
Polynomial Local Search in the Polynomial Hierarchy

and Witnessing in Fragments of Bounded Arithmetic

Arnold Beckmann∗

Department of Computer Science
Swansea University

Swansea SA2 8PP, UK
a.beckmann@swansea.ac.uk

Samuel R. Buss†

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

November 5, 2008

Abstract

The complexity class of Πp
k -polynomial local search (PLS) problems

is introduced and is used to give new witnessing theorems for fragments
of bounded arithmetic. For 1 ≤ i ≤ k + 1, the Σp

i -definable functions
of T k+1

2 are characterized in terms of Πp
k -PLS problems. These

Πp
k -PLS problems can be defined in a weak base theory such as S1

2 ,
and proved to be total in T k+1

2 . Furthermore, the Πp
k -PLS definitions

can be skolemized with simple polynomial time functions, and the
witnessing theorem itself can be formalized, and skolemized, in a weak
base theory. We introduce a new ∀Σb

1(α)-principle that is conjectured
to separate T k

2 (α) and T k+1
2 (α).

1 Introduction

This paper discusses the Σb
i -definable functions of the fragments T k+1

2 of
bounded arithmetic, for 1 ≤ i ≤ k + 1, and characterizes these functions in
terms of Πp

k -PLS problems. The Πp
k -PLS problems are defined in this paper

as a kind of polynomial local search, relative to a Πp
k -definable set of feasible

points.
These results complement a number of prior results on the definable

functions of bounded arithmetic. For k ≥ 1, the second author [4] charac-
terized the Σb

k -definable functions of Sk
2 as being precisely the functions in

∗Supported in part by EPSRC grant EP/D03809X/1.
†Supported in part by NSF grant DMS-0700533.

1

the class FPΣp
k−1 . Kraj́ıček [11] proved that the Σb

k -definable functions of
Sk−1

2 are precisely the functions computable by polynomial time algorithms
that make O(log n) witness queries to a Σp

k−1 -oracle. Buss and Kraj́ıček [8]
proved that the Σb

1 -definable functions of T 1
2 are precisely the functions

that are (projections of) polynomial local search (PLS) problems. The
class PLS was defined by Johnson, Papadimitriou, and Yannakakis [9]. As
a number of researchers have noted, this can be generalized to describe
the Σb

k -definable functions of T k
2 in terms of the class PLSΣp

k−1 , which
is defined by replacing the polynomial-time predicates and functions of
the class PLS with predicates and functions from PΣp

k−1 . Since Sk+1
2 is

∀Σb
k+1 -conservative over T k

2 [5], this also provides a characterization of the
Σb

k -definable functions of Sk+1
2 for k ≥ 1.

The problem of determining the Σb
i -definable functions of T k

2 (equiva-
lently, of Sk+1

2) for 0 < i < k has been more difficult, but a couple recent
advances have been achieved. Kraj́ıček, Skelley, and Thapen [10] charac-
terized the Σb

1 -definable functions of T 2
2 in terms of colored PLS problems.

They also gave characterizations of the Σb
1 -definable functions of T 3

2 in
terms of a reflection principle, as well as in terms of a kind of recursion
called verifiable recursion. Skelley and Thapen [20] subsequently gave a
characterization of the Σb

1 -definable functions of T k
2 , for all k ≥ 2, based

on a combinatorial principle for k -turn games. An earlier, more complex,
game characterization of the same functions was given by Pudlák [19] using
a combinatorial analysis of Herbrand disjunctions.

The present paper gives a characterization of the Σb
i -definable functions

of T k+1
2 (and hence of its Σb

k+2 -conservative extension Sk+2
2) for all 0 <

i ≤ k + 1, using a relativized notion of polynomial local search problems.
Our relativized PLS problems use polynomial time computable cost and
neighborhood functions; however the set of feasible points can have higher
computational complexity. In particular, the class of Πp

k -PLS problems
uses a Πp

k -predicate to define the set of feasible points. The stopping
condition (called the “goal”) is defined by a Πp

i−1 -predicate. Our first
main result states that the (multi)functions which are Σb

i -definable in T k+1
2

are precisely the (multi)functions that can be defined as a projection of
a Πp

k -PLS problem with Πp
i−1 -goal. (A multifunction is a total relation

denoted as a function y = f(x), but allowing a single x to have more than
one value for y = f(x).) This is proved by a witnessing lemma, Lemma 5,
showing that a T k+1

2 -provable sequent of Σb
k+1 -formulas can be witnessed

by a Πp
k -PLS problem. Indeed, S1

2 can define the Πp
k -PLS problems, and

can prove the that the witnessing property holds. It is important to note

2

though, that although S1
2 can define the Πb

k -PLS problems for all k ≥ 0, it
presumably cannot prove that solutions always exist (otherwise, T k+1

2 would
be ∀Σb

1 -conservative over S1
2).

Our second main set of results concern Skolemization. We prove that
the Πp

k -PLS problems used for the witnessing lemma can be defined in
the weak base theory S1

2 in Skolem form: this means that the defining
properties can be proved in a Skolemized form where the Skolem functions
are simple polynomial time computable functions. In addition, Lemma 9
and Theorem 3 give stronger versions of the witnessing properties; namely,
the witnessing theorem itself can be proved in Skolemized form.

The paper concludes by using the Skolemized Πp
k -PLS problems to

propose a relativized formula in ∀Σb
1(α) which is provable in T k+1

2 (α) but
is conjectured to not be provable in T k

2 (α). Using the Paris-Wilkie trans-
lation, this conjecture can be translated into the setting of bounded-depth
propositional logic. Namely, we describe sets Ξa so that, for a ∈ N , Ξa is
a set of sequents of literals. The sets Ξa have polynomial size refutations
of depth k − 1 in the Tait-style propositional sequent calculus, but are
conjectured to not have quasipolynomial refutations of depth k − 11

2 .
The initial work on the results of the present paper was carried out by

the first author working in the setting of proof notations to extend the work
of [1]. The complete results that are reported below and in [3] were then
obtained during a visit to San Diego and in subsequent work. The paper [3]
is a companion paper to the present paper, obtaining similar results using
proof notations.

2 Πp
k -polynomial local search problems.

We define a Πp
k -polynomial local search problem to be a local search problem

with a neighborhood function N and a cost function c which are computable
in polynomial time, and with a Πp

k -condition F that defines the intended
domain of the search. This is defined formally as follows.

Definition A Πp
k -PLS problem, with input x , consists of the following:

(1) A polynomial time computable neighborhood function N(x, s).

(2) A polynomial time computable, integer valued, cost function c(x, s).

(3) A Πp
k -predicate F (x, s) which defines, for each x , the set F (x) := {s :

F (x, s)} of feasible points. The set of feasible points for an input x
must be polynomially bounded, with F (x, s) implying that |s| ≤ d(|x|)
for some given polynomial d .

3

(4) A polynomial time initial point function i(x) such that i(x) is always a
feasible point, i.e., i(x) ∈ F (x) must hold.

Furthermore, a Πp
k -PLS problem must satisfy the following four defining

conditions (α)-(δ). The first two conditions were already stated above.
The third condition, (γ), states that the neighborhood function maps
feasible points to feasible points. The fourth condition, (δ), states that
the neighborhood function always produces the same point or produces a
lower cost point.

(α) ∀x∀s(F (x, s) → |s| ≤ d(|x|)).
(β) ∀x(F (x, i(x))).

(γ) ∀x∀s(F (x, s) → F (x, N(x, s))).

(δ) ∀x∀s(N(x, s) = s ∨ c(x, N(x, s)) < c(x, s)).

The input to the Πp
k -PLS problem is a value x ; a solution is a value s ∈ F (x)

such that N(x, s) = s .

Let P be a Πp
k -PLS problem. Any instance P(x) must have at least

one solution. Indeed, one way to find a solution is start with s = i(x) and
iterate the function s 7→ N(x, s). The conditions (γ) and (δ) ensure that
values s remain in F (x) and that the costs c(s) are decreasing. Therefore,
a fixed point s = N(x, s) ∈ F (x) will eventually be reached.

Since F is a Πp
k -property, the computational complexity of recognizing

a valid solution s to P(x) is, in general, in the class Πp
k of the polynomial

hierarchy. We shall often wish to consider Πp
k -PLS problems with a lower

computational complexity for solutions. For this, we let 0 ≤ g ≤ k and
define a Πp

k -PLS problem with Πp
g -goal to be a Πp

k -PLS problem with an
additional Πp

g -predicate G(x, s) such that the condition (ε) holds:

(ε) ∀x∀s(G(x, s) ↔ [F (x, s) ∧ N(x, s) = s]).

For a Πp
k -PLS problem with Πp

g -goal, the property of s being a solution is
just the condition G(x, s), and thus is a Πp

g condition.
In the case of g = 0, the class Πp

g equals P . Hence, the solutions to a
Πp

k -PLS problem with Πp
0 -goal are polynomial time recognizable.

4

Formalized Πp
k -PLS problems The definitions of Πp

k -PLS problems can
be readily formalized in a weak fragment of arithmetic. In the present paper,
we use S1

2 as the weak fragment; however, the details of the constructions
make it clear that even weaker theories could be used.∗

Definition A Πp
k -PLS problem with Πp

g -goal is formalized in S1
2 provided

(a) The functions N , i , and c are Σb
1 -defined by S1

2 .

(b) The predicate F is given by a Πb
k -formula.

(c) The predicate G is given by a Πb
g -formula if g > 0, or by a ∆b

1 -formula
if g = 0.

(d) The defining conditions (α)-(ε) are provable in S1
2 .

A Πp
k -PLS problem that is formalized in S1

2 will sometimes be called a
Πb

k -PLS problem for short (with superscript “b” instead of “p”).
Note that S1

2 can formalize many Πp
k -PLS problems, but as far as is

known, it cannot prove they all have solutions. Instead, we will generally
use T k+1

2 to prove the existence of solutions to Πp
k -PLS problems.

Definition Let a Πp
k -PLS problem P be formalized in S1

2 . Then T k+1
2

proves that P is total provided that T k+1
2 proves ∀x∃s(N(x, s) = s∧F (x, s)).

From (ε), it follows that if P has a Πp
g -goal, then T k+1

2 proves P is total
if and only if T k+1

2 proves ∀x∃s(G(x, s)).

Theorem 1 Let k ≥ 1 and suppose P is a Πp
k -PLS problem which is

formalizable in S1
2 . Then T k+1

2 proves that P is total.

Proof We argue inside T k+1
2 . Suppose x is arbitrary. Since the Σb

k+1 -
minimization axioms are consequences of T k+1

2 , there is a least value c0

satisfying
∃s≤2d(|x|)(c0 = c(x, s) ∧ F (x, s)). (1)

Choosing any s0 ∈ F (x) with c0 = c(x, s0), it follows from (δ) that
N(x, s0) = s0 , and the theorem is proved. 2

∗Using S1
2 (or PV) as a base theory is a good choice in part since it corresponds

to the polynomial time complexity of the neighborhood function N , the initial point
function i , and the cost function c . However, our constructions also work in weaker
settings where N , i and c lie in some lower complexity class such as the log time
hierarchy; in this case, we could replace S1

2 by a base theory that corresponds to a
correspondingly simple computational class.

5

Theorem 2 states that the converse holds as well. Informally, if y = f(x)
is a multifunction which is Σb

g+1 -defined by T k+1
2 , then there is a Πb

k -PLS
problem with Πb

g -goal which can be used to define f . For the theorem, let
s 7→ (s)0 denote the projection function so that if s codes a pair s = 〈a, b〉 ,
then (s)0 = a .

Theorem 2 Let k ≥ 0, and 0 ≤ g ≤ k . Suppose A(x, y) is a Σb
g+1 -formula

and
T k+1

2 ` (∀x)(∃y)A(x, y).

Then there is a Πb
k -PLS problem P with Πb

g -goal G such that S1
2 proves

∀x∀s(G(x, s) → A(x, (s)0)).

Note the theorem does not imply that S1
2 can prove that the Πb

k -PLS
problem P has a solution s for all x . Rather, S1

2 proves that if there is a
solution s satisfying G(x, s), then s provides a witness for the existentially
quantified y . Of course, by Theorem 1, T k+1

2 can prove that P(x) has a
solution for all x . But this is, in general, not known for S1

2 .
The case k = g = 0 of the theorem is the same as the PLS witnessing

theorem for Σb
1 -defined functions of T 1

2 [8]. We prove Theorem 2 in Section 4.
Its proof will be based on a witnessing theorem for sequents of Σb

k+1 -formulas
that are provable in T k+1

2 .

