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A propositional proof system is weakly automatizable if there is a polynomial time algorithm which separates
satisfiable formulas from formulas which have a short refutation in the system, with respect to a given
length bound. We show that if the resolution proof system is weakly automatizable, then parity games
can be decided in polynomial time. We give simple proofs that the same holds for depth-1 propositional

calculus (where resolution has depth 0) with respect to mean payoff and simple stochastic games. We define
a new type of combinatorial game and prove that resolution is weakly automatizable if and only if one can
separate, by a set decidable in polynomial time, the games in which the first player has a positional winning

strategy from the games in which the second player has a positional winning strategy.
Our main technique is to show that a suitable weak bounded arithmetic theory proves that both players

in a game cannot simultaneously have a winning strategy, and then to translate this proof into propositional
form.
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1. INTRODUCTION

Parity games, mean payoff games and simple stochastic games are three classes of two
player games, played by moving a token around a finite graph.

Parity games have important applications in automata theory, logic, and verifica-
tion [Grädel et al. 2002]—for example, the model checking problem for the modal
µ-calculus is polynomial time equivalent to solving parity games [Emerson and Jutla
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1991]. To the best of our knowledge, they originated in the study of the non-emptiness
problem for parity automata, a notion to which they are equivalent [Emerson and Jutla
1991]. Mean payoff games were introduced by Ehrenfeucht and Mycielski [1979], and
are useful in design and analysis for various on-line problems [Zwick and Paterson
1996]. Condon [1992] initiated the study of simple stochastic games for analysing ran-
domised space-bounded alternating Turing machines. They are restrictions of stochas-
tic games, which were introduced by Shapley [1953].

The main computational problem for all of these games is to decide, given an in-
stance of a game, which player has a positional winning strategy. From this point of
view, parity games are reducible to mean payoff games, and mean payoff games are re-
ducible to simple stochastic games [Puri 1995; Zwick and Paterson 1996]. It is known
that the decision problem for simple stochastic games is reducible to a search problem
in the intersection of the classes PLS and PPAD, which are believed to be incompa-
rable [Condon 1993; Juba 2005; Buresh-Oppenheim and Morioka 2004]. None of the
decision problems is known to be in P, despite intensive research work on developing
algorithms for them. For several of the existing algorithms, exponential lower bounds
on their runtime have been given recently [Friedmann 2011a; 2011b].

Automatizability is an important concept for automated theorem proving. Call a
propositional proof system automatizable if there is an algorithm which, given a tau-
tology, produces a proof in time polynomial in the size of its smallest proof—this time
condition is the best we can hope for, assuming NP 6= coNP. Automatizability is a very
strict notion. For example, Alekhnovich and Razborov [2008] have shown that resolu-
tion is not automatizable under a reasonable assumption in parameterised complexity
theory. Weak automatizability is a relaxation of automatizability, where proofs of tau-
tologies can be given in an arbitrary proof system, and only the time of finding such
proofs is restricted to polynomial in the size of the smallest proof in a given proof sys-
tem. This characterisation of weak automatizability is equivalent to the existence of a
polynomial time algorithm which separates satisfiable formulas from formulas which
have a short refutation in the system with respect to a given length bound. Unlike au-
tomatizability, weak automatizability is closed downwards in the sense that if a proof
system P is polynomially simulated by a proof system Q that is weakly automatizable,
then P is also weakly automatizable. Thus weak automatizability can be viewed as
a property that defines weak proof systems. Therefore, it is an important problem to
determine for which proof systems this property holds.

Two recent papers have shown a connection between weak automatizability and the
above mentioned games. Atserias and Maneva [2011] showed that if a certain proof
system (called PK1 in our notation) is weakly automatizable in polynomial time, then
the decision problem for mean payoff games is in P. Huang and Pitassi [2011] strength-
ened this to the decision problem for simple stochastic games. In this paper we extend
and simplify these results.

In Section 2 below we show that if resolution is weakly automatizable, then parity
games can be decided in polynomial time.

In Section 3 we give a proof that if PK1 is weakly automatizable, then mean pay-
off games can be decided in polynomial time. This is the main result of Atserias and
Maneva [2011], and also follows from Huang and Pitassi [2011] or from our Section 4
by the reducibility of mean payoff games to simple stochastic games. However these
proofs are rather indirect. Here we give a direct, natural proof of this result, using
the approach from the previous section and the development of binary arithmetic from
Appendix B.

In Section 4 we show a similar result for PK1 and simple stochastic games. This
is the main result of Huang and Pitassi [2011] but again we hope that our proof is
simpler.
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Finally in Section 5 we define a new game, the point-line game, about moving a token
around a finite graph. We show that its complexity is equivalent to that of resolution,
in a certain sense. Namely, resolution is weakly automatizable if and only if one can
separate, by a set in P, the games in which the first player has a positional winning
strategy from the games in which the second player has a positional winning strategy.

The essential part of the argument in Sections 2, 3 and 4, together with one direction
of Section 5, is to show that there is a polynomial-size propositional proof that winning
strategies cannot exist simultaneously for both players in a game. Propositional proofs
are complicated combinatorial objects, and constructing them by hand can be difficult.
Instead, we work with weak first-order bounded arithmetic theories which capture the
logical content of these proof systems, and rely on known translations of these to do
the hard work of actually constructing the propositional proofs for us. These transla-
tions go back to Paris and Wilkie [1985]. Later work has given finer results about the
logical depth of the propositional proofs. The main result we need, a first order-theory
which translates into polynomial-size resolution, is due to Krajı́ček [1994; 1997; 2001];
however as far as we know there is no paper with a self-contained presentation of
the proof (and our theory is slightly different). For these reasons we include our own
presentation of these translations as Appendix A.

The remaining parts of Section 1 contain some necessary preliminaries about propo-
sitional proofs, bounded arithmetic, disjoint NP pairs, and binary arithmetic. The tech-
nical details of our formalisation of binary arithmetic are in Appendix B.

Our main new result is the reduction of the decision problem for parity games to
the weak automatizability of resolution. Finding a polynomial time algorithm to solve
parity games is a long-standing open problem, so our result can be viewed as evidence
that either resolution is not weakly automatizable, or if it is, then this will be hard to
prove.

On the other hand, modern SAT solvers typically use algorithms which, given a for-
mula, generate either a satisfying assignment or what is essentially a resolution proof
that the formula is unsatisfiable. Thus it seems that a necessary condition for a for-
mula to be tractable by these SAT solvers is that the formula is either satisfiable, or
has a short resolution refutation. Our reduction can be used to translate a parity game
into a formula that satisfies at least this necessary condition. Hence, a possible appli-
cation is to try to combine our reduction with a SAT solver, to obtain a new algorithm
for solving parity games. A first step towards investigating the feasibility of this would
be to determine the hardness, as defined by Kullmann [2004], of the set of clauses
produced by our reduction.

Finally, a natural question is whether there is a converse to the results of Sections 2
and 4. That is, is it the case that polynomial time decidability of parity games implies
weak automatizability of resolution, or that polynomial time decidability of simple
stochastic games implies weak automatizability of PK1? We are inclined to think that
the answer is no, in both cases.

In the case of parity games and resolution, all we can say is that we do have a kind of
converse in Section 5, but we conjecture that the point-line games defined there are not
reducible to parity games, one reason being that the canonical pair of a parity game
consists of an NP set and its complement (also an NP set), while for point-line games
this is not always the case.

In the case of of simple stochastic games and PK1, we can say a little more. The result
in Section 4 about simple stochastic games only needs as much of U3-IND (and hence
of the proof system PK1 – see below) as suffices to prove that every ∆2 ordering of a
bounded set has a least element. We have an indirect reason to believe that this is not
the full strength of U3-IND. Namely, the recent paper by Buss et al. [2012] considers an
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analogous ordering principle, that every polynomial-time ordering of a bounded set has
a least element, and shows that this is provable not only in the theory T2

2 but also in
the theory T1

2+sWPHP(PNP), which extends T1
2 by a kind of approximate counting and

is presumably incomparable with T2
2. Hence the polynomial-time ordering principle is

unlikely to be as strong as T2
2, and we may expect a similar situation with the ∆2

ordering principle in U3-IND.

1.1. Constant depth proof systems

The propositional proof system PK is defined as follows. The formulas of PK are formed
from propositional variables p0, p1, p2, . . ., negation ¬, and unbounded fan-in conjunc-
tions and disjunctions

∧

and
∨

. Variables and negated variables are together called
literals. Formulas are then defined inductively: each literal is a formula, and if Φ is a
finite non-empty set of formulas then

∧

Φ and
∨

Φ are formulas.
For a formula ϕ, we use ¬ϕ as an abbreviation for the formula formed from ϕ by

interchanging
∧

and
∨

and interchanging atoms and their negations. We treat the
binary connectives ∧ and ∨ as the obvious set operations, for example

∨

Φ ∨
∨

Ψ =
∨

(Φ∪Ψ). The depth dp(ϕ) of a formula ϕ is the maximal nesting of
∧

and
∨

in ϕ. Thus
literals have depth 0, and dp(

∧

Φ) = dp(
∨

Φ) = 1 +maxϕ∈Φ dp(ϕ).
Each line in a PK-proof is a disjunction, sometimes called a cedent, usually written

as the list of disjuncts separated by commas. The rules of PK are as follows, where Γ,
∆ stand for sets of formulas, possibly empty:

Γ, A Γ, B
∧-introduction

Γ, A ∧ B

Γ, A,B
∨-introduction

Γ, A ∨ B

Γweakening
Γ,∆

Γ, A1 ∧ . . . ∧ Am Γ,¬A1, . . . ,¬Am
cut

Γ

We also allow introduction of logical axioms a,¬a for variables a.
We will also sometimes use “formula” to refer to a set of disjunctions. Semantically,

this behaves the same as the conjunction of those disjunctions. A PK refutation of such
a set of disjunctions Γ is a sequence of disjunctions ending with the empty disjunction,
such that each line in the proof is either in Γ, or a logical axiom, or follows from earlier
disjunctions in the sequence by a rule.

We will write PKd for the sub-system of PK in which every formula in a cedent has
depth d (or less), and PKd,k for the system in which the formulas have depth d+1, but
where all gates at depth d have fan-in at most k. The system PK0 is called resolution
and is denoted by Res(1) or simply Res. The system PK0,k, for k ≥ 2, is denoted by
Res(k).

There is obviously a potential confusion in what is meant by a depth-d proof system,
since in each case each line of a proof, viewed as a single disjunction, is of depth one
level higher than the formulas occurring in it. We will try to avoid this by always
explicitly referring to a system as resolution, Res(k), PKd or PKd,k.

1.2. Bounded arithmetic

We could obtain the results of this paper by a careful use of the conventional Buss-style
bounded arithmetic theories T2

1 and T3
1 [Buss 1986] augmented with uninterpreted

predicate and relation symbols, which can be viewed as second order variables. How-
ever, this would introduce unnecessary complications to deal with sharply bounded
quantification. Instead we will work with simpler systems. Furthermore, we use our
theories in such a way that only the complexity of formulas with the new predicate
and relation symbols matters, allowing us to include all true arithmetical formulas as
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axioms. Therefore, rather than describing a modification of Buss’s theories, we give a
new definition.

For r ∈ N, we will say that a function f : Nr → N is polynomially bounded if there is
some polynomial p such that f(x̄) ≤ p(x̄) for all x̄. Let L be the language consisting of
the constant symbols 0 and 1, and, for every r ∈ N, a function symbol for every polyno-
mially bounded function N

r → N and a relation symbol for every relation on N
r. If the

reader is uncomfortable with such a large language, it can be replaced by any reason-
ably rich language extending {0, 1,+, ·, <} as long as all functions in the language are
polynomially bounded. Let BASE be the set of true universal L-sentences. We will use
this as our base theory.

