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Abstract. A propositional proof system is weakly automatizable if there
is a polynomial time algorithm which separates satisfiable formulas from
formulas which have a short refutation in the system, with respect to
a given length bound. We show that if the resolution proof system is
weakly automatizable, then parity games can be decided in polynomial
time. We also define a combinatorial game and prove that resolution is
weakly automatizable if and only if one can separate, by a set decidable
in polynomial time, the games in which the first player has a positional
winning strategy from the games in which the second player has a posi-
tional winning strategy.

1 Introduction

Parity games, mean payoff games and simple stochastic games are three classes
of two player games, played by moving a token around a finite graph. In par-
ticular parity games have important applications in automata theory, logic, and
verification [11]. The main computational problem for all of these games is to
decide, given an instance of a game, which player has a positional winning strat-
egy. From this point of view, parity games are reducible to mean payoff games,
and mean payoff games are reducible to simple stochastic games [19, 23]. It is
known that the decision problem for simple stochastic games is reducible to a
search problem in the intersection of the classes PLS and PPAD [6, 13] (which
are believed to be incomparable [4]). None of the decision problems is known to
be in P, despite intensive research work on developing algorithms for them. For
several of the existing algorithms, exponential lower bounds on their runtime
have been given recently [9, 10].

Automatizability is an important concept for automated theorem proving.
Call a propositional proof system automatizable if there is an algorithm which,
given a tautology, produces a proof in time polynomial in the size of its smallest
proof—this time condition is the best we can hope for, assuming NP 6= coNP. Au-
tomatizability is a very strict notion. For example, Alekhnovich and Razborov [1]
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have shown that resolution is not automatizable under a reasonable assumption
in parameterised complexity theory. Weak automatizability is a relaxation of
automatizability, where proofs of tautologies can be given in an arbitrary proof
system, and only the time of finding such proofs is restricted to polynomial in the
size of the smallest proof in a given proof system. This characterisation of weak
automatizability is equivalent to the existence of a polynomial time algorithm
which separates satisfiable formulas from formulas which have a short refutation
in the system with respect to a given length bound.

Two recent papers have shown a connection between weak automatizability
and the above mentioned games. Atserias and Maneva showed that if a certain
proof system (called PK1 in our notation) is weakly automatizable, then the de-
cision problem for mean payoff games is in P [3]. Huang and Pitassi strengthened
this to the decision problem for simple stochastic games [12]. In this paper we
extend these results to resolution and parity games. In Sect. 2 below we show
that if resolution is weakly automatizable, then parity games can be decided in
polynomial time.

In order to obtain a kind of reverse direction of this result, in Sect. 3 we
define a new game, the point-line game, also about moving a token around a
finite graph. We show that its complexity is equivalent to that of resolution, in a
certain sense. In particular, resolution is weakly automatizable if and only if one
can separate, by a set in P, the games in which the first player has a positional
winning strategy from the games in which the second player has a positional
winning strategy.

The essential part of the argument in Sect. 2, together with one direction of
Sect. 3, is to show that there is a polynomial-size propositional proof that winning
strategies cannot exist simultaneously for both players in a game. Propositional
proofs are complicated combinatorial objects, and constructing them by hand
can be difficult. Instead, we work with weak first-order bounded arithmetic theo-
ries which capture the logical content of these proof systems, and rely on known
translations of these to do the hard work of actually constructing the proposi-
tional proofs for us. These translations go back to Paris and Wilkie [17]. Later
work has given finer results about the logical depth of the propositional proofs.
The main result we need, a first order-theory which translates into polynomial-
size resolution, is essentially due to Kraj́ıček [14–16].

The full version of this paper, in preparation, will extend our methods to give
simplified proofs of the results mentioned above relating weak automatizability
of the proof system PK1 to the decision problem for mean payoff and simple
stochastic games [3, 12]. Furthermore, it will include a detailed proof of the
translation of first order-theories into polynomial-size propositional proofs, with
extra information about the fan-in k of connectives located at the maximum
depth of propositional formulas, namely that k can be bounded by a constant
that we can read directly from the formulas appearing in the first-order proof.

