A non-well-founded primitive recursive tree provably well-founded for co-r.e. sets

Arnold Beckmann*
Department of Mathematics, UCSD
9500 Gilman Drive, La Jolla, CA 92093-0112, USA ${ }^{\dagger}$

August 8, 2001

Abstract

We construct by diagonalization a non-well-founded primitive recursive tree, which is well-founded for co-r.e. sets, provable in Σ_{1}^{0}-IND. It follows that the supremum of order-types of primitive recursive wellorderings, whose well-foundedness on co-r.e. sets is provable in Σ_{1}^{0}-IND, equals the limit of all recursive ordinals $\omega_{1}^{C K}$.

This work contributes to the investigation of replacing the quantification over all sets in the definition of the proof-theoretic ordinal of a theory by a quantification over certain definable sets such as all arithmetical sets, or certain levels of the arithmetical hierarchy. We discuss this as a first step towards an investigation of replacing the set parameter in the definition of the dynamic ordinal of fragments of bounded arithmetic (cf. [2]) by certain definable sets in order to obtain non-relativized separation results. ${ }^{1}$

The proof-theoretic ordinal $\mathrm{O}(T)$ of a theory T can be defined by

$$
\begin{aligned}
\mathrm{O}(T):=\sup \{\alpha: \alpha & \text { is the order-type of a simple well-ordering } \prec \\
& \text { and } T \vdash \mathrm{Wf}(\prec)\}
\end{aligned}
$$

where "simple" means something suitable like Δ_{0} or primitive recursive (prim. rec.) or recursive, depending on the theories under consideration, and Wf (\prec) expresses the well-foundedness of \prec by the Π_{1}^{1} sentence

$$
\xrightarrow{(\forall X) \operatorname{Found}(\prec, X) \equiv(\forall X)[(\forall x)((\forall y \prec x)(y \in X) \rightarrow x \in X) \rightarrow(\forall x)(x \in X)] .}
$$

[^0]From [5] and [6, pp. 280-284] follows the existence of an ordering \prec_{1} which is not well-founded but $P A$-provably well-founded on arithmetical sets. I.e., if we take Found $\left(\prec, \Pi_{0}^{1}\right)$ to be the schema of transfinite induction of \prec for Π_{0}^{1}-sets (i.e. arithmetical sets), then the instances of Found $\left(\prec_{1}, \Pi_{0}^{1}\right)$ are theorems of $P A$. From this it is not hard to show that if we replace Wf (\prec) in the definition of $\mathrm{O}(P A)$ by the schema Found $\left(\prec, \Pi_{0}^{1}\right)$, then we get $\omega_{1}^{C K}$:
$\tilde{\mathrm{O}}(P A):=\sup \{\alpha: \alpha$ is the order-type of some recursive well-ordering \prec

$$
\text { and } \left.P A \vdash \operatorname{Found}\left(\prec, \Pi_{0}^{1}\right)\right\}=\omega_{1}^{C K}
$$

We will repeat an argument given by Arai in [1] which shows this. It will be immediate that this result still holds if we restrict to prim. rec. well-ordering.

But what happens if we consider sub-theories of $P A$? Remember that we are heading towards fragments of bounded arithmetic. For a class Φ of formulas let $\mathrm{O}_{\Phi}\left(\Sigma_{1}^{0}-\mathrm{IND}\right)$ be the result of replacing $\mathrm{Wf}(\prec)$ in the definition of the prooftheoretic ordinal $\mathrm{O}\left(\Sigma_{1}^{0}\right.$-IND $)$ by the schema Found (\prec, Φ). Our main result will be that in case of co-r.e. sets, i.e. $\Phi=\Pi_{1}^{0}$, we still get $\omega_{1}^{C K}$:

Theorem 1.

$$
\begin{aligned}
\mathrm{O}_{\Pi_{1}^{0}}\left(\Sigma_{1}^{0}-I N D\right) & =\sup \{\alpha: \alpha \text { is the ordertype of some prim. rec. } \\
& \text { well-ordering } \left.\prec \text { and } \Sigma_{1}^{0}-I N D \vdash \operatorname{Found}\left(\prec, \Pi_{1}^{0}\right)\right\}=\omega_{1}^{C K} .
\end{aligned}
$$

A direct adaption of the construction given in [6, pp. 280-284] would only prove the existence of a prim. rec, not well-founded ordering \prec which would be Σ_{2}^{0}-IND-provably well-founded on Π_{1}^{0} sets.