We extend L to a language L+ = L ∪ R̄ by adding a tuple R̄ of finitely many new
relation symbols. We will use these to stand for edges in a graph, or strategies in a
game, or whatever other objects we need to reason about.

Adapting notation from Wilmers [1985], we define a strict Ud formula to be one con-
sisting of d alternating blocks of bounded quantifiers, beginning with a universal block,
followed by a quantifier-free L+ formula. We add a further technical requirement,
to make sure that our translation of these formulas into propositional form works
smoothly: the quantifier-free part must have the form of a CNF if d is odd, or a DNF
if d is even. However we emphasise that, since any quantifier-free formula is logically
equivalent to one in either form, this requirement can usually be ignored in practice
and we will ignore it in the first-order proofs we use for our main results in this paper.
A Ud formula is a subformula of a strict Ud formula. The strict Ed formulas and the Ed

formulas are defined dually.
We remark that we will almost always work with bounded rather than unbounded

quantifiers, and will often not write the bounds if they are obvious, for example if we
are quantifying over the vertices of a given finite graph.

For d ≥ 0, we define Ud-IND to be BASE together with the usual induction scheme

∀a, φ(0) ∧ ∀x<a[φ(x) → φ(x+ 1)] → φ(a)

for each Ud formula φ(x), which may also contain other parameters. The theory Ed-IND
is defined similarly.

Similarly we define Ud-MIN to be the usual scheme asserting that any non-empty
Ud subset (with parameters) of an interval [0, a) has a least element. The schemes
Ed-MIN, Ud-MAX and Ed-MAX are the obvious variants of this. We will call a relation
or formula ∆d if in the model under consideration it is expressible both by an Ed and
by a Ud formula. We will say that a formula is ∆d over a theory if the theory proves
that the Ed and Ud versions are equivalent.

The following is proved in the same way as the corresponding principles in the usual
bounded arithmetic theories.

LEMMA 1.1. For d ≥ 0, the following hold over BASE:

(1) Ed-IND is equivalent to Ud-IND
(2) Ed-MAX is equivalent to Ed-MIN
(3) Ud-MAX is equivalent to Ud-MIN
(4) Ud+1-IND, Ud-MAX and Ed+1-MAX are equivalent.

Furthermore if d ≥ 1, then Ud+1-IND proves that every ∆d partial ordering on a bounded
interval has a least element.

We now give our version of the Paris-Wilkie translation of first-order proofs in
bounded arithmetic into small propositional proofs [Paris and Wilkie 1985]. Our goal
is to construct PKd,k refutations out of Ud+2-IND proofs.
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For an L+ formula φ, and an assignment α to the free variables of φ, we will de-
fine a PK formula 〈φ〉α. This translation will evaluate L formulas as true or false,
translate atomic formulas about the relations R̄ into propositional variables, translate
propositional connectives as themselves, and turn bounded quantifiers ∀ and ∃ into
respectively

∧

and
∨

. For each relation symbol in R̄ of arity s, we fix a propositional
variable ri1,...,is for each tuple of numbers i1, . . . , is. We assume that all these proposi-
tional variables, for all relation symbols in R̄, are pairwise distinct.

Before giving the formal definition, we introduce some notation. We identify the
empty set of formulas with a new symbol ⊤ (for the truth value true). We identify the
set {

∨

∅} containing just the empty disjunction with a new symbol ⊥ (for false). An
assignment α is a total map from first-order variables to natural numbers, in which
at most finitely many variables are assigned non-zero values. For an assignment α, a
variable x and a number n, we write α[x 7→ n] for the assignment which maps x to
n and leaves the mapping of all other variables unchanged. We write [x 7→ n] for the
assignment which maps x to n and all other variables to 0.

Definition 1.2. We compute propositional translations as follows.

(1) Any L-formula φ has a definite truth value under α. If φ evaluates to true we let
〈φ〉α be ⊤, and if it evaluates to false we let 〈φ〉α be ⊥.

(2) For t an L-term, we let 〈t〉α be the evaluation of t under α.
(3) For R an s-ary relation symbol in R̄, and t̄ an s-tuple of L-terms, we let 〈R(t̄)〉α

be the propositional variable ri1,...,is where each ij = 〈tj〉α, and let 〈¬R(t̄)〉α be the
negated variable ¬ri1,...,is .

(4) We let 〈φ ∧ ψ〉α be 〈φ〉α ∧ 〈ψ〉α and let 〈φ ∨ ψ〉α be 〈φ〉α ∨ 〈ψ〉α.
(5) We let 〈∀x< t φ(x)〉α be

∧

{〈φ〉α[x 7→m] : m < 〈t〉α}. Bounded existential quantifiers
are similarly translated into disjunctions.

Finally we simplify by inductively removing ⊤ from conjunctions, removing ⊥ from
disjunctions, replacing conjunctions containing ⊥ with ⊥, and replacing disjunctions
containing ⊤ with ⊤.

Now let φ be a strict Ud+2 formula, whose quantifier-free part is a k-CNF, if d is
odd, and k-DNF, if d is even. Then the translation 〈φ〉α is a conjunction of disjunctions,
where each disjunction is of depth d + 2, but all of its gates at depth d + 1 have fan-in
at most k. We write 〈φ〉dα for the set of these disjunctions. We must also distinguish the
case where 〈φ〉α is simply ⊤ or ⊥, where we let 〈φ〉dα be respectively ⊤ or ⊥.

The purpose of this extra step is to allow our translated formula to be usable in the
propositional proof systems defined above, since 〈φ〉dα now has exactly the form of a
set of cedents of PKd,k. For example, let φ be the formula ∀x<z ∃y<z R(x, y) ∧R(y, x).
Then 〈φ〉[z 7→n] is the formula

∧

i<n

∨

j<n rij ∧ rji. On the other hand 〈χ〉0[z 7→n] is the set

of disjunctions {
∨

j<n rij ∧ rji : i < n} which is in the right form to, for example, appear

as the set of initial cedents in a Res(2) derivation.

THEOREM 1.3. Let d ∈ N, with d ≥ 0. Suppose that φ1(x), . . . , φℓ(x) are strict
Ud+2 formulas, with x the only free variable, such that Ud+2-IND proves the formula
∀x¬(φ1(x) ∧ . . . ∧ φℓ(x)). Then for some k ∈ N the family

Φn := 〈φ1(x)〉
d
[x 7→n] ∪ · · · ∪ 〈φℓ(x)〉

d
[x 7→n]

has polynomial size PKd,k refutations.
Furthermore, we can take k to be the maximum k such that the quantifier-free parts

of the formulas φi and the induction formulas used in the proof translate into k-DNFs
if d is odd, or k-CNFs if d is even.
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The cases we will need for the main results of this paper are d = 0 and d = 1. We
will not need the part of the theorem giving extra information about k (because the
canonical pair of PKd,k is independent of k, up to polynomial equivalence—see below).

We remark that the theorem, as written, does not give optimally tidy results when
the formulas we are refuting are of lower complexity than the induction formulas used
in the proof. For example, in Sections 3 and 4 we will give refutations of U2 formulas
in U3-IND. A U2 formula translates naturally into a set of k-DNFs, but to apply the
theorem we must consider these rather as U3 formulas (by padding), which translate
into something messier. For our applications in this paper, this does not matter. Fur-
thermore this is an easy thing to fix, as the equivalence between the direct translation
of such formulas and the padded version has short derivations.

We give a self-contained proof of Theorem 1.3 in Appendix A.

1.3. Disjoint NP pairs

A disjoint NP pair is simply a pair of disjoint NP sets. In the context of proof complexity,
these were first studied in Razborov [1994]. Our presentation follows Pudlák [2003].
A pair (A,B) is polynomially reducible to a pair (C,D) if there is a polynomial time
function f , defined on all strings, such that {f(x) : x ∈ A} ⊆ C and {f(x) : x ∈ B} ⊆ D.
A pair (A,B) is polynomially equivalent to a pair (C,D) if polynomial reducibility holds
in both directions. A pair (A,B) is polynomially separable if there is a polynomial time
function which takes the value 0 on strings in A and the value 1 on strings in B.

If P is a propositional proof system, the canonical pair CP of P is the pair (A,B)
where

A = {(φ, 1m) : φ is satisfiable}

B = {(φ, 1m) : φ has a P-refutation of size at most m}.

We say that P is weakly automatizable if the canonical pair of P is polynomially sepa-
rable. This definition of weak automatizability is equivalent to others in the literature
(see Atserias and Bonet [2004]).

To define the interpolation pair IP of P, let ∆P be the set of triples (φ, θ, π) where θ
and φ are propositional formulas in disjoint variables and π is a P-refutation of φ ∧ θ.
Then IP is the pair (A,B) where

A = {(φ, θ, π) ∈ ∆P : φ is satisfiable}

B = {(φ, θ, π) ∈ ∆P : θ is satisfiable}.

Given a triple (φ, θ, π) ∈ ∆P , at least one of φ and θ must be unsatisfiable. We say that
P has feasible interpolation if there is a polynomial time function which, given such a
triple as input, outputs 0 if φ is unsatisfiable and 1 if θ is unsatisfiable. It is easy to
show that P has feasible interpolation if and only if IP is polynomially separable.

PROPOSITION 1.4.

(1) The interpolation pair of PK0 (resolution) is polynomially separable.
(2) For every d ≥ 0, the canonical pairs of the proof systems

PKd,PKd,2,PKd,3, . . .

are equivalent, and are also equivalent to the interpolation pairs of

PKd,2,PKd,3,PKd,4, . . . and of PKd+1.

PROOF-SKETCH. These relations are well-known. For the sake of completeness
we recall the ideas of their proofs. Feasible interpolation for resolution was proved
in Krajı́ček [1997]. We denote polynomial reducibility between pairs by �.
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The reductions CPKd
� CPKd,k

and IPKd,k
� IPKd+1

(for k ≥ 2) are trivial. The
converse reductions are easy, using extension variables and corresponding defin-
ing axioms. We illustrate this for the reduction IPK1

� IPK0,2
. We are given a triple

(φ, θ, π) ∈ ∆PK1
. Each conjunction C in π has the form Cφ ∧ Cθ, where Cφ is a conjunc-

tion of variables from φ and Cθ is a conjunction of variables from θ (and one of these
may be empty). For each C we introduce extension variables cφ for Cφ and cθ for Cθ. We
extend φ to φ′ and θ to θ′ by adding defining axioms respectively for all such variables
cφ and all such variables cθ. Notice that φ′ and θ′ are still in disjoint variables. It is
straightforward now to change π into a PK0,2-refutation π′ of φ′ ∧ θ′.

The reduction IPKd,k
� CPKd,k

is defined by mapping (φ, θ, π) to (φ, |π|) and observing
that from π and a satisfying assignment for θ we obtain a refutation of φ by substitut-
ing the assignment and simplifying the refutation π. The only nontrivial reduction
is CPKd

� IPKd+1
, which is defined by mapping (φ, 1m) to (φ, ρmφ , π

m
φ ), where ρφ is a

formula that says that a string of length m of propositional variables encodes a PKd

refutation of φ, and πm
φ is a PKd+1 refutation of φ ∧ ρmφ . One can construct these formu-

las as propositional translations of first order formulas and then use the fact that the
soundness of PKd is provable in Ud+2-IND in order to deduce that φ ∧ ρmφ has a refuta-

tion in PKd,k for some k. (This extends an argument of Atserias and Bonet [2004] for
the case d = 0.)

It is not known if any other pairs are polynomially separable. In Bonet et al. [2004]
it is proven that for some small d0 and all d ≥ d0, all pairs IPKd

are not polynomially
separable, assuming that factoring Blum integers or computing the Diffie-Hellman
function is sufficiently hard.

Finally, we define the canonical pair of a class of two-player games to be the pair
(A0, A1) where Ai is the set of games in which player i has a positional winning
strategy. Naturally, for this to make sense we need there to be a definition of what a po-
sitional strategy is, and for it to be possible to recognise a positional winning strategy
in NP.

