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Abstract

Parity games underlie the model checking problem for the modal p-calculus, the
complexity of which remains unresolved after more than two decades of intensive
research. The community is split into those who believe this problem — which is
known to be both in NP and coNP — has a polynomial-time solution (without the
assumption that P = NP) and those who believe that it does not. (A third, pessimistic,
faction believes that the answer to this question will remain unknown in their lifetime.)

In this paper we explore the possibility of employing Bounded Arithmetic to resolve
this question, motivated by the fact that problems which are both NP and coNP, and
where the equivalence between their NP and coNP description can be formulated
and proved within a certain fragment of Bounded Arithmetic, necessarily admit a
polynomial-time solution. While the problem remains unresolved by this paper, we do
proposed another approach, and at the very least provide a modest refinement to the
complexity of parity games (and in turn the p-calculus model checking problem): that
they lie in the class PLS of Polynomial Local Search problems. This result is based
on a new proof of memoryless determinacy which can be formalised in Bounded
Arithmetic.

The approach we propose may offer a route to a polynomial-time solution.
Alternatively, there may be scope in devising a reduction between the problem and
some other problem which is hard with respect to PLS, thus making the discovery of
a polynomial-time solution unlikely according to current wisdom.

Keywords: Parity games, Total NP Search Problems, Polynomial Local Search, PLS

1. INTRODUCTION

Infinite two-player games played on finite directed graphs play an important role in various
problems within the field of verification of systems, specifically with regard to automata theory,
modal and temporal logics, and monadic second-order logics [8]. Of particular interest are so-
called parity games, in which each node of the graph is owned by one of the two players and
labelled by some nonnegative integer. There is at least one outgoing edge from every node, and
a play consists of moving a token from some initial node along an infinite path through this graph,
with the token moved from each node by the player owning that node along an outgoing edge of
their choosing. One of the two players tries to ensure that the minimal label encountered infinitely
often in the path is even, and is declared to be the winner in such a play; otherwise the other
player is declared to be the winner.

Following Stirling [14], we will assume (without loss of generality) that:

* no two nodes have the same label; that is, we can associate the set of nodes with a finite
subset of the natural numbers; and

» the nodes owned by the player seeking to ensure that the minimal label encountered
infinitely often is even are precisely those nodes with even labels.

In this way, the winner of a play is the owner of the smallest node which is encountered infinitely
often. With little thought it can be realised that any parity game can be transformed into an
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equivalent such simple graph game without substantially increasing the size of the underlying
graph (in fact, by no more than a linear factor).

The determinacy of parity games — ie, the fact that one of the two players has a winning strategy
in any parity game — follows from the determinacy of the far more general Borel Games as
established by Martin [12]. Furthermore, the problem of deciding which of the two players has
a winning strategy in any parity game is polynomial-time equivalent to the emptiness problem for
alternating tree automata as well as the model checking problem for the u-calculus [7]. For this
reason, there has been much interest in devising efficient algorithms for determining who has the
winning strategy in parity games.

This task is made simpler by the realisation that parity games satisfy memoryless determinacy,
which is to say that a winning strategy exists for one of the two players which is strictly positional.
the fortunate player in possession of the winning strategy can decide in advance what move to
make from each node which they own. They need not consider the history of the play at the
time of the move, and they can even reveal this strategy to their opponent at the start of play.
This realisation is easily — if somewhat inaccurately — motivated: since the winning condition
is concerned solely with which nodes appear infinitely often in a play, the nodes which have
appeared in the finite history of a play are of no consequence, and there is no reason to choose
different outgoing edges from a given node each time it is encountered. This intuition suffices
for an undergraduate Computer Science lecture, particularly in light of the complexity of the
formal proofs that have been devised, but apart from its informality, it is generally unsound (when
considering more complicated winning conditions).

Emerson [6] outlined the first formal proof of memoryless determinacy for parity games, with
further proofs given by Emerson and Jutla [7], McNaughton [13] and Zielonka [16]. Somewhat
earlier, Ehrenfeucht and Mycielski [5] demonstrated memoryless determinacy for the related mean
payoff games. More recently, Bjérklund et al. [2] have devised an elegant and elementary proof
of memoryless determinacy of parity, and mean payoff, games based on induction over the size
of such games. In actual fact, they prove memoryless determinacy for a finite variant of parity
games, and relate this directly to the same property of the standard infinite version.

