
A

The NP Search Problems of Frege and Extended Frege Proofs

ARNOLD BECKMANN, Swansea University

SAM BUSS, University of California, San Diego

We study consistency search problems for Frege and extended Frege proofs, namely the NP search problems

of finding syntactic errors in Frege and extended Frege proofs of contradictions. The input is a polynomial

time function, or an oracle, describing a proof of a contradiction; the output is the location of a syntactic
error in the proof. The consistency search problems for Frege and extended Frege systems are shown to

be many-one complete for the provably total NP search problems of the second order bounded arithmetic
theories U1

2 and V1
2, respectively.

CCS Concepts: rTheory of computation → Complexity classes; Proof complexity; Proof theory;rComputing methodologies → Theorem proving algorithms;

Additional Key Words and Phrases: bounded arithmetic, Frege proofs, extended Frege proofs, NP search
problems, propositional logic, total functions, proof complexity

ACM Reference Format:

Arnold Beckmann and Sam Buss. 2017. The NP Search Problems of Frege and Extended Frege Proofs ACM
Trans. Comput. Logic V, N, Article A (January YYYY), 18 pages.

DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

This paper studies the consistency search problems for Frege and extended Frege proofs,
namely the total NP search problems of finding syntactic errors in Frege and extended Frege
proofs of contradictions. A total NP search problem is a total, multi-valued, polynomial
growth rate function with polynomial time recognizable graph. The class TFNP of total
NP search problems has been extensively studied from the point of view of computational
complexity (arising from the work of [Johnson et al. 1988; Papadimitriou 1990; 1994]), and
more recently from the point of view of bounded arithmetic. For bounded arithmetic, TFNP
problems correspond to Σb

1-definable functions; more precisely, the Σb
1-definable functions

of a bounded arithmetic theory T are exactly the functions which can be obtained as
projections, which are polynomial time computable, of total NP search problems of T . The
second author’s Ph.D. thesis [Buss 1986] studied the Σb

1-definable functions of S1
2; this also

characterized the total NP search functions of S1
2. However, [Buss 1986] studied only the

Σb
i -definable functions of Si

2 and Ti−1
2 for i > 1 and only the Σ1,b

1 -definable functions of the
second-order theories U1

2 and V1
2. The Σb

1-definable functions of T1
2 and S2

2 were characterized
in terms of the TFNP class Polynomial Local Search (PLS) by Buss and Kraj́ıček [Buss
and Kraj́ıček 1994]. A number of recent papers [Kraj́ıček et al. 2007; Pudlák and Thapen
2012; Skelley and Thapen 2011] have characterized the provably total NP search problems
of the first-order theories Ti−1

2 and Si
2 for i > 2. Even more recently, Ko lodziejczyk-Nguyen-

Thapen [Ko lodziejczyk et al. 2011] and Beckmann-Buss [Beckmann and Buss 2014] have

Author’s addresses: A. Beckmann, Department of Computer Science, Swansea University, Swansea SA2
8PP, UK; S. Buss, Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-
0112, USA. S. Buss was supported in part by NSF grants CCF-121351 and DMS-1101228, and a Simons
Foundation Fellowship 306202.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
c© YYYY ACM. 1529-3785/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 A. Beckmann and S. Buss

given characterizations of the provably total NP search problems of the second-order theories
U1

2 and V1
2 in terms of a variety of local improvement principles. Specifically, the results

of [Ko lodziejczyk et al. 2011; Beckmann and Buss 2014] together show that the following
TFNP problems are many-one complete for V1

2: the local improvement principles LI and LI1

and the rectangular local improvement principles RLI and RLIlog n. For U1
2, they show the

following are many-one complete: the rectangular local improvement principle RLI1 and the
linear local improvement principles LLI and LLIlog n.

The present paper gives new characterizations of the TFNP problems which are provably
total in U1

2 and V1
2. The new characterizations are based on the consistency search problems

for Frege and extended Frege proofs; that is to say, based on the complexity of searching
for syntactic errors in Frege or extended Frege proofs of contradictions. A closely related
result for V1

2 was obtained earlier by Kraj́ıček [Kraj́ıček 2016]; other related results for the
theories Ti

2 were proved before that by Kraj́ıček, Skelley, and Thapen [Kraj́ıček et al. 2007]
and Skelley and Thapen [Skelley and Thapen 2011].

A Frege proof is a“textbook style” proof system for propositional logic; typically a Frege
proof system has modus ponens as the only rule of inference. Extended Frege proofs are
allowed to use an additional “extension rule” that allows the introduction of new variables
abbreviating more complex formulas. We briefly define (extended) Frege proofs here, but
for more information see e.g. [Cook and Reckhow 1979; Buss 1998; 1999; Kraj́ıček 1995].
For the purposes of the present paper, we use the propositional connectives ¬, ∧, ∨, →
and ↔. Frege proofs have a finite set of axiom schemes, for instance A → (B → A) where
A and B may be any formula; our Frege proofs have modus ponens as the only rule of
inference: namely, from A and A → B, infer B (again, for any formulas A and B). More
generally, Frege systems can use any finite complete set of propositional connectives, and
any finite implicationally sound and implicationally complete set of axiom schemes and
inference schemes. All such Frege systems are p-equivalent (polynomially equivalent) [Cook
and Reckhow 1979; Reckhow 1976]. These p-equivalences involve non-local constructions
that do not immediately apply in our setting; nonetheless, our constructions below are
general enough so that the results of the present paper apply to any Frege system.

We will use symbols > and ⊥ as abbreviations for the true formula (x1 ∨ (¬x1)) and the
false formula (x1 ∧ (¬x1)), respectively. With no loss of generality, we presume that > is an
axiom for our Frege system.

An extended Frege proof system is the Frege proof system augmented with the extension
rule:

x↔ ϕ,

where ϕ is a formula, and x is a new variable which does not appear earlier in the proof, in
ϕ, or in the last formula of the proof. This effectively allows the variable x to abbreviate ϕ.
The extension rule can be applied iteratively, and this conjecturally means that extended
Frege proofs can be exponentially shorter than Frege proofs, where proof size is measured
in terms of the number of symbols in a proof. (This is an open problem, however.)

We shall define TFNP problems FCon(Ω, 0n) and eFCon(Ω, 0n) which find syntactic
errors in (purported) Frege and extended Frege proofs of contradictions. These are called
the consistency search problems for Frege and extended Frege. The input 0n serves only as
a size parameter; in the following, “polynomial time/size” or “exponential time/size” will

always be relative to n, and mean either nO(1) or 2n
O(1)

, respectively. The second-order
input Ω codes a string of symbols Ω(0), . . . ,Ω(2n−1) which are supposed to encode a valid
Frege (resp., extended Frege) proof PΩ of a contradiction. The search problem must output
a place where PΩ fails to be a valid proof of a contradiction. In other words, FCon(Ω, 0n) or
eFCon(Ω, 0n) must output some set of positions in the proof PΩ so that it can be verified
in polynomial time that these positions in Ω reveal a syntactic mistake showing that PΩ

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:3

is not a valid proof of a contradiction. Section 2.2 gives more details on how FCon and
eFCon are defined and on how Ω encodes a proof PΩ.

The size parameter 0n means that Ω encodes a proof of exponential size, with 2n many
symbols. In this way, when a theory U1

2 or V1
2 gives a Σb

1-definition of FCon(Ω, 0n) or
eFCon(Ω, 0n), it is proving the consistency of exponentially long Frege or extended Frege
proofs (respectively). It is important to note that PΩ may have exponentially many steps and
may contain exponentially long formulas. The ability to have exponentially long formulas is
not important for eFCon, as the extension rule means that extended Frege proofs may be
assumed to have only short formulas, even only formulas with constantly many symbols. For
FCon however, the possibility that formulas can contain exponentially many symbols is
crucial. Indeed, T1

2 can Σb
1-define, and prove the totality of, the consistency search problem

for Frege proofs in which formulas may contain only polynomially many symbols. This
is because T1

2 can define the truth of polynomial size propositional formulas, and prove
by induction that every formula in such a Frege proof is true (say, under the assignment
mapping all variables to False).

It is interesting to note that the extension rule may be iterated exponentially many
times in an extended Frege proof PΩ. This allows extension variables to represent exactly
values which can be computed with exponential size Boolean circuits. Thus, an exponen-
tially long extended Frege proof is, in effect, able to reason about exponential size circuits
(cf. Jeřábek [Jeřábek 2004]). In fact, U1

2 can Σb
1-define the consistency search problem for

extended Frege proofs that are restricted to have only polynomial depth nesting of the
extension rule.1

The next two theorems are the main results of the paper. For the definition of “many-one
complete provably in S1

2”, see Sections 2.1 and 2.3.

