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Abstract

We construct by diagonalization a non-well-founded primitive recur-

sive tree, which is well-founded for co-r.e. sets, provable in Σ0

1-IND. It

follows that the supremum of order-types of primitive recursive well-

orderings, whose well-foundedness on co-r.e. sets is provable in Σ0

1-IND,

equals the limit of all recursive ordinals ω
CK
1 .

This work contributes to the investigation of replacing the quantification
over all sets in the definition of the proof-theoretic ordinal of a theory by a
quantification over certain definable sets such as all arithmetical sets, or certain
levels of the arithmetical hierarchy. We discuss this as a first step towards an
investigation of replacing the set parameter in the definition of the dynamic
ordinal of fragments of bounded arithmetic (cf. [2]) by certain definable sets in
order to obtain non-relativized separation results.1

The proof-theoretic ordinal O(T ) of a theory T can be defined by

O(T ) := sup{α : α is the order-type of a simple well-ordering ≺

and T ⊢ Wf(≺)}

where “simple” means something suitable like ∆0 or primitive recursive
(prim. rec.) or recursive, depending on the theories under consideration, and
Wf(≺) expresses the well-foundedness of ≺ by the Π1

1 sentence

(∀X) Found(≺,X) ≡ (∀X)
[
(∀x)((∀y ≺ x)(y ∈ X) → x ∈ X) → (∀x)(x ∈ X)

]
.
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From [5] and [6, pp. 280-284] follows the existence of an ordering ≺1 which
is not well-founded but PA-provably well-founded on arithmetical sets. I.e., if
we take Found(≺,Π1

0) to be the schema of transfinite induction of ≺ for Π1
0-sets

(i.e. arithmetical sets), then the instances of Found(≺1,Π
1
0) are theorems of PA.

From this it is not hard to show that if we replace Wf(≺) in the definition of
O(PA) by the schema Found(≺,Π1

0), then we get ωCK
1 :

Õ(PA) := sup{α : α is the order-type of some recursive well-ordering ≺

and PA ⊢ Found(≺,Π1
0)} = ωCK

1 .

We will repeat an argument given by Arai in [1] which shows this. It will be
immediate that this result still holds if we restrict to prim. rec. well-ordering.

But what happens if we consider sub-theories of PA? Remember that we
are heading towards fragments of bounded arithmetic. For a class Φ of formulas
let OΦ(Σ0

1-IND) be the result of replacing Wf(≺) in the definition of the proof-
theoretic ordinal O(Σ0

1-IND) by the schema Found(≺,Φ). Our main result will
be that in case of co-r.e. sets, i.e. Φ = Π0

1, we still get ωCK
1 :

Theorem 1.

OΠ0
1
(Σ0

1-IND) = sup{α : α is the ordertype of some prim. rec.

well-ordering ≺ and Σ0
1-IND ⊢ Found(≺,Π0

1)} = ωCK
1 .

A direct adaption of the construction given in [6, pp. 280-284] would only
prove the existence of a prim. rec, not well-founded ordering ≺ which would be
Σ0

2-IND-provably well-founded on Π0
1 sets.

In our arguments we will consider only recursive ordinals which are given by
well-founded recursive trees. Using the Kleene-Brouwer ordering we could
obtain well-orderings from well-founded trees of even bigger ordertype, but this
would unnecessarily make our arguments more complicated. Recall that a tree T
is a subset of the set of all finite sequences of natural numbers ω<ω which is
closed under initial subsequences. With ≺tr we denote the usual tree ordering,
i.e. the converse of the strict initial subsequence ordering on ω<ω. Let ≺T be
the restriction of ≺tr to T , ≺T =≺tr ∩T 2. With Found(T,A) we mean the
formula Found(≺T , A). A tree T is called well-founded iff ≺T is well-founded,
i.e. Found(≺T , A) holds for all sets A. Let |T | denote the ordertype of a well-
founded tree T , i.e. the ordertype of ≺T , which is the same as the height of T .