Finding a polynomial time algorithm to solve parity games is a long-standing
open problem, so it is tempting to interpret our main result about parity games
and resolution as evidence either that resolution is not weakly automatizable, or
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at least that if it is, then this will be hard to prove. On the other hand, modern
SAT solvers typically use algorithms which, given a formula, generate either a
satisfying assignment or what is essentially a resolution proof that the formula
is unsatisfiable. Thus it seems that a necessary condition for a formula to be
tractable by these SAT solvers is that the formula is either satisfiable, or has a
short resolution refutation. Our reduction can be used to translate a parity game
into a formula that satisfies at least this necessary condition. Hence, a possible
application is to try to combine our reduction with a SAT solver, to obtain a
new algorithm for solving parity games.

1.1 Resolution Proof Systems

For k ≥ 1, the propositional proof system Res(k) is defined as follows. Proposi-
tional formulas are formed from propositional variables p0, p1, p2, . . ., negation ¬,
and unbounded fan-in conjunctions and disjunctions

∧
and

∨
. Variables are

called atoms, and atoms and negated atoms are together called literals. Formu-
las are then defined inductively: each literal is a formula, and if Φ is a finite
non-empty set of formulas then

∧
Φ and

∨
Φ are formulas. For a formula ϕ, we

use ¬ϕ as an abbreviation for the formula formed from ϕ by interchanging
∧

and∨
and interchanging atoms and their negations. We treat the binary connectives

∧ and ∨ as the obvious set operations, for example
∨
Φ ∨

∨
Ψ =

∨
(Φ ∪ Ψ). If a

formula is a conjunction, we will sometimes treat it as the set of its conjuncts,
and vice versa.

A k-DNF is a disjunction of conjunctions of literals, where each conjunction
is of size at most k. Each line in a Res(k)-proof is a k-DNF, usually written as
the list of disjuncts separated by commas. The rules of Res(k) are as follows,
where Γ , ∆ stand for sets of formulas, possibly empty, A, B for formulas, and
ai for literals:

Γ,A Γ,B
∧-introduction

Γ,A ∧ B

Γweakening
Γ,∆

Γ, a1 ∧ . . . ∧ am Γ,¬a1, . . . ,¬am
cut

Γ

We also allow introduction of logical axioms a,¬a for atoms a.

A Res(k) refutation of a set of disjunctions Γ is a sequence of disjunctions
ending with the empty disjunction, such that each line in the proof is either in Γ ,
or a logical axiom, or follows from earlier disjunctions in the sequence by a rule.
The system Res(1) is called resolution and is denoted by Res.

We will also consider the proof system PK1, which is defined in the same way
as Res(k) but now dropping the bound on the number of literals in conjunctions.
That is, lines in PK1 proofs are unrestricted DNFs, instead of k-DNFs in case
of Res(k).
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1.2 Bounded Arithmetic

We could obtain the results of this paper by a careful use of the conventional
Buss-style bounded arithmetic theory T2

1 [5]. However, these would introduce un-
necessary complications to deal with sharply bounded quantification, so instead
we will work with simpler systems.

For r ∈ N, we will say that a function f : Nr → N is polynomially bounded

if there is some polynomial p such that f(x̄) ≤ p(x̄) for all x̄. Let L be the
language consisting of the constant symbols 0 and 1, and, for every r ∈ N, a
function symbol for every polynomially bounded function N

r → N and a relation
symbol for every relation on N

r. If the reader is uncomfortable with such a
large language, it can be replaced by any reasonably rich language extending
{0, 1,+, ·, <} as long as all functions in the language are polynomially bounded.
Let BASE be the set of true universal L-sentences. We will use this as our base
theory.

We extend L to a language L+ = L ∪ R̄ by adding a tuple R̄ of finitely
many new relation symbols. We will use these to stand for edges in a graph, or
strategies in a game, or whatever other objects we need to reason about.

Adapting notation from Wilmers [22], we define a strict Ud formula to be
one consisting of d alternating blocks of bounded quantifiers, beginning with
a universal block, followed by a quantifier-free L+ formula. To obtain optimal
results about the depth of the propositional translations of these formulas, we
add a technical requirement: the quantifier-free part should have the form of a
CNF if d is odd, or a DNF if d is even. Any quantifier-free formula is logically
equivalent to one in either form, so in the first-order proofs we construct in this
paper we can ignore this requirement. A Ud formula is a subformula of a strict
Ud formula. The strict Ed formulas and the Ed formulas are defined dually.