Theorem 1.1. The Extended Frege Consistency search problem, eFCon, is many-one
complete (provably in S1

2) for the provably total NP search problems of V1
2.

Theorem 1.2. The Frege Consistency search problem, FCon, is many-one complete
(provably in S1

2) for the provably total NP search problems of U1
2.

These two theorems apply to the oracle, or “relativized”, versions of eFCon and FCon,
and the second order, or “relativized”, versions of S1

2 as defined in Section 2.3. As an im-
mediate corollary, they also apply to the usual, un-relativized, versions of S1

2, and instances
of eFCon and FCon w.r.t. polynomial time relations.

We mention in passing that the standard TFNP classes PPP, PPA, PPAD, PPADS, etc.
are all many-one reducible to FCon: As PSPACE functions can count sizes of sets, complete
multi-functions in the classes such as PPP, PPA, PPAD, and PPADS are all provably total
in the theory U1

2. Hence by Theorem 1.2, they are many-one reducible to FCon. For related
results see Goldberg and Papadimitriou [Goldberg and Papadimitriou 2016].

There has already been extensive work relating bounded arithmetic theories to propo-
sitional proof complexity, including the Paris-Wilkie translation [Paris and Wilkie 1985],
Cook’s characterization of PV [Cook 1975], and many subsequent papers. Skelley and
Thapen [Skelley and Thapen 2011] characterize the TFNP problems of the theories Ti+2

2
in terms of 1-reflection for depth i Frege systems (where depth zero is resolution). They do

1To prove this, one can use the fact that there is a polynomial space (PSPACE) algorithm which evaluates
the truth of propositional formulas in which the extension rule is nested only to polynomial depth. One way
to form this PSPACE algorithm is to non-deterministically perform a depth-first traversal of the Boolean
formula, expanding extension rules as needed, traversing always smaller subformulas first. For traversing
propositional formulas in order of smaller subformulas first, see [Buss 1987]; for formalizing nondeterministic
PSPACE algorithms and Savitch’s theorem in U1

2, see [Beckmann and Buss 2014].
This construction is a uniform analogue of the fact that polynomial size extended Frege proofs in which

the extension rule is only nested logarithmically can be quasi-polynomially simulated by Frege proofs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 A. Beckmann and S. Buss

not explicitly discuss consistency search problems, but it is not hard to recast their results
in terms of consistency search problems for bounded depth Frege systems [Thapen, per-
sonal communication]. The most similar prior work to the present paper is that a version of
Theorem 1.1 was already established by Kraj́ıček [Kraj́ıček 2016], using, for the proof, the
notion of implicit proofs [Kraj́ıček 2004]. One advantage of Theorem 1.1 is that it is stated
directly in terms of propositional consistency, which we feel makes for a more direct and
intuitive statement.

The proofs of Theorems 1.1 and 1.2 are similar. Perhaps the principal difference is that
the latter theorem requires a refined method of encoding Frege proofs so that a syntactic
error in an exponential size Frege proof may be described with only a polynomial amount
of information. For this, see Section 2.2.

It is an open question whether the eFCon search problem is many-one reducible to the
FCon search problem. If it is provably so in U1

2, then there would be some surprising
consequences. First, it would follow that V1

2 is ∀Σb
1-conservative over U1

2, so U1
2 and V1

2
would have the same provably total NP search problems. Second, it would give a quasi-
polynomial simulation of extended Frege proofs by Frege proofs. (This second implication
has not been proved in the literature, but one way to prove it is as follows. Conservativity
over V1

2 would mean that U1
2 can prove the consistency of extended Frege proofs coded by

second-order predicates. It would follow that propositional translations of this statement
have quasipolynomial size Frege proofs [Kraj́ıček 1995, Theorem 9.1.6]. By techniques of
Cook [Cook 1975], this would further imply that Frege systems quasipolynomially simulate
extended Frege systems.)

It is more likely, however, that the eFCon search problem is not many-one reducible to
the FCon search problem, and consequently that V1

2 is neither equal to, nor conservative
over, U1

2.

2. PRELIMINARIES

2.1. Total NP search problems

A TFNP problem, or total NP search problem [Papadimitriou 1994], is a total, polynomial
growth rate, multivalued function defined by a polynomial time relation (relative to an
oracle). Typical classes of TFNP problems such as PPA, PPAD, PPP, etc. are based on
combinatorial properties such as the parity principle or the pigeonhole principle. For these
classes, the input to the TFNP problem is a description of an exponentially large combinato-
rial object (e.g., a low-degree graph); the output is a witness to the combinatorial principle
(e.g., a node of degree one, or a node of indegree two, etc.) The TFNP problem takes a
polynomial size parameter as an input in addition to the exponentially large combinatorial
object. In the initial definition of TFNP problems [Papadimitriou 1994], the exponentially
large combinatorial object was defined in terms of a polynomial size circuit given as part
of the input. Beame et al. [Beame et al. 1998] suggested instead using an oracle to encode
the combinatorial object. The advantage of using an oracle is that it makes the definition of
the TFNP classes more uniform, and especially that it allowed [Beame et al. 1998] to prove
oracle separation results between classes such as PPA, PPAD, PPADS, and PPP. In this
paper, we work with the relativized versions of TFNP problems where an oracle is used to
specify the combinatorial object. Since we prove only reductions, not separations, this only
makes our results more general.

The formalization of TFNP problems in bounded arithmetic uses a second-order predicate
as the oracle encoding the combinatorial object. Formally, let T be a theory of bounded
arithmetic, and let a TFNP problem be given by a polynomial time predicate A which may
involve an oracle X, and a term t which bounds the size of the function values. The TFNP
problem is provably total in a theory T provided T proves:

(∀x) (∃y≤t(x))A(x, y,X).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:5

We write fA(x,X) = y when y ≤ t(x) and A(x, y,X) holds. Observe that fA is a multi-
function, thus the y need not be unique. The second-order predicate X is part of the input,
but algorithmically serves as an oracle.

Let A′ and t′ define a second TFNP problem fA′ . A many-one reduction of fA to fA′ , de-
noted fA 4m fA′ , is a pair of polynomial time computable functions g(x,X) and h(x, y′, X)
and a polynomial time computable relation z(u, x,X) such that

(∀x)(∀y′) [y′≤t′(g(x,X)) ∧A′(g(x,X), y′, Z)

→ h(x, y′, X)≤t(x) ∧A(x, h(x, y′, X), X)], (1)

where Z represents the predicate with value Z(u) defined to equal z(u, x,X). In other words,
given inputs x and X to the TFNP problem fA, letting Z be the predicate defined by z,
and letting x′ equal g(x,X), we have that if y′ is a solution to fA′(x′, Z) then h(x, y′, X) is
a solution to fA(x,X).

When S1
2 proves (1), then we say the many-one reduction is provable in S1

2. For this, we
use the conservative extension of S1

2 with the second-order predicate symbol X added to
the language. As usual, the predicate X may be used in induction axioms, but second-order
quantifiers are not permitted in induction axioms.

2.2. Encoding Frege and extended Frege proofs

We now discuss how to encode exponentially long Frege or extended Frege proofs using an
oracle X. For simplicity, we now allow X to be a polynomial growth rate function oracle
instead of a predicate: that is, X(x, a) will be an integer instead of a true/false value. In
bounded arithmetic theories, X is used as a new function symbol: for each first-order x, a,
X(x, a) is also a first-order value. As a polynomial growth rate function, X(x, a) is by
hypothesis always ≤ s(x, a) for some fixed first order term s. Treating X as a function
instead of a predicate can be done without loss of generality, since if we wished to use
only predicates, any atomic formula containing terms involving X could be replaced by a
formula using the graph of X, and the graph of X could be expressed by a simple (sharply
bounded) formula using the predicate giving the bit-graph of X — such a replacement does
not increase the quantifier complexity of bounded formulas significantly.

When writing X(x, a), x is intended to denote the size of an (extended) Frege proof, and a
a position ≤ x within this proof. Thus x serves only as a size parameter, and for convenience,
we will suppress mentioning x in the following, and write X(a) instead of X(x, a). The value
X(a) encodes the a-th symbol in a Frege or extended Frege proof, plus auxiliary information
about the structure of the proof. The auxiliary information will enable syntactic errors to
be identified with a polynomial amount of information, even though the proof may contain
exponentially long formulas. We assume formulas are fully parenthesized, so that the valid
formulas have the following forms: x for x a variable; (¬ϕ); or (ϕ ◦ ψ) where ◦ is ∧, ∨, →
or ↔. Formulas in the proof coded by X are separated by commas; in fact every formula is
preceded by a comma, including the first formula. We also allow “null” formulas with zero
symbols. Null formulas are effectively viewed as the constant “True”, and are represented
by two adjacent commas in the proof coded by X. Inserting commas (null formulas) allows
us to pad out proofs with blanks; this lets us construct uniform proofs with the property
that there is a polynomial time function f(i) that computes the i-th symbol of the proof.