In our arguments we will consider only recursive ordinals which are given by well-founded recursive trees. Using the Kleene-Brouwer ordering we could obtain well-orderings from well-founded trees of even bigger ordertype, but this would unnecessarily make our arguments more complicated. Recall that a tree T is a subset of the set of all finite sequences of natural numbers $\omega^{<\omega}$ which is closed under initial subsequences. With $\prec_{t r}$ we denote the usual tree ordering, i.e. the converse of the strict initial subsequence ordering on $\omega^{<\omega}$. Let \prec_{T} be the restriction of $\prec_{t r}$ to T, $\prec_{T}=\prec_{t r} \cap T^{2}$. With $\operatorname{Found}(T, A)$ we mean the formula Found $\left(\prec_{T}, A\right)$. A tree T is called well-founded iff \prec_{T} is well-founded, i.e. Found $\left(\prec_{T}, A\right)$ holds for all sets A. Let $|T|$ denote the ordertype of a wellfounded tree T, i.e. the ordertype of \prec_{T}, which is the same as the height of T. Let $\sigma^{\frown} \tau$ denote σ concatenated with τ for $\sigma, \tau \in \omega<\omega$, and let $T[\sigma]$ be the subtree of T starting at $\sigma: T[\sigma]=\left\{\tau: \sigma^{\frown} \tau \in T\right\}$.

We repeat the argument given by Arai in [1] which shows that $\tilde{O}(P A)=$ $\omega_{1}^{C K}$. To this end, it is enough to show

Lemma 2. For every recursive well-founded tree S there exists a recursive wellfounded tree T such that the order-type of T is not smaller than that of S and $P A \vdash \operatorname{Found}\left(T, \Pi_{0}^{1}\right)$.

Proof. Fix a recursive non-well-founded tree T^{\prime} such that $P A$ proves transfinite induction of T^{\prime} for any arithmetical set, $P A \vdash \operatorname{Found}\left(T^{\prime}, \Pi_{0}^{1}\right)$, cf. [5] and [6, pp. 280-284]. Let S be some well-founded recursive tree. Let T be the following recursive tree: $\sigma \in T$ iff σ is a sequence of pairs $\left\langle s_{i}, t_{i}\right\rangle(i<k)$ such that the sequence $\left\langle s_{i}: i<k\right\rangle$ of first components is in S, and the sequence $\left\langle t_{i}: i<k\right\rangle$ of second components is in T^{\prime}. Then it is easy to see that T is well-founded and that $P A$ proves $\operatorname{Found}\left(T, \Pi_{0}^{1}\right)$.

Fix an infinite path $\left\langle t_{i}: i<\omega\right\rangle$ through T^{\prime}. As in [4] p. 437, we can show by induction on $\left\langle s_{i}: i<k\right\rangle \in S$ that

$$
\left|T\left[\left\langle\left\langle s_{i}, t_{i}\right\rangle: i<k\right\rangle\right]\right| \geq\left|S\left[\left\langle s_{i}: i<k\right\rangle\right]\right| .
$$

Hence $|T| \geq|S|$.
In the following we identify formulas A with the sets defined by them $\{x: A(x)\}$. The formula Found $\left(T, A^{c}\right)$, where A^{c} is the complement of A (i.e. $A^{c} \equiv \neg A$), is equivalent to the following minimization axiom $\operatorname{Min}(T, A)$:

$$
A \neq \emptyset \Rightarrow(\exists x \in A)(\forall y \in A)\left(\neg y \prec_{T} x\right) .
$$

Therefore, the schema $\operatorname{Found}\left(T, \Pi_{1}^{0}\right)$ is the same as $\operatorname{Min}\left(T, \Sigma_{1}^{0}\right) . \Sigma_{1}^{0}$ is the class of all r.e. sets. If $\{e\}$ denotes the e-th partial recursive function, or, depending on the context, the e-th recursive enumerable (r.e.) set (we think of $n \in\{e\}$ iff $\{e\}(n) \simeq 0)$, then $(\{e\}: e \in \mathbb{N})$ enumerates Σ_{1}^{0}. In order to prove Theorem 1 it is enough to show

Lemma 3. For every prim. rec. well-founded tree S there exists a prim.-rec. well-founded tree T such that the order-type of T is not smaller than that of S and $\Sigma_{1}^{0}-I N D \vdash(\forall e) \operatorname{Min}(T,\{e\})$.