Let σ a τ denote σ concatenated with τ for σ, τ ∈ ω<ω, and let T [σ] be the

subtree of T starting at σ: T [σ] = {τ : σ a τ ∈ T}.
We repeat the argument given by Arai in [1] which shows that Õ(PA) =

ωCK
1 . To this end, it is enough to show

Lemma 2. For every recursive well-founded tree S there exists a recursive well-
founded tree T such that the order-type of T is not smaller than that of S and
PA ⊢ Found(T,Π1

0).
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Proof. Fix a recursive non-well-founded tree T ′ such that PA proves transfinite
induction of T ′ for any arithmetical set, PA ⊢ Found(T ′,Π1

0), cf. [5] and [6,
pp. 280-284]. Let S be some well-founded recursive tree. Let T be the following
recursive tree: σ ∈ T iff σ is a sequence of pairs 〈si, ti〉 (i < k) such that the
sequence 〈si : i < k〉 of first components is in S, and the sequence 〈ti : i < k〉
of second components is in T ′. Then it is easy to see that T is well-founded and
that PA proves Found(T,Π1

0).
Fix an infinite path 〈ti : i < ω〉 through T ′. As in [4] p. 437, we can show

by induction on 〈si : i < k〉 ∈ S that

|T [〈〈si, ti〉 : i < k〉]| ≥ |S[〈si : i < k〉]|.

Hence |T | ≥ |S|.

In the following we identify formulas A with the sets defined by them
{x : A(x)}. The formula Found(T,Ac), where Ac is the complement of A (i.e.
Ac ≡ ¬A), is equivalent to the following minimization axiom Min(T,A):

A 6= ∅ ⇒ (∃x ∈ A)(∀y ∈ A)(¬y ≺T x).

Therefore, the schema Found(T,Π0
1) is the same as Min(T,Σ0

1). Σ0
1 is the class

of all r.e. sets. If {e} denotes the e-th partial recursive function, or, depending
on the context, the e-th recursive enumerable (r.e.) set (we think of n ∈ {e} iff
{e}(n) ≃ 0), then ({e} : e ∈ N) enumerates Σ0

1. In order to prove Theorem 1 it
is enough to show

Lemma 3. For every prim. rec. well-founded tree S there exists a prim.-rec.
well-founded tree T such that the order-type of T is not smaller than that of S
and Σ0

1-IND ⊢ (∀e)Min(T, {e}).

This is obtained by a similar argument as in Lemma 2 from

Theorem 4. There exists a prim. rec. tree T (actually T will be in coNP )
which is not well-founded, but which is well-founded for co-r.e. sets, provable in
Σ0

1-IND, i.e. Σ0
1-IND ⊢ (∀e)Min(T, {e}).

Proof of Lemma 3. We construct T in the same way as in the proof of Lemma 2
from T ′ given by Theorem 4 and any prim. rec. well-founded tree S. The only
additional thing we have to observe is that (∀e)Min(T, {e}) is already provable
in Σ0

1-IND, because the Σ0
1-sets are uniformly closed under projection. By this

we mean that if e is an index of a non-empty set, then we have to consider the
‘projection’ of {e}

Y =
{
〈t1, . . . , tk〉 : (∃〈s1, . . . , sk〉)

(
〈〈s1, t1〉, . . . , 〈sk, tk〉〉 ∈ {e}

)}

which again is a Σ0
1 set, and we can (uniformly in e) find an index for Y . By

construction we have Σ0
1-IND ⊢ Min(T ′, Y ), hence we can find some t ∈ Y

which is ≺T ′ -minimal in Y . Thus, we immediately have some τ ∈ {e} which is
≺T -minimal in {e}
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The idea for the proof of Theorem 4 is as follows. The simplest way to fulfill
Min(T, {e}) is to ensure that {e} \ T 6= ∅ if {e} is infinite. For example, we can
define an infinite path P = {pj : j ∈ ω} (P will also be a tree) by recursion
on j, which diagonalizes every infinite r.e. set in the sense that {e} \ P 6= ∅
for every infinite set {e}. Let e0 := 0 (w.l.o.g. {0} = ∅), and for j ≥ 0 and
pj := 〈〈e1, a1〉, . . . , 〈ej , aj〉〉 define recursively ej+1 as the next index of a set
containing some “large” element aj+1:

ej+1 := µe > ej .((∃a > pj) a ∈ {e})

aj+1 := µa > pj .(a ∈ {ej+1}).