We remark that we will almost always work with bounded rather than un-
bounded quantifiers, and we will often not write the bounds if they are obvious,
for example if we are quantifying over the vertices of a given finite graph.

For d ≥ 0, we define Ud-IND to be BASE together with the usual induction
scheme

∀a, φ(0) ∧ ∀x<a[φ(x) → φ(x+ 1)] → φ(a)

for each Ud formula φ(x), which may also contain other parameters. The theory
Ed-IND is defined similarly.

Similarly we define Ud-MIN to be the usual scheme asserting that any non-
empty Ud (with parameters) subset of an interval [0, a) has a least element. The
schemes Ed-MIN, Ud-MAX and Ed-MAX are the obvious variants of this.

Lemma 1. For d ≥ 0, the following hold over BASE:
1. Ed-IND is equivalent to Ud-IND
2. Ed-MAX is equivalent to Ed-MIN
3. Ud-MAX is equivalent to Ud-MIN
4. Ud+1-IND proves Ud-MAX and Ed+1-MAX. �

We now define a version of the Paris-Wilkie translation of first-order proofs
in bounded arithmetic into small propositional proofs [17]. We will use this as
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a tool for constructing resolution refutations out of U2-IND proofs. For each
relation symbol in R̄ of arity s, we fix a propositional variable ri1,...,is for each
tuple of numbers i1, . . . , is. We assume that all these propositional variables, for
all relation symbols in R̄, are pairwise distinct.

Let ⊤ and ⊥ denote the truth values true and false, respectively. An assign-
ment α is a total map from first-order variables to numbers, in which at most
finitely many variables are assigned non-zero values. For an assignment α, a
variable x and a number n, we write α[x 7→ n] for the assignment which maps x
to n and leaves the mapping of all other variables unchanged. We write [x 7→ n]
for the assignment which maps x to n and all other variables to 0.

Definition 2. We compute propositional translations as follows.

1. Any L formula φ has a definite truth value under α. If φ evaluates to true

we let 〈φ〉α be ⊤, and if it evaluates to false we let 〈φ〉α be ⊥.

2. For t an L-term, we let 〈t〉α be the evaluation of t under α.

3. For R an s-ary relation symbol in R̄, and t̄ an s-tuple of L-terms, we let

〈R(t̄)〉α be the propositional variable ri1,...,is where each ij = 〈tj〉α, and let

〈¬R(t̄)〉α be the negated variable ¬ri1,...,is .
4. We let 〈φ ∧ ψ〉α be 〈φ〉α ∧ 〈ψ〉α and let 〈φ ∨ ψ〉α be 〈φ〉α ∨ 〈ψ〉α.
5. We let 〈∀x < t φ(x)〉α be

∧
{〈φ〉α[x 7→m] : m < 〈t〉α}. Bounded existential

quantifiers are similarly translated into disjunctions.

Finally we simplify by inductively removing ⊤ from conjunctions, removing ⊥
from disjunctions, replacing conjunctions containing ⊥ with ⊥, and replacing

disjunctions containing ⊤ with ⊤.

Theorem 3. Suppose that φ1(x), . . . , φℓ(x) are U2 formulas, with x the only

free variable, such that U2-IND proves ∀x¬(φ1(x) ∧ . . . ∧ φℓ(x)). Then for

some k ∈ N the family

Φn := 〈φ1(x)〉[x 7→n] ∪ · · · ∪ 〈φℓ(x)〉[x 7→n]

has polynomial size Res(k) refutations. �

1.3 Disjoint NP Pairs

A disjoint NP pair is simply a pair of disjoint NP sets. In the context of proof
complexity, these were first studied by Razborov in [20]. Our presentation fol-
lows [18]. A pair (A,B) is polynomially reducible to a pair (C,D) if there is
a polynomial time function f , defined on all strings, such that f [A] ⊆ C and
f [B] ⊆ D. A pair (A,B) is polynomially equivalent to a pair (C,D) if polynomial
reducibility holds in both directions. A pair (A,B) is polynomially separable if
there is a polynomial time function which takes the value 0 on strings in A and
the value 1 on strings in B.