Essentially all our results are based on the following observation, which we state as
a lemma.

LEMMA 1.5. Suppose that, for a class of games, we can construct in polynomial
time for every game G from the class a pair of propositional formulas Win0 and Win1 in
disjoint variables such that each Wini is satisfiable if player i has a positional winning
strategy. Suppose also that there exists a polynomial size refutation of Win0 ∪Win1 in a
proof system PKd or PKd,k. Then the canonical pair of the class of games is polynomially
reducible to the canonical pair of the proof system.

In particular, if we can construct polynomial size PKd,k refutations of Win0∪Win1 for
some k, then we get a polynomial reduction to the canonical pair of PKd.

PROOF. Let p be the polynomial bound on the size of the refutation. The reduction
of the canonical pair of the game to the canonical pair of the proof system is given by
the map

G 7→ (Win0, 1
p) .

The second part of the lemma follows from Proposition 1.4.

An alternative proof is to observe that the refutation π of Win0 ∪ Win1 which we
construct in Theorem 1.3 is actually constructible in polynomial time, and that the
mapping G 7→ (Win0,Win1, π) is thus a polynomial reduction from the canonical pair
of the class of games to the interpolation pair of the proof system. In particular, if
we can construct in polynomial time PKd+1 refutations of Win0 ∪ Win1, then we also
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get a polynomial reduction to the canonical pair of PKd, using Proposition 1.4. We
also remark that we stated the lemma for particular proof systems, but it clearly is a
general principle that holds true for a wide class of proof systems.

An important observation is that the formulas Wini are not limited to directly de-
scribing player i’s strategy, with propositional variables only for that strategy. We are
free to add any variables we like, and to say about them anything we like, as long as
we stay inside the logical complexity allowed by the proof system (which is no real lim-
itation, as we can add extension variables). We take advantage of this to add variables
and clauses that will make the refutation of Win0 ∪ Win1 easier. For example, in the
case of parity games, Win0 has extra variables and clauses describing a certain reach-
ability relation Rσ

min(x, y, z) arising from player 0’s strategy σ. What we cannot do is
add new variables that depend both on player 0’s and on player 1’s strategies.

Remark. We should note that in this paper we are concerned with polynomial re-
ductions and separations and with proofs of polynomial length. In particular, for dis-
joint NP pairs, we will simply write reducible or equivalent rather than polynomially
reducible or polynomially equivalent. We do not consider here the many natural and
important questions about quasi-polynomial reductions and proofs, in particular con-
cerning the proof system Res(log) [Krajı́ček 2001] and the usual systems Si2 and Ti

2 of
bounded arithmetic. We remark however that the system of narrow resolution, which
would sit at around the level PK−1 in our hierarchy, is known to be quasi-polynomially
automatizable [Ben-Sasson and Wigderson 2001].

1.4. Binary arithmetic

In Sections 3 and 4, refuting Win0 ∪ Win1 will require reasoning about basic binary
arithmetic, that is, about sums and ordering of n-bit numbers whose bits are given
by n propositional variables (in the propositional setting) or by an oracle (in the first-
order setting). For their results about mean payoff games, Atserias and Maneva [2011]
develop a very sophisticated family of fixed depth formulas (disjunctions of k-CNFs,
for a constant k) to sum constantly many binary numbers, and show their properties
are provable in PK1,k. Essentially the same formulas are used in Huang and Pitassi
[2011] for simple stochastic games.

We show that, for our purposes, this complicated construction is not necessary. This
is because the binary numbers we reason about always fall into two disjoint sets, those
arising from player 0’s strategy and those arising from player 1’s strategy. While we
will have to compare numbers from one side with numbers from the other, in our proofs
we will never have to consider sums in which we mix the two sides together. So for
every tuple of player 0’s numbers which we will need to sum together in a proof, we can
add variables to Win0 expressing the value of the sum, along with formulas expressing
that this value is calculated correctly. We will usually also need to add some extra
variables to witness the intermediate steps of the calculation.

We do our formalisation of binary arithmetic in the first-order setting. We use n+ 1
bits to represent an integer in the range [−2n, 2n) in two’s complement form. Every-
thing necessary can be formalised straightforwardly in U2-IND, with no surprises. We
include details in Appendix B, and summarise below the properties we need.

PROPOSITION 1.7. Over U2-IND,

(1) The usual ordering ≤ on such integers is provably a ∆2 linear order.
(2) There is a U2 formula Sum such that for integers X,Y, Z with X,Y ∈ [−2n−1, 2n−1),

we have X + Y = Z if and only if there is a string C such that Sum(X,Y, Z,C).
(3) Provably, for integers X,Y, Z, U, V,W with X,Y, U, V ∈ [−2n−1, 2n−1), if X ≤ U and

Y ≤ V , then Sum(X,Y, Z,C) and Sum(U, V,W,D) implies Z ≤W .
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2. PARITY GAMES

Following Stirling [2001] we will describe parity games in a simplified form, which
is linear-time equivalent to the usual definition. A parity game G is given by a finite
directed graph with vertices V and edges E satisfying the following properties. The set
V is the disjoint union of two sets V0 and V1 which we think of as the vertices belonging
respectively to player 0 and to player 1. The graph has a designated start vertex s, and
every vertex has at least one outgoing edge. We identify V with the interval [n] =
{0, . . . , n−1} where n = |V |. Below when we talk about the “least” vertex we mean the
least with respect to the usual order on [n]. Without loss of generality, s = 0.

The game begins with a pebble placed on the start vertex s. On each turn, the pebble
is moved from its current vertex v along an edge in the graph. If v ∈ V0 then player 0
chooses which edge to move it along. If v ∈ V1 then player 1 chooses. A play of the game
is the infinite sequence v1, v2, . . . of vertices visited by the pebble. To decide the winner
of a play, let v be the least vertex which occurs infinitely often. If v ∈ V0 then player 0
wins and if v ∈ V1 then player 1 wins.

A positional strategy σ for player 0 is a map σ : V0 → V such that (x, σ(x)) ∈ E for
each x ∈ V0. Similarly, a positional strategy τ for player 1 is a map τ : V1 → V such
that (x, τ(x)) ∈ E for each x ∈ V1.

The following theorem was proved by Emerson [1985] independently of a similar
result for mean payoff games by Ehrenfeucht and Mycielski [1979]; the reduction from
parity to mean payoff games was found later by Puri [1995].

THEOREM 2.1 (EMERSON [1985]). A player has a winning strategy in a parity
game if and only if he has a positional winning strategy.

From now on we will only discuss positional strategies, so we will usually omit the
word “positional”. Given a strategy σ for player 0, we will use Eσ to mean the edge
relation obtained from E by, for each vertex v ∈ V0, removing all outgoing edges except
for the one chosen in σ. We will similarly use Eτ to mean E restricted by a strategy τ
for player 1.

It is straightforward to show that the strategy σ is winning for player 0 if and only
if for every vertex t reachable from s in Eσ, for every path from t to t in Eσ, the least
vertex on the path is in V0. To prove our main result in this section, we formalise
this characterisation in such a way that we can prove in U2-IND that player 0 and
player 1 cannot simultaneously have winning strategies. In our formalisation below,
all quantifiers are implicitly bounded by n.

Expand the language L to include relation symbols E, V0, V1, Eσ, Rσ
min, Eτ , Rτ

min and
a constant symbol n. We will write G to stand for the tuple E, V0, V1, n representing the
structure of the game. The intended meaning of Eσ is as described above. The intended
meaning of the ternary relation Rσ

min(x, y, z) is that there is a non-trivial path in Eσ

from x to y on which the least vertex visited is z. The relations Eτ and Rτ
min are similar.

Let Game(G) be a formula asserting that G is a suitable graph for a parity game,
that is, that V0 and V1 partition the vertices and every vertex has at least one outgoing
edge. Let Strategy0(G,E

σ) be a formula asserting that Eσ represents a strategy for
player 0, that is, that every vertex in V0 has exactly one outgoing edge in Eσ. Let
Strategy1(G,E

τ ) be a similar formula for player 1. It is clear that these can all be
written as U2 formulas.

Let Win0(G,E
σ, Rσ

min) be the conjunction of the universal closures of

(1) Strategy0(G,E
σ)

(2) Eσ(x, y) ∧ z = min(x, y) → Rσ
min(x, y, z)

(3) Rσ
min(x, y, u) ∧R

σ
min(y, z, v) ∧ w = min(u, v) → Rσ

min(x, z, w)
(4) Rσ

min(s, x, u) ∧R
σ
min(x, x, v) → v ∈ V0.
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Let Win1(G,E
τ , Rτ

min) be a similar formula for player 1.

LEMMA 2.2. If player 0 has a winning strategy in game G, then there exist Eσ and
Rσ

min satisfying Win0(G,E
σ, Rσ

min). Similarly for player 1 and Win1(G,E
τ , Rτ

min).

The converse of Lemma 2.2 is also true. For suppose that player 0 does not have a
winning strategy, but that we can satisfy Win0(G,E

σ, Rσ
min). Then by Theorem 2.1,

player 1 must have a winning strategy. Hence by Lemma 2.2, we can also satisfy
Win1(G,E

τ , Rτ
min). But by Theorem 2.3 below, we cannot satisfy both.

THEOREM 2.3. Provably in U2-IND, it is impossible to simultaneously satisfy
Game(G), Win0(G,E

σ, Rσ
min) and Win1(G,E

τ , Rτ
min).

PROOF. We first describe an informal proof. In the graph Eσ ∩ Eτ , if we start from
s we will eventually reach some vertex t which is on a loop. Let v be the least ver-
tex on this loop. Then we must have ∃uRσ

min(s, t, u), ∃uRτ
min(s, t, u), R

σ
min(t, t, v) and

Rτ
min(t, t, v). Hence condition (4) is false in Win0 if v ∈ V1 and false in Win1 if v ∈ V0.
We cannot use this argument directly in U2-IND, because we are not able in general

to define the reachability relation on Eσ ∩ Eτ . Instead, let R∗(x, y) be the formula

∃v, Rσ
min(x, y, v) ∧R

τ
min(x, y, v).

By condition (3) of Win0 and Win1, the relation R∗(x, y) is transitive. Moreover for
every x there is at least one y such that R∗(x, y), since we can take y to be the unique
successor of x in Eσ ∩ Eτ and take v to be min(x, y).

We will use R∗(x, y) as an approximation of the reachability relation on Eσ∩Eτ and,
as in the informal proof, find a vertex t that is both on a loop and reachable from s, in
this approximate sense. Let A(x) be the formula

R∗(s, x) ∧ ∀y>x¬R∗(x, y).

Using E1-MAX, let x be maximum such that R∗(s, x). It follows by transitivity of R∗

that A(x) holds. Hence using E2-MIN, we can let t be minimum such that A(t).
Now using E1-MAX, let t′ be maximum such that R∗(t, t′). By the transitivity of R∗,

we know that R∗(s, t′) and also that for all y > t′ we have ¬R∗(t′, y), by maximality of
t′ and transitivity. Hence A(t′) holds, and therefore t′ ≥ t by minimality of t. On the
other hand, since A(t) and R∗(t, t′), we know t′ ≤ t. We conclude that t′ = t.

We now have that R∗(s, t) and R∗(t, t). Hence there are vertices u and v such that
both Rσ

min(s, t, u) ∧ Rσ
min(t, t, v) and Rτ

min(s, t, u) ∧ Rτ
min(t, t, v) hold. Therefore, condi-

tion (4) must be false in either Win0 or Win1, since either v ∈ V0 or v ∈ V1.