This is obtained by a similar argument as in Lemma 2 from
Theorem 4. There exists a prim. rec. tree T (actually T will be in coNP) which is not well-founded, but which is well-founded for co-r.e. sets, provable in $\Sigma_{1}^{0}-I N D$, i.e. $\Sigma_{1}^{0}-I N D \vdash(\forall e) \operatorname{Min}(T,\{e\})$.

Proof of Lemma 3. We construct T in the same way as in the proof of Lemma 2 from T^{\prime} given by Theorem 4 and any prim. rec. well-founded tree S. The only additional thing we have to observe is that $(\forall e) \operatorname{Min}(T,\{e\})$ is already provable in Σ_{1}^{0}-IND, because the Σ_{1}^{0}-sets are uniformly closed under projection. By this we mean that if e is an index of a non-empty set, then we have to consider the 'projection' of $\{e\}$

$$
Y=\left\{\left\langle t_{1}, \ldots, t_{k}\right\rangle:\left(\exists\left\langle s_{1}, \ldots, s_{k}\right\rangle\right)\left(\left\langle\left\langle s_{1}, t_{1}\right\rangle, \ldots,\left\langle s_{k}, t_{k}\right\rangle\right\rangle \in\{e\}\right)\right\}
$$

which again is a Σ_{1}^{0} set, and we can (uniformly in e) find an index for Y. By construction we have Σ_{1}^{0}-IND $\vdash \operatorname{Min}\left(T^{\prime}, Y\right)$, hence we can find some $t \in Y$ which is $\prec_{T^{\prime}}$-minimal in Y. Thus, we immediately have some $\tau \in\{e\}$ which is \prec_{T}-minimal in $\{e\}$

The idea for the proof of Theorem 4 is as follows. The simplest way to fulfill $\operatorname{Min}(T,\{e\})$ is to ensure that $\{e\} \backslash T \neq \emptyset$ if $\{e\}$ is infinite. For example, we can define an infinite path $P=\left\{p_{j}: j \in \omega\right\}$ (P will also be a tree) by recursion on j, which diagonalizes every infinite r.e. set in the sense that $\{e\} \backslash P \neq \emptyset$ for every infinite set $\{e\}$. Let $e_{0}:=0$ (w.l.o.g. $\{0\}=\emptyset$), and for $j \geq 0$ and $p_{j}:=\left\langle\left\langle e_{1}, a_{1}\right\rangle, \ldots,\left\langle e_{j}, a_{j}\right\rangle\right\rangle$ define recursively e_{j+1} as the next index of a set containing some "large" element a_{j+1} :

$$
\begin{aligned}
e_{j+1} & :=\mu e>e_{j} .\left(\left(\exists a>p_{j}\right) a \in\{e\}\right) \\
a_{j+1} & :=\mu a>p_{j} .\left(a \in\left\{e_{j+1}\right\}\right) .
\end{aligned}
$$

Then we can show
Lemma 5. For every infinite r.e. set $\{e\}$ we have $\{e\} \backslash P \neq \emptyset$.
This immediately implies
Theorem 6. We have $\forall e \in \mathbb{N} \operatorname{Min}(P,\{e\})$.
Proof of Lemma 5. Let $\{e\}$ be an infinite set. Then there is some i such that $e_{i}<e \leq e_{i+1}$, because $\left(e_{j}\right)_{j}$ is strictly increasing. As $\{e\}$ is infinite, we have

$$
e>e_{i} \quad \text { and } \quad\left(\exists a>p_{i}\right)(a \in\{e\}) .
$$

By definition, e_{i+1} is minimal with this, hence $e_{i+1} \leq e$, hence $e_{i+1}=e$. Now for a_{i+1} we have by definition $a_{i+1} \in\{e\}$ and $p_{i}<a_{i+1}<p_{i+1}$, hence $a_{i+1} \notin P$.