Once memoryless determinacy of parity games is established, it becomes immediately apparent
that the problem of determining if one of the players has a winning strategy for a given parity game
is in NP: guess a positional winning strategy for this player, and verify that this strategy is indeed
a winning strategy. This verification relies on simply confirming that — assuming the player uses
this supposed winning strategy — the other player cannot force a loop through the graph in which
this other player owns the smallest node in the loop: such a loop would allow this other player to
win the game; and such a loop would have to exist in order for this other player to win.

The next equally clear observation is that the problem is also in coNP, due to the symmetric roles
of the two players. Being in NP N coNP then naturally leads to the question as to whether this
problem can in fact be solved in polynomial time. However, all efforts to find such an efficient
algorithm have proved futile; the tightest known bound, a slight improvement to the above due to
Jurdzinski [11], is that the problem lies in UP N coUP. Jurdzinski et al. [10] have, however, devised
a subexponential algorithm for the problem.

One further observation can be usefully made at this point: the decision problem of determining
who has the winning strategy in a parity game is equivalent with respect to polynomial-time
reducibility to the search problem of determining a memoryless winning strategy. The reduction
in one direction is obvious: if we can compute a winning strategy in polynomial time, then we
can immediately determine to whom it belongs. For the other direction, we assume that we have
an algorithm for determining who has a winning strategy in a parity game, and show how to use
this to compute such a strategy. Specifically, for each node from which its owner has a winning
strategy, we repeatedly remove outgoing edges until we find one whose removal results in that
player no longer having a winning strategy (which may well be the last outgoing edge available).
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This edge represents an appropriate move for this player to make as part of the winning strategy.
This equivalence with respect to polynomial-time reducibility allows us to make a statement about
the decision problem by studying the search problem, which we will do in the following.

Bounded Arithmetic is a logical framework suitable for reasoning about polynomial-sized objects
based on various restrictions on the use of induction. As we will employ it, Bounded Arithmetic
has been introduced by Buss [3] who established the first elegant connections between Bounded
Arithmetic theories and computational complexity classes. Where other logical frameworks like
descriptive complexity are naturally related to decision problems, Bounded Arithmetic directly
connects to search problems and (multi-)functions. It is well-known that one can always reduce
a search problem to a related decision problem which often produces a polynomially-equivalent
decision problem. But in general, this may not be the case [1]. An important class of search
problems are total NP search problem in the sense of Beame et al. [1]. They are given by a
binary, polynomial time computable relation R which is polynomially balanced, ie. any pair (x,y)
satisfying R has the property that |y| < [x|°(1), and total, ie. for any x there is a y with R(x,y). The
search task is for a given input x to find y with R(x,y). The combinatorial principles guaranteeing
totality allow NP search problems to be grouped into complexity classes for search problems
(see [1] for a discussion of this). Johnson et al. [9] introduced, amongst others, one such class
called Polynomial Local Search (PLS). PLS consists essentially of optimisation problems for which
polynomial-time local-search heuristics exist.

We have already pointed out that the problem of determining who has the winning strategy from
a node in a parity game is equivalent with respect to polynomial-time reducibility to the problem
of determining a memoryless winning strategy which stores for each node the winning move (for
the player who wins from that node). The latter is a typical example of a total NP search problem
in the above sense, which we denote by

MEMDET: Given a graph G, find a positional winning strategy for G.

In Bounded Arithmetic, the combinatorial principle to prove totality of search problems, which is
directly at hand, is induction. The meta-theory of Bounded Arithmetic then puts the search problem
into a related complexity class. In particular, we will utilise the following well-known theorems for
Bounded Arithmetic: Buss [3] has shown that the NP search problems whose totality can be
shown using induction of polynomial length on NP properties (a theory denoted S}) can already
be solved in polynomial time. This means that if memoryless determinacy would be provable in
this theory, then determining who has the winning strategy in a parity game would necessarily
be a polynomial-time problem. Buss and Krajicek [4] have (implicitly) shown that the NP search
problems whose totality can be shown using induction of polynomial length on NPNP properties
(a theory denoted S3) are in PLS. We will utilise the latter theorem, together with a new proof of
memoryless determinacy which can be formalised in S3, to show that the problem of computing
a positional winning strategy in a simple graph game is in PLS.

