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Abstract

We construct by diagonalization a non-well-founded primitive recur-
sive tree, which is well-founded for co-r.e. sets, provable in X¢-IND. It
follows that the supremum of order-types of primitive recursive well-
orderings, whose well-foundedness on co-r.e. sets is provable in »9-IND,
equals the limit of all recursive ordinals w{'*.

This work contributes to the investigation of replacing the quantification
over all sets in the definition of the proof-theoretic ordinal of a theory by a
quantification over certain definable sets such as all arithmetical sets, or certain
levels of the arithmetical hierarchy. We discuss this as a first step towards an
investigation of replacing the set parameter in the definition of the dynamic
ordinal of fragments of bounded arithmetic (cf. [2]) by certain definable sets in
order to obtain non-relativized separation results.!

The proof-theoretic ordinal O(T') of a theory T can be defined by

O(T) := sup{a : « is the order-type of a simple well-ordering =<
and T+ Wf(<)}

where “simple” means something suitable like Ay or primitive recursive
(prim. rec.) or recursive, depending on the theories under consideration, and
Wf(<) expresses the well-foundedness of < by the II] sentence

(VX) Found(<, X) = (VX) [(vx)((vy <r)yeX) —aeX)— (Vo)(z e X)].
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From [5] and [6, pp. 280-284] follows the existence of an ordering <; which
is not well-founded but PA-provably well-founded on arithmetical sets. IL.e., if
we take Found(=, II§) to be the schema of transfinite induction of < for II§-sets
(i.e. arithmetical sets), then the instances of Found(=1,II}) are theorems of PA.
From this it is not hard to show that if we replace Wf(<) in the definition of
O(PA) by the schema Found(=<,II}), then we get w{'K:

O(PA) :=sup{a : « is the order-type of some recursive well-ordering <
and PA F Found(=<,11})} = w{'¥.

We will repeat an argument given by ARAI in [1] which shows this. It will be
immediate that this result still holds if we restrict to prim. rec. well-ordering.

But what happens if we consider sub-theories of PA? Remember that we
are heading towards fragments of bounded arithmetic. For a class ® of formulas
let Og(XY-IND) be the result of replacing Wf(<) in the definition of the proof-
theoretic ordinal O(X9-IND) by the schema Found(=<, ®). Our main result will
be that in case of co-r.e. sets, i.e. ® = II7, we still get w{'X:

Theorem 1.

OH?(E?—IND) = sup{a : « is the ordertype of some prim. rec.
well-ordering < and X9-IND F Found(<,119)} = wX.

A direct adaption of the construction given in [6, pp. 280-284] would only
prove the existence of a prim. rec, not well-founded ordering < which would be
Y9-IND-provably well-founded on TI{ sets.

In our arguments we will consider only recursive ordinals which are given by
well-founded recursive trees. Using the KLEENE-BROUWER ordering we could
obtain well-orderings from well-founded trees of even bigger ordertype, but this
would unnecessarily make our arguments more complicated. Recall that a tree T’
is a subset of the set of all finite sequences of natural numbers w<“ which is
closed under initial subsequences. With <;, we denote the usual tree ordering,
i.e. the converse of the strict initial subsequence ordering on w<“. Let <1 be
the restriction of <. to T, <p=<y NT?. With Found(7T, A) we mean the
formula Found(<r, A). A tree T is called well-founded iff <7 is well-founded,
i.e. Found(=<7, A) holds for all sets A. Let |T'| denote the ordertype of a well-
founded tree T, i.e. the ordertype of <7, which is the same as the height of T
Let 0 77 denote o concatenated with 7 for o,7 € w<“, and let T[o] be the
subtree of T starting at o: T[o] ={7 : "7 €T}

We repeat the argument given by Arai in [1] which shows that O(PA) =
w§E . To this end, it is enough to show

Lemma 2. For every recursive well-founded tree S there exists a recursive well-
founded tree T such that the order-type of T is not smaller than that of S and
PAF Found(T,11}).



