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Abstract—We introduce a Hyper Natural Deduction system as
an extension of Gentzen’s Natural Deduction system. A Hyper
Natural Deduction consists of a finite set of derivations which
may use, beside typical Natural Deduction rules, additional rules
providing means for communication between derivations. We
show that our Hyper Natural Deduction system is sound and
complete for infinite-valued propositional Gödel Logic, by giving
translations to and from Avron’s Hypersequent Calculus. We also
provide conversions for normalisation and prove the existence of
normal forms for our Hyper Natural Deduction system.

I. INTRODUCTION

Curry-Howard correspondences represent a fruitful
paradigm in the development of proof theory and
computer science, which are well-established for sequential
programming. The original Curry-Howard correspondence
connects intuitionistic natural deduction and λ-calculus.
Following the seminal work by Griffen [1], much work
has been done extending Curry-Howard correspondences to
other types of logics [2]–[4]. Current research is aiming
for extensions to concurrent programming [5], [6]. Herein,
process calculi [7] and their connections to linear logic have
taken a prominent role [8], [9], but linear logic’s lack of good
algebraic/relational semantics creates a hurdle. A different
approach has been taken in [10], pointing out the relation
between process calculi and linear intermediate logics, aka
Gödel logics.

On the proof theoretic side, the Hypersequent Calculus in-
troduced by Avron [11] is a well-studied formalism for inves-
tigating intermediate logics. Starting with Gentzen’s sequent
calculus [12] for intuitionistic and classical logic, sequent
systems have developed into the framework of choice for
proof-theoretic investigations of a wide variety of logics. The
extension to hypersequents by Avron has started a new rush of
activity, and nowadays Hypersequent calculi for a wide variety
of non-classical logics as well as modal logics have been found
[13]–[15].

Avron’s Hypersequent Calculus is conjectured to also model
a form of communication between processes. Previous ap-
proaches to explicate this conjecture can be distinguished
into either semantical (computational side) or syntactic (proof
theoretic side) ones. Examples of the first category are game
theoretic interpretation [16] and extensions of the λ-calculus
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to work with Gödel logics [17]. While these approaches from
the semantical side look tempting, they either failed to connect
to the proof-theoretic side, or didn’t provide a computational
interpretation.

On the syntactical side, Baaz et al. [18] introduced a Hyper
Natural Deduction system which operates on the level of
hyper derivations, that is, hyper sequences of derivations.
Their system lacks a normalisation procedure via conversions
— normalisation is proved by translation into Hypersequent
Calculus, followed by cut-elimination and re-translation. Con-
sequently, they do not obtain a computational interpretation
via a Curry-Howard correspondence. In contrast to this, our
Hyper Natural Deduction system operates on the level of
derivations. This allows us to define a normalisation procedure
based on conversions, which has the potential for having
a meaningful computational interpretation. The latter is the
object on ongoing research.

A. Our program

The original Curry-Howard correspondence (upper part of
Figure 1) starts from Intuitionistic Logic (IL), IL’s sequent
calculus (LJ) and related natural deduction system (NJ), and
connects these with the λ-calculus.

IL λ⇐⇒
Curry Howard

LJ⇔ NJ⇔

GL GLC⇔ π?⇐⇒GLHN⇔

Fig. 1. Curry-Howard correspondence and the proposed approach

We propose a similar approach for (infinite-valued propo-
sitional) Gödel Logic (GL) and its (hyper) sequent calculus
(GLC). As a first step to establish similar correspondences
here, the work in this paper introduces a Hyper Natural Deduc-
tion system (GLHN), that is equivalent to the Hypersequent
Calculus, and thus sound and complete for Gödel logics.

Future work will be dedicated to complete the Curry-
Howard correspondence for Gödel logics, by seeking a term
system representing the Hyper Natural Deduction system
presented here, and trying to relate it to process calculi.

B. Layout of the article

In Section II, we start by briefly reviewing the main results
about Gödel logics, to provide the context for Hypersequent



Calculus — more details can be found in the handbook article
on Gödel logics [19]. In Section III we recall Avron’s Hyper-
sequent Calculus (GLC). Section IV defines Hyper Natural
Deductions (GLHN) and shows that these are closed under
rules corresponding to the inferences of the Hypersequent
Calculus. Section V provides translations between GLC and
GLHN, proving soundness and completeness of the new
system with respect to infinite-valued propositional Gödel
logic. Section VI provides a proof of weak normalisation
for GLHN. Conclusions and future work are discussed in
Section VII.