The formula Win0(G,E
σ, Rσ

min) is a conjunction of U2 formulas. Suppose we are given
a parity game G, with n vertices. Let α map the constant symbol n of our language
(which we treat here as a free variable) to the number n. Then for some k ∈ N we can
translate each such formula φ into a conjunction 〈φ〉α of k-DNFs, with propositional
variables for the relations Eσ, Rσ

min and for the structure of the game G. We abuse
notation and write 〈Win0(E

σ, Rσ
min)〉G for the propositional formula obtained by taking

the set of all the formulas 〈φ〉α and substituting in, for the propositional variables
describing the structure of G, the values given by the actual game G.

In other words, 〈Win0(E
σ, Rσ

min)〉G is the propositional formula obtained by translat-
ing Win0 and substituting in the real values of G. It is satisfiable if and only if player 0
has a winning strategy in G. The formula 〈Win1(E

τ , Rτ
min)〉G is similar.

COROLLARY 2.4. There is a number k ∈ N and a polynomial p such that for every
game G, the set of formulas 〈Win0(E

σ, Rσ
min)〉G ∪ 〈Win1(E

τ , Rτ
min)〉G has a Res(k) refu-

tation of size p(n).
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PROOF. Take the refutation given by Theorem 1.3 and substitute in the real values
of G. Observe that G satisfies Game(G), so all the initial formulas coming from
Game(G) vanish.

Applying Lemma 1.5 to Corollary 2.4 yields the following

COROLLARY 2.5. The canonical pair for parity games is reducible to the canonical
pair for resolution.

COROLLARY 2.6. If resolution is weakly automatizable, then parity games can be
decided in polynomial time.

3. MEAN PAYOFF GAMES

A mean payoff game G is given by a finite directed graph (V,E) where V = [n] is
the disjoint union of sets V0 and V1 belonging respectively to player 0 and player 1,
there is a designated start vertex s and each vertex has at least one outgoing edge.
Furthermore each edge (x, y) is now assigned an integer weight w(x, y) (written as a
binary string). The rules for moving the pebble are the same as for a parity game. To
decide the winner, let ν = lim infm→∞

1
m

∑m
i=1 w(vi, vi+1) where v1, v2, . . . is the infinite

sequence of vertices visited by the pebble. If ν ≥ 0 then player 0 wins and if ν < 0 then
player 1 wins. Strategies and positional strategies are defined as for parity games, and
by the following theorem we will again usually omit the word “positional”.

THEOREM 3.1 (EHRENFEUCHT AND MYCIELSKI [1979]). A player has a winning
strategy in a mean payoff game if and only if he has a positional winning strategy.

Given a strategy σ for player 0, and vertices x and y such that y is reachable from x
in Eσ, let uσinf(x, y) ∈ {−∞} ∪ Z be the infimum, over all non-trivial paths π from x to
y in Eσ, of the total weight of π. We claim that if uσinf(x, y) > −∞ then uσinf(x, y) ≥ Mn,
where M < 0 is a lower bound on the weight of the edges. This is because if π has
no loops, then Mn bounds the weight of π; removing loops of positive weight does not
increase the weight of π; and if π has a loop of negative weight, then paths exist with
arbitrarily low weights, so uσinf(x, y) = −∞.

A strategy σ for player 0 is winning if and only if, for every vertex t reachable from
s in Eσ, uσinf(t, t) ≥ 0. Similarly given a strategy τ for player 1 we can define uτsup(x, y)
and show that τ is winning if and only if, for every vertex t reachable from s in Eτ ,
uτsup(t, t) < 0.

Expand the language L to include a tuple G of relation symbols E, V0, V1, W and
a constant symbol n, together describing the game. We add relation symbols Eσ, Rσ,
and Uσ

inf for player 0’s strategy and some relations derived from it. Here the intended
meaning of Rσ(x, y) is that y is reachable from x in Eσ, and the intended meaning
of Uσ

inf(x, y, i) is the ith bit of the binary number uσinf(x, y) (we also reserve one bit
to express whether uσinf(x, y) is infinite). We further add a collection Cσ

U of relation
symbols to code the computations of the sum uσinf(x, y) + uσinf(y, z) for all triples x, y, z.
We similarly add relation symbols Eτ , Rτ , Uτ

sup and Cτ
U for player 1.

Let Game(G) be a formula asserting that G is a suitable graph for a mean payoff
game. Let Strategy0(G,E

σ) and Strategy1(G,E
τ ) be as before. Again, all three formu-

las are U2 formulas. Let Win0(G,E
σ, Rσ, Uσ

inf , C
σ
U ) be the conjunction of the universal

closures of:

(1) Strategy0(G,E
σ)

(2) All sums used in the proof are computed correctly
(3) Eσ(x, y) → Rσ(x, y) ∧ [uσinf(x, y) ≤ w(x, y)]
(4) Rσ(x, y) ∧Rσ(y, z) → Rσ(x, z) ∧ [uσinf(x, z) ≤ uσinf(x, y) + uσinf(y, z)]
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(5) Rσ(s, x) → [uσinf(x, x) ≥ 0].

Here condition (2) is a conjunction of U2 formulas involving the formula Sum. Condi-
tions (3), (4) and (5) are also U2, since the ordering relation is provably ∆2. Note that
the formalisation of (4) does not involve Sum, but rather the part of Cσ

U which is stated
in condition (2) to code the value of the sum uσinf(x, y) + uσinf(y, z).

Let Win1(G,E
τ , Rτ , Uτ

sup, C
τ
U ) be a dual formula for player 1, with the ordering re-

versed in (3) and (4) and with (5) replaced by

(5) Rτ (s, x) → [uτsup(x, x) < 0].

THEOREM 3.2. Provably in U3-IND, it is impossible to simultaneously satisfy
Game(G), Win0(G,E

σ, Rσ, Uσ
inf , C

σ
U ) and Win1(G,E

τ , Rτ , Uτ
sup, C

τ
U ).

PROOF. Let R∗(x, y) be the formula

Rσ(x, y) ∧Rτ (x, y) ∧ [uσinf(x, y) ≤ uτsup(x, y)].

Using the properties of binary arithmetic we can show that the relation R∗ is transi-
tive. Also, as before, for all x there exists some y for which R∗(x, y).

It follows, by exactly the same argument as in the proof of Theorem 2.3, that there
exists a vertex t such that R∗(s, t)∧R∗(t, t). The only difference is that now the relation
R∗(x, y) is ∆2 rather than E1, so we need U3-IND rather than U2-IND. We conclude
that Rσ(s, t) ∧ Rτ (s, t) ∧ [uσinf(t, t) ≤ uτsup(t, t)], violating condition (5) of either Win0 or
Win1.

COROLLARY 3.3 (ATSERIAS AND MANEVA [2011]). The canonical pair for mean
payoff games is reducible to the canonical pair for PK1. Hence if PK1 is weakly au-
tomatizable, then we can decide the winner of a mean payoff game in polynomial time.

PROOF. The proof is similar to the one given for parity games in Corollaries 2.4
and 2.5.

4. SIMPLE STOCHASTIC GAMES

A simple stochastic game (SSG) G is given by a directed graph (V,E) satisfying the
following properties. G has a designated start vertex s and two sink vertices called
the 0-sink and the 1-sink. The set of non-sink vertices is the disjoint union of three
sets Vmax, Vmin, Vave called max, min and average vertices. All non-sink vertices have
exactly two outgoing edges. As before we assume that V = [n] and s = 0.

The game is played by putting a pebble on the start vertex, which is then moved
along the edges of G by two players denoted player 1 or “Max”, and player 0 or “Min”.
From a max vertex, player 1 chooses the outgoing edge to move the pebble along, and
similarly for min vertices and player 0. At average vertices, the successor vertex is
chosen at random with each of the two outgoing edges being chosen with probability 1

2 .
Player 1 wins the play if the pebble reaches the 1-sink and player 0 wins if it reaches
the 0-sink.

A strategy σ for player 0 is a map σ : Vmin → V such that (i, σ(i)) ∈ E for all min ver-
tices i. Similarly, a strategy τ for player 1 is a map τ : Vmax → V such that (i, τ(i)) ∈ E
for all max vertices i. We define the value vσ,τ (i) of vertex i with respect to strategies σ
and τ to be the probability that player 1 wins the game if the pebble begins on i and the
players use strategies σ and τ . The optimal value vopt(i) of G at vertex i is defined as
maxτ minσ vσ,τ (i). We define the value val(G) of G to be vopt(s), the optimal value of the

start vertex. The SSG value problem is to decide, given an SSG G, whether val(G) > 1
2 .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Arnold Beckmann et al.

For λ ∈ R, say that a λ-solution of G is a vector u ∈ [0, 1]n satisfying, at all vertices i,

u(i) =



























λmax{u(j), u(k)} if i ∈ Vmax and iE = {j, k}

λmin{u(j), u(k)} if i ∈ Vmin and iE = {j, k}
λ
2 (u(j) + u(k)) if i ∈ Vave and iE = {j, k}

0 if i is the 0-sink

1 if i is the 1-sink

where iE denotes the set of vertices which can be reached from i using an edge in G,
that is, iE = {j ∈ V : (i, j) ∈ E}. If λ = 1 we will call u simply a solution of G. It is easy
to see that the vector vopt of optimal values of G is a solution of G. However, in general
there may also be other solutions.

PROPOSITION 4.1 (SHAPLEY [1953]; CONDON [1992]). There is a constant c such
that for any game G, if we let m = cn and λ = 1−2−m then G has a unique λ-solution w.

Furthermore if val(G) ≤ 1
2 then w(s) ≤ 1

2 and if val(G) > 1
2 then w(s) ≥ 1

2 + 1
2 · 4−N ,

where N = n(m+ 1).

This follows immediately from the results in Condon [1992]. That paper expands G
to a λ-stopping game G′ with N vertices, where val(G′) > 1

2 if and only if val(G) > 1
2 .

The vector w arises as the restriction of the optimal values of G′ to the vertices in G.
Since G′ is an SSG, the optimal values of G′ are rational numbers over a common
denominator bounded above by 4N .

Take λ, m and N as in the proposition. To obtain our reduction of SSGs to the weak
automatizability of PK1, we will prove in U3-IND that it is impossible to simultane-
ously have a solution u ofGwith u(s) ≤ 1

2 and a λ-solutionw ofGwithw(s) ≥ 1
2+

1
2 ·4

−N .
Mixing solutions with λ-solutions in this way is not essential, but makes our proof sub-
stantially simpler. We are also careful that our proof never involves the sum of a value
from u and a value from w. Otherwise we follow Huang and Pitassi [2011] in formalis-
ing the argument in Condon [1992] that λ-stopping games have a unique solution.

Let D = 2m+44N . Let Win0(G,U) express the following, where as above we use j and
k to refer to the two neighbours of i:

(1) All sums in u used in the proof are computed correctly
(2) u(i) ≥ max{u(j), u(k)}, for i ∈ Vmax

(3) u(i) ≥ min{u(j), u(k)}, for i ∈ Vmin

(4) 2u(i) ≥ u(j) + u(k)− 2, for i ∈ Vave
(5) u(0-sink) = 0 and u(1-sink) = D
(6) u(s) ≤ D

2 .

If val(G) ≤ 1
2 then Win0(G,U) can be satisfied by setting u = ⌊D · v⌋ for the vector

v = vopt of optimal values of G (in particular v(i) = 1
2 (v(j) + v(k)) gives ⌊Dv(i)⌋ ≥

1
2 (Dv(j) +Dv(k))− 1, from which condition (4) follows).

For Win1(G,W ), we would like to write something dual to Win0(G,U), expressing
that w has some of the useful properties of a λ-solution of G. For example, we might
choose to write w(i) ≤ λmax{w(j), w(k)}. However, for the sake of simplicity we would
rather avoid using any binary multiplication. It turns out that we will only be inter-
ested in vertices i with w(i) ≥ 2m+3, and for such i we have that, for any number a,
if w(i) ≤ λa then w(i) ≤ a − 8 (recall that λ = 1 − 2−m). For our purposes, this last
property is enough. Hence we let Win1(G,W ) express the following:
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(1) All sums in w used in the proof are computed correctly
(2) If w(i) ≥ 2m+3 then w(i) ≤ max{w(j), w(k)} − 8, for i ∈ Vmax

(3) If w(i) ≥ 2m+3 then w(i) ≤ min{w(j), w(k)} − 8, for i ∈ Vmin

(4) If w(i) ≥ 2m+3 then 2w(i) ≤ w(j) + w(k)− 14, for i ∈ Vave
(5) w(0-sink) = 0 and w(1-sink) = D
(6) w(s) ≥ D

2 + 2m+3.