If P is a propositional proof system, the canonical pair CP of P is the pair
(A,B) where

A = {(φ, 1m) : φ is satisfiable}

B = {(φ, 1m) : φ has a P-refutation of size at most m}.
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We say that P is weakly automatizable if CP is polynomially separable. In other
words, P is weakly automatizable if there is a polynomial time algorithm which
separates satisfiable formulas from formulas which have a short refutation in the
system with respect to a given length bound. This definition of weakly automa-
tizability is equivalent to others in the literature (see [2]).

To define the interpolation pair IP of P, let ∆P be the set of triples (φ, θ, π)
where φ and θ are propositional formulas in disjoint variables and π is a P-
refutation of φ ∧ θ. Then IP is the pair (A,B) where

A = {(φ, θ, π) ∈ ∆P : φ is satisfiable}

B = {(φ, θ, π) ∈ ∆P : θ is satisfiable}.

Given a triple (φ, θ, π) ∈ ∆P , at least one of φ and θ must be unsatisfiable.
We say that P has feasible interpolation if there is a polynomial time function
which, given such a triple as input, outputs 0 if φ is unsatisfiable and 1 if θ is
unsatisfiable. It is easy to show that P has feasible interpolation if and only if
IP is polynomially separable.

Proposition 4 ([2]).
1. Resolution has feasible interpolation.

2. The following list of NP pairs are pairwise equivalent: The canonical pairs

of Res, Res(2), Res(3), . . . , and the interpolation pairs of Res(2), Res(3),
Res(4), . . . , and of PK1. �

Finally, we define the canonical pair of a class of two-player games to be the
pair (A0, A1) where Ai is the set of games in which player i has a positional
winning strategy. Naturally, for this to make sense we need there to be a defi-
nition of what a positional strategy is, and for it to be possible to recognise a
positional winning strategy in NP.

2 Parity Games

Following Stirling [21] we will describe parity games in a simplified form, which
is linear-time equivalent to the usual definition. A parity game G is given by
a finite directed graph with vertices V and edges E satisfying the following
properties. The set V is the disjoint union of two sets V0 and V1 which we think
of as the vertices belonging respectively to player 0 and to player 1. The graph
has a designated start vertex s, and every vertex has at least one outgoing edge.
We identify V with the interval [n] = {0, . . . , n−1} where n = |V |. Below when
we talk about the “least” vertex we mean the least with respect to the usual
order on [n]. Without loss of generality, s = 0.

The game begins with a pebble placed on the start vertex s. On each turn,
the pebble is moved from its current vertex v along an edge in the graph. If
v ∈ V0 then player 0 chooses which edge to move it along. If v ∈ V1 then player 1
chooses. A play of the game is the infinite sequence v1, v2, . . . of vertices visited
by the pebble. To decide the winner of a play, let v be the least vertex which
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occurs infinitely often. If v ∈ V0 then player 0 wins and if v ∈ V1 then player 1
wins.

A positional strategy σ for player 0 is a map σ : V0 → V such that (x, σ(x))
is an edge in E for each x ∈ V0. Similarly, a positional strategy τ for player 1 is
a map τ : V1 → V such that (x, τ(x)) ∈ E for each x ∈ V1.

The following theorem has been proven by Emerson [8] independently of
a similar result for mean payoff games by Ehrenfeucht and Mycielski [7]; the
reduction from parity to mean payoff games was found later by Puri [19].

Theorem 5 (Emerson [8]). In each parity game, one of the players has a

positional winning strategy. �

From now on we will only discuss positional strategies, so we will usually
omit the word “positional”. Given a strategy σ for player 0, we will use Eσ to
mean the edge relation obtained from E by, for each vertex v ∈ V0, removing all
outgoing edges except for the one chosen in σ. We will similarly use Eτ to mean
E restricted by a strategy τ for player 1.

It is straightforward to show that the strategy σ is winning for player 0 if and
only if for every vertex t reachable from s in Eσ, for every path from t to t in Eσ,
the least vertex on the path is in V0. To prove our main result in this section,
we formalise this characterisation in such a way that we can prove in U2-IND
that player 0 and player 1 cannot simultaneously have winning strategies. In our
formalisation below, all quantifiers are implicitly bounded by n.