To encode a Frege or extended Frege proof with X, write out the proof as a sequence of
symbols σ1, σ2, σ3, . . . , σN . We let X(0) = N encode the length of the proof. Every other
value of X(a) will be a Gödel number of a finite sequence. Any standard Gödel numbering
scheme which is formalizable in S1

2 may be used: the notation 〈a1, . . . , ak〉 denotes the Gödel
number of the finite sequence a1, . . . , ak. For a > 0, X(a) will have the form 〈p, . . .〉, where
p is an integer representing one of the finitely many axiom schemes or rules of inference,
or representing one of the symbols “variable”, or “left parenthesis”, “right parenthesis”, or

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 A. Beckmann and S. Buss

one of the logical connectives. The latter values for p are written as px, p(, p), p¬, p∧, p∨,
p→, and p↔. The former values for p are written p(k) denoting the k-th schematic axiom or
rule of inference. For a = 1, . . . , N , we set

(a) If σa is the comma preceding a formula ϕ, then X(a) = 〈p(k), a1, a2〉 where the k-th
axiom or rule of inference is used to infer ϕ, and σa1 and σa2 are the commas preceding
the (up to two) formulas ϕ1 and ϕ2 used to infer ϕ (e.g., by modus ponens).

(b) If σa is a parenthesis symbol “(” or “)”, then X(a) = 〈p, a′〉 with p either “p(” or “p)”,
and a′ the index of the matching parenthesis. I.e., σa′ is the matching parenthesis.

(c) If σa is a variable xi, then X(a) = 〈px, i〉; here px is the value for denoting variables.
(d) If σa is a logical symbol, ¬, ∧, ∨, → or ↔, then X(a) = 〈p〉 where p is corresponding

value p¬, p∧, p∨, p→ or p↔.

The only unusual aspect of the just-described encodings of proofs is the use in (b) of a′,
which serves as a pointer to the matching parenthesis. This is included so that syntactic
errors in the proof encoded by the function X can be witnessed by finitely many values of
X(i): that is, whenever X fails to correctly encode the computation, there is a constant
size set of pairs 〈i,X(i)〉 which serve to witness an error in the encoded computation. To
illustrate this, we list some representative ways in which X may fail to encode a valid proof.

(i) There may be two adjacent symbols X(a) and X(a+1) which contain symbols that can-
not appear consecutively in a valid proof or formula. E.g., X(a) and X(a+1) might be
two consecutive variables, or two adjacent propositional connectives, or a left parenthe-
sis and a right parenthesis, or a propositional connective followed by a right parenthesis,
etc. In all these cases (and others), the syntactic error may be specified by a and the
values of X(a) and X(a+1).

(ii) A right (respectively, left) parenthesis may not have its pointer indicating a matching
left (respectively, right) parenthesis. For some examples, suppose X(a) is 〈p(, a

′〉. Then
we may have a′ ≤ a+2, or we may have X(b) indicating the b-th symbol is a comma
for a < b ≤ a′, or we may have X(a′) not encoding a right parenthesis that matches
back to the left parenthesis at X(a). Any of these conditions can be witnessed by giving
values for a and possibly either b or a′, and by giving the corresponding X(·) values.
Other conditions can be witnessed similarly.

(iii) Two pairs of parentheses might not be properly nested. For instance, X(a1) = 〈p(, a
′
1〉

and X(a2) = 〈p(, a
′
2〉 can hold information about matching parentheses, but the po-

sitions a1, a
′
1 and a2, a

′
2 may not indicate positions compatible with properly nested

parentheses. This failure can be witnessed by giving the values of a1, a2, X(a1) and
X(a2).

(vi) Finally, a schematic axiom or inference rule may be misimplemented. For one example,
suppose a syntactically incorrect instance of modus ponens has the form

A (A→ B)

B′

with B not equal to B′. This syntactic error can be witnessed with the following finite
amount of information: (a) The positions a and b, the value X(a) giving the comma
before the hypothesis (A→ B), and the value X(b) for the comma preceding the conclu-
sion B′. (b) The value of X(a+2) giving the first symbol of A as either a propositional
variable or an open parenthesis. In the former case, X(c) is the first symbol of the sub-
formula B for c = a+4; in the latter case, X(a+2) = 〈p(, a

′〉 and the first symbol X(c)
of B is at c = a′+2. (c) The value of X(b+1), from which we obtain the length of B′.
(d) If B and B′ are well-formed distinct formulas, then for some s less than the length
of B′, the s-th symbols of B and B′ are distinct. This is witnessed by specifying s and
giving the values of X(b+1+s) and X(c+s).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:7

All other cases of how X(·) can fail to encode a valid proof are similar; as in the above
examples, they can all be witnessed by values of X(a) for constantly many a’s. Since X(· · ·)
has polynomial growth rate and each value X(a) is encoded by polynomially many bits,
there is a simple straightforward polynomial time algorithm to verify that such a set of
witness values correctly identifies a syntactic error in the proof coded by X.

Definition 2.1. The TFNP search problem FCon (respectively, eFCon) is a multi-
function f(x,X) which either (a) letting N = X(0), returns the value 0 if N ≤ 8 or
N > x, or X(N−8) is not the position of a comma followed by the formula (x1 ∧ (¬x1)),
or (b) returns a constant number of values a1, . . . , ak ≤ x such that the pairs (ai, X(ai))
witness that X does not encode a valid Frege (respectively, extended Frege) proof.

2.3. Bounded arithmetic theories S1
2, U

1
2, and V1

2

We presume familiarity with the essentials of the theories S1
2, U1

2 and V1
2 of bounded arith-

metic of [Buss 1986]; but we give a quick review to establish notation. For more back-
ground see [Buss 1986; Kraj́ıček 1995]; we also draw heavily from the conventions of [Beck-
mann and Buss 2014] for results about U1

2 and V1
2. Our theories all use the non-logical

language 0, S,+, ·, |·|, b·/2c,#,≤,MSP. The inclusion of the most significant part function
MSP(x, i) = bx/2ic is a little non-standard but makes no essential difference to the power
of the theories of bounded arithmetic. The advantage is that with MSP it is easier to
formalize concepts such as sequence coding with sharply bounded formulas: for this see
Jeřábek [Jeřábek 2006].

We will work exclusively with two-sorted theories which use both first- and second order
variables; this includes the theories S1

2 and T1
2 which are traditionally first-order theo-

ries.2 Second order variables range over predicates, that is, sets of first-order objects; they
are denoted variously with capital Roman letters X,Y, A bounded quantifier is a first
order quantifier of the form (∃x≤t) or (∀x≤t). If the term t is of the form |s|, the quanti-
fier is sharply bounded. Second order quantifiers have the form (∀X) or (∃X). The classes
Σb

i and Πb
i are defined by counting alternations of bounded quantifiers, ignoring sharply

bounded quantifiers. Second order quantifiers are not allowed in Σb
i or Πb

i formulas. A
formula which contains only bounded (first order) quantifiers is called a bounded formula.

Formulas with second order quantifiers, but no unbounded first order quantifiers are clas-

sified with the classes Σ1,b
i and Π1,b

i by counting the alternations of second order quantifiers,

ignoring any first order quantifiers. The class Σ1,b
0 is the set of bounded formulas.

The theories Si
2 are axiomatized with a finite set BASIC of open axioms defining the

non-logical symbols, plus polynomial induction Σb
i -PIND, or equivalently length induction

Σb
i -LIND. The theories Ti

2 are axiomatized with the axioms of BASIC plus Σb
i -IND, namely

the usual induction axioms. The theory T2 is the union of the theories Ti
2 for i ≥ 0. Like all

our theories, Si
2 and Ti

2 are formulated in a second-order language; for these theories, the
induction formulas may contain second order variables but not second order quantifiers.