If val(G) > 1
2 then Win1(G,W ) can be satisfied by setting w = ⌊D·w′⌋ for the (unique) λ-

solution w′ of G (in particular w′(i) = λ
2 (w

′(j)+w′(k)) gives w(i) ≤ λ
2 (Dw

′(j)+Dw′(k)),

so w(i) ≤ 1
2 (Dw

′(j) +Dw′(k))− 8 if w(i) ≥ 2m+3, from which condition (4) follows).
The particular numbers 8, 8, 14 are inessential; any numbers big enough (so that

Win1 can be satisfied if val(G) > 1
2 ) and strictly bigger than the corresponding numbers

for Win0 (that is, 0, 0, 2) will work for the proof. These numbers are in a way arbitrary,
as they depend on our choice of D.

Let Game(G) assert that G is a suitable graph for an SSG. As in Section 3, Game(G),
Win0(G,U) and Win1(G,W ) are all conjunctions of U2 formulas.

THEOREM 4.2. Provably in U3-IND, it is impossible to satisfy Game(G), Win0(G,U)
and Win1(G,W ) simultaneously.

PROOF. Define a relation � on the vertices of G by i � j if and only if w(i)− w(j) ≥
u(i)−u(j). This is ∆2 (since we can assume that we are given all differences w(i)−w(j)
and u(i)− u(j)) and, by the properties of binary arithmetic, is a total order. Therefore,
by U2-MAX there exists a vertex i which is �-maximum. Fix such an i.

In particular i � s, that is, w(i)− w(s) ≥ u(i)− u(s). Hence

w(i)− D
2 − 2m+3 ≥ u(i)− D

2 .

Since u(i) ≥ 0, it follows that w(i) ≥ 2m+3. Also w(i) 6= u(i), so i cannot be a sink. Let
j and k be the neighbours of i. We know w(i) − w(j) ≥ u(i) − u(j) and w(i) − w(k) ≥
u(i)− u(k).

Suppose i ∈ Vmax. Without loss of generality we may assume w(j) ≥ w(k). From
condition (2) of Win0 we have u(i) ≥ u(j) and from condition (2) of Win1 we have
w(i) ≤ w(j)− 8, giving

u(i)− u(j) ≥ 0 ≥ w(i)− w(j) + 8 > w(i)− w(j)

which is impossible.
Suppose i ∈ Vmin. Without loss of generality we may assume u(j) ≤ u(k). This time,

from condition (3) of Win0 we have u(i) ≥ u(j) and from condition (3) of Win1 we have
w(i) ≤ w(j)− 8, so we are back in the previous case.

Finally suppose i ∈ Vave. From condition (4) of Win0 and Win1 we have

u(i)− u(j) + u(i)− u(k) + 2 ≥ 0 ≥ w(i)− w(j) + w(i)− w(k) + 14

which is impossible.

COROLLARY 4.3 (HUANG AND PITASSI [2011]). The canonical pair for SSGs is re-
ducible to the canonical pair for PK1. Hence if PK1 is weakly automatizable, then we
can decide the SSG value problem in polynomial time.

5. A GAME EQUIVALENT TO RESOLUTION

In this section we will define the point-line game and prove the following:

THEOREM 5.1. The canonical pair for the point-line game is equivalent to the
canonical pair for resolution.
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•
l1

•
l2

• • •
u

Vertex u connected to leaves l1
and l2 with points and lines

• • •
v

• • • •
w

• • •
u

Non-leaf vertices with points and lines

Fig. 1. Components of point-line game graphs.

An instance of the point-line game is given by a finite directed acyclic graph (V,E)
with some extra structure. Namely, the set V is the disjoint union of sets V0, V1 and F ,
where vertices in V0 and V1 belong respectively to player 0 and player 1, and F contains
exactly the leaf vertices, that is, those of out-degree 0. There is a designated start
vertex s of in-degree 0. Each vertex v contains a set Sv of points. The start vertex is
empty (contains no points) and every leaf contains exactly one point. Vertices do not
share points. If there is an edge (u, v) in E, then some points in u may be connected to
some points in v by lines. A point in u may have lines out to many points in v, but each
point in v has a line in from at most one point in u, as in Fig. 1. During the game some
points will be assigned colours, either black, for player 0, or white, for player 1.

The game starts with a pebble on s. At the beginning of a general turn, the pebble
is on some vertex u and every point in u has a colour. As before, the player who owns
vertex u moves the pebble along an outgoing edge to a new vertex v. Every point p in v
that is connected by a line to some point q in u is then coloured with q’s colour. Every
other point in v is coloured with the colour of the player who did not move. The game
ends when the pebble reaches a leaf w. The winner is the player whose colour is on the
single point in w.

As before, a positional strategy is a function σ : V0 → V or τ : V1 → V assigning a
choice of outgoing edge to each of a player’s vertices, regardless of the history of the
game or the colouring of the current vertex. However in this case, it is not in general
true that a winning strategy exists if and only a positional winning strategy exists. One
can give an example of such a game in which neither player has a positional winning
strategy, while at the same time one of the players must, as in any finite game, have a
(non-positional) winning strategy.

LEMMA 5.2. Given such a game G and a positional strategy σ for player 0, it is
decidable in polynomial time whether σ is a winning strategy. Hence the canonical pair
for point-line games is a disjoint NP pair.

PROOF. We describe a polynomial time algorithm which, working backwards from
the leaves, labels each vertex u with either a set Bu ⊆ Su of points or a symbol
“Losing0”. This labelling will have the property that if u is labelled “Losing0” then, re-
gardless of the colouring of u, if the pebble reaches u then player 1, playing optimally,
will win the game if player 0 plays according to σ. If u is not labelled “Losing0” then if
player 0 plays according to σ and player 1 plays optimally, player 0 will win the game
from u if and only if all points in Bu are coloured black. Thus σ is a winning strategy
for player 0 if and only if the start vertex s is not labelled “Losing0”.

The algorithm labels a vertex u using the following rules.

(1) If u is a leaf, set Bu to be the (unique) point in u.
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. . .

vi

Losing0 . . .

vj

Bvj . . .

u ∈ V1

Losing
0

Some child of u labelled “Losing0”

. . .

vi

Bvi . . .

vj

Bvj

u ∈ V1

Bu

. . .

No child of u labelled “Losing0”

Fig. 2. The algorithm constructing a labelling of a point-line game under a strategy σ: the cases when
constructing a label for a vertex u in V1.

(2) If u ∈ V1, suppose that u has children v1, . . . , vk and that these have all been la-
belled. If any child vi is labelled “Losing0”, then label u as “Losing0”. Otherwise, let
Bu contain every point in u which is connected by a line to some point in Bvi

for
some child vi (in other words, let Bu be the union of the pre-images of the sets Bvi

).
See Fig. 2.

(3) If u ∈ V0, let v = σ(u). Suppose that v has been labelled. If v is labelled “Losing0”
then label u as “Losing0”. If not, there are two possibilities. If there is a point in Bv

that is not connected by a line to any point in u, label u as “Losing0”. Otherwise, let
Bu be the set of points of u which are connected by a line to some point in Bv. See
Fig. 3.

THEOREM 5.3. The canonical pair for the point-line game is reducible to the canon-
ical pair for PK0,k for some k ∈ N, and hence to the canonical pair for resolution.

PROOF. Our proof uses the same basic structure as for the games in previous sec-
tions. Expand the language L to include a tuple G of relation symbols E, V0, V1, F , S,
N and a constant symbol n, together describing the game. Here S(u, p) means that a
point p is in the set Su and N(p, q) means that there is a line from point p to point q.
Let Game(G) be a conjunction of U2 formulas asserting that G has the properties of a
game. In particular, we enforce that the underlying graph is a acyclic by only allowing
an edge E(u, v) if u < v.

For player 0 we also add symbols Eσ, Rσ, Bσ and Losingσ0 to the language. We let
Win0(G,E

σ, Rσ, Bσ,Losingσ0 ) be a conjunction of U2 formulas asserting that Eσ arises
from a strategy for player 0; that Rσ(u, v) holds if v is reachable from u in Eσ; that Bσ
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v = σ(u)

Losing0

u ∈ V0

Losing
0

Node v labelled “Losing0”

v = σ(u)

Bv
• • •

u ∈ V0

Losing
0• •

Node v labelled Bv, and some point in
Bv not connected to any point in u

v = σ(u)

Bv

u ∈ V0

Bu

Node v labelled Bv, and all points in
Bv connected to points in u

Fig. 3. The algorithm constructing a labelling of a point-line game under a strategy σ: the cases when
constructing a label for a vertex u in V0.

and Losingσ0 give a labelling of the vertices as in the proof of Lemma 5.2; and that for
every vertex v, if Rσ(s, v) then v /∈ Losingσ0 .

For player 1 we similarly add symbols Eτ , Rτ , W τ and Losingτ1 and define a simi-
lar formula Win1(G,E

τ , Rτ ,W τ ,Losingτ1). Here W τ corresponds to Bσ and represents
points that must be coloured white for player 1 to win using strategy τ .

It is easy to see that if player 0 has a winning strategy then we can satisfy
Win0(G,E

σ, Rσ, Bσ,Losingσ0 ) and that a similar thing is true for player 1. Hence for the
theorem it is enough to give a U2-IND proof that Game(G), Win0(G,E

σ, Rσ, Bσ,Losingσ0 )
and Win1(G,E

τ , Rτ ,W τ ,Losingτ1) cannot be satisfied simultaneously.
Suppose otherwise. We will show by U2-IND that for u = n− 1, . . . , 0,

∀v>u, Rσ(s, v) ∧Rτ (s, v) → ∃p ∈ Bσ
v ∩W τ

v .

This holds trivially at n− 1. Suppose that it holds at u, and that Rσ(s, u) and Rτ (s, u).
For the induction, it is enough to show that Bσ

u ∩W τ
u is non-empty. If u is a leaf, then

by rule (1) of our labelling algorithm the unique point p in u must be in both Bσ
u and

W τ
u . So we may assume that u is an internal vertex.
Without loss of generality assume u ∈ V0. Taking v = σ(u), from our assumptions

we must have Rσ(s, v), Rτ (s, v) and v > u, so by the inductive hypothesis there is some
point q in Bσ

v ∩W τ
v . Furthermore, neither u nor v is in either Losingσ0 or Losingτ1 .

Since u /∈ Losingσ0 and q ∈ Bσ
v , there must be a line in the game connecting q with

some point p in u, by rule (3) of our labelling algorithm for σ. Hence p is inBσ
u by rule (3)

of the algorithm for σ, and in W τ
u by rule (2) of the algorithm for τ . This completes the

induction.
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Γ = . . . , z, . . . , z′, . . .

•
vz

•
vz′

. . . z . . . z′ . . .

Γ

Fig. 4. Constructing point-line games from PK′

1
derivations: the case of an initial clause Γ.

It follows that there is some point p ∈ Bσ
s ∩ W τ

s for the start vertex s, which is
impossible since s contains no points.

We will prove the other direction of Theorem 5.1 by showing that the interpolation
pair for PK1, which is known to be equivalent to the canonical pair for resolution, is
reducible to the canonical pair for the game. In fact we will not use the system PK1

directly, but will use a similar system PK′

1 defined below, which is easily shown to be
p-equivalent to PK1 and hence to have an equivalent interpolation pair.