Strict formulas and bounded arithmetic. A central fact about S1
2

is that it can Σb
1 -define exactly the polynomial time functions, and fur-

thermore, S1
2 can be conservatively extended to a theory S1

2(PV) that
includes all polynomial time functions in its language [4]. We shall work
with a fragment of S1

2(PV), denoted Ŝ1
2 in the present paper, which is

tailored for working with prenex formulas. The theory Ŝ1
2 was introduced

by Pollett [17, 18] and its language, L̂ , is obtained by extending S1
2 to

include the Σb
1 -defined function symbols for “most significant part”, MSP,

and “restricted subtraction”, .− . The theory Ŝ1
2 is strong enough to define

versions of the pairing and sequence coding functions that are defined by
terms (instead of being just Σb

1 -defined). One big advantage of working
with Ŝi

2 and T̂ i
2 is that it allows us to assume that free-cut free proofs

contain only strict Σb
i -formulas (as defined in the next paragraph), and this

simplifies the proofs of witnessing theorems by reducing the number of cases
to be considered.

A strict Σb
=k -formula is an L̂-formula of the form

(∃x1≤s1)(∀x2≤s2) · · · (Qxk≤sk)(Qy≤|t|)A(x1, x2, . . . , xk, y,~a), (2)

6

where the quantifiers alternate between existential and universal, and where
A is quantifier-free. Strict Πb

=k -formulas are defined similarly, reversing the
roles of universal and existential quantifiers. A strict Σb

k -formula is defined
to be a formula which is strict Σb

=k , or is strict Σb
=` or strict Πb

=` for some
` < k , or is quantifier-free.

The theory Ŝ1
2 is defined to have the length induction (LIND) axioms

for strict Σb
1 formulas. Ŝ1

2 is able to prove that any Σb
1 -formula is equivalent

to a strict Σb
1 -formula, and thus Ŝ1

2 contains S1
2 . Furthermore, Ŝ1

2 is
conservative over S1

2 .
The theories Ŝi

2 and T̂ i
2 are defined similarly. Both theories use the same

language L̂ and the basic (open) axioms as Ŝ1
2 . In addition, Ŝi

2 has LIND for
strict Σb

i -formulas, and T̂ i
2 has induction (IND) for the same formulas. The

two theories conservatively extend Si
2 and T i

2 , respectively, and they prove
that, for k ≤ i , any Σb

k -formula is equivalent to a strict Σb
k -formula. When

proving witnessing theorems for T k+1
2 , we will be able to assume, via free

cut elimination, that every formula in a T̂ k+1
2 -proof is a strict Σb

k+1 -formula.

Sequence coding. It is well-known that S1
2 can define Gödel sequence

coding functions based on efficient representations of sequences. If w ≥ 0
codes a sequence, we write (w)i for the i-th entry in w , starting with
i = 0. That is, w = 〈(w)0, (w)1, . . . , (w)n〉 , where the length of w , denoted
Len(w), is equal to n + 1. The binary function ∗ is used to concatenate two
sequences. We often use the letter a or b to denote a tuple, or sequence,
of values. For i ≥ 0, we write ai for the i-th element of the tuple a . The
notation 〈a〉 indicates the Gödel number of the sequence, namely the code
〈a0, a1, . . . , an〉 where a has n + 1 elements. Thus, 〈a〉 ∗ 〈b〉 indicates the
Gödel number of the sequence containing the elements of a followed by the
elements of b ; this can also be more succinctly denoted as 〈a, b〉 .

As already mentioned, in the strict variants of bounded arithmetic with
the MSP and .− functions, it is often possible to use terms to denote the
needed sequence coding functions including the binary functions (w)i and
v ∗w . For this, it is enough if the sequence has fixed length entries, possibly
padded with leading zeros [17, 18].

It is important that the Gödel numbers for sequences are efficient
encodings. In particular, in our constructions, the feasible solutions s
for Πb

k -PLS problems will be sequences. To make sequence coding simpler
and efficient, the feasible solutions for any fixed Πb

k -PLS problem P will
usually be required to be sequences of a fixed length. In addition, the entries
will be polynomially bounded by the input x to P . This will ensure that it

7

is possible to pick a polynomial d so that condition (α) is satisfied, provably
in S1

2 .

Skolemized PLS problems. We now discuss the formalization of Πp
k -

PLS problems that use Skolemized versions of the principles (α)-(ε). Since
the proof of Theorem 2 does not use Skolemized PLS problems, Skolemized
PLS problems will not be considered again until Section 5. Thus, the reader
may wish to skip the rest of the present section on first reading.

Suppose that Ŝ1
2 proves a strict formula

(∀~a)(∃x1≤s1)(∀x2≤s2) · · · (Qx`≤s`)A(x1, x2, . . . , x`,~a), (3)

where A is a quantifier-free formula and where, w.l.o.g., the terms sj do not
contain any of the variables xi . In some cases, Ŝ1

2 can prove a Skolemized
form of (3); namely, there may be L̂-terms ti(~a, x2, x4, . . . , xi−1) for i odd,
such that Ŝ1

2 proves

(∀~a)(∀x2≤s2)(∀x4≤s4) · · · (∀x`−1≤s`−1) (4)
[t1(~a) < s1 ∧ t3(~a, x2) < s3 ∧ · · · ∧ t`(~a, x2, x4, . . . , x`−1) < s` ∧
A(t1(~a), x2, t3(~a, x2), x4, t5(~a, x2, x4), . . . , t`(~a, x2, x4, . . . , x`−1),~a)],

where here the notation assumes ` is odd so that Qx` is an existential
quantifier. (For ` even, the definition is modified in the obvious fashion,
namely with the same definition, but letting A(· · ·) incorporate the last
universal quantifier.) Note that the Skolemized formula (4) logically
implies (3). The converse is, of course, not always true. However, we
prove later that, in many situations, Ŝ1

2 can prove Skolemized versions of
the conditions (α)-(ε) that define a Πb

k -PLS problem.
When Skolemizing a Πb

k -PLS problem, we will always be in the situation
that the functions N and c are defined by L̂-terms, and that the predicates
F (x, s) and G(x, s) are strict Πb

k - and strict Πb
g -formulas, respectively. To

Skolemize the formulas (α), (β) and (ε), we first put them in prenex form.
There is a unique natural way to put (α) and (β) in prenex form, namely,
pulling out the quantifiers in F one at a time. The equation (ε) needs to
be rewritten before it can be Skolemized, since the ↔ connective is neither
monotone nor antimonotone in its arguments. Thus, (ε) must be replaced
by the two formulas

(ε′) ∀x∀s(G(x, s) → [F (x, s) ∧ N(x, s) = s]).

(ε′′) ∀x∀s([F (x, s) ∧ N(x, s) = s] → G(x, s)).

8

The formulas (γ), (ε′) and (ε′′) are universal closures of boolean com-
binations of strict Σb

k - and Πb
k -formulas. These must be converted to

prenex form before they can be Skolemized. The prenex form of (γ)
is chosen conservatively, as follows. The level of an bounded quantifier
(∃x≤t), respectively (∀x≤t), is defined to equal i if the quantifier is
the outermost connective of a strict Σb

=i -subformula, respectively of a
strict Πb

=i -formula. A bounded quantifier is called essentially existential
if when prenex operations are applied, the quantifier becomes (or, remains)
existential. Otherwise, the quantifier is essentially universal. Boolean
combinations of strict formulas are converted to prenex form by using
prenex operations to move quantifiers one at a time to the front of the
formula, bringing quantifiers to the front in order of ε-level (highest level
first, of course), and for quantifiers at a given level i , bringing out the
essentially universal quantifiers before the essentially existential ones.

The prenex forms of (ε′) and (ε′′) are chosen a bit differently. For these,
we match up quantifiers level-by-level, starting with the outer quantifiers.
Specifically, let a Πb

k -PLS problem with Πb
g goal be given. A quantifier at

level i in G is defined to have ε-level equal to i + k − g . This means the
outermost quantifier in G has ε-level k . For a quantifier in F , the ε-level is
just equal to its level. Then, (ε′) and (ε′′) are converted to prenex form by
bringing out quantifiers in order of ε-level, essentially universal ones before
essentially existential ones.

As an example of prenexification, suppose F (x, s) is the formula

(∀y1≤t1)(∃y2≤t2)(∀y3≤t3) · · ·F0(~y, x, s).

Then the prenexification of (γ) is

(∀y′1≤t′1)(∃y1≤t1)(∀y2≤t2)(∃y′2≤t′2)(∀y′3≤t′3)(∃y3≤t3) · · · (5)
· · · (F0(~y, x, s) → F0(~y′, N(x, s), s)),

where the terms t′i are the same as ti but with variables yj replaced by
variables y′j .†

Section 5 will discuss how to Skolemize Πb
k -PLS problems in more detail.

Definition A Πp
k -PLS problem with Πp

g -goal is formalized in Skolem form
in Ŝ1

2 provided

(a) The functions N , i , and c are all defined by L̂-terms,
†One could also assume, without loss of generality, that the terms ti do not involve

the variables yj . In that case, ti and t′i are the same term.

9

(b) The predicates F and G are given by strict Πb
k - and strict Πb

g -
formulas, respectively,

(c) Skolemized versions of the defining conditions (α)-(δ), (ε′), and (ε′′)
are provable in Ŝ1

2 , where the Skolem functions are given by L̂-terms.

The earlier theorem applies also to Πb
k -PLS problems formalized in

Skolem form:

Theorem 3 Let k ≥ 0, and 0 ≤ g ≤ k . Suppose A is a Σb
g+1 -formula and

T k+1
2 ` (∀x)(∃y)A(x, y).

Then there is a Πb
k -PLS problem P with Πb

g -goal G which is formalized in
Skolem form in Ŝ1

2 , such that Ŝ1
2 proves that

∀x∀s(G(x, s) → A(x, (s)0)). (6)

Furthermore, there is a Skolemization of (6), with L̂-terms as Skolem
functions, which is provable in Ŝ1

2 .

Theorem 3 will be proved in Section 5.

3 Constructions of Πb
k -PLS problems

As preparation for the proofs of Theorems 2 and 3, this section introduces
several constructions for composing Πb

k -PLS problems, and defines Πb
k -PLS

problems for deciding Πp
k -properties.

We adopt the following conventions for feasible elements s ∈ F (x).
The purpose of these conventions is to aid the modular design of Πb

k -
PLS problems, especially of Πb

k -PLS problems that define functions or
multifunctions. When designing a Πb

k -PLS problem P , we shall ensure
that any s ∈ F (x) codes a sequence of length exactly ` for some fixed `
that depends on P . Furthermore, s will have length > 2 and be equal
to 〈x, y, . . .〉 , where x is the input value. Then we always have (s)0 = x
by convention, so that s specifies explicitly the input x . This allows us to
simplify the notations for the neighborhood and cost functions by defining
N(s) = N((s)0, s) and c(s) = c((s)0, s). Furthermore, if s is a solution
to P , so that N(s) = s and s ∈ F (x), then the value y = (s)1 will be the
output of P(x).

10

This last convention allows us to regard P as a multifunction x 7→ y . In
general, P defines only a multifunction rather than a function, since there
may be multiple solutions to P(x) and hence multiple possible values y =
(s)1 for solutions s . We write y = P(x) to denote that y is one of the
possible output values for P(x); in other words,

y = P(x) ⇔ ∃s(F (x, s) ∧ N(s) = s ∧ y = (s)1).

Since condition (α) implies that the set F (x) of feasible points is
polynomially bounded, and since the cost function c is polynomial time com-
putable, we can assume w.l.o.g. that every Πp

k -PLS problem has associated
polynomial bounds maxc(x) and maxout(x) such that c(x, s) < maxc(x)
and such that the output value y satisfies y < maxout(x). Both maxc(x)
and maxout(x) can be taken to be strictly increasing functions; in fact
they can be taken to be of the form 2p(|x|) for some polynomial p with
non-negative integer coefficients. Indeed, w.l.o.g., maxout(x) = 2d(|x|) ≥ x .

Polynomial time functions as Πb
k -PLS problems. Let y = f(x) be a

polynomial time function. For k ≥ 0, f can be coded by a Πb
k -PLS problem

as follows. The initial function is defined as i(x) = 〈x, f(x)〉 . F (x, s) is
defined to hold iff s = 〈x, f(x)〉 . The neighborhood functions is simply
N(x, s) = s , and the cost function is c(x, s) = 0. It is easy to check that this
defines a Πb

k -PLS problem such that the unique output possible for P(x) is
the value y = f(x).