Proof. Fix a recursive non-well-founded tree 7" such that PA proves transfinite
induction of 7" for any arithmetical set, PA F Found(7",11}), cf. [5] and [6,
pp. 280-284]. Let S be some well-founded recursive tree. Let T be the following
recursive tree: o € T iff o is a sequence of pairs (s;, ;) (¢ < k) such that the
sequence (s; : i < k) of first components is in S, and the sequence (t; : i < k)
of second components is in 7. Then it is easy to see that T' is well-founded and
that PA proves Found(T,I1}).

Fix an infinite path (¢; : i < w) through 7”. As in [4] p. 437, we can show
by induction on (s; : i < k) € S that

T[{(sita) = i <K = [S[{si = @ <K)]l.
Hence |T'| > |S|. O

In the following we identify formulas A with the sets defined by them
{z : A(z)}. The formula Found(T, A¢), where A€ is the complement of A (i.e.
A€ = —-A), is equivalent to the following minimization axiom Min(T, A):

A#D= Tz e A)(Vy € A)(—y <7 x).

Therefore, the schema Found (7, I1?) is the same as Min(7,X9). X9 is the class
of all r.e. sets. If {e} denotes the e-th partial recursive function, or, depending
on the context, the e-th recursive enumerable (r.e.) set (we think of n € {e} iff
{e}(n) ~0), then ({e} : e € N) enumerates X9. In order to prove Theorem 1 it
is enough to show

Lemma 3. For every prim. rec. well-founded tree S there exists a prim.-rec.
well-founded tree T such that the order-type of T is not smaller than that of S
and XV-IND + (Ve) Min(T, {e}).

This is obtained by a similar argument as in Lemma 2 from

Theorem 4. There exists a prim. rec. tree T (actually T will be in coNP)
which is not well-founded, but which is well-founded for co-r.e. sets, provable in
YO9-IND, i.e. X{-IND F (Ve) Min(T, {e}).

Proof of Lemma 3. We construct T in the same way as in the proof of Lemma 2
from T” given by Theorem 4 and any prim. rec. well-founded tree S. The only
additional thing we have to observe is that (Ve) Min(T, {e}) is already provable
in X9-IND, because the ¥-sets are uniformly closed under projection. By this
we mean that if e is an index of a non-empty set, then we have to consider the
‘projection’ of {e}

Y = {(tl,...,tk> : (EI(sl,...,sk>)(<(51,t1>,...,<sk,tk>> c {e})}

which again is a X set, and we can (uniformly in e) find an index for Y. By
construction we have L9-IND + Min(7”,Y), hence we can find some t € YV
which is <7 -minimal in Y. Thus, we immediately have some 7 € {e} which is
<p-minimal in {e} O



The idea for the proof of Theorem 4 is as follows. The simplest way to fulfill
Min(T, {e}) is to ensure that {e} \ T'# 0 if {e} is infinite. For example, we can
define an infinite path P = {p,; : j € w} (P will also be a tree) by recursion
on j, which diagonalizes every infinite r.e. set in the sense that {e} \ P # 0
for every infinite set {e}. Let ¢y := 0 (w.l.o.g. {0} = 0), and for j > 0 and
p; = ((e1,a1),...,(e;,a;)) define recursively e;;; as the next index of a set
containing some “large” element a;1:

ej+1 = pe > e;.((3a > pj;) a € {e})
aj+1:= pa > pj.(a € {ej41}).

Then we can show
Lemma 5. For every infinite r.e. set {e} we have {e} \ P # 0.
This immediately implies
Theorem 6. We have Ve € N Min(P, {e}). O

Proof of Lemma 5. Let {e} be an infinite set. Then there is some ¢ such that
e; < e <e;y1, because (e;); is strictly increasing. As {e} is infinite, we have

e>e; and (Ja>p;)(ac{e}).