The reminder of this paper is structured as follows. In the next three sections we formalise the
above discussion. Specifically, in section 2 we formally define simple graph games, the variant
of parity games that we study; in section 3 we formally define strategies and related notions as
well as formally state the memoryless determinacy theorem; and in section 4 we provide a brief
introduction to the bounded arithmetic which we employ. In section 5 we carefully present a proof
of memoryless determinacy within bounded arithmetic, ending with the corollary which is the main
result of the paper, placing the problem in PLS. Finally in the concluding section 6 we reflect on
our achievements.

2. SIMPLE GRAPH GAMES
In this section we provide the formal definitions of the simple graph games which we shall study,

which are played between two players P, and P;. As noted above, these are equivalent to parity
games as typically defined in the literature.
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Definition 2.1 (Graph Games). G = (V,, V1, E) is a graph game of size n if

1. V; are the positions of player P, for i = 0,1. They have to satisfy Vo, N V; = (§, and
VouUV; C{1,...,n}. V.=V, UV is the set of all positions.

2. E CV x Vis the set of possible moves.

3. In graph-theoretic terms, V is the set of nodes, and E the set of edges of graph G. They
have to satisfy in addition that at least one edge is leaving each node.

We let G,, be the collection of all graph games of size n, and use G = (V,, Vi, E) to range over
Gn. Finally, for v € V; we say that player P; owns v.

Definition 2.2 (Playing and Winning). A play from a node v € V is an infinite pathv =v; —» v, —
vz — ... in G with each edge vi — vi.1 € E chosen by the player owning vi. The winner of a
play is the player owning the least node which is visited infinitely often in the play.

3. MEMORYLESS DETERMINACY

Instead of defining strategies for a particular player, we will consider general strategies and ignore
the moves of the opposite player.

Definition 3.1. A partial map o: V 2 Vvisa pre-strategy for G if (Vv € dom(o)) (v,0(v)) € E. It
is a strategy if it is total.

For a strategy o we let o; := oy, denote the restriction of o to the moves of player P;.

Definition 3.2. If o is a pre-strategy for G, then G° denotes the subgraph of G in which the moves
from the nodes of dom(o) are fixed by o.

Lemma 3.3. P; wins fromv in G using strategy o iff the least node in any cycle reachable from v
in G°t js owned by P;.

Proof. If a cycle is reachable from v in G°t in which the least node is owned by P;_;, then P;_;
can use this cycle to win the game. Conversely, if P;_; has a winning play from v in G when P;
uses strategy o, then the least node which appears infinitely often in this play is owned by P;_;
and must eventually be the least node which appears on a cycle from that node to itself in the
play. O

Definition 3.4. Let win(o, G,v) denote that o is a strategy in G, v € V, and every cycle reachable
from v in Gt is won by P; (ie, the least node on the cycle is owned by P;).

Definition 3.5 (Winning Positions). Let
Wi(G,0) = {v ev: wiin(G,G,v)}
be the set of nodes from which player P; can force a win using o, and
Wi (G) := {v €V: (do) wiin(cr, G,v)}
be the set of nodes from which P; can force a win using some strategy.
Observe that although win;(o, G,v) and W;(G, o) are defined for arbitrary strategies o, ie. for
total maps o: V — V, the behaviour of o on V;_; is totally irrelevant by definition of win; and W;.

Thus, we could have defined them equally well for partial strategies o with dom(o) = V;.

Definition 3.6 (Winning Strategy). Let det(G, o) denote that o determines the game G, ie., that
o is a strategy for G and that

(W evV) (wgn(G,G,v) \Y4 wlin(G,G,v))

Thus, (Jo) det(G, o) expresses memoryless determinacy for G.
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Again we point out that, due to our definition of win; (o, G,v), (o) det(G, o) describes classical
memoryless determinacy: from any given node, one of the two players has a positional winning
strategy regardless of the strategy (memoryless or not) of the other player.

Theorem 3.7 (Memoryless Determinacy). (VG)(3o) det(G, o)

Corollary 3.8. The predicatev € W;(G) is in NP N coNP

Proof. By Memoryless Determinacy we know W, (G) U W;(G) = V; and by definition of games
we have W, (G) N'W;(G) = 0. Hence:

veWL(G) & (Ho)wgn(G,G,v)
v Wo(G) (HG)W}H(U,G,V)

The problem of determining wini (o, G, v), relying only on checking cycles, is clearly in P. O

4. BOUNDED ARITHMETIC

In this section we briefly review basic definitions and results of Bounded Arithmetic which are
necessary for the understanding of our paper. For a full introduction we refer the interested reader
to Buss [3].