Combining Πb
k -PLS problems. The composition of two PLS problems,

P = P2 ◦P1 , is defined so that y = P(x) iff there is a y1 so that y1 = P1(x)
and y = P2(y1). The pairing of two PLS problems P = 〈P1,P2〉 is defined
by requiring that y = P(x) holds iff y = 〈y1, y2〉 for some y1 = P1(x) and
some y2 = P2(x).

Composition and pairing, and other similar constructions, can be unified
into a single construction we call fg-combination. Let f and g be polynomial
time functions. The fg-combination of P1 and P2 is defined by

P(x) = f(〈P1(x),P2(g(x,P1(x)))〉),

where the two occurrences of P1(x) must denote the same value. Namely,
P is the multifunction defined so that y = P(x) holds iff there is some
u = P1(x) and some v = P2(g(x, u)) such that y = f(〈u, v〉). By choosing
f and g appropriately, it is easy to use fg-combination to define the

11

composition and the pairing of P1 and P2 . As another simple example
of the power of fg-combination, recall that the Cond function is defined by

Cond(x, y, z) = (1 .− x) · y + (1 .− (1 .− x)) · z,

so that Cond(x, y, z) equals y if x = 0 and equals z otherwise. Then,
P(x) = Cond(P1(x),P2(x),P3(x)) can be defined by using pairing to define
Q = 〈P2, P3〉 , and then setting P = f(〈P1, Q〉), where f is the polynomial
time function f(u) = Cond((u)0, ((u)1)0, ((u)1)1). The latter step is a use
of fg-combination with g(x, y) = x .

Suppose P1 and P2 are Πp
k -PLS problems. Their fg-combination is

formally defined as a Πp
k -PLS problem as follows. For ` = 1, 2, let P` be

defined in terms of i` , N` , c` , d` , and F` . We define the feasible set F (x)
for the fg-combination P of P1 and P2 so that

〈x, 0, 0, a,~0〉 ∈ F (x) ⇔ F1(x, 〈a〉)
〈x, 0, 1, a, b〉 ∈ F (x) ⇔ F1(x, 〈a〉) ∧ N1(〈a〉) = 〈a〉 ∧ b0 = g(x, a1) ∧ F2(〈b〉)
〈x, y, 2, a, b〉 ∈ F (x) ⇔ F1(x, 〈a〉) ∧ N1(〈a〉) = 〈a〉 ∧ b0 = g(x, a1) ∧ F2(〈b〉)

∧N2(〈b〉) = 〈b〉 ∧ y = f(〈a1, b1〉).

and so that s /∈ F (x) for all other s . The intuitive meaning of the above
definition of F (x) is that a feasible point s = 〈x, y, z, a, b〉 either has
(a) z = 0 and a is a feasible point for P1(x), or (b) z = 1 and b is a feasible
point for P2(g(x,P1(x))), or (c) z = 2 and y is the output value. In the first
case, (a), b = ~0 is used as padding so that all feasible points are sequences
of the same length.

The initial point function for P is defined by i(x) = 〈x, 0, 0〉 ∗ i1(x) ∗ 〈~0〉 .
The neighborhood function N(s) is defined in terms N1(s) and N2(s) so as
to satisfy:

N(〈x, 0, 0, a,~0〉) =

{
〈x, 0, 0〉 ∗ N1(〈a〉) ∗ 〈~0〉 if N1(〈a〉) 6= 〈a〉
〈x, 0, 1, a〉 ∗ i2(g(x, a1)) if N1(〈a〉) = 〈a〉

N(〈x, 0, 1, a, b〉) =

{
〈x, 0, 1, a〉 ∗ N2(〈b〉) if N2(〈b〉) 6= 〈b〉
〈x, f(a1, b1), 2, a, b〉 if N2(〈b〉) = 〈b〉

N(〈x, y, 2, a, b〉) = 〈x, y, 2, a, b〉.

Let g(a, b) be an L̂-term so that g dominates g in that sense that g(a, b) ≥
g(a′, b′) whenever a ≥ a′ and b ≥ b′ . The cost function for P is defined so

12

that

c(〈x, 0, 0, a,~0〉) = 1 + maxc2(g(x,maxout1(x))) + c1(〈a〉)
c(〈x, 0, 1, a, b〉) = 1 + c2(〈b〉)
c(〈x, y, 2, a, b〉) = 0.

It is straightforward to check that P is indeed a Πp
k -PLS problem with

conditions (α)-(ε) all satisfied. Furthermore, the entire construction can
be formalized in S1

2 . That is to say, if P1 and P2 are formalized Πb
k -PLS

problems, then so is P .

Pseudo-iteration of Πb
k -PLS problems. The proofs of Theorems 2

and 3 will be based on witnessing lemmas, and the crucial step for the proofs
of the witnessing lemmas uses iteration of Πb

k -PLS functions to handle the
case of an induction inference. Given a Πb

k -PLS problem P1 , it is entirely
straightforward to define a Πb

k -PLS problem P that computes a function
defined from P1 by limited iteration on notation. This, however, is not
sufficient for our purposes; instead we must define iterations of exponential
length.

The problem with defining iterations of exponential length is that feasible
points in F (x) are polynomially bounded, so no s ∈ F (x) can encode
the entire computation of all the steps of the iteration. Indeed, there is
seemingly no way to define the “true” iteration of P1 . Instead, we use a side
property H , that is preserved by iteration of P1 to indirectly describe the
result of an exponentially long iteration. We call this a “pseudo-iteration”’
since the output values may not be obtainable by a true iteration, but rather
only need to satisfy the property H . In general, for a Πp

k -PLS problem, the
side property H will be in Πp

k .
Let P1 be a Πp

k -PLS problem, H(i, x, z) be a Πp
k -predicate, and pH a

polynomial. Further suppose that

(ι0) For all x , H(0, x, x) holds.

(ι1) For all i , x , y , if H(i, x, y) holds, then |y| ≤ pH(|x| + |i|).
(ι2) For all i , x , y , if z = P1(y) and H(i, x, y), then H(i + 1, x, z).

We wish to define a Πp
k -PLS problem P so that when y = P(〈m, x〉), then

H(m, x, y) holds. This problem P will be denoted by PsIter[P1, H] . The
intent is that x is the input value on which P1 will be iterated, and m is

13

the number of iterations. The intuition is that we wish to compute values
y0, y1, . . . , ym such that y0 = x , and yi+1 = P1(yi) for all i ≥ 0; at the
end, ym is a desired value ym = P(〈m, x〉). However, (ι0)-(ι2) allow more
generality, namely any y satisfying H(m, x, y) is a valid output value for the
multifunction P(〈m, x〉). The condition (ι0) allows the iteration to start
with value x . The condition (ι1) imposes a polynomial bound on the values
obtained by iteration. The condition (ι2) ensures that all iteration values
satisfy H .

P = PsIter[P1, H] is formally defined as follows. Let P1 be defined
using F1 , i1 , N1 , and c1 . The feasible states s for P will have the format
s = 〈〈m, x〉, a0, i, a〉 to indicate that 〈a〉 codes a state for the computation
of the i-th iteration of P1 on input x . A state s = 〈〈m, x〉, y, m, a〉 will be
used for the final state, where y is the output value. The set F of feasible
points for P is defined so that s ∈ F (〈m, x〉) iff s = 〈〈m, x〉, y, i, a〉 and

i ≤ m ∧ H(i, x, y) ∧ [i < m → F1(〈a〉) ∧ y = a0]. (7)

The initial function is defined by i(〈m, x〉) = 〈〈m, x〉, x, 0〉 ∗ i1(x). The
neighborhood function N is defined so that, for s = 〈〈m, x〉, y, i, a〉 ,

N(s) =

{
〈〈m, x〉, y, i〉 ∗ N1(〈a〉) if i < m and N1(〈a〉) 6= 〈a〉
〈〈m, x〉, a1, i + 1〉 ∗ i1(a1) if i < m and N1(〈a〉) = 〈a〉

and N(s) = s in all other cases. Finally, the cost function is defined by
defining c(〈〈m, x〉, y, i, a〉) to equal c1(〈a〉) + (m − i) ∗ maxc1(2pH(|m|+|x|))
when i < m , and letting c(s) = 0 in all other cases.

It is straightforward to check that the above definition of P correctly
defines the pseudo-iteration of P1 . Furthermore, if P1 is a Πb

k -PLS problem
formalized in S1

2 and if (ι0)-(ι2) are provable in S1
2 , then P is a Πb

k -PLS
problem formalizable in S1

2 .

Deciding Πp
k - and Σp

k -properties. We next describe how a Πb
k -PLS

problem can decide the validity of a Σb
k -formula and, when valid, provide a

witness value. Let A(~x) be a strict Σb
k -formula A(~x) = (∃y≤t(~x))B(y, ~x).

We shall define a Πb
k -PLS problem PA such that PA(〈~x〉) equals 〈0, t(~x)+1〉

if A is false, and equals 〈1, i〉 if A(~x) is true and i is the least value such
that B(i, ~x) holds.

Similarly, for a strict Πb
k -formula A′(~x) = (∀y≤t′(~x))B′(y, ~x), the Πb

k -
PLS problem PA′ will be defined so that PA′(〈~x〉) equals 〈1, t′(~x) + 1〉 if
A′(~x) is true, and equals 〈0, i〉 if A′(~x) is false with i the least value such
that B′(i, ~x) is false.

14

The definitions proceed by induction on k ≥ 0. For the base case, k = 0,
the formula A is sharply bounded, and PA can be evaluated in polynomial
time.

For k ≥ 1, let A(~x) be the Σb
k -formula above. The induction hypothesis

is that we have already defined PB , a Πb
k−1 -PLS problem such that

PB(〈y, ~x〉) equals 〈i, j〉 with i equal to 1 or 0 depending on whether B(y, ~x)
is true or false, respectively. We define a Πb

k -PLS problem Q so that

Q(〈〈~x〉, 〈0, i〉〉) =

{
〈〈~x〉, 〈0, i + 1〉〉 if (PB(〈i, ~x〉))0 = 0

〈〈~x〉, 〈1, i〉〉 otherwise
(8)

Q(〈〈~x〉, 〈1, i〉〉) = 〈〈~x〉, 〈1, i〉〉. (9)

The intuition is that, by (pseudo)iterating Q for (t + 1) times, we obtain
the value 〈〈~x〉, 〈1, y〉〉 where y is the least value ≤ t(x) such that B(y, ~x)
holds, or if no such y exists, we obtain 〈〈~x〉, 〈0, t(~x) + 1〉〉 . The initial value
for the pseudo-iteration of Q is 〈〈~x〉, 〈0, 0〉〉 . Accordingly, we define R(〈~x〉)
using the (t + 1)-fold pseudo-iteration of Q and composition, as

R(〈~x〉) = PsIter[Q, H](〈t(~x) + 1, 〈〈~x〉, 〈0, 0〉〉〉).

Then PA is defined using composition by setting PA(〈~x〉) = (R(〈~x〉))1 .
The side condition H for the pseudo-iteration of Q is defined so that

H(j, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈1, i〉〉) ⇔ i < j ∧ B(i, ~x) ∧ (∀i′<i)(¬B(i′, ~x))

H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉) ⇔ (∀i′<i)(¬B(i′, ~x)).

And, H(i, u, v) is false for any other inputs. Note that H ∈ Πb
k .

It is easy to check that this definition of PA correctly decides the truth
of A(~x) and correctly finds the minimal witness when A(~x) is true. It is also
easy to verify that (ι0)-(ι2) are provable in S1

2 . Thus PA is formalizable
in S1

2 .
The definition of PA′ for a strict Πb

k -formula A′ is dual.

4 The Witnessing Proof

This section is devoted to the proof of Theorem 2. By Parikh’s theorem [15],
the value of y in the statement of Theorem 2 can be bounded by a term t(x).
In addition, by the equivalence of T k+1

2 and T̂ k+1
2 , it will suffice to prove

the theorem for T̂ k+1
2 . Thus, it will suffice to prove the following theorem:

15

Theorem 4 Let k ≥ 0, and 0 ≤ g ≤ k . Suppose A(x, y) is a strict
Πb

g -formula and
T̂ k+1

2 ` (∀x)(∃y≤t)A(x, y).

Then there is a Πb
k -PLS problem P with Πb

g -goal G that is formalized in S1
2 ,

such that S1
2 proves

∀~x∀s(G(x, s) → A(x, (s)0)).