Theorem 6 does not imply our desired result, as P is not prim. rec. (rather $\left.\Pi_{1}^{0}\right)$. We obtain the tree we are looking for by carefully enlarging P to a prim. rec. tree T, whose only infinite path will be similar to P. The idea is to define $\sigma \in T$ by modifying the definition of P by replacing the Σ_{1}^{0}-condition " $a \in\{e\}$ " by " b witnesses the computation $\{e\}(a) \simeq 0$ ", thus also replacing " $\left\langle e_{j}, a_{j}\right\rangle$ " by " $\left\langle e_{j}, a_{j}, b_{j}\right\rangle$ ", and by bounding unbounded quantifiers by σ. Of course, this way an arbitrary path $\left(\sigma_{j}\right)_{j}$ through T with

$$
\sigma_{j}=\left\langle\left\langle e_{1}, a_{1}, b_{1}\right\rangle, \ldots,\left\langle e_{j}, a_{j}, b_{j}\right\rangle\right\rangle
$$

which will always fulfill $e_{1}<\ldots<e_{j}$, will usually miss some infinite set $\{e\}$ with $e<e_{j}$, namely those whose elements $a \in\{e\}$ witnessing their "infiniteness" are greater than σ_{j}, and those for which verifying $a \in\{e\}$ needs an accepting computation which can not be witnessed below σ_{j}. But this failure will occur at some point as the path gets longer, and at this point such a "wrong" path will end, and the tree T will branch at some earlier point in this path, such that the "forgotten" index e will now occur. Therefore, all the "wrong" paths will be finite. Another crucial point in constructing T is not hurting the diagonalization property while enlarging P. I.e, for every infinite r.e. set $\{e\}$ we will have some element a in $\{e\} \backslash T$, for which the construction has to ensure that this witness will never be added to the new set.

Let C be the set of accepting configurations, $C:=\{\langle e, a, b\rangle: b$ witnesses $\{e\}(a) \simeq 0\}$. This set is polytime. With $] a, b[$ we denote the interval $\{a+$ $1, \ldots, b-1\}$. For $\sigma=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ and $j \leq k$ let $\sigma \upharpoonright j$ denote the initial subsequence of σ of its first j elements, $\sigma \upharpoonright j=\left\langle c_{1}, \ldots, c_{j}\right\rangle$. Then we define $\sigma \in T$ if and only if
i) $\sigma=\left\langle\left\langle e_{1}, a_{1}, b_{1}\right\rangle, \ldots,\left\langle e_{k}, a_{k}, b_{k}\right\rangle\right\rangle \quad \& \quad(\forall 0<j \leq k)\left(\left\langle e_{j}, a_{j}, b_{j}\right\rangle \in C\right)$
ii) $e_{0}:=0<e_{1}<\ldots<e_{k}$
iii) $(\forall j<k)\left(\sigma \upharpoonright j<a_{j+1}\right)$
iv) $(\forall j<k)(\forall e \in] e_{j}, e_{j+1}[)(\forall a, b<\sigma)(\sigma \upharpoonright j<a \Rightarrow\langle e, a, b\rangle \notin C)$
v) $\quad(\forall j<k)(\forall a, b<\sigma)\left(\sigma \upharpoonright j<a<a_{j+1} \Rightarrow\left\langle e_{j+1}, a, b\right\rangle \notin C\right)$

It is not hard to show that T is a tree and that T contains an infinite path similar to P (to this end extend the definition of P by witnesses b_{j} for $a_{j} \in\left\{e_{j}\right\}$). Furthermore, it is immediate from the definition that T is prim. rec. It is possible to change T into a polytime, non-well-founded tree such that Lemma 7 and Proposition 8 still hold, simply blow up $\sigma=\left\langle c_{1}, \ldots, c_{k}\right\rangle$ to $\left\langle 2^{c_{1}}, \ldots, 2^{c_{k}}\right\rangle$ and restrict bounded quantifiers logarithmically, e.g. change $\forall a, b<\sigma \ldots$ to $\forall a, b<|\sigma| \ldots$ But we will stick to the simpler version as defined before.