The axioms for both U1
2 and V1

2 include the axioms of T2 and the Σ1,b
0 -comprehension

axioms,

(∀~x)(∀ ~X)(∃Z)(∀y≤t(~x))[y ∈ Z ↔ ϕ(y, ~x, ~X)] (2)

for every bounded formula ϕ and every term t. This axiom states that any set (on a bounded
domain) defined by a bounded formula ϕ with parameters is coded by some second order

2Sometimes the notations S1+
2 and T1+

2 , or S1
2(X) and T1

2(X), are used to denote these conservative exten-

sions of S1
2 and T1

2 to two-sorted (second order) theories; however, we prefer to use the simpler notations

S1
2 and T1

2 (following [Beckmann and Buss 2014]). Similarly, we eschew notations such as Σb+
i or Σb

i (X),

and use simply Σb
i .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 A. Beckmann and S. Buss

object Z.3 The theory U1
2 has in addition the Σ1,b

1 -PIND axioms. The theory V1
2 has instead

the Σ1,b
1 -IND axioms. It is known that V1

2 ` U1
2, and that U1

2 proves the ∆1,b
1 -IND axioms,

namely induction for formulas which are U1
2-provably equivalent to both a Σ1,b

1 -formula and

a Π1,b
1 -formula, see [Buss 1986].

The theory S1
2 has proof-theoretic strength which corresponds to polynomial time com-

putability [Buss 1986], and this is true also relative to second order predicates used as
oracles. Let a function f be polynomial time computable relative to an oracle X. We write
fX(~y) to denote the function f with first order inputs ~y and second order input X. As a
polynomial time computable function, f is computed by an oracle Turing machine Mf with
a polynomial runtime p(~n). The first order inputs y1, . . . , yk are given to Mf on its input
tape as strings in {0, 1}∗ encoding the integers yi in binary. The second order input X is
given to Mf as an oracle. For all ~y and X, the Turing machine MX

f (~y) computes fX(~y)

within time p(|~y|).
The theory S1

2 can Σb
1-define any polynomial time function f . This means that S1

2 can
prove the existence of computations of MX

f (~y) for all ~y and X, and can express the prop-

erty that z = fX(~y) with a Σb
1-formula ϕ(~y, z,X). The converse holds as well and is the

relativized version of the “main theorem” for S1
2:

Theorem 2.2. ([Buss 1986]) Every Σb
1-definable function of S1

2 is, provably
in S1

2, a polynomial time function. Indeed, if ϕ is a Σb
1-formula and if S1

2 proves
(∀X)(∀~y)(∃z)ϕ(~y, z,X), then there is a polynomial time function fX(~y) so that S1

2 proves
(∀X)(∀~y)ϕ(~y, fX(~y), X).

The corresponding witnessing theorems for U1
2 and V1

2 state that the Σ1,b
1 -definable func-

tions of U1
2, respectively V1

2, are precisely the polynomial growth rate functions which are
computable in polynomial space, respectively in exponential time [Buss 1986]. These wit-
nessing theorems also hold for oracle computability, but both polynomial space and ex-
ponential time oracle computations are constrained to make only polynomial size oracle
queries. For the present paper, we need the stronger “new-style” form of the witnessing
theorems for U1

2 and V1
2 as established by Beckmann and Buss [Beckmann and Buss 2014].

Theorem 2.3. (Theorem 4.5.a of [Beckmann and Buss 2014]) Suppose U1
2 proves

(∃y)ϕ(y,~a, ~A) for ϕ a Σ1,b
0 -formula. Then there is a polynomial space oracle Turing ma-

chine M such that S1
2 proves “If Y encodes a complete computation of M

~A(~a), then

ϕ(out(Y),~a, ~A) is true”, where out(Y) denotes the output of the computation coded by Y .

Theorem 2.4. (Theorem 4.7.a of [Beckmann and Buss 2014]) Suppose V1
2 proves

(∃y)ϕ(y,~a, ~A) for ϕ a Σ1,b
0 -formula. Then there is an exponential time oracle Turing

machine M such that S1
2 proves “If Y encodes a complete computation of M

~A(~a), then

ϕ(out(Y),~a, ~A) is true”.

Section 2.4 will sketch a definition of what it means for the second order object Y to

encode a complete computation of M
~A(~a). The only unexpected part of the definition is

that the computation will be stretched out so that answers to oracle queries are obtained
only at specific times. In fact, an oracle query “A(c)?” can be answered only at specific
times which depend on c.

3The original definition [Buss 1986] of U1
2 used an unbounded version of the comprehension axiom. We

are using here the bounded version of the comprehension axiom, as has been preferred by most subsequent
authors, e.g., [Beckmann and Buss 2014; Cook and Nguyen 2010; Kraj́ıček 1995; 2011]. It makes no essential
difference to the strengths of the theories.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:9

Theorems 2.3 and 2.4 are weaker than the results proved by [Beckmann and Buss 2014]

since they only assert that ϕ(out(Y),~a, ~A) is true and say nothing about canonical ver-
ifications. But, Theorems 2.3 and 2.4 suffice for our purposes, since we apply them only

to Σb
0-formulas ϕ(y,~a, ~A), and since it is a polynomial time operation to check whether

ϕ(out(Y),~a, ~A) is true.
The next theorem establishes the easy direction of Theorems 1.1 and 1.2.

Theorem 2.5.

(a) U1
2 proves that the consistency search problem FCon satisfying the properties of Defi-

nition 2.1 is total.
(b) V1

2 proves that the consistency search problem eFCon satisfying the properties of Def-
inition 2.1 is total.

The proof is a straightforward application of the facts that U1
2 and V1

2 can define and
reason about polynomial space and exponential time functions. Part (b), about V1

2, is the
analogue of the fact that S1

2 can prove the consistency of extended Frege proofs encoded
by first order numbers [Cook 1975]. The proof for V1

2 is based on the fact that there is an
exponential time algorithm which, given an exponential size circuit (coded by an oracle)
with 0/1 inputs, determines the truth value of each gate in the circuit; this is analogous
to the fact that the Boolean circuit value problem is in polynomial time. An extended
Frege proof has input variables and extension variables. If the input variables are assigned
fixed true/false values, then the extension rules define exponential size circuits giving the
induced truth values of the extension variables. Therefore, there is an exponential time
function which, given truth values for the input variables and given oracle access to X,
computes the truth values of all formulas in the exponential size proof coded by X. V1

2 can

Σ1,b
1 -define this function and prove its properties; with this, V1

2 can use induction to show
that every line in the proof evaluates to the value true if the input variables are set to, say,
false.

Part (a), about U1
2, uses instead the fact that there is a (poly)logarithmic space algorithm

for evaluating Boolean formulas (in fact, there is even an NC1 algorithm [Buss 1987; Buss
et al. 1992; Buss 1993]). Analogously, there is a polynomial space algorithm which, given an
exponential size Boolean sentence encoded by an oracle computes the value of the sentence.

U1
2 can Σ1,b

1 -define this function and prove its properties; it can then use induction to show
that every line in the proof evaluates to the value true if the input variables are set to false.

Part (a) is a weak analogue of the fact that the bounded arithmetic theories AID [Arai
2000] and VNC1 [Cook and Morioka 2005; Cook and Nguyen 2010] can prove the reflection
principle for Frege proofs. (The results for AID and VNC1 are stronger, as they use an NC1

algorithm for Boolean formula evaluation instead only a logarithmic space algorithm.)

2.4. Encoding polynomial space and exponential time computation with oracles

We now discuss at a high level the details of how an oracle Y encodes the computation
of an exponential time oracle Turing machine, as needed for Theorems 2.3 and 2.4. For
simplicity, suppose M has one first-order (ordinary) input a and one second-order input A.
M is a single tape Turing machine. Initially, the tape contains the bits of a and is otherwise
blank. When not in a query state, M uses its transition function to update the current
tape symbol and possibly move the tape head one position left or right. For oracle queries,
the polynomial length query w is by convention written on the tape starting one cell to
the right of the tape head; after a query state, the query answer A(w) is written under the
tape head. A configuration of MA(a)’s computation consists of the string of symbols on the
work tape, with a symbol denoting the current state marking the tape head position. The
tape symbols are drawn from a finite alphabet, and then encoded as fixed length bit strings;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 A. Beckmann and S. Buss

configurations are padded with blanks so that they are fixed length bit strings. The values
Y (x) give the bits encoding an exponentially long description of the complete computation
of MA(a). We assume the query value x encodes a triple x = 〈t, s, c〉; here t is the time,
and Y (〈t, s, c〉) gives the s-th bit of the t-th configuration of MA(a).

The c is a counter which controls which value of A can be accessed by an oracle query.
We design Y ’s encoding of the computation of M so that the correctness of any single bit
Y (x), where x = 〈t, s, c〉, depends on only polynomially many earlier bits Y (x′) and on a
single value A(w) where w = w(c) is determined by c. The purpose of the counter c is to
ensure that an oracle query (if made) is made only to a specific bit of A. In this way, we
avoid having the correctness of Y (x) depend on exponentially many bits of A. For each
value of t, the counter c cycles through all of its possible values, so that w(c) cycles through
all possible queries to A. This is explained in more detail next.