Then we can show

Lemma 5. For every infinite r.e. set {e} we have {e} \ P 6= ∅.

This immediately implies

Theorem 6. We have ∀e ∈ N Min(P, {e}).

Proof of Lemma 5. Let {e} be an infinite set. Then there is some i such that
ei < e ≤ ei+1, because (ej)j is strictly increasing. As {e} is infinite, we have

e > ei and (∃a > pi)(a ∈ {e}).

By definition, ei+1 is minimal with this, hence ei+1 ≤ e, hence ei+1 = e. Now for
ai+1 we have by definition ai+1 ∈ {e} and pi < ai+1 < pi+1, hence ai+1 6∈ P .

Theorem 6 does not imply our desired result, as P is not prim. rec. (rather
Π0

1). We obtain the tree we are looking for by carefully enlarging P to a
prim. rec. tree T , whose only infinite path will be similar to P . The idea is
to define σ ∈ T by modifying the definition of P by replacing the Σ0

1-condition
“a ∈ {e}” by “b witnesses the computation {e}(a) ≃ 0”, thus also replacing
“〈ej , aj〉” by “〈ej , aj , bj〉”, and by bounding unbounded quantifiers by σ. Of
course, this way an arbitrary path (σj)j through T with

σj = 〈〈e1, a1, b1〉, . . . , 〈ej , aj , bj〉〉,

which will always fulfill e1 < . . . < ej , will usually miss some infinite set {e}
with e < ej , namely those whose elements a ∈ {e} witnessing their “infiniteness”
are greater than σj , and those for which verifying a ∈ {e} needs an accepting
computation which can not be witnessed below σj . But this failure will occur
at some point as the path gets longer, and at this point such a “wrong” path
will end, and the tree T will branch at some earlier point in this path, such that
the “forgotten” index e will now occur. Therefore, all the “wrong” paths will be
finite. Another crucial point in constructing T is not hurting the diagonalization
property while enlarging P . I.e, for every infinite r.e. set {e} we will have some
element a in {e} \ T , for which the construction has to ensure that this witness
will never be added to the new set.
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Let C be the set of accepting configurations, C := {〈e, a, b〉 : b witnesses
{e}(a) ≃ 0}. This set is polytime. With ]a, b[ we denote the interval {a +
1, . . . , b − 1}. For σ = 〈c1, . . . , ck〉 and j ≤ k let σ ↾ j denote the initial
subsequence of σ of its first j elements, σ ↾ j = 〈c1, . . . , cj〉. Then we define
σ ∈ T if and only if

i) σ = 〈〈e1, a1, b1〉, . . . , 〈ek, ak, bk〉〉 & (∀ 0 < j ≤ k)
(
〈ej , aj , bj〉 ∈ C

)

ii) e0 := 0 < e1 < . . . < ek

iii) (∀j < k)
(
σ ↾ j < aj+1

)

iv) (∀j < k) (∀e ∈ ]ej , ej+1[) (∀a, b < σ)
(
σ ↾ j < a ⇒ 〈e, a, b〉 /∈ C

)

v) (∀j < k) (∀a, b < σ)
(
σ ↾ j < a < aj+1 ⇒ 〈ej+1, a, b〉 /∈ C

)

It is not hard to show that T is a tree and that T contains an infinite path similar
to P (to this end extend the definition of P by witnesses bj for aj ∈ {ej}).
Furthermore, it is immediate from the definition that T is prim. rec. It is
possible to change T into a polytime, non-well-founded tree such that Lemma 7
and Proposition 8 still hold, simply blow up σ = 〈c1, . . . , ck〉 to 〈2c1 , . . . , 2ck〉
and restrict bounded quantifiers logarithmically, e.g. change ∀a, b < σ . . . to
∀a, b < |σ| . . . . But we will stick to the simpler version as defined before.