Remark: Since the formula A is now assumed to be in Πb
g , instead

of only in Σb
g+1 , Theorem 4 also holds if we replace the conclusion with

∀~x∀s(G(x, s) → A(x, s)), namely with (s)0 replaced by s .
The rest of the section gives the proof of Theorem 4 and thereby of

Theorem 2. Fix k ≥ 0. The proof will be based on a witnessing lemma for
sequents Γ→∆ of strict Σb

k+1 -formulas.
Suppose C is a strict Σb

k+1 -formula which is not in Πb
k ∪ Σb

k , so that
C(~c) = (∃z≤r(~c))D(z,~c) where D ∈ Πb

=k . Then we define WitC(u,~c) to be
the Πb

k -formula
u ≤ r(~c) ∧ D(u,~c).

On the other hand, if C ∈ Πb
k ∪ Σb

k , we define WitC(u,~c) to be just the
formula C . In this case, C is said to be self-witnessing.

If Γ is the antecedent A0, . . . , Am−1 , then WitΓ(u,~c) is defined to be
the Πb

k -formula which asserts that u is the code of a sequence of length m
such that, for 0 ≤ i < m , (u)i witnesses Ai . Suppose the succedent ∆ is
B0, . . . , Bp−1 . The witnessing predicate Wit∆(u,~c) will be defined to state
that u provides a value for i and a witness for the formula Bi(~c); namely,
that u is a sequence of length 2, u = 〈i, v〉 , and that WitBi(v,~c) holds.
More specifically, Wit∆ is the Πb

k -formula

p−1∨
i=0

((u)0 = i ∧ WitBi((u)1,~c)).

Lemma 5 Let k ≥ 0. Suppose T̂ k+1
2 proves a sequent Γ→∆ containing

only strict Σb
k+1 -formulas, with ~c as free variables. Then there is a Πb

k -PLS
problem P which is formalized in S1

2 such that S1
2 proves

WitΓ(u,~c) ∧ v = P(〈u,~c〉) → Wit∆(v,~c).

Proof Lemma 5 is proved by induction on the number of lines in a free-cut
free sequent calculus T̂ k+1

2 -proof P of Γ→∆. We take the Gentzen sequent

16

calculus to be formalized as in [7]. Note that every formula appearing in P is
a strict Σb

k+1 -formula. The base case is the case where P consists of a single
initial inference, which must either be a BASIC axiom, an equality axiom, or
a logical initial sequent A → A with A atomic. Any of these initial sequents
contains only atomic formulas, for which witnesses are trivial. In addition,
any initial sequent for T̂ k+1

2 is also an initial sequent for Ŝ1
2 . Thus, the

lemma is easily seen to hold for any initial sequent.
The induction step of the proof of Lemma 5 splits into cases based on

the last inference of P . To consider a simple case first, suppose that the
final inference of P is an ∨:right inference:

Γ→ ∆, B, C

Γ→ ∆, B ∨ C

By the induction hypothesis there is a Πb
k -PLS problem Q which witnesses

the upper sequent, so that S1
2 proves

WitΓ(u,~c) ∧ v = Q(〈u,~c〉) → Wit∆,B,C(v,~c).

By the free-cut free property, the formula B ∨ C is quantifier-free (and
hence polynomial time). A witnessing function for the lower sequent can
be informally defined as follows: the function is computed by first checking
whether B ∨ C holds, and then if not, invoking Q to find a witness for a
formula in ∆. More formally, a Πb

k -PLS problem P witnessing the lower
sequent can be defined in terms of Q by

P(〈u,~c〉) =
{ 〈p, 0〉 if B(~c) ∨ C(~c)

Q(〈u,~c〉) otherwise

where p is the number of formulas in ∆ and thus P(〈u,~c〉) = 〈p, 0〉 serves
to witness the formula B ∨ C when it is true.

For another example of a propositional inference, suppose the final
inference of P is a ¬:left inference:

Γ→ ∆, A

¬A, Γ→ ∆

Note A must be quantifier-free and thus self-witnessing. Let Q be the
Πb

k -PLS problem given by the induction hypothesis which witnesses the
upper sequent. The Πb

k -PLS problem P can be defined as

P(〈u,~c〉) = Q(〈cdr(u),~c〉),

17

where cdr(u) = 〈u1, . . . um−1〉 if u = 〈u0, u1, . . . , um−1〉 , i.e., it equals the
rest of u after the first entry. It is easy to check that S1

2 proves that if u
witnesses the antecedent ¬A, Γ and if v = P(〈u,~c〉), then v witnesses the
succedent ∆.

The other cases where the last inference of P is a propositional inference
are similar and we omit them here. Likewise, the weak structural inferences
(exchange and contraction) are also quite easy; we do only the case of
Contraction:right. In this case, the final inference of P is

Γ→ ∆1, A, A,∆2

Γ→ ∆1, A,∆2

Let p1 be the number of formulas in ∆1 , and let Q be the Πb
k -PLS problem

for the upper sequent given by the induction hypothesis. Define P to witness
the lower sequent by letting f be the function

f(〈i, v〉) =
{ 〈i, v〉 if i ≤ p1

〈i − 1, v〉 otherwise

and defining P by composition as P(〈u,~c〉) = (f ◦ Q)(〈u,~c〉).
Next we consider the quantifier inferences. Suppose the final inference

of P is an ∃≤:right inference

Γ→ ∆, A(s)
s ≤ t, Γ→ ∆, (∃x≤t)A(x)

Let Q be the Πb
k -PLS problem for the upper sequent as given by the

induction hypothesis; we need to define P for the lower sequent. If A(x)
is in Πb

k−1 , then witnesses for (∃x≤t)A(x) are trivial, and we can use
composition to define P by P(〈u,~c〉) = Q(〈cdr(u),~c〉). Here the function
cdr is used to remove the unneeded witness for s ≤ t . For the case where
A is not in Πb

k−1 , the formula (∃x≤t)A(x), if it needs to be witnessed,
should be witnessed by the value of s . Without loss of generality, s involves
only the free variables ~c . Define

f(~c, 〈i, v〉) =
{ 〈i, v〉 if i < p

〈p, s(~c)〉 otherwise

where p is the number of formulas in ∆. Then set P(〈u,~c〉) =
f(~c,Q(〈cdr(u),~c〉)).

Next, suppose the last inference of P is a ∀≤:left inference

18

A(s), Γ→ ∆
s ≤ t, (∀x≤t)A(x), Γ→ ∆

Since the proof is free-cut free, the principal formula (∀x≤t)A(x) must be in
Πb

k and thus is self-witnessing. Let Q be given by the induction hypothesis
as the Πb

k -PLS problem that witnesses the upper sequent. Then define
P(〈u,~c〉) = Q(〈cdr(u),~c〉). It is easy to see that P satisfies the desired
properties.

Now suppose the final inference of P is a ∀≤:right inference

b ≤ t, Γ→ ∆, A(b)
Γ→ ∆, (∀x≤t)A(x)

where b is an eigenvariable and appears only as indicated. The induction
hypothesis gives a Πb

k -PLS problem Q(u, b,~c) witnessing the upper sequent.
We need to define P(u,~c) witnessing the lower sequent. Of course, P will
invoke Q , but for this it needs a value for b ≤ t that makes A(b) false, if any
such b exists. Let (∀x≤t)A be in Πb

=` for some ` ≤ k . By the construction
in Section 3, there is a Πb

` -PLS problem P∀A(〈~c〉) which either outputs 〈0, b〉
for the least value b ≤ t such that ¬A(b) or, if there is no such b , outputs the
value 〈1, t + 1〉 . The Πb

k -PLS problem P that witnesses the lower sequent
of the ∀≤ :right inference can now be defined by

P(〈u,~c〉) =

{
〈p, 0〉 if P∀A(〈c〉) = 〈1, t + 1〉
Q(〈〈0〉 ∗ u, (P∀A(〈~c〉))1,~c〉) otherwise

where ∆ contains p formulas.
Next consider the case where P ends with an ∃≤:left inference

b ≤ t, A(b), Γ→ ∆
(∃x≤t)A(x), Γ→ ∆

with b the eigenvariable. If A ∈ Πb
k−1 then this case is handled very similarly

to the case of a ∀≤ :right inference, and we omit the argument. So, suppose
A ∈ Πb

k \ Πb
k−1 . A witness v for the formula (∃x≤t)A(x) is thus a value for

x which is ≤ t and which makes A(x) true. Let Q be the Πb
k -PLS problem

that witnesses the upper sequent. Then a Πb
k -PLS problem P for the lower

sequent can be defined by

P(〈u,~c〉) = Q(〈〈0, 0〉 ∗ cdr(u), (u)0,~c〉).

19

Here the value (u)0 extracts the witness for the principal formula (∃x≤t)A
from u , and the values “0, 0” give the trivial witnesses for the first two
formulas of the antecedent in the upper sequent.

Now suppose the final inference of P is a cut :

Γ→ ∆, A A, Γ→ ∆
Γ→ ∆

Let Q1 and Q2 be the two Πb
k -PLS problems given by the induction

hypothesis for the upper left and upper right sequents, respectively. The
intuitive idea behind defining P is that it first invokes Q1 ; that produces
either a witness for a formula in ∆ or a witness for A . In the latter case, the
witness for A is used to invoke Q2 and this then produces a witness for ∆.
More formally, let Q′

2 be defined by

Q′
2(〈u,~c, v〉) =

{
v if (v)0 < p

Q2(〈〈(v)1〉 ∗ u,~c〉) otherwise

where p is the number of formulas in ∆. Then define P as

P(〈u,~c〉) = Q′
2(〈u,~c,Q1(〈u,~c〉)〉).

To understand the above definitions, note that in the definition of Q′
2 , the

value v is intended to equal the value output by Q1 , and thus v will be
a witness for the antecedent ∆, A . The property (v)0 < p means that
v witnesses the truth of one of the formulas in ∆, and (v)0 = p implies that
v witnesses the truth of A . In the latter case, 〈(v)1〉 ∗ u then witnesses the
antecedent A, Γ.

Finally consider the case where the final inference of P is an induction
inference

A(b), Γ→ ∆, A(b + 1)
A(0), Γ→ ∆, A(t)

The induction hypothesis gives a Πb
k -PLS problem Q(〈u, b,~c〉) which wit-

nesses the upper sequent. We will define P to witness the lower sequent by
using pseudo-iteration on a variant P1 of Q . For an input value 〈u,~c〉 to P
where WitA(0),Γ(u,~c), the pseudo-iteration will produce intermediate values
〈v, i,~c, w〉 which satisfy the property H defined as follows, where the intent
is that v = cdr(u) and z = 〈p, (u)0〉 :
H(j, 〈v, 0,~c, z〉, 〈v, i,~c, w〉)
⇔ (WitΓ(v,~c) ∧ Wit∆,A(0)(z,~c) → WitΓ(v,~c) ∧ Wit∆,A(b)(w, i,~c)) ∧ i = j.

20

The condition Wit∆,A(b)(w, i,~c) means that either (w)0 < p ∧ Wit∆(w,~c)
or (w)0 = p ∧ WitA(b)((w)1, i,~c), where p is the number of formulas in ∆
and where i gives the value for the free variable b . The fact that WitΓ(v,~c)
appears also on the righthand side of the implication H is unimportant
for now, but will be needed in Section 5.3 when we prove Lemma 9, the
Skolemized version of Lemma 5.

To initialize the pseudo-iteration, define f(〈u,~c〉) = 〈cdr(u), 0,~c, 〈p, (u)0〉〉 .
Note that WitA(b),Γ(u, 0,~c) implies that (u)0 witnesses A(0), and hence that
Wit∆,A(b)(〈p, (u)0〉, 0,~c〉) holds and further that H(0, f(〈u,~c〉), f(〈u,~c〉)) is
true. The function P1 to be (pseudo)iterated is defined so that

P1(〈v, i,~c, w〉) =

{
〈v, i + 1,~c, w〉 if (w)0 < p

〈v, i + 1,~c,Q(〈〈(w)1〉 ∗ v, i,~c〉)〉 otherwise.

Finally, we define P by

P(〈u,~c〉) = (PsIter[P1, H](〈t(~c), f(〈u,~c〉)〉))`+2,

where ` is the number of variables in ~c . Note PsIter[P1, H](〈t(~c), f(〈u,~c〉)〉)
outputs a tuple 〈v, t,~c, w〉 , and that the function (· · ·)`+2 extracts the
value w , which witnesses the antecedent ∆, A(t). It is straightforward
to check that S1

2 proves the requisite conditions (ι0)-(ι2) and proves that
P serves as a witness function for the lower sequent of the induction inference.