With $\operatorname{lh}(\sigma)$ we denote the number of elements in σ, i.e, if $\sigma=\left\langle s_{1}, \ldots, s_{k}\right\rangle$ then $\operatorname{lh}(\sigma)=k$. Let $\prec_{\text {lex }}$ be the lexicographic ordering on finite sequences, i.e. if $\sigma=\left\langle s_{1}, \ldots, s_{k}\right\rangle$ and $\tau=\left\langle t_{1}, \ldots, t_{l}\right\rangle$ then let

$$
\begin{aligned}
\sigma \prec_{l e x} \tau \quad: \Leftrightarrow & \sigma \text { is a proper initial subsequence of } \tau \quad \text { or } \\
& (\exists j<\min (k, l))\left(\sigma \upharpoonright j=\tau \upharpoonright j \text { and } s_{j+1}<t_{j+1}\right) .
\end{aligned}
$$

The proof of Proposition 8 is based on the following property of T.
Lemma 7. ($\Sigma_{0}^{0}-I N D$ or $\left.S_{2}^{1}\right) \sigma, \tau \in T$ and $\sigma \prec_{\text {lex }} \tau \Rightarrow \sigma<\tau$.
Proof. Let $\sigma, \tau \in T$ such that $\sigma \prec_{l e x} \tau$. If σ is a proper initial subsequence of τ we are done. Otherwise define μ to be the greatest common initial subsequence of σ and τ. Let $c=\langle e, a, b\rangle \in C, c^{\prime}=\left\langle e^{\prime}, a^{\prime}, b^{\prime}\right\rangle \in C$ be so that c extends μ in σ and, respectively, c^{\prime} extends μ in τ. I.e. $\mu^{\frown}\langle c\rangle$ is an initial subsequence of σ, and $\mu^{\frown}\left\langle c^{\prime}\right\rangle$ is an initial subsequence of τ. Then $\sigma \prec_{\text {lex }} \tau$ and the choice of μ yields $c<c^{\prime}$. Hence $a, b<c<c^{\prime}<\tau$.

Assume for the sake of contradiction that $\sigma \geq \tau$. Then we also have $a^{\prime}, b^{\prime}<$ $c^{\prime}<\tau \leq \sigma$. Now $i v$) of the definition of $\tau \in T$ and $a, b<\tau$ show $e \geq e^{\prime}$. Dually, we obtain $e^{\prime} \geq e$ from $i v$) of $\sigma \in T$ and $a^{\prime}, b^{\prime}<\sigma$. Hence $e=e^{\prime}$. Now v) of the definition of $\tau \in T$ and $b<\tau$ yields $a \geq a^{\prime}$, and dually $a^{\prime} \geq a$ follows from $\sigma \in T$ and $b^{\prime}<\sigma$, hence $a=a^{\prime}$. But then also $b=b^{\prime}$ contradicting $c<c^{\prime}$.

This lemma immediately implies that there is only one infinite path through T, and that this path is the rightmost one. Furthermore, we can use this lemma to show in Σ_{1}^{0}-IND that T is well-founded on co-r.e. sets.

Proposition 8. $\Sigma_{1}^{0}-I N D \vdash(\forall e) \operatorname{Min}(T,\{e\})$.
Proof. We argue in Σ_{1}^{0}-IND. Assume for the sake of contradiction that there is some e such that $\neg \operatorname{Min}(T,\{e\})$, i.e.

$$
\{e\} \neq \emptyset \quad \& \quad(\forall \xi \in\{e\})(\exists \eta \in\{e\})\left(\eta \prec_{T} \xi\right) .
$$

Then $\{e\} \subset T$, and using Σ_{1}^{0}-IND we can define arbitrary long paths in $\{e\} \cap T$ starting from any $\xi \in\{e\}$, i.e. we can show for $\xi \in\{e\}$

$$
\begin{equation*}
(\forall k)(\exists \eta)\left(\eta \in\{e\} \cap T \wedge \eta \prec_{T} \xi \wedge \operatorname{lh}(\eta) \geq k\right) \tag{1}
\end{equation*}
$$

In particular, there is a $\sigma \in T \cap\{e\}$ with $\operatorname{lh}(\sigma)>e$, i.e.

$$
\sigma=\left\langle\left\langle e_{1}, a_{1}, b_{1}\right\rangle, \ldots,\left\langle e_{k}, a_{k}, b_{k}\right\rangle\right\rangle
$$

with $k>e$. By definition $0=: e_{0}<e_{1}<\ldots<e_{k}$, thus $e_{k} \geq k>e$. Therefore, there must be some $j<k$ such that $e_{j}<e \leq e_{j+1}$.