Expand the language L to include relation symbols E, V0, V1, E
σ, Rσ

min,
Eτ , Rτ

min and a constant symbol n. We will write G to stand for the tuple
E, V0, V1, n representing the structure of the game. The intended meaning of Eσ

is as described above. The intended meaning of the ternary relation Rσ
min(x, y, z)

is that there is a non-trivial path in Eσ from x to y on which the least vertex
visited is z. The relations Eτ and Rτ

min are similar.
Let Game(G) be a formula asserting that G is a suitable graph for a parity

game, that is, that V0 and V1 partition the vertices, and that every vertex has
at least one outgoing edge. Let Strategy0(G,E

σ) be a formula asserting that Eσ

represents a strategy for player 0, that is, that every vertex in V0 has an outgoing
edge in Eσ. Let Strategy1(G,E

τ ) be a similar formula for player 1. It is clear
that these can all be written as U2 formulas.

Let Win0(G,E
σ, Rσ

min) be the conjunction of the universal closures of
1. Strategy0(G,E

σ)
2. Eσ(x, y) ∧ z = min(x, y) → Rσ

min(x, y, z)
3. Rσ

min(x, y, u) ∧R
σ
min(y, z, v) ∧ w = min(u, v) → Rσ

min(x, z, w)
4. Rσ

min(s, x, u) ∧R
σ
min(x, x, v) → v ∈ V0.

Let Win1(G,E
τ , Rτ

min) be a similar formula for player 1.

Lemma 6. If player 0 has a winning strategy in G, then there exist Eσ and Rσ
min

satisfying Win0(G,E
σ, Rσ

min). Similarly for player 1 and Win1(G,E
τ , Rτ

min). �

Theorem 7. Provably in U2-IND, it is impossible to satisfy formulas Game(G),
Win0(G,E

σ, Rσ
min) and Win1(G,E

τ , Rτ
min) simultaneously.
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Proof. Let R∗(x, y) be the formula ∃v, Rσ
min(x, y, v) ∧ Rτ

min(x, y, v). By condi-
tion 3 of Win0 and Win1, the relation R

∗(x, y) is transitive. Moreover for every x
there is at least one y such that R∗(x, y), since we can take y to be the unique
successor of x in Eσ ∩ Eτ and take v to be min(x, y).

Let A(x) be the formula R∗(s, x)∧∀y>x¬R∗(x, y). Using E1-MAX, let x be
maximum such that R∗(s, x). It follows that A(x) holds. Hence using E2-MIN,
we let t be minimum such that A(t). Now using E1-MAX, let t′ be maximum
such that R∗(t, t′). By the transitivity of R∗, we know that R∗(s, t′) and also
that for all y > t′ we have ¬R∗(t′, y). Hence A(t′) holds, and therefore t′ ≥ t by
minimality of t. On the other hand, since A(t) and R∗(t, t′), we know t′ ≤ t. We
conclude that t′ = t.

We now have that R∗(s, t) and R∗(t, t). Hence there are vertices u and v

such that both Rσ
min(s, t, u) ∧ R

σ
min(t, t, v) and Rτ

min(s, t, u) ∧ R
τ
min(t, t, v) hold.

Therefore condition 4 must be false in either Win0 or Win1, since either v ∈ V0
or v ∈ V1. �

The formula Win0(G,E
σ, Rσ

min) is a conjunction of U2 formulas. Suppose we
are given a parity game G, with n vertices. Let α map the constant symbol n
of our language (which we treat here as a free variable) to the number n. Then
for some k ∈ N we can translate each such formula φ into a conjunction 〈φ〉α
of k-DNFs, with propositional variables for the relations Eσ, Rσ

min and for the
structure of the game G. We abuse notation and write 〈Win0(E

σ, Rσ
min)〉G for

the propositional formula obtained by taking the set of all the formulas 〈φ〉α and
substituting in, for the propositional variables describing the structure of G, the
values given by the actual game G.