By definition, ;41 is minimal with this, hence e;11 < e, hence e;;1 = e. Now for
a;+1 we have by definition a,11 € {e} and p; < a;41 < piy1, hence a; 11 ¢ P. O

Theorem 6 does not imply our desired result, as P is not prim. rec. (rather
119). We obtain the tree we are looking for by carefully enlarging P to a
prim. rec. tree T, whose only infinite path will be similar to P. The idea is
to define o € T by modifying the definition of P by replacing the ¥{-condition
“a € {e}” by “b witnesses the computation {e}(a) ~ 0”7, thus also replacing
“(ej,a;)” by “(ej,a;,b;)”, and by bounding unbounded quantifiers by o. Of
course, this way an arbitrary path (o;); through T with

0; = <<61,a1,b1>,... ,<ej,aj,bj>>,

which will always fulfill e; < ... < e;, will usually miss some infinite set {e}
with e < e, namely those whose elements a € {e} witnessing their “infiniteness”
are greater than o;, and those for which verifying a € {e} needs an accepting
computation which can not be witnessed below o;. But this failure will occur
at some point as the path gets longer, and at this point such a “wrong” path
will end, and the tree T will branch at some earlier point in this path, such that
the “forgotten” index e will now occur. Therefore, all the “wrong” paths will be
finite. Another crucial point in constructing 7" is not hurting the diagonalization
property while enlarging P. I.e, for every infinite r.e. set {e} we will have some
element @ in {e} \ T', for which the construction has to ensure that this witness
will never be added to the new set.



Let C be the set of accepting configurations, C' := {(e,a,b) : b witnesses
{e}(a) ~ 0}. This set is polytime. With ]a,b] we denote the interval {a +
1,...,b—1}. For 0 = {c1,...,¢;) and j < k let o | j denote the initial
subsequence of ¢ of its first j elements, o | j = (c1,...,¢;). Then we define
o € T if and only if

) o= {lenan b ewanbi)) & (V0<j<K) ((ej,a5,b5) € C)
i) e:=0<e <...<eg
) (G<k) (015 <am)

i) (Vi <k) (Ve €]ej, ej41]) (Va, b < a)(a 1j<a={eab)¢ c)

7
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v) (Vj <k)(Va,b< U)(U lj<a<ajtr = (ejy1,a,b) ¢ C’)

It is not hard to show that T is a tree and that T contains an infinite path similar
to P (to this end extend the definition of P by witnesses b; for a; € {e;}).
Furthermore, it is immediate from the definition that T is prim. rec. It is
possible to change T into a polytime, non-well-founded tree such that Lemma 7

and Proposition 8 still hold, simply blow up o = {c1,... ,¢) to (2°,...,2%)
and restrict bounded quantifiers logarithmically, e.g. change Va,b < ... to
Va,b < |o|.... But we will stick to the simpler version as defined before.

With lh(o) we denote the number of elements in o, i.e, if 0 = (s1,...,sk)
then lh(o) = k. Let <., be the lexicographic ordering on finite sequences, i.e.
if o =(s1,...,8) and 7 = (t1,... , ;) then let

0 <lex T & 0 is a proper initial subsequence of 7 or
(Elj < min(k, l)) (g 1 j=71jands;4; < tjﬂ).
The proof of Proposition 8 is based on the following property of T

Lemma 7. (X3-IND or S3) o,7 €T and 0 <jep T = 0 < T.

Proof. Let o,7 € T such that o <, 7. If 0 is a proper initial subsequence of T
we are done. Otherwise define p to be the greatest common initial subsequence
of o and 7. Let ¢ = (e,a,b) € C, ¢ = (¢/,a’,b') € C be so that ¢ extends u in o
and, respectively, ¢’ extends p in 7. Le. u " {(c) is an initial subsequence of o,

and p (') is an initial subsequence of 7. Then o <., 7 and the choice of u
yields ¢ < ¢’. Hence a,b<c<c <.

Assume for the sake of contradiction that o > 7. Then we also have o/, b <
¢ <1 <o. Now iv) of the definition of 7 € T and a,b < 7 show e > ¢’. Dually,
we obtain ¢’ > e from ) of 0 € T and a/,b’ < 0. Hence e = ¢/. Now v) of
the definition of 7 € T and b < 7 yields a > a’, and dually @’ > a follows from
oc €T and b < o, hence a = a’. But then also b =V’ contradicting ¢ < ¢. O

This lemma immediately implies that there is only one infinite path
through T, and that this path is the rightmost one. Furthermore, we can use
this lemma to show in X$-IND that T is well-founded on co-r.e. sets.



Proposition 8. XV-IND + (Ve) Min(T, {e}).

Proof. We argue in X9-IND. Assume for the sake of contradiction that there is
some e such that = Min(T, {e}), i.e.