Let the input a have length n = |a|. There is a polynomial p(n) such that MA(a) runs
for time 2p(n) and only queries A(w) for |w| < p(n) — the polynomial bound on queries
reflects the model of oracle exponential time computation from [Buss 1986]. W.l.o.g., the
position values s are bounded by 2p(n) as well. (In fact, when M is polynomial space, then
s values are bounded by just p(n).) We let c range over strings of length exactly p(n); if
c = 0i1w, this means the value of A(w) is accessible as an answer for an oracle query. For
c 6= 0p(n), we write c−1 for the predecessor to c, as obtained by binary subtraction.

With these conventions, we can arrange that, in order for Y to correctly encode the
computation of MA(a), the value Y (〈t, s, c〉) is determined by (for some constant C):

a. The value A(w) if c = 0i1w, and
b. The bits of the first-order input a (needed only when t = 0 and c = 0p(n)), and
c. If c = 0p(n) and t > 0, the values Y (〈t−1, s′, 1p(n)〉) where |s′ − s| ≤ C · p(n), and
d. If c 6= 0p(n), the values Y (〈t, s′, c−1〉) where |s′− s| ≤ C · p(n). In this case, we think of

the time t being held fixed while c is incremented through all possible values.

Thus, Y (〈t, s, c〉) is determined by the O(p(n)) earlier values as specified by a.-d.
The idea is that t is the ordinary Turing machine time, but the computation is slowed-

down by letting c increment through all possible values at each step of the Turing machine.
When case c. applies and c = 0p(n), the Turing machine is taking an ordinary step, e.g.,
using its transition function to update the state, the current tape cell symbol, and the tape
head position. When a. and d. apply, and c = 0i1w, the Turing machine may update its
current tape cell with the value A(w) provided it is in a query state with w the current
query. For c 6= 0p(n), the time t is held fixed, and the Turing machine does not make an
ordinary step. The constant C is chosen large enough so that the values Y (〈t, s′, · · · 〉) for
|s′−s| ≤ C ·p(n) specify the current state, and the tape contents of the current and adjacent
tape squares, including the value of the current query string w (if any).

When Y does not correctly encode the computation of MA(a), then there must be a
value Y (〈t, s, c〉), and O(p(n)) earlier values of Y (〈t′, s′, c′〉) as given by c. and d. above,
and which witness that Y does not correctly encode the computation. We call such a set
of values (for 〈t, s, c〉, Y (〈t, s, c〉) and the O(p(n)) many values Y (〈t′, s′, c′〉) of the oracle)
a local witness that Y does not correctly encode the computation of MA(a). Since a local
witness has polynomial size, all the information of the local witness can be coded with a
first-order object σ. There is a straightforward polynomial time procedure CA,Y (a, σ) for
verifying that σ is a local witness.

The extended Frege proofs constructed in Section 3 for the proof of Theorem 1.1 will
introduce propositional variables yt,s,c intended to be the values of Y (〈t, s, c〉). In order
for these to be correct values, they must satisfy conditions of the forms (3)-(5) below. By
construction (in particular, by the use of the counter c controlling queries to A), these
conditions will be polynomial size formulas. Let αw be a propositional variable intended to

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:11

be the truth value of A(w), and a1, . . . , an be n propositional variables intended to be the
bits of the first-order input a.

The condition for a c = 0i1w ∈ {0, 1}p(n) has the form

yt,s,c ↔ ϕt,s,c(αw, yt,s−Cp(n),c−1, . . . , yt,s+Cp(n),c−1) (3)

(The y’s with subscripts out of range are to be omitted.) For c = 0p(n) and t > 0, the
condition has the form

yt,s,0p(n) ↔ ϕt,s,0p(n)(yt−1,s−Cp(n),1p(n) , . . . , yt−1,s+Cp(n),1p(n)) (4)

For t = 0 and c = 0p(n), the form is

y0,s,0p(n) ↔ ϕ0,s,0p(n)(a1, . . . , an). (5)

In all three types of conditions, the formula ϕt,s,c is constructible in time polynomial in n.
Indeed, these conditions can be taken to be in disjunctive normal form, as they merely
express that a single step of the Turing machine is correctly carried out.

2.5. Encoding an oracle polynomial time computation

We also will need to encode the computation of a polynomial time function f which has
oracle access to the two oracles A and Y , and takes the first-order a as an ordinary input.
For this, we will use propositional variables ut,s that encode the bits of a straightforward

encoding of the computation of the Turing machine NA,Y
f (a) which computes f . We no

longer care about expressing the correctness of the values ut,s with propositional formulas;
instead, we only want the correctness to be polynomial time checkable. Thus, we can simplify
the construction from the previous subsection for encoding computations of MA(a) by
dropping the subscript “c” and not using the slowed-down handling of oracle queries.

The convention is that ut,s is the s-th bit of the t-th configuration of NA,Y
f (a). Let ~u

be the binary string concatenation of the ut,s’s; since f is polynomial time, the string ~u is
polynomial length. There are polynomial time algorithms (relative to A and Y , taking ~u
and a as inputs) for parsing ~u and checking whether it correctly encodes the computation
of f , including checking whether the answers to the oracle queries are correct. Furthermore,
the theory S1

2 can Σb
1-define these algorithms and prove their properties.

3. MAIN THEOREM FOR V1
2

The V1
2 proof is little less complicated, so we do it first.

Proof Proof of Theorem 1.1. Theorem 2.5 already states that eFCon is provably
total in V1

2. We still need to show that any provably total NP search problem of V1
2 is

many-one reducible to eFCon, provably in S1
2.

Let ψ(y, a,A) define a provably total NP search problem for V1
2, so that V1

2 proves
(∃y≤τ(a))ψ(y, a,A) for some term τ(a). We may assume w.l.o.g. that ψ is a sharply
bounded formula, since any outermost existential quantifier in ψ may be incorporated into
the bounded quantifier “(∃y≤τ(a))”. Let MA(a) be as given by Theorem 2.4 so that S1

2
proves:

(∃σ)[σ encodes a local witness showing that

Y does not correctly encode a computation of MA(a)]

∨ (∃y≤τ(a))(y = outM (Y) ∧ ψ(y, a,A)). (6)

By Theorem 2.2, there is a polynomial time function fA,Y so that, provably in S1
2, fA,Y (a)

always produces either σ or y satisfying (6). When fA,Y (a) outputs a value σ, this means
that σ codes a (polynomial size) set of values x so that the values Y (x) for x ∈ σ violate
the correctness of Y as an encoding of the computation of MA(a). Furthermore, without

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 A. Beckmann and S. Buss

loss of generality, fA,Y (a) has queried Y at all of the values x in the set σ (since if not, it
could just query Y at these values before halting). Similarly, when fA,Y (a) outputs a value
for y, we may assume w.l.o.g. that the computation has queried values A(s) for sufficiently
many values s so as to verify that ψ(y, a,A) is true. Indeed, ψ(y, a,A) is sharply bounded,
so the quantified variables range over polynomially many values. Thus, for fixed y and a,
the truth of ψ(y, a,A) can be ascertained by examining a polynomial time computable set
S = S(y, a) of values so that ψ(y, a,A) depends only on A(s) for s ∈ S — since ψ is sharply
bounded, S only depends on the first order parameters y, a of ψ and not on A. All these
properties of fA,Y (a) are provable in S1

2.
The correctness condition for a value Y (x), x = 〈t, s, c〉, is given by a polynomial size

propositional formula ϕt,s,c as shown in equations (3)-(5). Recall that, depending on the
values of t, s, c, this correctness condition involves variables yt′,s′,c′ and may also involve
variables ai representing the input bits of a and a variable αw representing the value A(w).
As already mentioned, when fA,Y (a) outputs a local witness set σ for the value x = 〈t, s, c〉,
fA,Y (a) is assumed to have queried all the values of yt′,s′,c′ ’s needed to show that some
ϕt,s,c evaluates to false.

To prove Theorem 1.1, we define a polynomial time, many-one reduction from the TFNP
problem defined by ψ(y, a,A) to the eFCon problem. For this, we must construct an ex-
tended Frege “proof” of a contradiction. This extended Frege proof is exponential size (that

is size 2n
O(1)

, where n = |a|), and is constructed as a function of the first-order input a
and the second order predicate A. Then, we must show that any local witness for a syn-
tactic error in the extended Frege proof gives a solution y to the problem ψ(y, a,A). The
extended Frege proof must be uniform; namely, its i-th symbol must be computable by a
polynomial time function hA(i, a), and S1

2 must be able to prove simple syntactic properties
of the extended Frege proof as encoded by hA(i, a). The formulas in the extended Frege
proof will have polynomial size and will be polynomial time constructible from parameters
related to their location. Thus, to achieve uniformity, we only need to pad the proof so that
the location of formulas also becomes polynomial time computable from parameters.