If $e_{j}<e<e_{j+1}$, let a be σ, so $a \in\{e\}$, and b be the witness for $\{e\}(a) \simeq 0$, hence $\langle e, a, b\rangle \in C$. With (1) we obtain some $\tau \in T$ such that $\tau \prec_{T} \sigma$ and $\operatorname{lh}(\tau)>\max (b, a)$, hence $a, b<\tau$. As $\tau \prec_{T} \sigma$ we have $\tau \upharpoonright k=\sigma$, hence $\tau \upharpoonright j=\sigma \upharpoonright j<\sigma=a$ contradicting condition $i v)$ of $\tau \in T$.

Thus, we must have $e=e_{j+1}$. Then $a_{j+1} \in\{e\} \subset T$ by condition i) of $\sigma \in T$, and condition iii) yields

$$
\sigma \upharpoonright j<a_{j+1}<\left\langle e_{j+1}, a_{j+1}, b_{j+1}\right\rangle<\sigma \upharpoonright(j+1),
$$

hence a_{j+1} is incomparable to σ according to the initial subsequence relation. Now either $a_{j+1} \prec_{l e x} \sigma$ or $\sigma \prec_{l e x} a_{j+1}$. As $a_{j+1}<\sigma$ and $a_{j+1}, \sigma \in T$, we obtain $\sigma \not \varliminf_{\text {lex }} a_{j+1}$ by Lemma 7. Hence $a_{j+1} \prec_{\text {lex }} \sigma$. With (1) we find some $\tau \in T$ with $\tau \prec_{T} a_{j+1}$ and $\operatorname{lh}(\tau) \geq \sigma$, thus $\tau \geq \sigma$. As a_{j+1} is incomparable to σ, and $a_{j+1} \prec_{\text {lex }} \sigma$, we obtain $\tau \prec_{\text {lex }} \sigma$ from $\tau \prec_{T} a_{j+1}$, contradicting Lemma 7 .

In the proof of the last theorem induction is only needed to obtain (1) from $\neg \operatorname{Min}(T,\{e\})$. We can hide the induction by changing the definition of $\operatorname{Min}(T, A)$ to $\widetilde{\operatorname{Min}}(T, A)$ of the form

$$
A \neq \emptyset \rightarrow(\exists x \in A)(\exists k)(\forall y \in A)\left(\operatorname{lh}(y) \geq k \rightarrow \neg y \prec_{T} x\right)
$$

i.e. $(\forall e) \widetilde{\operatorname{Min}}(T,\{e\})$ is provable without induction (e.g. in Σ_{0}^{0}-IND or S_{2}^{1}). Furthermore, $\operatorname{Min}(T, A)$ and $\widetilde{\operatorname{Min}}(T, A)$ are equivalent in the standard model.

We finish the paper with some remarks and questions.