In other words, 〈Win0(E
σ, Rσ

min)〉G is the propositional formula obtained by
translating Win0 and substituting in the real values of G. It is satisfiable if and
only if player 0 has a winning strategy in G. The formula 〈Win1(E

τ , Rτ
min)〉G is

similar.

Corollary 8. There is a number k ∈ N and a polynomial p such that for ev-

ery game G, the formula 〈Win0(E
σ, Rσ

min)〉G ∪ 〈Win1(E
τ , Rτ

min)〉G has a Res(k)
refutation of size p(n).

Proof. Take the proof given by Theorem 3, and substitute in the real values
of G. Observe that G satisfies Game(G), so all the initial formulas coming from
Game(G) vanish. �

Corollary 9. The canonical pair for parity games is reducible to the canonical

pair for resolution.

Proof. Let p and k be as in Corollary 8. By Proposition 4, it is enough to show
reducibility to the canonical pair for Res(k). The reduction function is given by

G 7→ ( 〈Win0(E
σ, Rσ

min)〉G, 1
p(n) ).

If player 0 has a winning strategy forG then 〈Win0(E
σ, Rσ

min)〉G is satisfiable. On
the other hand, if player 1 has a winning strategy for G then 〈Win1(E

τ , Rτ
min)〉G
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•l1 •l2

• • •
u

Vertex u connected to leaves l1
and l2 with points and lines

• • •
v

• • • •
w

• • •
u

Non-leaf vertices with points and lines

Fig. 1. Components of point-line game graphs.

is satisfiable, and substituting the satisfying assignment into the Res(k) refuta-
tion from Corollary 8 yields the required refutation of 〈Win0(E

σ, Rσ
min)〉G of

size p(n). �

Corollary 10. If resolution is weakly automatizable, then parity games can be

decided in polynomial time. �

3 A Game Equivalent to Resolution

In this section we will define the point-line game and prove the following:

Theorem 11. The canonical pair for the point-line game is equivalent to the

canonical pair for resolution.

An instance of the point-line game is given by a finite directed acyclic graph
(V,E) with some extra structure. Namely, the set V is the disjoint union of sets
V0, V1 and F , where vertices in V0 and V1 belong respectively to player 0 and
player 1, and F contains exactly the leaf vertices, that is, those of out-degree 0.
There is a designated start vertex s of in-degree 0. Each vertex v contains a
set Sv of points. The start vertex is empty (contains no points) and every leaf
contains exactly one point. Vertices do not share points. If there is an edge (u, v)
in E, then some points in u may be connected to some points in v by lines.
A point in u may have lines out to many points in v, but each point in v has a
line in from at most one point in u, as in Fig. 1. During the game some points
will be assigned colours, either black, for player 0, or white, for player 1.

The game starts with a pebble on s. At the beginning of a general turn, the
pebble is on some vertex u and every point in u has a colour. As before, the
player who owns vertex u moves the pebble along an outgoing edge to a new
vertex v. Every point p in v that is connected by a line to some point q in u

is then coloured with q’s colour. Every other point in v is coloured with the
colour of the player who did not move. The game ends when the pebble reaches
a leaf w. The winner is the player whose colour is on the single point in w.

As before, a positional strategy is a function σ : V0 → V or τ : V1 → V

assigning a choice of outgoing edge to each of a player’s vertices, regardless of
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the history of the game or the colouring of the current vertex. However in this
case, it is not in general true that a winning strategy exists if and only if a
positional winning strategy exists. One can give an example of such a game in
which neither player has a positional winning strategy, while at the same time
one of the players must, as in any finite game, have a (non-positional) winning
strategy.

Lemma 12. Given such a game G and a positional strategy σ for player 0,
it is decidable in polynomial time whether σ is a winning strategy. Hence the

canonical pair for point-line games is a disjoint NP pair.

Proof. We describe a polynomial time algorithm which, working backwards from
the leaves, labels each vertex u with either a set Bu ⊆ Su of points or a symbol
“Losing0”. This labelling will have the property that if u is labelled “Losing0”
then, regardless of the colouring of u, if the pebble reaches u then player 1,
playing optimally, will win the game if player 0 plays according to σ. If u is
not labelled “Losing0” then if player 0 plays according to σ and player 1 plays
optimally, player 0 will win the game from u if and only if all points in Bu are
coloured black. Thus σ is a winning strategy for player 0 if and only if the start
vertex s is not labelled “Losing0”.