The first phase of the extended Frege proof introduces new variables yt,s,c with the exten-
sion rules as given by equations (3)-(5); these variables encode the computation of MA(a).
The formulas (3)-(5) involve variables αw and a1, . . . , an: in the extension rules, these vari-
ables are just replaced by the constant formulas > (True) or ⊥ (False) depending on whether
A(w) is true or not, and on the bits of a. That is, there are no variables αw or ai in the con-
structed extended Frege proof; instead, they are replaced by constants based on the inputs
a and A. This is permitted since the extended Frege proof being constructed depends on
a and A. The extension axioms are polynomial size, and can be padded to occupy a fixed
(polynomial) length by adding commas. Thus their locations in the proof can be given by
a simple polynomial time function of t, s, c so that the resulting proof is suitably uniform.
The variables yt,s,c completely define the computation of MA(a).

The second phase of the extended Frege proof consists of exponentially many “axioms”
corresponding to the truth values of ¬ψ(m, a,A) for m = 0, . . . , τ(a). In other words,
the second phase of the extended Frege proof lists a sequence of τ(a)+1 many formulas
> or ⊥ depending on whether the formulas ¬ψ(m, a,A) are true or false (respectively).
These formulas are all labeled as being axioms, correctly so in the case of formulas > and
incorrectly so for the formulas ⊥. Since ψ(m, a,A) will be true for at least one value of m
(by virtue of (∃y≤τ(a))ψ(y, a,A) being provable), some of these “axioms” will be fallacious.

The formulas > and ⊥ are both length 8, so their positions in the proof are a simple
function of a. These places where the extended Frege proof falsely adds ⊥ as an axiom
are the only errors in the extended Frege proof. Hence, given an occurrence of ⊥, one
immediately obtains a value for m satisfying ψ(m, a,A).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:13

Observe that we cannot stop at this point with the construction of the extended Frege
proof of ⊥, as we lack a polynomial time function giving the location of an “axiom” ⊥; this
prevents us from inferring ⊥ as the last line of the extended Frege proof.

The third, and most complicated, phase of the extended Frege proof thus works with the
polynomial time computation of fA,Y (a). The intuition is to show that the computation
of fA,Y (a) does not exist, via a brute force truth table proof: that is, to show for every
sequence of truth values, that the sequence does not encode a computation of fA,Y (a).

Recall from Section 2.5 that the computation of fA,Y (a) is encoded by bits ut,s, for
t, s < p(n), with ~u denoting their string concatenation. The values ut,0, . . . , ut,p(n)−1 give
the configuration of f at time t: this string of bits is denoted ~ut. Suppose the values of ut,s
are fixed to particular true/false values. To check whether these correctly encode the com-
putation of fA,Y (a), we need only to check whether each ut,s is correctly set according to
the values of ut−1,s′ and the bits ai of the input, and (for oracle queries) the value of some
A(w) or Y (w). Specifically, there is a polynomial time function GA(a, t, s, ~ut−1) which out-
puts an atomic propositional formula γt,s which specifies what the value of ut,s must be in a
correct calculation — observe that the definition of γt,s depends on the chosen values of ~u.
The formula γt,s has at most one variable, namely a yt′,s′,c: it can be one of the following:

1. When t = 0, γt,s can be the constant ai indicating that u0,s codes an input bit. Note
that ai is a constant > or ⊥ since a is fixed.

2. When the computation of fA,Y (a) as encoded by ~ut−1 is making an oracle query A(w)
or Y (〈t′, s′, c〉), then γt,s can be the constant αw or the variable yt′,s′,c, respectively.
Note that αw is a constant > or ⊥ since A is fixed. Thus in this case, the formula γt,s
is > or ⊥ or yt′,s′,c.

3. If 1. and 2. do not apply, then γt,s is a constant > or ⊥ based on the earlier values
ut−1,s′ .

The function GA(a, t, s, ~ut−1) and its output γt,s can be Σb
1-defined in S1

2, and S1
2 proves its

simple properties. Still working with a fixed setting of true/false values for the ut,s’s, let
Ut,s be the constant > or ⊥ giving the truth value of ut,s. (We can fix Ut,s in this way since
the value of ut,s has been fixed: ut,s is a truth value, and Ut,s is a propositional formula.)
We can thus form in polynomial time the conjunction∧

t,s

(Ut,s ↔ γt,s). (7)

where the conjuction is taken over the p(n)2 many values for t, s needed to code the poly-

nomial time computation of fA,Y (a). The formula (7) expresses that ~U represents a correct
encoding of the computation of fA,Y (a).

The third phase of the extended Frege proof disproves the formulas (7) for each of the

2p(n)2 many choices of ~u ∈ {0, 1}p(n)2 . There are three kinds of possible disproofs:

1. The conjunction (7) contains a conjunct ⊥ ↔ > or conversely > ↔ ⊥, or some variable
yt,s,c appears twice, equivalent to both values ⊥ and >. The conjuction is easy to
disprove in this case.

2. Condition 1. does not hold, and the values ut,s encode a computation of fA,Y (a) that
outputs a (polynomial size) local witness set σ consisting of values for variables yt,s,c
which violate one of the formulas (3)-(5). In this case the conjunction (7) gives an
explicit true/false value to each yt′,s′,c in the local witness set, namely by including a
conjunct > ↔ yt′,s′,c or ⊥ ↔ yt′,s′,c. These explicit values violate one of (3)-(5). On the
other hand, the conditions (3)-(5) are extension axioms in the extended Frege proof, so
a contradiction is obtained with a polynomial size Frege proof, thus disproving (7) in
this case.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 A. Beckmann and S. Buss

A formal proof of ¬(7) can be obtained in the following way: We are in the situation
that the witness set σ identifies a yt′,s′,c whose extension axiom is violated, based on
the other variables in σ and their truth values fixed in (7). From the extension axiom
for yt′,s′,c we can then easily derive ¬(7), using the following more general fact: If
χ(z1, .., zk) is a formula, and v1, . . . , vk ∈ {0, 1} a satisfying assignment, then there is
a polynomial size proof (in χ and ~v) of the formula (

∧
i(Vi ↔ zi)) → χ(~z) where Vi

again is the truth formula ⊥ or > corresponding to the truth value vi being 0 or 1,
respectively.

3. Otherwise, the values of ut,s encode a correct computation of fA,Y (a) that outputs a
value y ≤ τ(a) such that ψ(y, a,A) holds. In this case, the formula ψ(y, a,A) is true,
and the second phase added ⊥ as a (fallacious) axiom for m = y, which we can use to
obtain a contradiction, again disproving (7). We are able to use the formula ⊥ at this
point, because the value m = y tells us where ⊥ appears earlier as a formula in the
Frege proof.

Given ~u, we can decide in polynomial time which case 1.-3. applies. For each case we can
construct in polynomial time a proof of ¬(7) of fixed polynomial size using padding.

The fourth and final phase of the extended Frege proof combines the 2p(n)2 many instances

of formulas ¬(7) to obtain a contradiction. There is one formula (7) for each ~u ∈ {0, 1}p(n)2 .
Taking the variables ~u ordered lexicographically first by t and then by s, reindex ~u as

u0, . . . , up(n)2−1. Let ~u�` be u0, . . . , u`−1. For fixed ~u ∈ {0, 1}p(n)2 , let (7)~u�` be the con-

junction of the first ` components of (7), where (7)~u�0 is defined as >. It is trivial to give

a Frege proof of ¬(7)~u�` from assumptions ¬(7)~u�`,0 and ¬(7)~u�`,1. We can choose these
to be of fixed polynomial size using padding. Thus we can successively provide proofs of
¬(7)~u�` starting from the already proved formulas ¬(7). For ` = 0 this provides a proof of
contradiction.

Examining the four phases of the construction of the extended Frege proof of a contra-
diction, the only place where the proof can contain an error is in phase two, where at least
one false formula ¬ψ(m, a,A) has led to an axiom of the form ⊥. Furthermore, identifying
one of these places in the Frege proof also identifies a value y such that ψ(y, a.A) is true.

Therefore, there is a many-one reduction from the NP search problem given by
(∀x)(∃y≤τ(x))ψ(y, x,A) to the consistency search problem for extended Frege proofs. This
completes the proof of Theorem 1.1.

It is interesting to note that the constructed extended Frege proof, albeit exponentially
large, contains only polynomial size formulas. But of course, the use of the extension rule is
nested exponentially many times, hence it is implicitly defining values defined by exponential
size Boolean circuits.