With lh(σ) we denote the number of elements in σ, i.e, if σ = 〈s1, . . . , sk〉
then lh(σ) = k. Let ≺lex be the lexicographic ordering on finite sequences, i.e.
if σ = 〈s1, . . . , sk〉 and τ = 〈t1, . . . , tl〉 then let

σ ≺lex τ :⇔ σ is a proper initial subsequence of τ or
(
∃j < min(k, l)

)(
σ ↾ j = τ ↾ j and sj+1 < tj+1

)
.

The proof of Proposition 8 is based on the following property of T .

Lemma 7. (Σ0
0-IND or S1

2) σ, τ ∈ T and σ ≺lex τ ⇒ σ < τ .

Proof. Let σ, τ ∈ T such that σ ≺lex τ . If σ is a proper initial subsequence of τ
we are done. Otherwise define µ to be the greatest common initial subsequence
of σ and τ . Let c = 〈e, a, b〉 ∈ C, c′ = 〈e′, a′, b′〉 ∈ C be so that c extends µ in σ

and, respectively, c′ extends µ in τ . I.e. µa〈c〉 is an initial subsequence of σ,

and µa〈c′〉 is an initial subsequence of τ . Then σ ≺lex τ and the choice of µ
yields c < c′. Hence a, b < c < c′ < τ .

Assume for the sake of contradiction that σ ≥ τ . Then we also have a′, b′ <
c′ < τ ≤ σ. Now iv) of the definition of τ ∈ T and a, b < τ show e ≥ e′. Dually,
we obtain e′ ≥ e from iv) of σ ∈ T and a′, b′ < σ. Hence e = e′. Now v) of
the definition of τ ∈ T and b < τ yields a ≥ a′, and dually a′ ≥ a follows from
σ ∈ T and b′ < σ, hence a = a′. But then also b = b′ contradicting c < c′.

This lemma immediately implies that there is only one infinite path
through T , and that this path is the rightmost one. Furthermore, we can use
this lemma to show in Σ0

1-IND that T is well-founded on co-r.e. sets.
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Proposition 8. Σ0
1-IND ⊢ (∀e)Min(T, {e}).

Proof. We argue in Σ0
1-IND. Assume for the sake of contradiction that there is

some e such that ¬Min(T, {e}), i.e.

{e} 6= ∅ & (∀ξ ∈ {e})(∃η ∈ {e})(η ≺T ξ).

Then {e} ⊂ T , and using Σ0
1-IND we can define arbitrary long paths in {e} ∩ T

starting from any ξ ∈ {e}, i.e. we can show for ξ ∈ {e}

(∀k)(∃η)
(
η ∈ {e} ∩ T ∧ η ≺T ξ ∧ lh(η) ≥ k

)
. (1)

In particular, there is a σ ∈ T ∩ {e} with lh(σ) > e, i.e.

σ = 〈〈e1, a1, b1〉, . . . , 〈ek, ak, bk〉〉

with k > e. By definition 0 =: e0 < e1 < . . . < ek, thus ek ≥ k > e. Therefore,
there must be some j < k such that ej < e ≤ ej+1.

If ej < e < ej+1, let a be σ, so a ∈ {e}, and b be the witness for {e}(a) ≃ 0,
hence 〈e, a, b〉 ∈ C. With (1) we obtain some τ ∈ T such that τ ≺T σ and
lh(τ) > max(b, a), hence a, b < τ . As τ ≺T σ we have τ ↾ k = σ, hence
τ ↾ j = σ ↾ j < σ = a contradicting condition iv) of τ ∈ T .