The algorithm labels a vertex u using the following rules.

1. If u is a leaf, set Bu to be the (unique) point in u.
2. If u ∈ V1, suppose that u has children v1, . . . , vk and that these have all been

labelled. If any child vi is labelled “Losing0”, then label u as “Losing0”.
Otherwise, let Bu contain every point in u which is connected by a line to
some point in Bvi

for some child vi (in other words, let Bu be the union of
the pre-images of the sets Bvi

).
3. If u ∈ V0, let v = σ(u). Suppose that v has been labelled. If v is labelled

“Losing0” then label u as “Losing0”. If not, there are two possibilities. If
there is a point in Bv that is not connected by a line to any point in u,
label u as “Losing0”. Otherwise, let Bu be the set of points of u which are
connected by a line to some point in Bv. �

Theorem 13. The canonical pair for the point-line game is reducible to the

canonical pair for Res(k) for some k ∈ N, and hence to the canonical pair for

resolution by Proposition 4.

Proof. (Sketch.) We can write a formula Win0 which is satisfiable if and only
if there is a strategy σ for player 0 and a corresponding labelling of the graph,
as in the previous lemma, in which no leaf reachable from s under σ is labelled
“Losing0”. We can write a similar formula Win1 wrt. a strategy τ for player 1
and a corresponding labelling. The proof that Win0 and Win1 cannot be satisfied
simultaneously is then essentially a proof that the labelling algorithm works. We
prove, working from the leaves of the graph down to s, that if any node v is
reachable from s under both σ and τ , then Bσ

v ∩W τ
v is non-empty, where W τ is

player 1’s version of the relation Bσ and represents points that must be coloured
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white for player 1 to win using strategy τ . This gives a contradiction when we
reach s, which contains no points.

This argument formalises as a U2 induction (we also need to add relations
Rσ and Rτ , for reachability under σ and τ , respectively to Win0 and Win1, as
in the previous section). Thus, it translates into a Res(k) refutation, which gives
us our result, as in Corollaries 8 and 9. �

The other direction of Theorem 11 can be proven by showing that the inter-
polation pair for PK1, which is equivalent to the canonical pair for resolution by
Proposition 4, is reducible to the canonical pair for the game.

Theorem 14. The interpolation pair of PK1 is reducible to the canonical pair

for the point-line game.

Proof. (Sketch.) Starting from a PK1-refutation of two sets of clauses Φ and
Ψ in disjoint sets of variables X and Y , we can construct in polynomial time
a game G such that if Φ is satisfiable then player 0 has a positional winning
strategy in G, and if Ψ is satisfiable then player 1 has such a strategy.

The game has one vertex for each DNF that forms a line in the proof, and
that vertex contains one point for each conjunction in the DNF. Additionally it
has one leaf vertex for each literal z arising from a variable in X ∪Y . Each such
leaf vertex contains a single point.

The structure of the game is similar to that of the proof. The edges reflect
the structure of the proof, and two points are connected by a line if the corre-
sponding conjunctions stand in a natural direct ancestor relation. The vertices
corresponding to cut and ∧-introduction rules belong to player 0 if an X variable
is involved in the rule, and to player 1 if it is a Y variable. Vertices corresponding
to clauses from Φ belong to player 0, similarly for Ψ and player 1.

The game is constructed so that the following is true. Suppose player 0 knows
an assignment A to the X variables that satisfies Φ. Then he can use A to make
choices in the game guaranteeing that, whenever the pebble moves to a non-leaf
vertex u, then for every point p in u which corresponds to a conjunction whose
X-literals are all satisfied by A, p gets coloured black. This means that when
the game reaches a node corresponding to an initial clause of the proof, then if
the clause is from Φ at least one point will be black, and if it is from Ψ then all
the points will be black. Either way, player 0 will win. We have the symmetrical
property for player 1. �

A question motivated by our results is to find a direct reduction of parity
games to point-line games with positional strategies. Using such a reduction one
may be able to define a subclass of point-line games that always have positional
strategies, for which one could try to find a polynomial time algorithm instead
of working directly with parity games.
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