Bounded Arithmetic as defined in [3] is a collection of theories formulated in a language of
arithmetic over first-order logic with equality. The language Lga of Bounded Arithmetic is given
by the following set of non-logical symbols:

Oa S, +) ) Ha L%J) #) S

The first four symbols denote, in their standard interpretation over the natural numbers N,
the constant zero, the unary successor function, addition and multiplication; |x| computes the
length of the binary representation of x; the binary “shift right” function x#y, which computes
2Vl produces polynomial growth rate; and the final symbol denotes the “less than or equal”
relation. To smoothen our presentation we allow some further non-logical symbols denoting further
polynomial-time computable functions. This is unproblematic as our base theory can define all
polynomial-time computable function—Buss [3] has shown that such an extension of the language
is conservative. The additional function symbols we will use are

- (X)y) <>) *, koK, lh

These denote the arithmetical minus function x -~y = max(0, x — y) and functions to manipulate
sequences. We assume some feasible sequence coding as defined, e.g., in [3] which assigns a
single number to a sequence of numbers. Then (x),, denotes the yth element in sequence x, ()
denotes the code of the empty sequence, x xy denotes the function which appends number x
to sequence y, x xxy denotes concatenation of two sequences x and y, and lh(x) denotes the
length of the sequence x.

Terms and formulae over Lga are defined as usual for first-order logic, using the logical symbol

=" for equality and logical connectives —, A, V, —, V, 3 for negation, conjunction, disjunction,
implication, and first-order universal and existential quantification.

Among the first-order formulae built over Lga, so called bounded formulae play an important role.
Bounded quantifiers can be introduced as abbreviations as follows:

(Vx < t)A abbreviates (Vx)(x <t— A) and
(Ix < t)A abbreviates (Ix)(x <tAA)

Visions of Computer Science 5



On the complexity of parity games

where t is a term of the language not containing x. Bounded formulae are then formulae in which
all quantifiers are bounded, while sharply bounded formulae are bounded formulae in which all
bounded quantifiers are of the form (Vx < [t]) or (Ix < [t]).

Buss [3] has introduced classes of bounded formulae £P and TT? which correspond to the
complexity classes I} and IT! in the polynomial-time hierarchy. For an exact definition we refer
the reader to Buss [3, p.20]; we will only use the following observations:

« Formulae of the form (3x; < s1)@(x1) for sharply bounded ¢ are in £}.
« Formulae of the form (vx; < s1)(3x2 < s2)@(x1,x2) for sharply bounded ¢ are in TT3.

Bounded Arithmetic theories are defined by stating axioms defining the non-logical symbols plus
some axiom scheme — the latter being responsible for the strength of the theory. Buss [3] has
defined a set BASIC of open formulae defining non-logical symbols which can be extended to
define also our additional non-logical symbols. The induction used in Bounded Arithmetic is given
as a restriction of the usual induction given by

@(0) A (Vx)(@(x) = @(x+1)) = (VX)@(x)
For a set of formulae @, we use ®-LIND to denote the set of formulae of the form
@(0) A (Vx)(@(x) = @(x+1)) = (VX)o(lx])

where ¢ € @. The theories of Bounded Arithmetic are then built by picking a set of formulae and
an induction scheme, and forming the theory BASIC + all instances of induction for formulae from
the chosen set. From all possible choices, we will use the following:

S) = BASIC + zP-LIND

S2 = BASIC + z5-LIND

In essence, theory S} expresses reasoning with polynomial-sized objects using induction on
NP properties of polynomial length, while theory S expresses reasoning with polynomial-sized
objects using induction on NP properties of polynomial length.

Buss [3] has also shown that certain different induction schemes are equivalent. In particular, we
have the following:

Theorem 4.1 (Buss [3]). S3 and BASIC + T -LIND prove the same formulae.