Thus, we must have e = ej+1. Then aj+1 ∈ {e} ⊂ T by condition i) of
σ ∈ T , and condition iii) yields

σ ↾ j < aj+1 < 〈ej+1, aj+1, bj+1〉 < σ ↾ (j + 1),

hence aj+1 is incomparable to σ according to the initial subsequence relation.
Now either aj+1 ≺lex σ or σ ≺lex aj+1. As aj+1 < σ and aj+1, σ ∈ T , we obtain
σ 6≺lex aj+1 by Lemma 7. Hence aj+1 ≺lex σ. With (1) we find some τ ∈ T
with τ ≺T aj+1 and lh(τ) ≥ σ, thus τ ≥ σ. As aj+1 is incomparable to σ, and
aj+1 ≺lex σ, we obtain τ ≺lex σ from τ ≺T aj+1, contradicting Lemma 7.

In the proof of the last theorem induction is only needed to obtain (1)
from ¬Min(T, {e}). We can hide the induction by changing the definition of

Min(T,A) to M̃in(T,A) of the form

A 6= ∅ → (∃x ∈ A)(∃k)(∀y ∈ A)(lh(y) ≥ k → ¬y ≺T x)

i.e. (∀e)M̃in(T, {e}) is provable without induction (e.g. in Σ0
0-IND or S1

2). Fur-

thermore, Min(T,A) and M̃in(T,A) are equivalent in the standard model.
We finish the paper with some remarks and questions.

1. Let {e}Σ
0
n denote the e-th partial recursive function in some fixed Σ0

n-

complete oracle (e.g., the n-th Touring jump). Then {e}Σ
0
n enumerates all

Σ0
n+1-sets. If we replace {e} in the definition of C by {e}Σ

0
n obtaining Cn

and Tn in the following, then Cn ∈ ∆0
0(Σ

0
n) and hence Tn ∈ ∆0

0(Σ
0
n). Thus

Tn is a ∆0
n+1-tree which is not well-founded but which is well-founded for

all Π0
n+1-sets, provable in Σ0

n+1-IND.
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2. Most of our arguments are constructive as far as the proof of Proposi-
tion 8, even if we think of proving ∀eFound(T, {e}c). In order to prove
∀eFound(T, {e}c) constructively, we would have to derive contradiction
from the assumptions (∀x)((∀y ≺ x)(y /∈ {e}) → x /∈ {e}) and (∃x)x ∈ {e}
for some arbitrary e. But we do not obtain arbitrary long descending paths
in {e} ∩ T (cf. (1)) constructively from these assumptions. So the ques-
tion is: Does there exist a prim. rec. relation ≺ such that Found(≺,Π0

1)
is provable in some intuitionistic theory like Σ0

1-ind or HA? In [3] it is
shown that there exists a Π0

2-formula A(a) such that if HA ⊢ Found(≺, A)
holds for prim. rec. ≺ then ≺ is well-founded. Hence, even if we find such
a ≺ which answers our question, we cannot expect to extend the result to
higher levels.

3. We directly have OΣ0
n
(Σ0

1-IND) ≥ OΠ0
n+1

(Σ0
1-IND) and OΠ0

n
(Σ0

1-IND) ≥

OΠ0
n+1

(Σ0
1-IND), because Σ0

n ∪ Π0
n ⊂ Π0

n+1. We do not know what

the values of OΠ0
2
(Σ0

1-IND), OΠ0
3
(Σ0

1-IND), . . . , or OΠ1
0
(Σ0

1-IND) are.

I.e., is OΠ1
0
(Σ0

1-IND) < ωCK
1 ? Which is the first i (if any) such that

OΠ0
i

(Σ0
1-IND) < ωCK

1 ? What happens if we consider other suitable for-

malizations of Min like M̃in? E.g., does there exist a non-well-founded
prim. rec. tree T ′ such that Σ0

0-IND ⊢ M̃in(T ′,Π1
0)?
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