That completes the proof of Lemma 5. 2

We can now finish the proof of Theorem 4, and thus Theorem 2. As first
step, convert the formula A(x, y) into an equivalent (strict) formula A∗(x, y)
so that A∗(x, y) is in Πb

=k ; to do this, simply add vacuous quantifiers at the
end of the bounded quantifiers of A . If the hypotheses of Theorem 4 hold,
then T̂ k+1

2 proves the sequent

→ (∃y≤t(x))A∗(x, y).

The antecedent of this sequent is empty and this is trivially witnessed by
the empty sequence 〈〉 . Thus, by Lemma 5, there is a Πb

k -PLS problem Q
such that S1

2 proves

v = Q(〈〈〉, x〉) → Wit(∃y≤t)A∗(v, x). (10)

Here the condition Wit(∃y≤t)A
∗(v, x) means that v = 〈0, v1〉 for a value

v1 ≤ t such that A(x, v1) holds.

21

Let F , N , c , i be the components of the problem Q . By our conventions,
the feasible points in F (x) are all Gödel numbers of sequences of length at
least three. We define a Πb

k -PLS problem Q′ which works by modifying the
results of Q slightly. Namely, define the set of feasible points F ′(〈〈〉, x〉)
for Q′(〈〈〉, x〉) by

F ′(〈〈〉, x〉, s) ⇔ F (〈〈〉, x〉, s) ∨ (Len(s) = 1 ∧ (s)0 ≤ t(x) ∧ A∗(x, (s)0)).

The neighborhood function N ′ for Q′ is defined so that, for any s = 〈z, y, a〉 ,
N ′(s) is defined as

N ′(〈z, y, a〉) =

{
N(〈z, y, a〉) if N(〈z, y, a〉) 6= 〈z, y, a〉
〈(y)1〉 otherwise.

and setting N ′(s) = s for any other s , including any s encoding a sequence
of length one. That is to say, N ′ acts like N , except that it maps any solution
of Q to a sequence of length one containing the witness for A produced
by the output of Q . Similarly, the cost function for Q′ is defined by
letting c′(s) = 0 for any s coding a sequence of length one, and letting
c′(s) = c(s) + 1 for all other s . The initial function i′ for Q′ is defined to
equal the initial function of Q , i′(z) = i(z).

Finally, to complete the proof of Theorem 4, the Πb
k -PLS problem P

is defined by letting P(x) = Q′(〈〈〉, x〉) using essentially the constructions
for composing PLS problems described in Section 3. The Πb

g -goal for P is
defined to be

G(x, s) ⇔ Len(s) = 1 ∧ (s)0 ≤ t(x) ∧ A(x, (s)0). (11)

It is easy to verify that P satisfies the desired properties for Theorem 4,
including that S1

2 can prove properties (α)-(ε).
Q.E.D. Theorems 4 and 2.

5 The Skolemized Witnessing Theorem

This section sketches the proof Theorem 3. The proof is similar in spirit to
the proof of Theorem 2; however, Lemma 5 must be modified to state that
its conclusion is Skolemizable in S1

2 rather than just provable in S1
2 . The

proof of Theorem 3 has three parts. First, more care must be taken with the
definitions of the Πb

k -PLS problems so that the functions i , N , and c are
given by L̂-terms and that the conditions (α)-(γ) can be Skolemized with
L̂-terms. Second, we must establish that the Πb

k -PLS problems PA that

22

decide the validity of A can be used in a way that allows, in effect, resources
to be “doubled”. What this means is that formulas such as A → A ∧ A can
be Skolemized with L̂-terms — in the presence of the Πb

k -PLS problem P∗
A .

Third, Lemma 9 is proved by induction on the number of lines in a free-cut
free proof.

For the rest of the paper, when we say a formula A is “Skolemized” or
“Skolemizable”, we mean there is a Skolemization ASK of the prenexification
of A , with L̂-terms as Skolem functions, so that Ŝ1

2 proves ASK .

5.1 Skolemizing constructions of PLS problems.

This section proves that the constructions of Πb
k -PLS problems in Section 3

preserve the property that the conditions (α), (β) and (γ) can be Skolem-
ized.‡ As a first step, we observe that it is essentially trivial to Skolemize
the condition (α). Namely, suppose that P is a Πb

k -PLS problem with
components F, d, N, i, c, G , and then define F ′ , as a replacement for F , by

F ′(x, s) ⇔ |s| ≤ d(|x|) ∧ F (x, s).

By the provability of (α), S1
2 proves that F ′(x, s) is equivalent F (x, s).

Replacing F (x, s) with F ′(x, s) leaves P unchanged (provably in S1
2), and

the condition (α) becomes

∀x∀s(F ′(x, s) → |s| ≤ d(|x|)).

Since the definition of F ′ includes the condition |s| ≤ d(|x|) explicitly, this
formula can be Skolemized by simply replacing all the universal quantified
variables in F ′ with the constant 0.

We consider the constructions in Section 3 one at a time. First, consider
the encoding of a polynomial time function f as a PLS problem. Under
the further assumption that f is expressed by a L̂-term, it is clear that
the functions i , N , c are all expressible by L̂-terms. The feasible set is
definable by a term, and the conditions (β) and (γ) contain no quantifiers
to Skolemize.

Second, consider the fg-combination where now the functions f and g
are both required to be defined by L̂ terms. The functions i , N , and c for
the fg-combination P of P1 and P2 are easily expressed as L̂-terms using
the L̂-terms for functions operating on sequence coding functions and for

‡We do not need to worry about Skolemizing the conditions(ε′) and (ε′′) since none of
the constructions in Section 3 have goal predicates. Skolemization of these two conditions
will be handled as a special case when we complete the proof of Theorems 3 and 8.

23

the Cond function along with the L̂-terms for the functions i` , N` , and c`

(` = 1, 2). The Skolem functions for condition (β) for P1 can also serve as
the Skolem functions for (β) for P . Furthermore, it is straightforward to
check that terms for the Skolem functions for the condition (γ) for P can
readily be defined from the Skolem functions for the conditions (β) and (γ)
for P1 and P2 using L̂-terms for sequence coding and definitions by cases.

Third, suppose P = PsIter[P1, H] and that P1 is formalized in Skolem
form. In order to prove P can be formalized in Skolem form, we must make
the extra assumption that (ι0)-(ι2) can be Skolemized. It can be assumed
without loss of generality that (ι1) can be Skolemized, since otherwise we
can replace H with H ′ defined by

H ′(i, x, y) ⇔ H(i, x, y) ∧ |y| ≤ pH(|x| + |i|).
However, we must explicitly assume that

(ι0) H(0, x, x), and

(ι2) F1(〈a〉) ∧ N1(〈a〉) = 〈a〉 ∧ H(i, x, a0) → H(i + 1, x, a1).

can be Skolemized.
Recall that the set of feasible points F for P is defined by (7).

The condition (β) can be Skolemized using the L̂-terms that Skolemize
condition (β) for F1 , and the L̂-terms that Skolemize condition (ι0). We
still need to show that (γ) can be Skolemized with L̂-terms for this definition
of F . Recall the two cases for the definition of the neighborhood function
for P in Section 3. In the first case, i < m and N1(〈a〉) 6= 〈a〉 . In this case,
the formula (γ) becomes equivalent to

F1(〈a〉) ∧ H(i, x, a0) → F1(N1(〈a〉)) ∧ H(i, x, a0),

since (N1(〈a〉))0 = a0 . The Skolemization of this formula is easy from
the fact that, since P1 is assumed to be formalized in Skolem form, the
formula F1(〈a〉) → F1(N1(〈a〉)) is Skolemized. In the second case, i < m
and N1(〈a〉) = 〈a〉 . Then (γ) becomes equivalent to

F1(〈a〉) ∧ H(i, x, a0) → F1(i1(a1)) ∧ H(i + 1, x, a1), (12)

where we have used the fact that (i1(a1))0 = a1 . The formula (12) is
Skolemizable, since both equation (ι2) and the condition (β) for F1 are
Skolemizable.

Fourth, consider the case where PA is chosen to decide the truth of a Σb
k -

or Πb
k -formula A . Since we allow only L̂-terms to serve as Skolem functions,

24

it is necessary to slightly modify the construction in Section 3 by having the
inductive definition of the PA problems start with A quantifier-free (instead
of starting with A sharply bounded). This modification allows the Πb

0 -PLS
problem PA(~x) that equals 〈1, 0〉 or 〈0, 0〉 depending on whether A(~x) is
true or false to be defined by an L̂-term.

With this modification, the rest of the construction in Section 3 goes
through without any changes. There is one extra level of (pseudo)iteration
but no increase in the complexity of the definitions of the feasible sets.

To prove that the problems PA can be Skolemized, we argue by
induction on k . In the induction step, where A is the strict Σb

k -formula
(∃y≤t(~x))B(y, ~x), PA is defined in Section 3 from PB using pseudo-
iteration. The induction hypothesis is that PB is defined in Skolem form.
Let Q and H be as defined at the end of Section 3. The formula (ι0)
for PsIter[Q, H] is trivially Skolemizable. Thus, it will suffice to show that
the formula (ι2) for PsIter[Q, H] can be Skolemized. In view of the three
cases in the definition of Q in equations (8) and (9), this means we must
show that the following three formulas are Skolemizable:

PB(〈i, ~x〉) = 〈1, t(~x) + 1〉 ∧ H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉) (13)
→ H(i + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈1, i〉〉)

and

PB(〈i, ~x〉) = 〈0, j〉 ∧ H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉) (14)
→ H(i + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i + 1〉〉)

and

H(j, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈1, i〉〉) → H(j + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈1, i〉〉).
It is clear from the definition of H that the third formula is trivially
Skolemizable; so we need to show (13) and (14) are Skolemizable. Here the
formula PB(〈i, ~x〉) = 〈1, t(~x) + 1〉 represents the condition that, for some a ,

FB(〈a〉) ∧ NB(〈a〉) = 〈a〉 ∧ a0 = 〈i, ~x〉 ∧ a1 = 〈1, t(~x) + 1〉 (15)

where FB and NB are the feasible set and the neighborhood function for PB .
The formula PB(〈i, ~x〉) = 〈0, j〉 represents a similar formula.

Suppose B is atomic. In this case, unwinding the definitions of
FB and NB in (15) gives that (15) is equivalent to B(i, ~x). Similarly,
PB(〈i, ~x〉) = 〈0, j〉 is equivalent to ¬B(i, ~x). Equations (13) and (14) become

B(i, ~x) ∧ H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉) → H(i + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈1, i〉〉)

25

and

¬B(i, ~x) ∧ H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉)
→ H(i + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i + 1〉〉).

Referring back to the definition of H at the end of Section 3, both of these
are easily Skolemizable.

Now, suppose B(y, ~x) is non-atomic, and is thus of the form
(∀z≤t2(y, ~x))C(z, y, ~x). The condition PB(〈i, ~x〉) = 〈1, t2(i, ~x) + 1〉 is
again equivalent to B(i, ~x), so (13) is again Skolemizable. However,
PB(〈i, ~x〉) = 〈0, j〉 is now equivalent to

j ≤ t2(i, ~x) ∧ ¬C(j, i, ~x) ∧ (∀z<j)C(z, i, ~x).

Equation (14) becomes

j ≤ t2(i, ~x) ∧ ¬C(j, i, ~x) ∧ (∀z<j)C(z, i, ~x) ∧ H(i, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i〉〉)
→ H(i + 1, 〈〈~x〉, 〈0, 0〉〉, 〈〈~x〉, 〈0, i + 1〉〉).

From the definition of H , this is Skolemizable iff the following implication
is:

j ≤ t2(i, ~x) ∧ ¬C(j, i, ~x) ∧ (∀z<j)C(z, i, ~x)
∧(∀y<i)(∃z≤t2(y, ~x))¬C(z, y, ~x)

→ (∀y≤i)(∃z≤t2(y, ~x))¬C(z, y, ~x).

And, it is straightforward to see that this is Skolemizable.
A dual argument shows that PA′ can be Skolemized when A′ is of the

form (∀y≤t′)B′(y, ~x).

5.2 Witness doubling

Section 5.3 will prove that the conclusion of Lemma 5 can be strengthened
to conclude that

WitΓ(u,~c) ∧ v = P(〈u,~c〉) → Wit∆(v,~c)

can be Skolemized. More precisely, this means that Ŝ1
2 can prove the

Skolemization of

WitΓ(u,~c) ∧ F (〈u,~c〉, s) ∧ N(s) = s → Wit∆((s)1,~c). (16)

for some set of L̂-terms as Skolem functions.