{e} #0 & (v€e{e})(Fn € {e})(n <r Q).

Then {e} C T, and using X9-IND we can define arbitrary long paths in {e} N T
starting from any £ € {e}, i.e. we can show for £ € {e}

(Vk)(3n) (n e{e}NT Ay =<7 &ATh(y) > k) (1)
In particular, there is a 0 € T'N {e} with lh(o) > e, i.e.

o= ((e1,a1,b1),...,(ex,ar, br))

with k& > e. By definition 0 =: eg < e < ... < eg, thus e > k > e. Therefore,
there must be some j < k such that ¢; < e < ejy;.

Ife; < e<ejtq,let abe o, soa € {e}, and b be the witness for {e}(a) ~ 0,
hence (e,a,b) € C. With (1) we obtain some 7 € T such that 7 <7 o and
Ih(7) > max(b,a), hence a,b < 7. As 7 <y o we have 7 [ k = o, hence
T |j=o01j< o =a contradicting condition iv) of 7 € T.

Thus, we must have e = €;41. Then a;1; € {e} C T by condition ¢) of
o € T, and condition 4i7) yields

ol j<ajr <(ejt1,a541,b541) <o [ (j+1),

hence a;11 is incomparable to o according to the initial subsequence relation.
Now either a1 <jez 0 Or 0 <jex Gj41. As aj41 < 0 and a;j11,0 € T, we obtain
0 Alex @j+1 by Lemma 7. Hence aji1 <iep 0. With (1) we find some 7 € T
with 7 <7 aj41 and lh(7) > o, thus 7 > 0. As a4 is incomparable to o, and
aj+1 <lex 0, We Obtain 7 <, 0 from 7 <7 a;41, contradicting Lemma 7. O

In the proof of the last theorem induction is only needed to obtain (1)
from —=Min(T, {e}). We can hide the induction by changing the definition of

Min(T, A) to Min(T, A) of the form
A#D— (Fze A)(Fk)(Vy € A)(lh(y) > k — —y <7 x)

i.e. (Ye)Min(T, {e}) is provable without induction (e.g. in $9-IND or S3). Fur-
thermore, Min(7', A) and Min(T, A) are equivalent in the standard model.
We finish the paper with some remarks and questions.

1. Let {e}zﬂ denote the e-th partial recursive function in some fixed X0-
complete oracle (e.g., the n-th Touring jump). Then {6}22 enumerates all
39 1-sets. If we replace {e} in the definition of C' by {6}22 obtaining Cy,
and T), in the following, then C,, € A§(X%) and hence T,, € AJ(22). Thus
T, is a AY | -tree which is not well-founded but which is well-founded for
all I19_ ;-sets, provable in X9 |-IND.



2. Most of our arguments are constructive as far as the proof of Proposi-
tion 8, even if we think of proving Ve Found(T, {e}¢). In order to prove
Ve Found(T, {e}¢) constructively, we would have to derive contradiction
from the assumptions (Vz)((Vy < z)(y ¢ {e}) — « ¢ {e}) and (Fz)x € {e}
for some arbitrary e. But we do not obtain arbitrary long descending paths
in {e} NT (cf. (1)) constructively from these assumptions. So the ques-
tion is: Does there exist a prim. rec. relation < such that Found(=<,IIY)
is provable in some intuitionistic theory like 39-ind or HA? In [3] it is
shown that there exists a I13-formula A(a) such that if HA F Found(<, A)
holds for prim. rec. < then < is well-founded. Hence, even if we find such
a < which answers our question, we cannot expect to extend the result to
higher levels.

3. We directly have Ogxo (£9-IND) > OH%H(E?—IND) and O (£9-IND) >

OHELH(E?'IND)v because ¥0 UIIY c II9.,. We do not know what
the values of Opg(39-IND), Opg(X9-IND), ..., or Op(39-IND) are.
Le., is Oné(Z?—IND) < w§K? Which is the first ¢ (if any) such that
Oro (X9-IND) < w{E? What happens if we consider other suitable for-
malizations of Min like Min? E.g., does there exist a non-well-founded
prim. rec. tree 7" such that $J-IND  Min(7",T13)?
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