4.1. Definable functions and search problems

Definable functions and search problems form an important notion for Bounded Arithmetic as they
provide the link between theories and complexity classes. A function is said to be £?-definable in
theory T if there is a £-formula ¢ defining the graph of the function such that the unique existence
of the value depending on its arguments can be proven in T. A predicate or formula is said to be
AY-definable in T if there is a £}-formula and a TTy-formula which both define the predicate and
whose equivalence can be shown in T.

Theorem 4.2 (Buss [3]). The £V -definable functions in S}, coincide with FP, the class of functions
computable in polynomial time. The At -definable predicates in S} are exactly those in P, the class
of predicates decidable in polynomial time.

Let R be a total NP search problem. We say that R is AY-definable in a theory T iff there
exists a formula ¢ which is AY-definable in T such that T proves the totality of R via o, i.e.
TH (") (3y)e(x,y).

A multi-function is said to be £}-definable in theory T if there is a £-formula ¢ defining the graph
of the multi-function, such that the existence of the value depending on its arguments can be
proven in T.
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Theorem 4.3 (Buss, Krajicek [4]). The LY -definable multi-functions in S5 are exactly the projection
of problems in PLS.

In terms of search problems, one can extract from the proof of this theorem that the At -definable
total search problems in S3 are exactly the problems in PLS.

5. PROVING MEMORYLESS DETERMINACY IN BOUNDED ARITHMETIC

In this section, we prove the main results of our paper. Our goal is to formalise a proof of
Memoryless Determinacy in Bounded Arithmetic in order to obtain some new information about
the complexity of the NP search problem MEMDET. For this, we first discuss how simple graph
games and the definitions surrounding them can be formalised in Bounded Arithmetic. As we
have sequence coding and decoding at hand as function symbols in Bounded Arithmetic, we can
literally translate Definitions 2.1 and 3.1 to obtain the following formulae in Lga: GraphGame(G)
is the sharply bounded formula expressing that lth(G) = 4 and that ((G)o, (G)1,(G)2) is a graph
game of size |(G)3| according to Definition 2.1, where sets of vertices and edges are stored in
some canonical way as sequences. We can also define the set of nodes and the size of a graph as
terms in Lgp by defining the nodes of G to be (G), *+(G)1, and the size of G, size(G), to be |(G)3].
We define last(x) as the term (x)y1,(x)~1, and member(x,y) as the formula (3z < |y[) x = (y)..
Here, |yl is sufficient as lh(y) < |y follows immediately from the axioms of Bounded Arithmetic.

“Partial maps from V to V” can be formalised as sequences of pairs, and we immediately have
the following sharply bounded formulae:

* PreStrategy(G, o) denotes that o is a pre-strategy for G;
» Strategy(G, o) denotes that ¢ is a strategy for G;
* StrategyRestriction(G, 0,1, ) denotes that p = o[v,; and

¢ GraphRestriction(G, 0,G’) denotes that if PreStrategy(G, o) then G’'=G°, otherwise
G'=0.

It is obvious that S! can prove that formulae StrategyRestriction(G,o,i,u) and
GraphRestriction(G, o, G’) define graphs of functions, ie. that p in the former and G’ in
the latter can be shown to exist uniquely in SJ.

A bit more interesting is the formalisation of win; (o, G, v) according to Definition 3.4. As we know
that reachability in graphs is polynomial-time computable, it is easy to translate this Definition into
Bounded Arithmetic. But this time we cannot simply translate it as a sharply bounded formula, but
have to use the full polynomial-time expressivity available in S}. We proceed as follows:

* preReach(G,v,L) denotes thatif GraphGame(G) then L is a sequence of length size(G)+1
with (L)o=(v) and (L);11 is (L); plus all nodes in G which can be reached in one step from
(L);, and L=0 otherwise; and

* Reach(G,v,w) denotes (dL)(preReach(G,v,L) A member(w, last(L))) .

We are omitting here and in the following bounds to quantifiers if it is obvious how they can be
defined. It is not hard to see that S} can prove that preReach(G,v,L) defines the graph of a
function computing L on input G and v. Thus, Reach is AY in S} because

S} F Reach(G,v,w) < (VL)(preReach(G,v,L) — member(w,last(L))) .