26

As a special case of this, consider the tautology A → (A∧A). This is not,
in general, Skolemizable, unless P = NP . However, by the Skolemizability
of (16), if A(~c) is a strict Πb

k -formula, and taking Γ to be A and ∆ to
consist of a single formula equivalent to A ∧ A , it should be possible to find
an PLS problem P so that v = P(~c) ∧ A → A ∧ A is Skolemizable. In fact,
as the next theorem states, P = PA suffices.

Theorem 6 Let A(~x) be a strict Πb
k - or Σb

k -formula. Then Ŝ1
2 can prove

Skolemized versions of

v = PA(〈~x〉) ∧ A → A ∧ A

and
v = PA(〈~x〉) ∧ (A ∨ A) → A

with L̂-terms as Skolem functions.

Proof The theorem is trivial if A is quantifier-free, since there are no
quantifiers to be Skolemized. For quantified formulas, the proof is by
induction on k ≥ 0, where the case k = 0 corresponds to A having a single,
sharply bounded quantifier. The base case is where A is quantifier-free, and
it is convenient to view this as the k = −1 case.

The formula A → (A ∧ A) is equivalent to (¬A ∨ ¬A) → ¬A , and the
former can be Skolemized if and only if the latter can. This duality means
that it will suffice to prove the induction step under the assumption that the
outermost quantifier of A is existential. Thus, we henceforth assume that
A(~x) is equal to (∃y≤t(~x))B(y, ~x).

Referring back to the definition of PA in terms of H , Q , and R , we
need to prove that

H(t(~x) + 1, 〈〈~x〉, 〈0, 0〉, 〈〈~x〉, v〉) ∧ A → A ∧ A (17)

and
H(t(~x) + 1, 〈〈~x〉, 〈0, 0〉, 〈〈~x〉, v〉) ∧ (A ∨ A) → A (18)

are Skolemizable. The condition H(t(~x)+1, 〈〈~x〉, 〈0, 0〉, 〈〈~x〉, v〉) holds if and
only if v = 〈j, i〉 for some j, i , with j ∈ {0, 1} and

[j = 0 ∧ i = t(~x) + 1 ∧ (∀y≤t(~x))(¬B(y, ~x))]∨
[j = 1 ∧ i ≤ t(~x) ∧ B(i, ~x) ∧ (∀i′<i)(¬B(i′, ~x))].

The definitions of the Skolem functions for (17) and (18) split into two cases
depending on the value of j . For j = 0, we need to show that the formulas

(∀y≤t)(¬B(y, ~x)) ∧ A → A ∧ A

27

and
(∀y≤t)(¬B(y, ~x)) ∧ (A ∨ A) → A

are Skolemizable. These are readily Skolemizable with identity functions
by noting that (∀y≤t)(¬B(y, ~x)) ∧ A →⊥ is Skolemizable with identity
functions, since A is (∃y≤t)B(y, ~x). For j = 1, it suffices to show that

i ≤ t(~x) ∧ B(i, ~x) ∧ A → A ∧ A

and
i ≤ t(~x) ∧ B(i, ~x) ∧ (A ∨ A) → A

are both Skolemizable. Both are readily seen to be Skolemizable.
Q.E.D. Theorem 6 2

5.3 Skolemized witnessing of free-cut free proofs

The proof of Theorem 3 is based on Theorem 8 and Lemma 9 below.
The latter strengthens Lemma 5 by showing that the conclusion can be
Skolemized in Ŝ1

2 with L̂-terms. First, we state a well-known lemma which
states that cut inferences preserve Skolemizability.

Lemma 7 Let k ≥ 0. Suppose that the formulas

A → B ∨ C and C ∧ D → E

are provable in Ŝ1
2 in Skolemized form with L̂-terms as Skolem functions.

Then
A ∧ D → B ∨ E

is also provable in Ŝ1
2 in Skolemized form with L̂-terms as Skolem functions.

Proof Without loss of generality, the formulas A, . . . , E are prenex
formulas, and no variable is quantified twice in the formulas A, . . . , E . Let
A0, . . . , E0 be the maximal quantifier-free subformulas of A, . . . , E . The
Skolemization hypothesis implies that there are substitutions σ1 and σ2

such that (i) the domain of σ1 , respectively σ2 , is the set of essentially
existentially quantified variables in A → B ∨ C , respectively C ∧ D → E ;
(ii) for each essentially existential quantified variable x in the formula
A → B ∨ C (resp., C ∧ D → E), the term xσ1 (resp., xσ2) involves only
universally quantified variables from the formula at the same or higher level;
and (iii) the formulas

(A0 → B0 ∨ C0)σ1 and (C0 ∧ D0 → E0)σ2

28

are theorems of Ŝ1
2 . Since no variable is quantified twice, σ1 and σ2 have

disjoint domains (by the usual convention, a substitution acts as the identity
function on objects outside its domain). Let C be ∀x1∃x2∀x3 · · ·Qx`C0

where the notation is suppressing the bounds on the quantifiers. Define the
substitutions πi so that πi has domain {xi} with πi(xi) = xiσ1 for even
values of i , and πi(xi) = xiσ2 for odd values of i . Then set

ρ = (σ1 ∪ σ2)π`π`−1 · · ·π3π2π1.

The substitution ρ is an instance of σ1 and σ2 so

(A0 → B0 ∨ C0)ρ and (C0 ∧ D0 → E0)ρ

and thus (A0 ∧ D0 → B0 ∨ E0)ρ are all theorems of Ŝ1
2 . Furthermore, it is

clear that ρ respects the levels of variables in that if x is a essentially
existential variable at level i , then ρ(x) is an L̂-term involving only
essentially universal variables at levels ≥ i . Therefore, ρ provides the
desired Skolemization of A ∧ D → B ∨ E . 2

Note that the proof of Lemma 7 shows how to define the Skolem functions
for A∧D → B∨E explicitly from the Skolem functions for A → B∨C and
C ∧ D → E .

Theorem 8 Let k ≥ 0, and 0 ≤ g ≤ k . Suppose A(x, y) is a strict
Πb

g -formula and
T̂ k+1

2 ` (∀x)(∃y≤t)A(x, y).

Then there is a Πb
k -PLS problem P with Πb

g -goal G that is formalized in
Skolem form in Ŝ1

2 , such that Ŝ1
2 proves

∀~x∀s(G(x, s) → A(x, (s)0)).

Furthermore, Ŝ1
2 proves a Skolemized form of this formula with L̂-terms as

Skolem functions.

The proof of Theorem 8 will be based on the next lemma.

Lemma 9 Let k ≥ 0. Suppose T̂ k+1
2 proves a sequent Γ→∆ containing

only strict Σb
k+1 -formulas, with ~c as free variables. Then there is a Πb

k -PLS
problem P which is formalized in Ŝ1

2 in Skolem form such that S1
2 proves

WitΓ(u,~c) ∧ F (〈u,~c〉, s) ∧ N(s) = s → Wit∆((s)1,~c).

where F and N define the feasible points and the neighborhood function
for P . Furthermore, Ŝ1

2 can prove a Skolemized version of this formula, with
L̂-terms as Skolem functions.

29

Proof (of Lemma 9.) The proof of Lemma 9 proceeds by induction on
the number of steps in a free-cut free T̂ k+1

2 -proof P . The proof splits into
cases based on the final inference in the proof. Generally, the arguments are
similar to those in the proof of Lemma 5, but now care must be taken to
show the Skolemization properties hold. We discuss only the harder cases,
and leave the easier cases for the reader.

The cases where the T̂ k+1
2 -proof is either a single initial sequent, or ends

with a propositional rule, are very simple with arguments similar to those
in Lemma 5. The first non-trivial case is when the final inference in the
proof P is a Contraction:left inference:

Γ1, A, A,Γ2→ ∆
Γ1, A,Γ2→ ∆

Let Γ′ be the upper antecedent Γ1, A, A,Γ2 . The induction hypothesis is
that there is a Πb

k -PLS problem Q , formalized in Skolem form, so that Ŝ1
2

proves a Skolemized version of

FQ(〈u,~c〉, s) ∧ NQ(s) = s ∧ WitΓ′(u,~c) → Wit∆((s)1,~c). (19)

Let Γ be the lower antecedent Γ1, A,Γ2 . Suppose u witnesses Γ. Then
u = 〈u0, . . . , up1 , . . . , up1+p2〉 , where p1 and p2 are the number of formulas in
Γ1 and Γ2 . So up1 witnesses A . Define u′ = 〈u0, . . . , up1 , up1 , . . . , up1+p2〉 .
Since we are using sequences with fixed length entries, the mapping u 7→ u′

is definable with an L̂-term, and Ŝ1
2 proves WitΓ(u,~c) → WitΓ′(u′,~c).

Unfortunately, Ŝ1
2 may not prove this in Skolemized form, since it may not

be able to prove

WitA(up1 ,~c) → WitA(up1 ,~c) ∧ WitA(up1 ,~c)

in Skolemized form (this is an open problem, in fact). To circumvent this, we
invoke the Πb

k -PLS problem PWitA so as to use witness doubling property
of Theorem 6. Accordingly, we define

P(〈u,~c〉) = (〈Q(〈u,~c〉),PWitA(〈(u)p1 ,~c〉)〉)0.

In effect, P calculates PWitA merely in order to discard the value. More
precisely, the output value of PWitA is discarded, but the final feasible point
in its computation is still available to aid the Skolemization. Let F and N
define the feasible points and the neighborhood function for P . By the
conventions for definition by fg-composition, the condition F (〈u,~c〉, s) ∧

30

N(s) = s means that s = 〈〈u,~c〉, v, 2, a, b〉 , where a and b are intended to
code final feasible points for PWitA and Q , and thus satisfy

FPWitA
(〈(u)p1 ,~c〉, 〈a〉) ∧ NPWitA

(〈a〉) = 〈a〉

and
FQ(〈u,~c〉, 〈b〉) ∧ NQ(〈b〉) = 〈b〉.

By Theorem 6 and the Skolemizability of (19), and using the construction
of the proof of Lemma 7, it follows that

F (〈u,~c〉, s) ∧ N(s) = s ∧ WitΓ(u,~c) → Wit∆(v,~c).

is Skolemizable. This completes the argument for the case of an Contrac-
tion:left inference.

The case of Contraction:right is as simple as in the proof of Lemma 5
and in fact does not even use Theorem 6. We omit this case here.

Now suppose the final inference is a ∀≤:right inference

b ≤ t, Γ→ ∆, A(b)
Γ→ ∆, (∀x≤t)A(x)

We use the same construction for this case as in the proof of Lemma 5.
Let Q(u, b,~c) be the Πb

k -PLS function for the upper sequent given by the
induction hypothesis; then the Πb

k -PLS problem P for the lower sequent is
defined by fg-combination as

P(〈u,~c〉) =

{
〈p, 0〉 if P∀A(〈c〉) = 〈1, t + 1〉
Q(〈〈0〉 ∗ u, (P∀A(〈~c〉))1,~c〉) otherwise

Let F and N define the feasible points and the neighborhood function
for P . Unwinding the definition of P , the condition

F (〈u,~c〉, s) ∧ N(s) = s (20)

states that s is of the form 〈〈u,~c〉, v, 2, a, b〉 , where a codes a final feasible
point of P∀A , and if (a1)1 = 1 then b codes a final feasible point for Q .
That is to say, (20) states that

[(v)0 = p ∧ (∀x≤t(~c))A(x) ∧ v = 〈p, 0〉]
∨[(v)0 < p ∧ (a1)1 ≤ t(~c) ∧ ¬A((a1)1) ∧ (∀x<(a1)1)A(x) ∧ (21)

FQ(〈〈0〉 ∗ u, (a1)1,~c〉, 〈b〉) ∧ NQ(〈b〉) = 〈b〉 ∧ v = b1].

31

Here FQ and NQ define feasible points and the neighborhood function
for Q . By the induction hypothesis,

b ≤ t(~c) ∧ WitΓ(u,~c) ∧ FQ(〈〈0〉 ∗ u, b,~c〉, 〈b〉) ∧ NQ(〈b〉) = 〈b〉 (22)
→ Wit∆(b1,~c) ∨ A(b)

is Skolemizable. To finish the ∀≤ :right case, we must show that

(21) ∧ WitΓ(u,~c) → Wit∆,(∀≤t)A(v,~c) (23)

is Skolemizable. The L̂-terms for the Skolem functions are defined by cases.
If (v)0 = p , the Skolem functions are just the identity functions that suffice
for the implication (∀x≤t)A → (∀x≤t)A . If (v)0 < p , the Skolem functions
are defined as for the Skolemization of equation (22) using b = (a1)1 and
noting that the formula A(b) at the end of (22) is replaced by the formula
¬A((a1)1) in the hypothesis (21) of (23).

