and N is a weak end extension of M contradicting our assumption. [

Similarily we can prove the following Theorems.

Theorem 28. Assume M is a model of S which does not have a log®-proper
Ab-elementary extension to a model of Ti+7. Then M £ —=RCon*(Ti+7). O

Theorem 29. Assume M is a model of S} + Qs which is 1°-closed w.r.t.
Ti+ 7. Then M E =RCon™*(T§ + 7). O

Hence we obtain
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Corollary 30. Let 1 <i < j. The following are equivalent:
1. Si+ 1 is VII}-separated from T2j + 7.

2. There is a model of Si+T which does not have a log®-proper Ab-elementary
extension to a model of Ty + T.

3. There is a model of Si + T + QPst which is 1°-closed w.r.t. TQj +T.

4. There is a countable model of S§+ 7+ BLYY without weak end extensions
to models of TJ + 7. O

Remark 31. Considering Q" we can extend the results allowing T to be an
V(2 UT?)-sentences which has as a parameter the nonstandard element given
by Q5. Le., assume that our language L is extended by a new constant c. Let
Qrst(c) be the following L., -sentence:

Q7h(e) = ( N\ (& <€) AVa3y(llz]] - ¢ = [lyl]).
kEw

Thus QP$t = 32Q75(2). Then we can consider T(c) instead of T in the previously
obtained results where Q¢ is replaced by Q7% (c).

7 Towards proper weak end extensions

In section 5 we have connected the VII?-separation of Si from T2j with models of
Si + BLY} which do not have weak end extensions to models of TQj. But we are
really interested in a connection to models without proper weak end extensions,
because there is a similar (open) question for models of TAq: are there models
of IAg + BY.; without proper end extensions to models of TAg? Furthermore,
there exists a ITi-sentence 7 (a version of the Tableau consistency of IAg) and
a model of TAg + Q1 + 7 + BXY; which has no proper end extensions to models
Of IAO -+ Ql + T (Cf [1])

Up to now we have not achieved a connection to proper weak end extensions.
We will describe two possible ways in this direction now.

WILKIE and PARIS in [22] defined a II5-sentence v such that
IAy + BY,4 IAq + BYy + 9 IAg + BYy +
all have the same II;-consequences. This can be improved to
Proposition 32. There is a V3Xt-sentence x such that for S CT C S,
T T+ x T +-x
all have the same Tl -consequences.

Proof. Let Log,(z) := pu.z < 2/9" then Log,(z) = u has a Ab-description in
Si. Let x be the sentence equivalent to

Q‘Q‘QLQEQ(Z)

VaVz( exists).
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Then
T T+ x T +—x
all have the same II;-consequences. To see this, suppose
T+ -xFVzh(z), 6l

but
T ¥ Vxo(z).

Then we find a model K £ T + —#(a) such that a” exists in K for some
N < n,t <a. Let

LX) ={zeK : z< 212" some EN} C. K

then LX (a,n) F T+-6(a) (this is true for arbitrary ). Furthermore, LX (a,n) E
—x, because b := 2/%" € L¥(q,) and Log, (b) = n, but 2/*"" ¢ 2laI”" for all
n €N

The case for y is similar, taking 2 in place of n and observing L¥ (a,2) E
X- O

Remark 33. The same x from the proof of the last proposition also fulfills that
T + BLX} T+ BLY) + x T + BLX? + -y

have the same 111 -consequences. This can be seen by adapting Theorem 1 from
[22] in the form
Mc.KESY = MEBLY.

Open Problem 1. Can this be improved to finding a sentence ¢ such that
Proposition 32 holds for ¢ instead of x and such that the formalized proof pred-
icate can be extended to ¢ and —¢ fulfilling

T + ¢ - RCon* (T + ¢) TJ + ¢ F RCon*(TJ + —¢) ?
Having this, we would get
TJ F RCon*(TJ + ¢) A RCon* (T} + —¢)

using Proposition 32.
On the other hand we would be able to show that if M is a model of S3 +
BLX! without proper weak end extensions to models of T3, then

M E ~RCon*(TJ + ¢) V ~RCon*(TJ + —¢).

To see this observe M F ¢V —¢. W.l.o.g. we may assume M F ¢. Now assuming
M E RCon*(Ty + —¢) would produce a weak end extension N of M which is a

model of T2j +—¢. But then M # N as M F ¢ and N F —¢, hence the extension
is a proper one contradicting our assumption. Hence

Si ¥ RCon*(TJ + ¢) ARCon*(TJ + —¢).
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The second possibility bases on an ultrapower construction described by
Buss in [7]. Suppose '
M E Si + BLI! + BBII?

where BBH? is the sharply bounded replacement schema
(Vz < lal)(3y < b)o(z,y) = (Fw)(Vz < lal)e(z, (w)2)

for ¢ € M. Note that by results of Buss [8] and RESSAYRE [19] the theory
Si+ BLIIY + BBII! is VX!, | -conservative over Si. Buss shows in [7] that
there is a proper (X% N II%)-elementary weak end extension N of M such that
log N =log M and N F TQi_l.

Open Problem 2. Can this be improved such that N E BLYY and N is a
VX -elementary extension of M ?

Then we could argue as follows: If M does not have proper weak end ex-
tensions to models of 7Y, then M E ~RCon*(TJ). Because assuming M F
RCon*(TY) would imply N £ RCon*(T}), and our construction from section 5
would yield a weak end extensions of N to a model N’ of T2j, but N’ would now
be a proper weak end extension of M — contradiction.
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