* preWin, (G, o,S) denotes that if GraphGame(G) and Strategy(G, o) then S is a sequence
of length size(G) and (S); is G°t with all nodes < j eliminated, and S=0 otherwise; and

* winy(o, G,v) denotes

(3S) (preWini(G, 0,S) A (Vx < |G|)(member(x, (G)1_i)
A (Reach((S)o,v,x) Vv =x) — —Reach((S)y,x,x)) .
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As before, S} can prove that preWin, (G, o,S) defines the graph of a function computing S, and
thus win; is A in S).

Using these formalisations we can try to carry out in Bounded Arithmetic the proof of Memoryless
Determinacy as given by Bjérklund et al. [2]. But we immediately run into troubles, as this proof
builds on general (memory-dependent) strategies which are exponential-sized objects in the size
of the input graph. Therefore, this proof cannot be formalised in Bounded Arithmetic, and we have
to give a new proof which avoids general strategies. We start by stating without proof two basic
lemmas.

Lemma 5.1. Playing according to a winning strategy never leaves the winning set. In other words,
if o is a winning strategy for P, then there are no edges leaving W; (G, o) in G°+.

Lemma 5.2. Let o and o’ be strategies in G. Forv € V andi = 0,1 define

ov) ifveWi(G,o)NnV;
o’(v) otherwise

(0> 0')(v) = {

Then
W;i(G,0) U W;(G,0') € W;i(G,or>;0')

That is, the strategy o t>; o’ derived from o and o’ is at least as successful for P; as either of o
and o’.

With this we are ready to present our new proof of memoryless determinacy.

Theorem 5.3 (Memoryless Determinacy). (VG)(3o) det(G, o)

Proof. We prove the theorem by induction on k < n? over the formula
(¥G € Gn) (TR(E) < k = (30) det(G, 0) ) .

Here, lh(E) is a canonical way to express the number of edges in G. Let G € G,, with Th(E) = k.
By the induction hypothesis we know

(VG e Qn)<lh(E’) <k — (30”) det(G’, a’)> .

Let W; := W;(G). Using Lemma 5.2 (repeatedly) we can find one strategy o such that W, =
Wy (G, o) and W; = W,q(G, o), in the following way: By definition, for each v € W; there is
some strategy o, such that win,(o,, G,v). By repeatedly applying Lemma 5.2 we can combine
these to obtain one strategy oy such that Wy, C W, (G, op). By definition of W, (G) we obviously
have W, (G,00) € W,(G). Hence W, = W,(G, 0p). Similar, we obtain some o7 such that
W; = W4 (G, o1). We now define o as oy on V, and o7 otherwise:
{()'o(\)) ifveVv
o(v) = ,
o1(v) otherwise

Then we obviously have that W, = W, (G, o) and W; = W4 (G, o), as by definition W; (G, o) only
depends on ofv;,.

Letting
U:=V\ (W, UuWw)

what we have to show is that, in fact, U = 0.

Assume for the sake of contradiction that U # (. We observe that by Lemma 5.1, there are no
edges from U NV; to W;. We also obverve that there are no self-loops in U, that is, w — u ¢ E for
allu e U.
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FIGURE 1: Case (I).

() Suppose there are u,w € U, u > w such that u — w is the only edge in G leaving u, as
shown in Figure 1. In this case let us drop the edge u — w, identify u with w and rename this
identified node w. By the induction hypothesis there exists o’ with det(G’, 0’); we extend ¢’ to &
on G in the obvious way.

W.lo.g., we assume that w € Wo(G’,0'). Asw & W, (G, ), there must be a cygle reachable from
w in G°° won by P;. But essentially the same cycle is reachable from w in G’°¢ and also won by
Py — giving us our desired contradiction.

() Suppose now that for all u,w € U with u > w, if u — wis in G, then there is another edge
u—w’'in G withw #£w'.

Let
U=wel: GuclU)(u>wAu—wckt)}.

u := max U is not a winning position. Thus u — w € E for some w € U, hence w € U’, and hence
U # 0. Letx :==minU’. W.l.o.g., we assume that x € V. Fixy € Uwithy >xandy — x € E, and
some z € V different from x with y — z € E. That is, we are in the situation displayed in Figure 2.

/Z Q:Po
Y

\® D 1Py

FIGURE 2: Case (ll) general case.

(I.,a) Assume y € V;. Consider, then, the graph G’ where we remove the edge y — x from G,
cf. Figure 3. By the induction hypothesis there exists some ¢’ such that det(G’, ¢’). W.l.o.g. (by

FIGURE 3: Case (ll.a)

Lemma 5.2) o{[w,= 0i[w;-

i

If P; wins in G’ from x using o’, then P; also wins in G from x using ¢/, as y — x does not affect
the choices of Py — contradiction.