That completes the case of a ∀≤ :right inference. The other quantifier
inferences are similar, so we omit them.

Suppose the final inference of P is a cut inference

Γ→ ∆, A A, Γ→ ∆
Γ→ ∆

The construction begins the same way as for the cut inference case of the
proof of Lemma 5. Let Q1 and Q2 be given by the induction hypothesis
and define P from these by fg-combination exactly as before by

Q′
2(〈u,~c, v〉) =

{
v if (v)0 < p

Q2(〈〈(v)1〉 ∗ u,~c〉) otherwise

and
P(〈u,~c〉) = Q′

2(〈u,~c,Q1(〈u,~c〉)〉).
Unwinding the definitions, the final feasible point property for P ,
F (〈u,~c〉, s)∧N(s) = s , states that s is of the form 〈〈u,~c〉, w, 2, a, b〉 where a

and b are intended to code the final states of computations for Q1 and Q2

and that the following condition holds:

F1(〈u,~c〉, 〈a〉) ∧ N1(〈a〉) = 〈a〉 ∧ ([(a1)0 < p ∧ w = a1] (24)
∨[(a1)0 = p ∧ F2(〈〈(a1)1〉 ∗ u,~c〉, 〈b〉) ∧ N2(〈b〉) = 〈b〉 ∧ w = b1]).

32

By the induction hypothesis for Q1 , the formula

[WitΓ(u,~c) ∧ F1(〈u,~c〉, 〈a〉) ∧ N1(〈a〉) = 〈a〉] → (25)
([(a1)0 = p ∧ WitA((a1)1,~c)] ∨ [(a1)0 < p ∧ Wit∆(a1,~c)]).

is Skolemizable. Similarly, the induction hypothesis for Q2 implies the same
holds for

[WitA((a1)1,~c) ∧ WitΓ(u,~c) ∧ F2(〈〈(a1)1〉 ∗ u,~c〉, 〈b〉) ∧ N2(〈b〉) = 〈b〉]
→ Wit∆(b1,~c). (26)

Combining (24) and the induction hypothesis for Q1 yields that

WitΓ(u,~c) ∧ F (〈u,~c〉, s) ∧ N(s) = s ∧ (a1)0 < p → Wit∆((s)1,~c)

is Skolemizable, where a1 = (s)4 of course. Combining (24) and the two
induction hypotheses yields that

WitΓ(u,~c) ∧ WitΓ(u,~c) ∧ F (〈u,~c〉, s) ∧ N(s) = s ∧ (a1)0 = p → Wit∆((s)1,~c)

is likewise Skolemizable. Putting the last two equations together shows that

WitΓ(u,~c) ∧ WitΓ(u,~c) ∧ F (〈u,~c〉, s) ∧ N(s) = s → Wit∆((s)1,~c)

is Skolemizable. We are almost done, except that there are two occurrences
of WitΓ(u,~c) in the last formula, instead of only one. To fix this, we use the
same technique as in the case of a Contraction:left inference. Define P2 as

P2(〈u,~c〉) = (〈P(〈u,~c〉), PWitΓ(〈u,~c〉)〉)0.

Letting F2 and N2 define the feasible points and the neighborhood function
for P2 , and arguing as in the Contraction:left case, we obtain

WitΓ(u,~c) ∧ F2(〈u,~c〉, s) ∧ N2(s) = s → Wit∆((s)1).

Thus Lemma 9 holds for Γ→∆ using the Πb
k -PLS problem P2 .

Finally, suppose the final inference of P is an induction inference:

A(b), Γ→ ∆, A(b + 1)
A(0), Γ→ ∆, A(t)

33

Let Q be given by the induction hypothesis. Let X(v,~c, z) be the formula
WitΓ(v,~c)∧Wit∆,A(0)(z,~c), and give the side condition H the same definition
as used for this case in Lemma 5:

H(j, 〈v, 0,~c, z〉, 〈v, i,~c, w〉)
⇔ (X(v,~c, z) → WitΓ(v,~c) ∧ Wit∆,A(b)(w, i,~c)) ∧ i = j.

Likewise, define the initialization function f(〈u,~c〉) = 〈cdr(u), 0,~c, 〈p, (u)0〉〉
exactly as before. Recall that P1 was defined as

P1(〈v, i,~c, w〉) =

{
〈v, i + 1,~c, w〉 if (w)0 < p

〈v, i + 1,~c,Q(〈〈(w)1〉 ∗ v, i,~c〉)〉〉 otherwise.

For technical reasons that will be clear in a moment, we cannot define P
by pseudo-iteration on P1 ; instead, similar to the construction used for the
Contraction:left and Cut inferences, we define

P2(〈v, i,~c, w〉) = (〈P1(v, i,~c, w),PWitΓ(〈v,~c〉)〉)0.
Note that the P2 is defined so as to compute, but then discard, the value
PWitΓ . As before, the point of this is to include extra conditions in the
formula F defining the feasible points of P that will allow Skolemization
of an “extra” occurrence of WitΓ . The Πb

k -PLS problem P is now defined
using pseudo-iteration of P2 instead of P1 : Let P3 be defined by

P3(〈u,~c〉) = PsIter[P2, H](〈t(~c), f(〈u,~c〉)〉) (27)

and set
P(〈u,~c〉) = (P3(〈u,~c〉))`+2.

In order to show P is defined in Skolem form, we must show that, for the
definition of the pseudo-iteration of P2 , the conditions (ι0) and (ι2) can
be Skolemized. This is trivial for (ι0). Let Fj and Nj define the feasible
points and the neighborhood function for Pj , where j = 1, 2. For (ι2), it is
required that

F2(〈v, i,~c, w〉, s) ∧ N2(s) = s ∧ H(i, 〈v, 0,~c, z〉, 〈v, i,~c, w〉) (28)
→ H(i, 〈v, 0,~c, z〉, (s)1)

is Skolemizable. The conventions for encoding feasible points for fg-
combinations mean that the hypothesis F2(〈v, i,~c, w〉, s)∧N2(s) = s implies
that

s = 〈〈v, i,~c, w〉, 〈v, i + 1,~c, w′〉, 2, a, b〉,

34

where a encodes the final feasible point of a computation of PWitΓ(〈v,~c〉) and
b encodes the final feasible point of the computation of P1(〈v, i,~c, w〉). Of
course, the definition of P1 means that if (w)0 = p then b further includes a
subsequence c which encodes the final feasible point of a computation of Q .

The Skolem functions for (28) can be defined by two cases. The first case
is (w)0 < p . In this case, from the definition of P , we have w′ = w , so the
Skolem functions for the quantifiers in H are just identity functions. The
second case is (w)0 = p . We have, from the presence of a in s , that

FWitΓ(〈v,~c〉, 〈a〉) ∧ NWitΓ(〈a〉) = 〈a〉 ∧ WitΓ(〈v,~c〉)
→ WitΓ(〈v,~c〉) ∧ WitΓ(〈v,~c〉)

is Skolemizable. Also, from the presence of c and the induction hypothesis
for Q , we have that

F1(〈v, i,~c, w〉, 〈b〉) ∧ N1(〈b〉) = 〈b〉 ∧ WitA(b),Γ(〈〈(w)1〉 ∗ v, i,~c〉)
→ Wit∆,A(b)((b1)`+2, i + 1,~c)

is similarly Skolemizable. Note that b1 = (s)1 = 〈v, i + 1,~c, w′〉 ; also, recall
that ` is the number of variables in ~c , so ((s)1)`+2 = w′ . In addition, it is
easy to prove, and Skolemize using L̂-terms, the property that

WitA(b)((w)1, i,~c) ∧ WitΓ(v,~c) → WitA(b),Γ(〈〈(w)1〉 ∗ v, i,~c〉).

Continuing to use the condition (w)0 = p , the formula (28) can be expanded
in more detail as being equivalent to

[F2(〈v, i,~c, w〉, s) ∧ N2(s) = s∧
(X(v,~c, z) → WitΓ(v,~c) ∧ WitA(b)((w)1, i,~c))] (29)

→ (X(v,~c, z) → WitΓ(v,~c) ∧ Wit∆,A(b)(((s)1)`+2, i + 1,~c)).

Skolem functions for (29) can readily be defined using L̂-terms and the
Skolem functions for the previous three formulas and Lemma 7.

The above showed that P is definable by Ŝ1
2 in Skolem form. We now

need to establish that Lemma 9 holds for the sequent A(0), Γ→∆, A(t).
From (27) and the definitions of f and H , we have that the condition
F3(〈u,~c〉, s) ∧ N3(s) = s is equivalent to

WitΓ(cdr(u),~c) ∧ WitA(0)(((u)0,~c))
→ WitΓ(cdr(u),~c) ∧ Wit∆,A(t)(((s)1)`+2,~c).

35

From this,

F3(〈u,~c〉, s) ∧ N3(s) = s ∧ WitA(0),Γ(u,~c) → Wit∆,A(t)(((s)1)`+2,~c)

is immediately seen to be Skolemizable. This suffices to prove the lemma
for the case of an induction inference, and thereby completes the proof of
Lemma 9. 2

The proof of Theorem 8 from Lemma 9 uses the same construction as the
proof of Theorem 4 from Lemma 5. Suppose the hypothesis of Theorem 8
holds and let A∗ be as in the proof of Theorem 4. By Lemma 9, there is a
Πb

k -PLS problem Q , formalized in Skolem form in Ŝ1
2 such that the formula

F (〈〈〉, x〉, s) ∧ N(s) = s → Wit(∃y≤t)A∗((s)1, x) (30)

is Skolemizable, where F and N define the feasible points and the neighbor-
hood function of Q . (Note this is just a restatement of equation (10) with
v = (s)1 .) Construct the Πb

k -PLS problem Q′ from Q exactly the same
as in the proof of Theorem 4. We need to check that equation (γ) for Q′

can be Skolemized. We can assume w.l.o.g. that F (s) → Len(s) > 1
is Skolemizable. Indeed, for ` the sequence length of feasible points,
the atomic formula expressing Len(s) = ` can be included as a conjunct
of F (s). The Skolemization of (γ) F ′(s) → F ′(N(s)) splits into three
cases, namely, (1) N(s) = s , (2) N(s) 6= s ∧ Len(s) = Len(N(s)) > 1,
or (3) Len(s) > 1 ∧ Len(N(s)) = 1. The first case is trivial. The second
case uses the same Skolem functions as are used in the Skolemization of (γ)
for Q , namely the Skolemization of F (s) → F (N(s)). The third case uses
the Skolem functions used in the Skolemization of (30).

Define the Πb
k -PLS problem P by P(x) = Q′(〈〈〉, x〉) as before. The

Πb
g -goal G(x, s) is again defined by (11). We still need to show that (ε)

and (ε′) for P are Skolemizable. By the fact that

F ′(x, s) ∧ N(s) = s ↔ Len(s) = 1 ∧ (s)0 < t(x) ∧ A∗(x, (s)0)

is provable in Skolem form (more precisely, each direction of the implication
is provable in Skolem form), it suffices to show that both A(x, y) → A∗(x, y)
and A∗(x, y) → A(x, y) are Skolemizable. The Skolem forms of these two
formulas are picked using the ε-level of the quantifiers; that is to say, each
quantifier in A is matched with the corresponding quantifier in A∗ , and the
vacuous quantifiers of A∗ are brought out last. Thus, both of these formulas
are trivially Skolemized with identity functions.

This completes the proof of Theorems 8 and 3. 2

36

6 Towards relativized ∀Σb
1-separations

One of the central open problems for bounded arithmetic is whether the
hierarchy of bounded arithmetic theories Si

2 and T i
2 is proper. Some

conditional results are known; specifically, it is known [14, 6, 21] that if
T i

2 equals Si
2 , then the polynomial hierarchy collapses, provably in Si

2 . This
result relativizes, yielding that Si

2(α) is distinct from T i
2(α).

However, no similar conditional or relativized results are known for the
∀Σb

1 -consequences of Si
2 or of T i

2 . These theories, however, have been
characterized in terms of propositional proof complexity. In fact there are
two such characterizations. One, by Kraj́ıček and Pudlák [13], relates the
∀Σb

1 -consequences of Si
2 or T i

2 to uniform provability in (tree-like or dag-
like, respectively) proofs in quantified propositional logic, where quantifier
alternation is restricted to i levels. The other characterization applies to
relativized theories of bounded arithmetic, and uses a construction that goes
back to Paris and Wilkie [16]; it relates the ∀Σb

1(α)-consequences of T i
2(α)

to provability in a bounded depth proof system.
The Skolemized PLS problems, as described in the previous section,

can give new ∀Σb
1(α)-principles that are candidates for separating Sk+1

2 (α)
and T k+1

2 (α). For the rest of this section, we fix a value k ≥ 0 and work
with Πb

k -PLS problems that have a Πb
0 -goal G .