A PK′

1 refutation is a sequence of DNFs, each written as a list of conjunctions sepa-
rated by commas. However unlike in (our definition of) PK1, DNFs in PK′

1 behave like
sequences of their disjuncts, not like sets. This means that repetition and ordering of
disjuncts now matter, and we include explicit structural rules to manipulate them. We
still treat conjunctions as sets of their conjuncts.

The rules of PK′

1 are as follows, for literals z, conjunctions α, β and sequences of
conjunctions Γ, ∆:

Γweakening
Γ,∆

Γ, α, α
contraction

Γ, α

Γ, α, β,∆
exchange

Γ, β, α,∆

Γ, α ∧ z Γ,¬z
cut

Γ

Γ, α Γ, z
∧-introduction

Γ, α ∧ z

We also allow introduction of logical axioms z,¬z.

THEOREM 5.4. The interpolation pair of PK′

1 is reducible to the canonical pair for
the point-line game.

PROOF. We are given two sets of clauses Φ and Ψ in disjoint sets of variables X
and Y . We are also given a PK′

1 refutation π of Φ ∪ Ψ. We may assume without loss of
generality that Φ already contains all axioms x,¬x for variables from X, and similarly
for Ψ and axioms from Y , and that there are no other introductions of axioms in π. We
will construct in polynomial time a game G such that if Φ is satisfiable then player 0
has a positional winning strategy in G, and if Ψ is satisfiable then player 1 has such a
strategy.

The game has one vertex for each DNF that forms a line in the proof, and that vertex
contains one point for each conjunction in the DNF. Additionally it has one vertex for
each literal z arising from a variable in X ∪ Y , and each such vertex contains a single
point.

The vertices corresponding to literals are the leaf vertices. For each vertex u corre-
sponding to an initial clause of the proof (that is, a clause from Φ∪Ψ), and each literal
z occurring in the clause, there is an edge connecting u to the leaf vertex vz for the
literal z, and a line connecting the point in u corresponding to z to the single point
in vz. See Fig. 4.
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Γweakening
Γ,∆

. . . γ . . .
S

. . . γ . . . . . . δ . . .

S′

Γ, α, α
contraction

Γ, α

. . . γ . . . α α
S

. . . γ . . . α

S′

Γ, α, β,∆
exchange

Γ, β, α,∆

. . . γ . . . . . . δ . . .α β
S

. . . γ . . . . . . δ . . .β α

S′

Γ, α ∧ z Γ,¬z
cut

Γ

. . . γ . . . α ∧ z

S1

. . . γ . . . ¬z
S2

. . . γ . . . α

S′

Γ, α Γ, z
∧-introduction

Γ, α ∧ z

. . . γ . . . α

S1

. . . γ . . . z

S2

. . . γ . . . α ∧ z

S′

Fig. 5. Constructing point-line games from PK′

1
derivations: applying rules. By S′ we always denote the

sequence of formulas in the conclusion of a rule; by S those in the premise, if the rules have exactly one
premise; and by S1 and S2 those in respectively the left and right premise, for rules with two premises.

The vertices corresponding to non-initial DNFs are connected by edges to the ver-
tices corresponding to the premises from which they are derived. We define the lines
connecting the points contained in these vertices as follows, using the notation we used
in the definitions of the rules of PK′

1. See Fig. 5.
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For every rule, we connect every conjunction in a sequence Γ in either premise of a
rule to its descendant in Γ in the conclusion of the rule. For the exchange rule, we also
do this for ∆.

For the cut and weakening rules, there are no other lines. For the ∧-introduction
rule, we connect α in the left-hand premise with α ∧ z in the conclusion. For the con-
traction rule, we connect both occurrences of α in the premise with the α in the conclu-
sion. For the exchange rule, we connect α in the premise with α in the conclusion, and
similarly for β.

We finally describe how the non-leaf vertices are assigned to the two players. If a
vertex u corresponds to an initial clause in Φ then u ∈ V0, and if u corresponds to an
initial clause in Ψ then u ∈ V1. For vertices u corresponding to non-initial DNFs, if u
was derived by weakening, contraction or exchange, it does not matter how we assign
it. If it was defined by cut or ∧-introduction, the assignment depends on the literal z
appearing in the rule: if z comes from an X variable, we put u ∈ V0, and if z comes
from a Y variable, we put u ∈ V1. This completes the definition of the game G.

Now let A be a truth-assignment to the variables X which satisfies Φ. We will use A
to define a positional winning strategy for player 0 (the case for player 1 is symmetri-
cal). Let u ∈ V0.

(1) Suppose u is derived using the cut rule. If z is false in A, choose the edge from u
going to the left, that is, to the vertex containing α ∧ z. Otherwise go right, that is,
to the vertex containing ¬z.

(2) Suppose u is derived using the ∧-introduction rule. If z is false, go right; otherwise
go left.

(3) Suppose u is an initial clause from Φ. Pick the first satisfied literal z in the clause
and go to the leaf vertex corresponding to z.

For a conjunction γ, define the X-part of γ to be γ with all literals that use variables
from Y deleted. In particular, if γ consists solely of Y literals, the X-part of γ is empty
and we will treat it as the constant for truth. To prove that the strategy described
above is a winning strategy, we will show that the following invariant is preserved
during any game played according to it:

If the pebble is on a non-leaf vertex u, and p is a point in u corresponding to
a conjunction whose X-part is satisfied by A, then p is coloured black.

This property immediately implies that player 0 wins. This is because the game must
eventually reach a vertex u that is an initial clause of the refutation. If u ∈ Φ, then
some literal in u is satisfied by A. Hence by the invariant, this literal must be coloured
black, since Φ only contains variables from X. Hence player 0 can move to the corre-
sponding leaf vertex and colour its point black (and notice that this move can be chosen
depending only on A, and not on the colouring of the points in u). On the other hand if
u ∈ Ψ, then the X-parts of all literals in u are empty, hence true and coloured black.
Thus, whatever leaf player 1 picks, its point will be coloured black.

It remains to show that the invariant is preserved. It holds at the start vertex, since
that has no points. Suppose it holds at a non-leaf vertex u which does not correspond
to an initial clause. If u was derived by weakening, contraction or exchange then the
invariant is preserved trivially. Otherwise, let z be the literal appearing in the rule
by which u was derived and let v be the vertex that the game moves to after u. In all
cases, the property is preserved trivially on points corresponding to conjunctions in Γ.

Suppose that u was derived using the cut rule. If u ∈ V1, then whether player 1
chooses to go left or right, the new point (corresponding respectively to α∧z or ¬z) gets
coloured black, so the invariant is preserved. So suppose u ∈ V0, meaning that z comes
from an X-variable. If z is false, then by the definition of the strategy player 0 chooses
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to go left. But from our assumption the X-part of α ∧ z is false, so it does not matter
how it is coloured and the invariant is preserved. If z is true, then player 0 chooses to
go right. But similarly the X-part of ¬z is false and the invariant is preserved.

Suppose that u was derived using the ∧-introduction rule. Suppose first that u ∈ V1,
so z comes from a Y -variable. If player 1 goes left, then α gets coloured the same colour
as α ∧ z, since there is a line connecting them; but both points have the same X-part
so the invariant is preserved. If player 1 goes right, then z is automatically coloured
black. Suppose now that u ∈ V0, so z comes from an X-variable. If z is false, then
player 0 goes right, and it does not matter how the point z is coloured. If z is true, then
player 0 goes left and α gets the same colour as α ∧ z; but in this case, the X-part of α
is satisfied if and only if the X-part of α ∧ z is.

COROLLARY 5.5. The canonical pair of parity games is polynomially reducible to
the canonical pair of point-line games.

PROOF. The canonical pair of parity games is reducible to the canonical pair of
resolution which in turn is reducible to the canonical pair of point-line games.

It might be interesting to construct a direct reduction from parity games to point-line
games.

A. TRANSLATING FIRST-ORDER INTO PROPOSITIONAL PROOFS

Let L and L+ be languages as in Section 1.2, so that in particular all terms are poly-
nomially bounded. For simplicity of presentation we will assume that L+ = L ∪ {R}
for exactly one binary relation symbol R. This is easily extended to arbitrary tuples of
relation symbols of arbitrary arity.

Definition A.1.
A first-order k-conjunction is a conjunction of the form σ ∧ φ1 ∧ · · · ∧ φm where σ is

any L formula, m ≤ k and each of φ1, . . . , φm has the form R(s, t) or ¬R(s, t) for L-terms
s and t. A first-order k-disjunction is defined dually.

For odd d, a strict Ud,k formula is a strict Ud formula whose quantifier-free part is
a conjunction of first-order k-disjunctions. For even d, a strict Ud,k formula is a strict
Ud formula whose quantifier-free part is a disjunction of first-order k-conjunctions. A
Ud,k formula is a subformula of a strict Ud,k formula. The strict Ed,k formulas and Ed,k

formulas are defined dually.
The theory Ud,k-IND consists of BASE together with the usual induction scheme for

all Ud,k formulas, with parameters. The theory Ed,k-IND is defined similarly (and is
equivalent).

We will show that Ud+2,k-IND refutations can be translated into families of polyno-
mial size PKd,k refutations. We will first prove this for U2,1-IND and resolution, and
then derive the general case.

Notice that the translation 〈φ〉0α turns a U2,1 formula φ into a set of clauses, that is,
of disjunctions of literals. Recall that we treat the symbols ⊤ and ⊥ respectively as the
empty set and the singleton set containing the empty clause.

THEOREM A.2. Suppose that φ1(x), . . . , φℓ(x) are strict U2,1 formulas, with x the
only free variable, such that U2,1-IND proves ∀x¬(φ1(x) ∧ · · · ∧ φℓ(x)). Then the family
of CNFs

Φn := 〈φ1(x)〉
0
[x 7→n] ∪ · · · ∪ 〈φℓ(x)〉

0
[x 7→n]

has polynomial size resolution refutations.
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A resolution derivation of a set B of clauses from a set A of clauses is a sequence of
clauses, ending with the clauses in B, such that each line in the proof is either from A,
or is a logical axiom p∨¬p, or follows from earlier clauses in the sequence by a rule. We
will call A the initial clauses and B the final clauses, and will call such a derivation a
derivation of A ⊢ B.

Definition A.3. For sets of clauses C and D, we write C ∗ D for the set of clauses
{φ ∨ ψ : φ ∈ C,ψ ∈ D}.

Notice that
∧

C ∨
∧

D is logically equivalent to
∧

(C ∗D).

LEMMA A.4. Let C, D and E be sets of clauses.

(1) The operator ∗ is associative, commutative, and distributive over ∪.
(2) We have C ⊆ C ∗ C, C ∗ ⊥ = C and C ∗ ⊤ = ⊤.
(3) We can derive C ⊢ C ∗D by weakening.
(4) Given a derivation π of C ⊢ D, there is a derivation of C∗E ⊢ D∗E of size polynomial

in the sizes of π and E, obtained by multiplying each clause of π by E.

To analyse U2,1-IND proofs we will use the sequent calculus LKBe for bounded arith-
metic, as presented in Buss [1998]. This is a system for deriving sequents φ1, . . . , φℓ −→
ψ1, . . . , ψm of bounded formulas, where the intended meaning of a sequent is that the
conjunction of the formulas on the left implies the disjunction of the formulas on the
right. It has weak structural rules, which allow us to treat each side of a sequent as
a set of formulas. It has logical axioms φ −→ φ, equality axioms, and non-logical ax-
ioms, which in our case have the form −→ σ for σ a formula from BASE. Its other rules
are listed in the proof below. They consist of rules for introducing propositional connec-
tives and bounded quantifiers on the left and right hand side of a sequent, the cut rule,
and the induction rule. The quantifier and induction rules all involve an eigenvariable
which is not allowed to appear in the bottom sequent.