1. Let $\{e\}^{\Sigma_{n}^{0}}$ denote the e-th partial recursive function in some fixed Σ_{n}^{0} complete oracle (e.g., the n-th Touring jump). Then $\{e\}^{\Sigma_{n}^{0}}$ enumerates all Σ_{n+1}^{0}-sets. If we replace $\{e\}$ in the definition of C by $\{e\}^{\Sigma_{n}^{0}}$ obtaining C_{n} and T_{n} in the following, then $C_{n} \in \Delta_{0}^{0}\left(\Sigma_{n}^{0}\right)$ and hence $T_{n} \in \Delta_{0}^{0}\left(\Sigma_{n}^{0}\right)$. Thus T_{n} is a Δ_{n+1}^{0}-tree which is not well-founded but which is well-founded for all Π_{n+1}^{0}-sets, provable in Σ_{n+1}^{0}-IND.
2. Most of our arguments are constructive as far as the proof of Proposition 8 , even if we think of proving $\forall e \operatorname{Found}\left(T,\{e\}^{c}\right)$. In order to prove $\forall e \operatorname{Found}\left(T,\{e\}^{c}\right)$ constructively, we would have to derive contradiction from the assumptions $(\forall x)((\forall y \prec x)(y \notin\{e\}) \rightarrow x \notin\{e\})$ and $(\exists x) x \in\{e\}$ for some arbitrary e. But we do not obtain arbitrary long descending paths in $\{e\} \cap T$ (cf. (1)) constructively from these assumptions. So the question is: Does there exist a prim. rec. relation \prec such that Found $\left(\prec, \Pi_{1}^{0}\right)$ is provable in some intuitionistic theory like Σ_{1}^{0}-ind or $H A$? In [3] it is shown that there exists a Π_{2}^{0}-formula $A(a)$ such that if $H A \vdash \operatorname{Found}(\prec, A)$ holds for prim. rec. \prec then \prec is well-founded. Hence, even if we find such $\mathrm{a} \prec$ which answers our question, we cannot expect to extend the result to higher levels.
3. We directly have $\mathrm{O}_{\Sigma_{n}^{0}}\left(\Sigma_{1}^{0}\right.$-IND $) \geq \mathrm{O}_{\Pi_{n+1}^{0}}\left(\Sigma_{1}^{0}\right.$-IND $)$ and $\mathrm{O}_{\Pi_{n}^{0}}\left(\Sigma_{1}^{0}\right.$-IND $) \geq$ $\mathrm{O}_{\Pi_{n+1}^{0}}\left(\Sigma_{1}^{0}\right.$-IND $)$, because $\Sigma_{n}^{0} \cup \Pi_{n}^{0} \subset \Pi_{n+1}^{0}$. We do not know what the values of $\mathrm{O}_{\Pi_{2}^{0}}\left(\Sigma_{1}^{0}-\mathrm{IND}\right), \mathrm{O}_{\Pi_{3}^{0}}\left(\Sigma_{1}^{0}-\mathrm{IND}\right), \ldots$, or $\mathrm{O}_{\Pi_{0}^{1}}\left(\Sigma_{1}^{0}-\mathrm{IND}\right)$ are. I.e., is $\mathrm{O}_{\Pi_{0}^{1}}\left(\Sigma_{1}^{0}-\mathrm{IND}\right)<\omega_{1}^{C K}$? Which is the first i (if any) such that $\mathrm{O}_{\Pi_{i}^{0}}\left(\Sigma_{1}^{0}-\mathrm{IND}\right)<\omega_{1}^{C K}$? What happens if we consider other suitable formalizations of Min like $\widetilde{\text { Min? }}$ E.g., does there exist a non-well-founded prim. rec. tree T^{\prime} such that Σ_{0}^{0}-IND $\vdash \widetilde{\operatorname{Min}}\left(T^{\prime}, \Pi_{0}^{1}\right)$?

References

[1] Toshiyasu Arai. Classically provable recursive well-orderings. private communication, 1998.
[2] Arnold Beckmann. Seperating fragments of bounded predicative arithmetic. PhD thesis, Westf. Wilhelms-Univ., Münster, 1996.
[3] Harvey M. Friedman and Andrej Ščedrov. Intuitionistically provable recursive well-orderings. Ann. Pure Appl. Logic, 30:165-171, 1986.
[4] Jean-Yves Girard. Proof Theory and Logical Complexity, volume 1. Bibliopolis, Naples, 1987.
[5] Georg Kreisel. A variant to Hilbert's theory of the foundations of arithmetic. British J. Philos. Sci., 4:107-129 errata and corrigenda, 357 (1954), 1953.
[6] Anne S. Troelstra and Helmut Schwichtenberg. Basic proof theory. Number 121 in Stud. Logic Found. Math. Cambridge University Press, Cambridge, 1996.

[^0]: *Supported by the Deutschen Akademie der Naturforscher Leopoldina grant \#BMBFLPD 9801-7 with funds from the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie.
 †email: abeckman@math.ucsd.edu
 ${ }^{1}$ I like to thank A. Setzer for his hospitality during my stay in Uppsala in December 1998 - these investigations are inspired by a discussion with him; S. BuSS for his hospitality during my stay at UCSD and for valuable remarks on a previous version of this paper; and M. MÖLLERFELD for remarks on a previous title.