4. MAIN THEOREM FOR U1
2

The strategy for the proof of Theorem 1.2 is similar to the proof of Theorem 1.1 above;
however, phase one becomes more complicated. The variables yt,s,c are no longer introduced
by extension; they are instead defined by a divide-and-conquer Nepomnjaščĭı-Savitch style
construction for defining polynomial space computations, which allows the variables yt,s,c to
be defined with formulas that are (merely) exponentially long. This is essentially the usual
Nepomnjaščĭı-Savitch construction for defining space-restricted computation; in particular,
it is a modified version of the formulation of Savitch’s theorem in the theory of U1

2 that is
carried out in [Beckmann and Buss 2014].

Proof Proof of Theorem 1.2. We shall only sketch the differences between the
proofs of Theorems 1.1 and 1.2. Let ψ(y, a,A) define a provably total NP search prob-
lem for U1

2, so that U1
2 proves (∃y≤τ(a))ψ(y, a,A) for some term τ(a). We may assume

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:15

w.l.o.g. that ψ is a sharply bounded formula. Let the polynomial space MA(a) be as given
by Theorem 2.3 so that S1

2 proves:

(∃σ)[σ encodes a local witness showing that

Y does not correctly encode a computation of MA(a)]

∨ (∃y ≤ τ(a))(y = outM (Y) ∧ ψ(y, a,A)). (8)

By Theorem 2.2, there is a polynomial time function f so that, provably in S1
2, fA,Y (a)

always produces either σ or y satisfying (8). This function f satisfies the same properties
as were assumed for the proof of Theorem 1.1.

In order to prove Theorem 1.2, we shall construct a polynomial time uniform Frege
“proof” of a contradiction, similar to the way the extended Frege “proof” was constructed
for Theorem 1.1. The first phase of the extended Frege proof of Theorem 1.1 repeatedly
used the extension rule to define the variables yt,s,c defining the computation of MA(a): this
is no longer possible since we must construct a Frege proof. Nor is it possible to just unwind
the extension rules (3)-(5), since that would yield double exponentially long formulas, and
these would be too long to be used in an exponentially large Frege proof. Instead, we use
the Nepomnjaščĭı-Savitch construction to introduce formulas ζt,s,c which define the same
values as yt,s,c, but have only exponential size.

For t = c = 0, ζ0,s,0 will be defined using the formula ϕ0,s,0 from (5). For other values of
t and c, ζt,s,c will be defined with a divide-and-conquer construction. The values of t and c

can be viewed as integers ranging from 0 to 2p(n)− 1, where n = |a|. Since M is polynomial
space bounded, the value of s ranges w.l.o.g. from 0 to p(n)−1. To simplify the definition of
ζt,s,c by divide-and-conquer, we unify the values t and c by letting T = T (t, c) = 2p(n)t+ c;
and write ζT,s in place of ζt,s,c. This T denotes the “slowed-down” computation time.

Consider T = 0. The formulas ζ0,s = ζ0,s,0 are defined to be either > or ⊥, matching
the truth value of the formulas ϕ0,s,0 from (5) where the variables ai are replaced with the
constants > or ⊥ depending on the value of ai. (We are able to make this substitution of
the constants for the ai’s because the Frege proof depends on a and A.) Since ϕ0,s,0 with
the ai’s replaced with > or ⊥ is polynomial size and closed, its truth value can be computed
in polynomial time.

For T 6= 0, we define ζT,s with a divide-and-conquer construction. Let ~e and ~f be vectors
of p(n) constants > and ⊥. Thus, each ei and fi is the formula > or ⊥. Let 0 ≤ T2 < T1 <
22p(n), and further suppose that, for some d, 2d|T2 and T1 ≤ T2 + 2d. The intent is that es
(respectively, fs) is equal to the value of ζT1,s (respectively, ζT2,s) for s = 0, . . . , p(n)−1. We

shall define formulas NextT1,T2(~e, ~f) expressing the property that if ~f defines the values of
the formulas ζT2,s then ~e defines the values of the formulas ζT1,s. In other words, NextT1,T2

defines the effect of transitioning from T2 to T1.

For fixed T1 = T2+1, the formula NextT1,T2(~e, ~f) is either the constant> or the constant⊥
depending on whether ~e correctly represents the configuration of MA(a) that results at

(slowed-down) time T1 if ~f is the configuration at (slowed-down) time T2. The formula

NextT1,T2(~e, ~f) can be constructed by evaluating the conditions (3) or (4) for all p(n) many
values of s. For any fixed s, the condition (3) or (4) has as its righthand side a polynomial

size formula involving the values ~f and possibly the value A(w) (as represented by αw),
and has as its lefthand side the value ~e. Since we have oracle access to A, the value of

αw is known. Since ~e and ~f are also constants, each condition evaluates to true or false.

Thus NextT1,T2(~e, ~f) can be represented as > or ⊥. The determination of the formula

NextT1,T2
(~e, ~f) can be carried out in polynomial time as a function of ~a, T1, T2, ~e and ~f

relative to the oracle A.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 A. Beckmann and S. Buss

Now consider fixed T1 > T2 + 1. Suppose also that d ≥ 1 and 2d|T2 and T2 + 2d−1 < T1 ≤
T2 +2d. Consider fixed sequences ~e and ~f of constants > and ⊥. We define NextT1,T2(~e, ~f) as
the following formula, where g0, . . . , gp(n)−1 ranges over all possible vectors of p(n) constants

> and ⊥ (so there are 2p(n) many possible choices for the constants g0, . . . , gp(n)−1):∨
~g

(
NextT,T2(~g, ~f) ∧NextT1,T (~e,~g)

)
where T = T2 + 2d−1, so T2 < T < T1. Finally, let ζT,s = ζt,s,c be the formula∨

~e s.t. es = >
NextT,0(~e, ζ0,0,0, . . . , ζ0,p(n)−1,0).

The formulas ζ0,s,0 were by definition constants > or ⊥. The formulas ζT,s are variable-free.

Written as a tree, they have height O(p(n)) with nodes of fan-in ≤ 2p(n), hence have size

2p(n)O(1)

. This exponential size means that ζT,s cannot be evaluated in polynomial time.
For this reason, even though ζT,s evaluates to a constant value, the Frege proof must use
an exponential size formula for ζT,s in order to have the Frege proof be polynomial time
uniform.

The formula NextT1,T2(~e, ~f) can be viewed as a tree of polynomial height with
∨

-gates of

fanin 2p(n) alternating with binary ∧-gates. A path through the tree starting from the root
can be coded as a polynomial length sequence of numbers z1, j1, z2, j2, . . . with zi < 2p(n)

describing a child of an
∨

-node, and ji < 2 denoting one of the two children of a binary ∧.

Each leaf of the tree is a formula of the form NextT+1,T (~e ′, ~f ′); its arguments ~e ′ and ~f ′ are
also sequences of constants > and ⊥ and they, as well as T , can be computed as a polynomial

time function of the path and of T1, T2, ~e and ~f . The leaf formulas NextT+1,T (~e ′, ~f ′) are
either > or ⊥ and thus all have the same length |>| = |⊥| = 8. From this, it is easy to

compute the size of the formula NextT1,T2(~e, ~f) as a polynomial time function of T1 and T2.
This makes it possible to compute in polynomial time, the identity of the i-th symbol of

NextT1,T2(~e, ~f) as a function of i, T1, T2, ~e and ~f .
The first phase of the Frege proof consists of proofs of the statements corresponding to

(3) and (4) for T = T (t, s) > 0:

ζT,s ↔ ϕt,s,c(αw, ζT−1,s−Cp(n), . . . , ζT−1,s+Cp(n)). (9)

(As before, the ζ’s with subscripts out of range are to be omitted.) The statements that
correspond to (5) have simple proofs based on evaluating simple closed formulas, as the
formula ζ0,s is defined as the truth value of the formula on the right hand side of the
equivalence in (5).

Before proving the formulas (9), the Frege proof needs to prove uniqueness statements

¬NextT1,T2
(~e, ~f) ∨ ¬NextT1,T2

(~e ′, ~f). (10)

for all appropriate T1, T2, and all sequences ~e, ~e ′, ~f such that ~e 6= ~e ′. The uniqueness state-
ments are easily proved for T1 = T2 + 1. For T1 > T2 + 1, they are likewise straightforward
to prove using the recursive definition of Next, for successively larger values of T1 − T2.

The formulas (9) are proved by proving more general statements

NextT+1,T2
(~e ′, ~f) ∧NextT,T2

(~e, ~f)→ NextT+1,T (~e ′, ~e). (11)

We denote these statements by (11)T,T2
, and prove them for T2 < T < T2 + 2d where 2d is

the largest power of 2 dividing T2 (or d = p(n) if T2 = 0). The formulas (9) will then follow
easily from the formulas (11)T,0.