The translation 〈φ〉dα was only defined for strict Ud+2,k formulas. We extend it to non-
strict Ud+2,k formulas φ by first padding φ using dummy quantifiers. Remember that
assignments are total maps from variables to numbers in which at most finitely many
variables are assigned non-zero values.

THEOREM A.5. Suppose that there is a sequent calculus derivation Π ending in the
sequent

φ1, . . . , φℓ −→ ψ1, . . . , ψm

where every formula appearing in the derivation is a U2,1 formula. The derivation may
use the U2,1 induction rule and may use any universally true, quantifier-free L-formula
as an axiom. Then there is a polynomial p such that for any assignment α, there is a
resolution derivation π, of size p(α), of

〈φ1〉
0
α ∪ · · · ∪ 〈φℓ〉

0
α ⊢ 〈ψ1〉

0
α ∗ · · · ∗ 〈ψm〉0α.

Here we write p(α) for p(n), where n is the maximum value assigned by α.

PROOF. The proof is by induction on the derivation Π and splits into cases depend-
ing on the rule by which the last sequent is derived. The existence of a polynomial size
bound will be clear from the construction and we will usually omit the details. The
construction follows that of Skelley and Thapen [2011] and Krajı́ček et al. [2007] but
is simpler, because we are not worried about issues of uniformity.

For readability of notation, throughout this proof we will write 〈φ〉 to mean 〈φ〉0α. For
a first-order cedent Γ = φ1, . . . , φℓ we will write Γ◦ for the set of clauses 〈φ1〉 ∪ · · · ∪ 〈φℓ〉
and Γ∗ for the set of clauses 〈φ1〉 ∗ · · · ∗ 〈φℓ〉.
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Axioms and weak structural rules Logical axioms, exchange, contraction and left
weakening are trivial. Non-logical axioms (apart from equality) are also trivial, as
these are universally-true L-formulas and hence always translate into ⊤, the empty set
of clauses. Equality axioms not involving R are treated similarly. For equality axioms
involving R, of the form

s1 = s2, t1 = t2, R(s1, t1) −→ R(s2, t2),

if s1 6= s2 or t1 6= t2 in α we use the fact that we can derive anything from the empty
clause ⊥. Otherwise we use the trivial derivation of ri,j ⊢ ri,j , where i = 〈s1〉α and
j = 〈t1〉α. For right weakening

Γ −→ ∆
Γ −→ ∆, φ

we use weakening to derive ∆∗ ∗ 〈φ〉 from ∆∗.

Propositional ∧-introduction Suppose the last rule applied in Π is

Γ, φ, ψ −→ ∆

Γ, φ ∧ ψ −→ ∆
or

Γ −→ ∆, φ Γ −→ ∆, ψ

Γ −→ ∆, φ ∧ ψ
.

In both cases, by our assumptions about Π we may assume without loss of generality
that φ is an L-formula. Hence either 〈φ〉 = ⊤ and 〈φ ∧ ψ〉 = 〈ψ〉, or 〈φ〉 = ⊥ and
〈φ ∧ ψ〉 = ⊥. Both cases are trivial.

Propositional ∨-introduction Suppose the last rule applied in Π is

Γ, φ −→ ∆ Γ, ψ −→ ∆

Γ, φ ∨ ψ −→ ∆
or

Γ −→ ∆, φ, ψ

Γ −→ ∆, φ ∨ ψ
.

In both cases we may assume that φ and ψ are disjunctions of first-order 1-conjunc-
tions. It follows that 〈φ ∨ ψ〉 = 〈φ〉 ∗ 〈ψ〉. The right-hand case is then trivial. For the
left-hand case, by the inductive hypothesis we have derivations π1 and π2 of

Γ◦ ∪ 〈φ〉 ⊢ ∆∗ and Γ◦ ∪ 〈ψ〉 ⊢ ∆∗.

By multiplying every clause in π1 by 〈ψ〉 we get a derivation π′
1 of

Γ◦ ∗ 〈ψ〉 ∪ 〈φ〉 ∗ 〈ψ〉 ⊢ ∆∗ ∗ 〈ψ〉.

By multiplying every clause in π2 by ∆∗ we get a derivation π′
2 of

Γ◦ ∗∆∗ ∪ 〈ψ〉 ∗∆∗ ⊢ ∆∗.

Combining π′
1 with π′

2 and using weakening to derive both Γ◦ ∗ 〈ψ〉 and Γ◦ ∗∆∗ from Γ◦,
we get the required derivation Γ◦ ∪ 〈φ〉 ∗ 〈ψ〉 ⊢ ∆∗.

Propositional ¬-introduction Suppose the last rule applied in Π is

Γ −→ ∆, φ

Γ,¬φ −→ ∆
or

Γ, φ −→ ∆

Γ −→ ∆,¬φ
.

If φ is an L-formula then these are trivial. Otherwise, we may assume that φ is an
atomic sentence R(s, t) and that 〈φ〉 = {r} and 〈¬φ〉 = {¬r} for some propositional
variable r (where we are abusing notation slightly and identifying the literals r and ¬r
with the single-element clauses

∨

{r} and
∨

{¬r}). Let π be a derivation for the upper
sequent.

For the left-hand case, we resolve every final clause of π with ¬r.
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For the right-hand case we add ¬r to every clause in π, so that the initial clause r is
replaced by the axiom instance r ∨ ¬r. This gives a derivation of Γ◦ ∗ {¬r} ⊢ ∆∗ ∗ {¬r}.
We derive Γ◦ ∗ {¬r} from Γ◦ by weakening.

Induction Suppose the last rule applied in Π is

Γ, φ(x) −→ ∆, φ(x+ 1)

Γ, φ(0) −→ ∆, φ(t)
.

Let n = 〈t〉α. Since all terms are polynomially bounded, n < q(α) for some polynomial
q. We will write 〈φ〉i for 〈φ(x)〉0α[x 7→i]. By the definition of the translation for terms, we

have 〈φ〉i+1 = 〈φ(x+ 1)〉0α[x 7→i].

Observe that since x does not appear as a free variable in the bottom sequent, in
particular it does not appear free in Γ and ∆. It follows that Γ◦ and ∆∗ stay the same
under the two assignments α and α[x 7→ i]. By the inductive hypothesis there is some
polynomial p such that for each i < n there is a resolution derivation πi, of size bounded
by p(α[x 7→ i]), of

Γ◦ ∪ 〈φ〉i ⊢ ∆∗ ∗ 〈φ〉i+1.

Multiplying by ∆∗, we get a resolution derivation π′
i of

∆∗ ∗ Γ◦ ∪∆∗ ∗ 〈φ〉i ⊢ ∆∗ ∗ 〈φ〉i+1.

Since both n and the size of ∆∗ are bounded by a polynomial in α, there is a fixed
polynomial in α bounding the size of each π′

i.
Writing the derivations π′

0, . . . , π
′
n−1 one after the other, and observing that we can

derive ∆∗∗Γ◦∪∆∗∗〈φ〉0 from Γ◦∪〈φ〉0 by weakening, we obtain the required derivation
Γ◦ ∪ 〈φ〉0 ⊢ ∆∗ ∗ 〈φ〉n.

Cut This is done the same way as one step in the induction rule.

Bounded ∃-left-introduction Suppose the last rule applied in Π is

x < s, θ(x),Γ −→ ∆

∃y<s θ(y),Γ −→ ∆
.

Let n = 〈s〉α. We may assume that θ(x) is an E1,1 formula. As above, we will write
〈θ〉i for 〈θ(x)〉0

α[x 7→i]. Note that 〈θ〉i contains exactly one clause. We will write Θi for

⊥ ∗ 〈θ〉0 ∗ · · · ∗ 〈θ〉i−1, so that Θ0 = ⊥ and Θn = 〈∃y<s θ(y)〉.
By the inductive hypothesis there is some polynomial p such that for each i < n there

is a resolution derivation πi, of size bounded by p(α[x 7→ i]), of

Γ◦ ∪ 〈θ〉i ⊢ ∆∗

where x < s does not appear, as it translates to ⊤. Multiplying this derivation by
∆∗ ∗Θi, we get a derivation π′

i of

∆∗ ∗Θi ∗ Γ
◦ ∪∆∗ ∗Θi ∗ 〈θ〉i ⊢ ∆∗ ∗Θi.

Now Θi ∗ 〈θ〉i is just Θi+1, and ∆∗ ∗ Θi ∗ Γ
◦ can be obtained from Γ◦ by weakening. So

we can construct a derivation π′′
i of

Γ◦ ∪∆∗ ∗Θi+1 ⊢ ∆∗ ∗Θi.

As in the case of induction, there is a fixed polynomial in α bounding the size of each π′′
i .

Combining the derivations π′′
n−1, . . . , π

′′
0 and using weakening, we obtain the required

derivation Γ◦ ∪Θn ⊢ ∆∗.
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Bounded ∀-left-introduction Suppose the last rule applied in Π is

θ(r),Γ −→ ∆

r < s, ∀x<s θ(x),Γ −→ ∆
.

If r ≥ s under α then r < s translates into ⊥, from which we can derive anything (by
weakening). If r < s under α then this case is trivial, as 〈θ(r)〉 is then formally a subset
of 〈∀x<s θ(x)〉.

Bounded ∃-right-introduction Suppose the last rule applied in Π is

Γ −→ ∆, θ(r)

r < s,Γ −→ ∆, ∃x<s θ(x)
.

This is similar to the previous case, only this time 〈θ(r)〉 is not a subset of 〈∃x<s θ(x)〉,
but the second can be obtained by weakening from the first.

Bounded ∀-right-introduction Suppose the last rule applied in Π is

x < s,Γ −→ ∆, θ(x)

Γ −→ ∆, ∀y<s θ(y)
.

By the inductive hypothesis, if we put n = 〈s〉α then, writing 〈θ〉i for 〈θ(x)〉0
α[x 7→i], for

each i < n there is a derivation πi of

Γ◦ ⊢ ∆∗ ∗ 〈θ〉i.

Combining these gives us the required derivation.

PROOF OF THEOREM A.2. By our assumption and the free-cut elimination theorem
(see for example Buss [1998]) there is a sequent calculus derivation satisfying the
assumptions of Theorem A.5 and ending with the sequent

φ1(x), . . . , φℓ(x) −→ 0 = 1.

The result follows by Theorem A.5.

We now show the general case.

THEOREM A.6. Let d ∈ N with d ≥ 0. Suppose that φ1(x), . . . , φℓ(x) are strict
Ud+2,k formulas, with x the only free variable, such that Ud+2,k-IND proves the formula
∀x¬(φ1(x) ∧ . . . ∧ φℓ(x)). Then the family

Φn := 〈φ1(x)〉
d
[x 7→n] ∪ · · · ∪ 〈φℓ(x)〉

d
[x 7→n]

has polynomial size PKd,k refutations.

PROOF. First consider the case where k = 1. We will prove the result for all d, by
induction on d. The base case d = 0 is Theorem A.2. So suppose that d ≥ 0 and we can
translate Ud+2,1 refutations into PKd,1 refutations. We will suppose d is odd—the case
for even d is similar.

Let θ1, . . . , θm be a list of strict Ud+3,1 formulas, consisting of the initial formulas
φ1, . . . , φℓ and every formula for which induction is used in the Ud+3,1-IND proof of a
contradiction from the assumption φ1(x), . . . , φℓ(x).

Each θi consists of d+ 2 alternations of quantifiers followed by a E1,1 formula of the
form

ψi(z̄) := ∃y<ti, γ
i
1(z̄, y) ∨ · · · ∨ γiri(z̄, y)
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where each γij is a first-order 1-conjunction. Let θ′i be θi with the subformula ψi(z̄)
replaced by a new relation symbol Si(z̄). Let Ai(x) be the set of first-order extension
axioms

∀z̄ <si(x) ∃y<ti, ¬Si(z̄) ∨ γ
i
1(z̄, y) ∨ · · · ∨ γiri(z̄, y)

∀z̄ <si(x) ∀y<ti, Si(z̄) ∨ ¬γij(z̄, y) for each j = 1, . . . , ri

expressing that ∀z̄ < si(x), Si(z̄) ↔ ψi(z̄), where si(x) is a bound (obtained from
Parikh’s theorem) on the values of z̄ that can appear in the proof.