Thus, Py wins in G’ from x using ¢’. As x € U, Py does not win from x in G using ¢’. Thus, there
is a cycle reachable from x in G°° won by P;. As this situation does not exists in G’, the cycle has
to include y — x. Also, it has to leave U, as otherwise the least node would be x and the cycle
won by Py. It cannot reach W, so it has to reach W;. But then W, is reachable from x in G/9% —
contradiction.

(ILb) Assume y € V,. Let G’ be obtained from G by dropping the edge y — z, cf. Figure 4.
By the induction hypothesis there exists some ¢’ such that det(G’, ¢’). W.l.o.g. (by Lemma 5.2)

Visions of Computer Science 9



On the complexity of parity games

@ ®
G: \® G’ \®

FIGURE 4: Case (ll.b)

oflw,= 0ifw;.

If Po wins in G’ from x using o', then Py also wins in G from x using o’, as y — z does not affect
the choices of P; — contradiction.

Thus, P; wins in G’ from x using ¢’. As x € U, P; does not win from x in G using ¢’. Thus, there
is a cycle reachable from x in G°1 won by P,. Again, this cycle has to include y — z. If the path
from x to y would stay in U, adding y — x would give a win for Py in G’1. It cannot reach W1, so
it has to reach W,. But then W, is reachable from x in G’°1 — contradiction. O

Theorem 5.4. S2 - (VG)(30) det(G, o).

Proof. We argue informally in S%. Let G be a graph of size n. Let ¢(n, k) be the formula

VG’ e Sn)(lh(E’) <k (30) det(G', o))

from the previous proof. Inspection of ¢ shows that it describes a coNPNP property which can be
equivalently expressed as a TT% formula (provably in S}). As n? < |G#G| (where “#” is one of the

basic function symbols of Bounded Arithmetic), we obtain that
@(n,0) A (Vk < n?)(@(n, k) = @(n,k+1)) = ¢(n,n?)
is provable in S by Theorem 4.1.

The main part in the proof of Theorem 5.3 is to show that ¢(n,k) implies ¢(n,k + 1). We
observe that this only involves reasoning with polynomial-sized objects which can be formalised
in weak theories of bounded arithmetic like S1—essentially we have to be able to construct from
polynomial-sized objects (game graphs) other polynomial-sized objects which differ only in some
very easy to describe properties. Thus we have, using that S} is a sub-theory of S2, that

(Vk < n?)(@(n,k) = @(n,k+1))

holds. It is easy to see that the base case ¢(n,0) also holds, as there are no game graphs which
satisfy V/ # () and E’ = (). Putting things together we obtain ¢(n,n?). Now, by assumption G € G,
and lh(E) < n?. Hence, (30) det(G, o). O

Applying Theorem 4.3 to the previous theorem shows the following corollary:
Corollary 5.5. MEMDET /s in PLS. O

6. CONCLUSION

We have studied the problem of determining who has the winning strategy in a parity game in
terms of the corresponding problem of determining a memoryless winning strategy; we denoted
this NP search problem by MEMDET. We have shown that MEMDET is in PLS, by giving a new
proof of Memoryless Determinacy which can be formalised in Bounded Arithmetic S3 — the theory
which allows polynomially reasoning with NPNP-induction of polynomial length.

Examining the proof of Theorem 4.3, one could describe a PLS algorithm solving MEMDET
without mentioning Bounded Arithmetic. However, it is unclear to us whether this would be
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beneficial, as the obtained algorithm would not directly deal with game graphs, but with
proof-theoretic notions like witnessing formulas for sequents of Bounded Arithmetic formulas.
Furthermore, this would hide any further observations that might be made about the complexity
of parity games based on results from Bounded Arithmetic.

To the best of our knowledge, this is the first result which classifies the search problem MEMDET
by relating it to PLS. Vége and Jurdzinski [15] present a discrete strategy improvement algorithm
which is closest in spirit to a PLS algorithm for the problem. However, their algorithm is based on
a non-deterministic operator Improve, which poses the most obvious of many challenges faced in
considering whether or not this algorithm can be turned into a PLS-description.
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