For each formula (11)T,T2 , T2 is equal to α2d with α odd, or with α = 0 and d = p(n), and
T2 < T < T2 +2d. These formulas are proved for successively larger values of T −T2. Choose

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

The NP Search Problems of Frege and Extended Frege Proofs A:17

d′ so that T2 + 2d
′ ≤ T < T+1 ≤ T2 + 2d

′+1. If T = T2 + 2d
′

(and in particular if d = 1),
then (11)T,T2 follows immediately from the definition of NextT+1,T2 and the uniqueness

statement (10) for NextT,T2 . If T > T2 + 2d
′
, then (11)T,T2 follows immediately from the

definitions of NextT,T2
and NextT+1,T2

and the 2p(n) many instances of (11)T,T2+2d′ with

all 2p(n) possible constants ~e. Those formulas are available since the statements (11)T,T2
are

proved in increasing order of T − T2.
The Frege proof contains proofs of (11)T1,T2

for each appropriate set of values for T1, T2,

~e, ~e ′ and ~f . These proofs are arranged in increasing order of T1 − T2, namely according to

the lexicographic order of T1−T2, T2, ~e, ~e
′, ~f . The proofs of the formulas (11)T1,T2 can be

made to be fixed exponential size using padding (by adding commas). When T1 and T2 do
not satisfy the condition T1 ≤ T2 + 2d with 2d|T2, that portion of the proof is left blank
by filling it in with commas. The proofs are straightforward to construct, and there is a

polynomial time algorithm which, given T1, T2, ~e, ~e ′ and ~f and given i > 0, determines the
location of the corresponding proof and determines the i-th symbol in that subproof. Thus,
this part of the Frege proof is polynomial time uniform.

The rest of the proof of Theorem 1.2 is similar to the proof of Theorem 1.1. The only
change is that the formulas ζT,s = ζt,s,c are used instead of the variables yt,s,c. The formu-
las (9) play the same role as the formulas (3)-(5) which were used in the proof of Theorem 1.1.
Since the formulas ζt,s,c are exponential size, additional care is required to keep the Frege
proof uniformly describable by a polynomial time function with its syntactic properties
provable in S1

2. Nonetheless, the details of how the Frege proof is uniformly describable are

straightforward, so we omit them. The overall size of the Frege proof is 2p(n)O(1)

= 2n
O(1)

.
The result is a uniformly polynomial time description of a Frege “proof” of a contradiction.

The only false steps in the Frege “proof” are places where ⊥ corresponding to a true
ψ(y, a,A) was introduced as an axiom. Thus, finding an error in the Frege “proof” gives a
value y witnessing ψ(y, a,A). This shows that the NP search problem for ∃y≤τ(a)ψ(y, a,A)
is many-one reducible to the consistency search problem for Frege systems.

ACKNOWLEDGMENTS

We thank Jan Kraj́ıček, Neil Thapen, and the two referees for helpful substantive comments on earlier
drafts of this paper.

REFERENCES

Toshiyasu Arai. 2000. A Bounded Arithmetic AID for Frege Systems. Annals of Pure and Applied Logic
103 (2000), 155–199.

Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. 1998. The Relative
Complexity of NP Search Problems. J. Comput. System Sci. 57, 1 (1998), 3–19.

Arnold Beckmann and Samuel R. Buss. 2014. Improved Witnessing and Local Improvement Principles for
Second-Order Bounded Arithmetic. ACM Transactions on Computational Logic 15, 1, Article 2 (2014),
35 pages.

Samuel R. Buss. 1986. Bounded Arithmetic. Bibliopolis, Naples, Italy. Revision of 1985 Princeton University
Ph.D. thesis.

Samuel R. Buss. 1987. The Boolean Formula Value Problem is in ALOGTIME. In Proceedings of the 19-th
Annual ACM Symposium on Theory of Computing. 123–131.

Samuel R. Buss. 1993. Algorithms for Boolean Formula Evaluation and for Tree Contraction. In Arithmetic,
Proof Theory and Computational Complexity, P. Clote and J. Kraj́ıček (Eds.). Oxford University Press,
96–115.

Samuel R. Buss. 1998. An Introduction to Proof Theory. In Handbook of Proof Theory, S. R. Buss (Ed.).
North-Holland, 1–78.

Samuel R. Buss. 1999. Propositional Proof Complexity: An Introduction. In Computational Logic, U. Berger
and H. Schwichtenberg (Eds.). Springer-Verlag, Berlin, 127–178.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 A. Beckmann and S. Buss

Samuel R. Buss, Steven A. Cook, Arvind Gupta, and Vijaya Ramachandran. 1992. An Optimal Parallel
Algorithm for Formula Evaluation. SIAM J. Comput. 21 (1992), 755–780.

Samuel R. Buss and Jan Kraj́ıček. 1994. An Application of Boolean Complexity to Separation Problems in
Bounded Arithmetic. Proceedings of the London Mathematical Society 69 (1994), 1–21.

Stephen A. Cook. 1975. Feasibly Constructive Proofs and the Propositional Calculus. In Proceedings of the
Seventh Annual ACM Symposium on Theory of Computing. Association for Computing Machinery,
83–97.

Stephen A. Cook and Tsuyoshi Morioka. 2005. Quantified Propositional Calculus and A Second-Order
Theory for NC1. Archive for Mathematical Logic 44 (2005), 711–749.

Stephen A. Cook and Phuong Nguyen. 2010. Foundations of Proof Complexity: Bounded Arithmetic and
Propositional Translations. ASL and Cambridge University Press. 496 pages.

Stephen A. Cook and Robert A. Reckhow. 1979. The Relative Efficiency of Propositional Proof Systems.
Journal of Symbolic Logic 44 (1979), 36–50.

Paul Goldberg and Christos Papadimitriou. 2016. Towards a Unified Complexity Theory of Total Functions.
(2016). Draft ‘working paper’, available online.

Emil Jeřábek. 2004. Dual Weak Pigeonhole Principle, Boolean Complexity, and Derandomization. Annals
of Pure and Applied Logic 124 (2004), 1–37.

Emil Jeřábek. 2006. The Strength of Sharply Bounded Induction. Mathematical Logic Quarterly 6 (2006),
613–624.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988. How Easy is Local Search? J.
Comput. System Sci. 37 (1988), 79–100.

Leszek Aleksander Ko lodziejczyk, Phuong Nguyen, and Neil Thapen. 2011. The Provably Total NP Search
Problems of Weak Second-Order Bounded Arithmetic. Annals of Pure and Applied Logic 162, 2 (2011),
419–446.

Jan Kraj́ıček. 1995. Bounded Arithmetic, Propositional Calculus and Complexity Theory. Cambridge Uni-
versity Press, Heidelberg.

Jan Kraj́ıček. 2004. Implicit Proofs. Journal of Symbol Logic 69, 2 (2004), 387–397.

Jan Kraj́ıček. 2011. Forcing with Random Variables and Proof Complexity. Cambraidge University Press.

Jan Kraj́ıček. 2016. Consistency of Circuit Evaluation, Extended Resolution, and Total NP Search Problems.
Forum of Mathematics, Sigma 4 (2016), e15 (13 pages).

Jan Kraj́ıček, Alan Skelley, and Neil Thapen. 2007. NP Search Problems in Low Fragments of Bounded
Arithmetic. Journal of Symbolic Logic 72, 2 (2007), 649–672.

Christos H. Papadimitriou. 1990. On Graph-Theoretic Lemmata and Complexity Classes (Extended Ab-
stract). In Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (Volume
II). IEEE Computer Society, 794–801.

Christos H. Papadimitriou. 1994. On the Complexity of the Parity Argument and Other Inefficient Proofs
of Existence. J. Comput. System Sci. 48, 3 (1994), 498–532.

Jeff B. Paris and Alex J. Wilkie. 1985. Counting Problems in Bounded Arithmetic. In Methods in Mathe-
matical Logic, Lecture Notes in Mathematics #1130. Springer-Verlag, 317–340.

Pavel Pudlák and Neil Thapen. 2012. Alternating Minima and Maxima, Nash Equilibria and Bounded
Arithmetic. Annals of Pure and Applied Logic 163 (2012), 604–614.

Robert A. Reckhow. 1976. On the Lengths of Proofs in the Propositional Calculus. Ph.D. Dissertation.
Department of Computer Science, University of Toronto. Technical Report #87.

Alan Skelley and Neil Thapen. 2011. The Provably Total Search Problems of Bounded Arithmetic. Proceed-
ings of the London Mathematical Society 103, 1 (2011), 106–138.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