There is now a Ud+2,1-IND proof of a contradiction from the Ud+2,1 assumptions
φ′1(x), . . . , φ

′
ℓ(x), A1(x), . . . , Am(x). Hence by the inductive hypothesis there are poly-

nomial size PKd,1 refutations Πn of the formulas

〈φ′1(x)〉
d
n ∪ · · · ∪ 〈φ′ℓ(x)〉

d
n ∪ 〈A1(x)〉

d
n ∪ · · · ∪ 〈Am(x)〉dn.

Here we are writing 〈φ(x)〉dn for 〈φ(x)〉d[x 7→n], and abusing notation by treating Ai(x) as

though it were a single formula rather than several formulas.
We obtain the desired PKd+1,1 refutation of 〈φ1(x)〉

d+1
n ∪ · · · ∪ 〈φℓ(x)〉

d+1
n by substitut-

ing 〈ψi(z̄)〉α for 〈Si(z̄)〉α and 〈¬ψi(z̄)〉α for 〈¬Si(z̄)〉α into Πn, for every α. This increases
the depth of the refutation by at most 1, and after the substitution each formula in
〈Ai(x)〉

d
n becomes a propositional tautology with a short PKd+1,1 proof (in fact essen-

tially with a PK1,1 proof, since these represent disjunctions of conjunctions of literals
whose depth has been artificially padded out by the translation).

We deal with the case k > 1 in a similar way, by using extension axioms to obtain
a translation of Ud+2,k-IND into PKd,k from our translation of Ud+2,1-IND into PKd,1.
We sketch the argument, this time under the assumption that d is even. Let ψ1, . . . , ψm

list every first-order k-conjunction which appears in an initial formula or a formula for
which induction is used. Each ψi has the form σi(z̄) ∧ γi1(z̄) ∧ · · · ∧ γiri(z̄) where σ is an

L-formula and each γij has the form R(p, q) or ¬R(p, q) for L-terms p, q. We replace each

ψi(z̄) with σi(z̄)∧ Si(z̄) where Si(z̄) is a new relation symbol. We add extension axioms
Ai(x) of the form

∀z̄ <si(x), ¬Si(z̄) ∨ γ
i
j(z̄) for each j = 1, . . . , ri

∀z̄ <si(x), Si(z̄) ∨ ¬γi1(z̄) ∨ · · · ∨ ¬γiri(z̄)

expressing that ∀z̄ < si(x), σ
i(z̄) ∧ Si(z̄) ↔ ψi(z̄). This gives us a Ud+2,1-IND proof

from a set of Ud+2,1 assumptions. We translate this into a PKd,1 refutation, and then
substitute 〈γi1(z̄)∧· · ·∧γiri(z̄)〉α for 〈Si(z̄)〉α and 〈¬γi1(z̄)∨· · ·∨¬γiri(z̄)〉α for 〈¬Si(z̄)〉α.

B. BINARY ARITHMETIC

We will represent integers in two’s-complement form. To find the m-bit two’s-comple-
ment representation of an integer x in the range −2m−1 to 2m−1−1, if x ≥ 0 we take
the usual m-bit representation (with leading 0s) of x, and if x < 0 we take the usual
m-bit representation of 2m + x.

This form has the property that, provided we ignore overflow, the operations of ad-
dition and subtraction are exactly the same as they would be for unsigned binary in-
tegers. Furthermore, comparison of two such integers can be reduced to comparison of
unsigned binary integers by first flipping the leading bit. We write numbers with the
most significant bit on the left.

To make the following definitions more natural, we will often treat boolean-valued
formulas as though they took the numerical values 0 and 1 instead of false and true,
in particular writing φ = ψ for φ ↔ ψ, φ ≤ ψ for φ → ψ and φ < ψ for ¬φ ∧ ψ.
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For (n+1)-bit strings X and Y we define

X = Y ≡ ∀i≤n, X(i) = Y (i)

X < Y ≡ X(n) > Y (n)

∨ ∃i<n, X(i) < Y (i) ∧ ∀j∈(i, n] X(j) = Y (j)

X ≤ Y ≡ (X = Y ) ∨ (X < Y ).

We say that X < Y at i if i witnesses the existential quantifier in the definition of
ordering, or if X(n) > Y (n) and i = n. We will use 0n to denote the integer 0 written in
(n+1)-bit two’s complement, that is, a string of n+ 1 many 0s.

OBSERVATION B.1. Over BASE, the relation < is a strict linear order.

OBSERVATION B.2. For (n+1)-bit strings, over U1-IND, X(n) = 0 implies 0n ≤ X
and X(n) = 1 implies X < 0n. Furthermore X < Y is ∆2, since it is equivalent to

[

X(n) > Y (n)
]

∨
[

∀i<n
(

X(i)> Y (i) → ∃j∈(i, n) X(j) < Y (j)
)

∧ ∃i<nX(i) < Y (i)
]

.

Definition B.3. Let the formula S(X) denote the successor of X, which is defined by
|S(X)| = |X| and

S(X)(i) =







0 if ∀j<i, X(j) = 1

1 if X(i) = 0 ∧ ∀j<i, X(j) = 1

X(i) otherwise.

Note that overflow is possible, with S(2n − 1) = −2n (working in (n+1)-bit two’s com-
plement). We will usually write S(X) as X+1. If we write X+0, this means simply X.
The formula Y = X + 1 is U2.

OBSERVATION B.4. Over U1-IND, X < Y and X ′ = X + 1 implies X ′ ≤ Y .

PROOF. First suppose that X(n) > Y (n). If X contains only 1s, then X ′ = 0n ≤ Y .
If X contains a 0, then nothing to the left of the 0 is changed, so X ′(n) = 1 and hence
X ′ < Y . Now suppose X < Y at i < n. If X contains only 1s to the right of i, then
X ′(i) = 1 and X ′(j) = 0 for all j < i, so X ′ ≤ Y . If X contains a 0 to the right of i, then
X ′(i) = 0 so X < Y .

OBSERVATION B.5. Over U1-IND, ifX ′ = X+1 and Y = X⌢0+1 thenX ′⌢0 = Y +1.
(In other words, 2(X + 1) = 2X + 1 + 1.)

OBSERVATION B.6. An integer X written in (n+1)-bit two’s complement satisfies
−2n−1 ≤ X ≤ 2n−1 − 1 if and only if X(n) = X(n− 1).

Definition B.7. For (n+1)-bit strings X,Y, Z, and a string C encoding, for each

i, a tuple of five i-bit strings Ci, C
(0)
i , C

(1)
i , C

(2)
i , C

(3)
i , the U2 formula Sum(X,Y, Z,C)

expresses that, for i = n, . . . , 0,

(1) Cn+1 is the empty string and C0 = Z

(2) C
(0)
i = Ci+1

⌢0

(3) C
(k+1)
i = C

(k)
i + 1 for k = 0, 1, 2

(4) Ci = Ci+1
⌢0 +X(i) + Y (i)

(5) C
(0)
i < C

(1)
i < C

(2)
i < C

(3)
i if i < n− 1

(6) If Y < 0n then Z < X and if Y ≥ 0n then Z ≥ X
(7) If X < 0n then Z < Y and if X ≥ 0n then Z ≥ Y .
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Here (1) and (4) contain the essential definition of summation. The other conditions
are needed for the formalisation or to simplify the proof of Theorem B.9 below. The

right hand side of (4) is formally written as C
(X(i)+Y (i))
i .

LEMMA B.8.
Suppose X,Y, Z are in (n+1)-bit two’s complement with −2n−1 ≤ X,Y ≤ 2n−1−1 and

X + Y = Z. Then there is a string C satisfying Sum(X,Y, Z,C).

PROOF. Put Cn = XOR(X(n), Y (n)). Write X↾k for the string consisting of the k
most significant bits of X. By Observation B.6, if k ≥ 2 we have −2k−2 ≤ X↾k, Y ↾k ≤
2k−2− 1. So for i = n− 1, . . . , 0, we can set k = n+1− i and put Ci = X↾k+Y ↾k written
in k-bit two’s complement, using normal integer addition. Furthermore Ci ≤ 2k−1 − 2,

so Ci
⌢0 ≤ 2k − 4. It follows that if i < n− 1, we have C

(0)
i ≤ 2k−1 − 4, so we can add 1

three times without overflow and satisfy condition (5).

THEOREM B.9.
Over ∆2-IND, assume X,Y, Z, U, V,W are in (n+1)-bit two’s complement with X(n) =

X(n− 1), Y (n) = Y (n− 1), U(n) = U(n− 1) and V (n) = V (n− 1). Furthermore suppose
X ≤ U and Y ≤ V . Then Sum(X,Y, Z,C) and Sum(U, V,W,D) implies Z ≤W .

PROOF. We will only do the case where X < U and Y < V . The other cases use
subsets of this argument. Let X < U at k and Y < V at ℓ. Because Sum is symmetrical,
without loss of generality we may assume that k ≥ ℓ. By our assumptions on X and U
we know that k 6= n− 1. There are now three cases.

In the first case, k = n. Then X(n) = 1 and U(n) = 0. Therefore, X < 0n ≤ U by
Observation B.2. Hence Z < Y and V ≤W , by conditions (6) and (7), giving Z < W .

In the second case, k < n− 1 and k = ℓ. We have X(i) = U(i) and Y (i) = V (i) for all
i > k, and can thus use U1-IND to show that Ck+1 = Dk+1. Then X(k) = Y (k) = 0 and
U(k) = V (k) = 1, so Ck = Ck+1

⌢0 and Dk = Ck+1
⌢0 + 1+ 1. Therefore, Ck + 1 < Dk by

condition (5).
We have now established that Ci + 1 < Di for i = k. Formally this is written

C
(X(i)+Y (i)+1)
i < Di so is ∆2. We will use ∆2-IND to prove it for i = k−1, . . . , 0. Suppose

it is true for i+1, that is, Ci+1 +1 < Di+1. Then it follows from the definition of < that
(Ci+1+1)⌢1 < Di+1

⌢0. But, using Observation B.5, (Ci+1+1)⌢1 = Ci+1
⌢0+1+1+1.

Therefore, by condition (5) we have

Ci + 1 = Ci+1
⌢0 +X(i) + Y (i) + 1 < Di+1

⌢0 ≤ Di.

In the third case, ℓ < k < n − 1. As in case 2, Ck+1 = Dk+1. Now X(k) = 0, U(k) = 1
and Y (k) = V (k). Hence by condition (5),

Ck = Ck+1
⌢0 + Y (k) < Ck+1

⌢0 + 1 + Y (k) = Dk.

We now use ∆2-IND to show Ci < Di for i = k − 1, . . . , ℓ + 1. Assuming Ci+1 < Di+1,
as before we have that Ci+1

⌢1 < Di+1
⌢0, hence Ci+1

⌢0 + 1 < Di+1
⌢0. Since i > ℓ,

Y (i) = V (i). If Y (i) = 0, by condition (5)

Ci = Ci+1
⌢0 +X(i) < Di+1

⌢0 ≤ Di.

If Y (i) = 1, we use Observation B.4 to get Ci+1
⌢0 + 1 + 1 ≤ Di+1

⌢0. Then by condi-
tion (5)

Ci = Ci+1
⌢0 +X(i) + 1 ≤ Di+1

⌢0 < Di+1
⌢0 + 1 ≤ Di

giving the induction step.
A similar argument shows Cℓ + 1 < Dℓ. We finally prove that Ci + 1 < Di for

i = ℓ− 1, . . . , 0 exactly as in the second case.
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