Consider the prenexification of (γ) as given by equation (5). Let F be
a strict Πb

=k -formula of the form

(∀y1≤t1)(∃y2≤t2) · · · (Qyk≤tk)F0(~y, x, s),

where F0 is a new predicate symbol adjoined to the language, and where
there is no last sharply bounded quantifier present. A Skolemization of (γ)
uses functional substitutions for the existentially quantified variables, for
instance, y1 7→ g1(y′1), y′2 7→ g2(y′1, y2), y3 7→ g3(y′1, y2, y

′
3), etc. Thus, the

Skolemization of (γ) has the following form.

(∀y′1≤t′1)(∀y2≤t2)(∀y′3≤t′3) · · ·
(g1(y′1) ≤ t1 ∧ g2(y′1, y2) ≤ t′2 ∧ g3(y′1, y2, y

′
3) ≤ t3 ∧ · · · ∧ (31)

(F0(g1(y′1), y2, g3(y′1, y2, y
′
3), . . . , x, s) →

F0(y′1, g2(y′1, y2), y′3, . . . , x, N(x, s)))).

Let γSK(x, s) denote the formula (31). The formula ∀x∀sγSK(x, s) is a
∀Πb

1(~g)-formula. Clearly, ∀x∀sγSK(x, s) ² (γ) .
Similar constructions Skolemizing (α), (β), (ε), and (ε′), give for-

mulas αSK , βSK , ε′SK , and ε′′SK . For the relativization of (α), we

37

set d(n) = n without loss of generality. Let Ψ(~g, i, N, c, F0, G) be the
∀Πb

1(~g, i, N, c, F0, G)-formula

(∀x)(∀s)αSK ∧ (∀x)βSK ∧ (∀x)(∀s)γSK ∧ (δ) ∧ (∀x)(∀s)ε′SK ∧ (∀x)(∀s)ε′′SK.

In the definition of Ψ, the symbols for the functions ~g , i , N , and c and
the predicates F0 and G are understood to be new symbols added to the
language of bounded arithmetic. The functions ~g are the functions used for
Skolemizing (α)-(ε′′) (of course, with different g ’s for each Skolemized for-
mula.) Then, by the relativized version of Theorem 1, T k+1

2 (~g, i, N, c, F0, G)
proves

Ψ → (∀x)(∃y≤s)G(x, y), (32)

for s the term 2d(|x|) = 2|x| . Note that the symbols ~g, i, N, c, F0, G are
adjoined to the language of bounded arithmetic and are allowed to be used
freely in induction formulas. This is entirely reasonable, since Theorem 3
shows that Πb

k -PLS problems can be, without loss of generality, formalized in
Skolem form: the functions used in the Skolem form are all given by L̂-terms
and thus may be used freely in induction formulas.

Since Ψ is a ∀Πb
1 -formula, (32) is equivalent to a ∀∃Σb

1 -sentence of the
form (∀x)(∃x′)ΨM with ΨM bounded. The unbounded existential quantifier
∃x′ comes from the outer universal quantifiers of Ψ. This quantifier can
be bounded by a term involving only x : this can be done on general
principles by Parikh’s theorem or, in the present case, an a priori bound
can be obtained by the fact that the bound d(|x|) = |x| is used. Thus
x′ can be bounded linearly in terms of x , i.e., |x′| ≤ c · |x| for some
constant c . Thus, formula (32) may be replaced by a ∀Σb

1 -formula of the
form (∀x)(∃y≤r(x))Φ(x, y) for some term r(x) and some ∆b

0 -formula Φ.

Conjecture 10 The ∀Σb
1 -formula (32) is not provable in T k

2 (~g, i, N, c, F0, G)
or in Sk+1

2 (~g, i, N, c, F0, G).

The conjecture can be sharpened slightly by using a single unary
predicate α to encode simultaneously all of ~g, i, N, c, F0, G . This is done in
the usual way, letting α encode the predicates F0 and G directly, and encode
the functions ~g, i, N, c via their bit graphs. This results in a formula Ψ∗(α)
that expresses the same conditions as Ψ(~g, i, N, c, F0, G), and a formula
G∗(α, x, y) that expresses the same condition as G(x, y). By Theorem 1, we
again have that T k+1

2 (α) proves the ∀Σb
1 -formula

Ψ∗(α) → ∀x∃yG∗(α, x, y). (33)

38

Conjecture 10 can be equivalently expressed as stating that T k
2 (α) and

Sk+1
2 (α) do not prove (33). Like (32), the formula (33) can be replaced by a

∀Σb
1 -formula of the form (∀x)(∃y≤r(x))Φ∗(x, y, α).
Conjecture 10 can be extended to a conjecture about bounded depth

Frege proofs. Our bounded depth Frege proof system is formulated as a
propositional Tait-style sequent calculus using connectives ¬ , ∧ , and ∨ .
W.l.o.g., the negation signs are applied only to variables, so that a
propositional formula consists of ∧ and ∨ connectives applied to literals
(a literal is a variable or a negated variable). The depth of a formula is
defined to be the number of alternations of ∧ ’s and ∨ ’s. Thus a literal
is depth zero, and a disjunction or a conjunction of literals is a formula of
depth one, etc. The depth of a sequent is defined to equal the maximum
depth of the formulas in the sequent.

Letting a ∈ N , define the formulas Ωa to be the Paris-Wilkie propo-
sitional formulas (∃y≤r(a))Φ∗(a, y, α) which give propositional formulas
that express the condition that (33) is true for x = a . The Paris-Wilkie
translation is defined in the usual way: bounded quantifiers become con-
junctions or disjunctions, atomic subformulas of the form α(s) are replaced
by propositional variables pi where i is the numeric value of s , and other
atomic formulas are replaced by just True or False. Kraj́ıček [12, §9.1]
describes the Paris-Wilkie translation in more detail: the end result is that
Σb

` and Πb
` -formulas become quasipolynomial size, depth ` + 1

2 formulas
(also called Σ-depth ` formulas). These formulas have depth ` + 1, but
the lowest level of boolean gates have polylogarithmic fanin (and hence only
count as depth 1

2).
The formulas Ωa are quasipolynomial-size disjunctions of small

(polylogarithmic-size) conjunctions; they thus have depth 11
2 .

As is well-known, the Paris-Wilkie translation also applies to the T k+1
2 -

proof of (33). This yields that there are tree-like propositional refutations
of the formulas ¬Ωa in which all formulas are quasipolynomial size and
depth k + 11

2 , and in which each sequent has only a constant number of
formulas, and which have height polylogarithmic in a . Using Lemmas 5
and 6 of Beckmann-Buss [2] (which are based on constructions of Kraj́ıček
and Razborov), this implies that there are quasipolynomial size, depth k− 1

2 ,
dag-like sequent calculus refutations of Ωa .

In fact, we can do a little bit better than this: there are polynomial size,
depth k − 1, dag-like sequent calculus refutations of ¬Ωa . To prove this,
consider the T k+1

2 (~g, i, N, c, F)-proof of (32). Referring back to the proof
of Theorem 1, the main step in the proof is a use of minimization on the

39

formula (1). This minimization principle is proved by using induction with
respect to the variable c on the formula

¬(∃c0≤c)(∃s≤2d(|x|)(c0 = c(x, s) ∧ F (x, s)).

Since F (x, s) was chosen to have k bounded quantifiers, but no sharply
bounded quantifier, the Paris-Wilkie translation transforms this to a
depth k + 1 formula. Likewise, the Skolemizations of the formulas (α)-(ε′′)
are all bounded formulas with k + 1 blocks of bounded quantifiers, and no
sharply bounded quantifiers. Thus these formulas, along with the rest of the
T k+1

2 -proof, are transformed to depth k + 1 propositional formulas. Finally,
since d(|x|) = |x| , the proof obtained by the Paris-Wilkie translation is
only polynomial size, instead of quasi-polynomial size. Since the proof is
also tree-like, has height polylogarithmic in a , and contains only a constant
number of formulas in each sequent, it follows from Theorem 10 of [2] that
¬Ωa has polynomial size, depth k − 1, dag-like sequent calculus refutations.

Conjecture 11 The formulas ¬Ωa do not have quasipolynomial size, depth
k − 11

2 dag-like sequent calculus refutations.

Note that, by the correspondence given by the Paris-Wilkie translation,
Conjecture 11 is a restatement of Conjecture 10 in a non-uniform setting.

The outermost connective of ¬Ωa is a conjunction. By putting each
conjunct in a separate sequent, and then replacing ∨ ’s with commas, the
formula ¬Ωa can be replaced by an equivalent set Ξa of sequents. Note
that each sequent in Ξa contains only literals, so Ξa is a set of sequents of
depth 0 and each sequent contains only polylogarithmically many literals.
Conjecture 11 is then equivalent to stating that the sets Ξa do not have
quasipolynomial size, depth k − 11

2 dag-like sequent calculus refutations.
If Conjecture 11 could be established for k > 1, these sequents would be

the first example of sequents of depth < k that have quasipolynomial size
constant depth refutations, but do not have quasipolynomial size depth k
refutations.

References

[1] K. Aelig and A. Beckmann, On the computational complexity of cut
reduction, in Proc. 23rd Annual IEEE Symp. on Logic in Computer
Science (LICS’08), 2008, pp. 284–293.

40

[2] A. Beckmann and S. R. Buss, Separation results for the size of
constant-depth propositional proofs, Annals of Pure and Applied Logic,
136 (2005), pp. 30–55.

[3] , Characterization of definable search problems in bounded arith-
metic via proof notations. In preparation, 2008.

[4] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[5] , Axiomatizations and conservation results for fragments of bounded
arithmetic, in Logic and Computation, proceedings of a Workshop held
Carnegie-Mellon University, 1987, vol. 106 of Contemporary Mathemat-
ics, American Mathematical Society, 1990, pp. 57–84.

[6] , Relating the bounded arithmetic and polynomial-time hierarchies,
Annals of Pure and Applied Logic, 75 (1995), pp. 67–77.

[7] , An introduction to proof theory, in Handbook of Proof Theory,
S. R. Buss, ed., North-Holland, 1998, pp. 1–78.

[8] S. R. Buss and J. Kraj́ıček, An application of Boolean complexity to
separation problems in bounded arithmetic, Proc. London Math. Society,
69 (1994), pp. 1–21.

[9] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How
easy is local search?, J. Comput. System Sci., 37 (1988), pp. 79–100.

[10] J. Kraj́ıček, A. Skelley, and N. Thapen, Np search problems in
low fragments of bounded arithmetic, Journal of Symbolic Logic, 72
(2007), pp. 649–672.

[11] J. Kraj́ıček, Fragments of bounded arithmetic and bounded query
classes, Transactions of the A.M.S., 338 (1993), pp. 587–598.

[12] , Bounded Arithmetic, Propositional Calculus and Complexity
Theory, Cambridge University Press, Heidelberg, 1995.

[13] J. Kraj́ıček and P. Pudlák, Quantified propositional calculi and
fragments of bounded arithmetic, Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 36 (1990), pp. 29–46.

[14] J. Kraj́ıček, P. Pudlák, and G. Takeuti, Bounded arithmetic and
the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991),
pp. 143–153.

41

[15] R. J. Parikh, Existence and feasibility in arithmetic, Journal of
Symbolic Logic, 36 (1971), pp. 494–508.

[16] J. B. Paris and A. J. Wilkie, Counting problems in bounded
arithmetic, in Methods in Mathematical Logic, Lecture Notes in
Mathematics #1130, Springer-Verlag, 1985, pp. 317–340.

[17] C. Pollett, Arithmetic Theories with Prenex Normal Form Induction,
PhD thesis, University of California, San Diego, 1997.

[18] , Structure and definability in general bounded arithmetic theories,
Annals of Pure and Applied Logic, 100 (1999), pp. 189–245.

[19] P. Pudlák, Consistence and games — in search of combinatorial
principles, in Logic Colloquium ’03, Association for Symbolic Logic,
AK Peters, 2006, pp. 244–281.

[20] A. Skelley and N. Thapen, The provable total search problems of
bounded arithmetic. Typeset manuscript, 2007.

[21] D. Zambella, Notes on polynomially bounded arithmetic, Journal of
Symbolic Logic, 61 (1996), pp. 942–966.

42