II. GÖDEL LOGICS

Gödel [20] introduced propositional finite-valued Gödel
logics to show that intuitionistic logic does not have a finite
characteristic matrix. These logics provide the first examples
of intermediate logics, which lie in strength between classical
and intuitionistic logics. Dummett [21] was the first to study
infinite-valued propositional Gödel logics. He axiomatised this
logic as intuitionistic logic extended by the linearity axiom
(A → B) ∨ (B → A). Infinite-valued propositional Gödel
logic is also called Gödel-Dummett logic or Dummett’s LC.
In terms of Kripke semantics, the linearity axiom selects those
accessibility relations which are linear orders.

Extending Gödel logics to first-order logic has some surpris-
ing consequences: Whereas there is only one infinite-valued
propositional Gödel logic, there are infinitely many different
logics at the first-order level [22]–[24], and, surprisingly, only
countably many [25]. Scarpellini [26] has provided a general
method to show non-axiomatisability of many infinite-valued
intermediate logics. Thus, it is interesting to note that some
infinite-valued Gödel logics belong to the limited class of
recursively enumerable logics based on linearly ordered truth
values [27], [28]. In particular the Gödel logic based on [0, 1]
is characterised by the first order Hypersequent Calculus [11].

We consider propositional Gödel logics. Truth values V
form a subset of the real interval [0, 1] that include 0 and 1.
The valuation of conjunction and disjunction is given by min
and max, respectively. The valuation of the implication gives 1
if the antecedent evaluates to a value less than or equal to the
valuation of the succedent, otherwise to the valuation of the
succedent. A formula is called valid with respect to V , if it is
mapped to 1 for all valuations based on V .

The set of all formulas which are valid with respect to V
is called the propositional Gödel logic based on V , and will
be denoted by G0

V . The validity of a formula A with respect
to V will be denoted by |=0

V A or |=G0
V
A. Infinite-valued

propositional Gödel logic GL is given by the propositional
Gödel logic G0

[0,1] based on the full interval [0, 1].

III. HYPERSEQUENT CALCULUS

In the following a formula will always be a propositional
formula. We shall use A,B,C . . . to range over formulas, and
Γ,∆,Ξ . . . to range over finite sets of formulas.

We describe a version of Avron’s Hypersequent Calcu-
lus [11] following [18]. As the version based on multi-
conclusion sequents does not play a role for our exposition,

we only define the single-conclusion version here. Thus, a
sequent is an expression of the form Γ ⇒ A, where Γ is a
finite set of formulas, and A is a formula. In particular, Γ being
a set implies that structural rules of exchange, contraction and
expansion (the converse of contraction) are build into our cal-
culus. A hypersequent, in turn, is a finite multiset of sequents,
which implies that the external version of exchange, but not
contraction and expansion, is also build into our calculus. We
shall use the usual hypersequent notation s1 | . . . | sn (for
the multiset consisting of s1, . . . , sn), and H,H′ . . . to range
over hypersequents. We also employ standard notations, e.g.
Γ, A⇒ B for Γ∪{A} ⇒ {B}, and H | s instead of H∪{s},
etc.

The Hypersequent Calculus for propositional Gödel logic,
GLC, is given by the following axioms and rules:

Axioms: (id) A⇒ A and (⊥) ⊥ ⇒ A

Cut Rule:
Γ⇒ A | H1 A,Γ⇒ C | H2cut

Γ⇒ C | H1 | H2

Internal Structural Rule:
Γ⇒ C | H

w
Γ, B ⇒ C | H

External Structural Rules:
Γ⇒ C | H

EW
Γ⇒ C | Γ′ ⇒ C ′ | H
Γ⇒ C | Γ⇒ C | H

EC
Γ⇒ C | H

Logical rules

Γ⇒ A | H Γ, B ⇒ C | H′
→,l

Γ, A→ B ⇒ C | H | H′

Γ, A⇒ B | H→,r
Γ⇒ A→ B | H

Γ, A⇒ C | H Γ, B ⇒ C | H′
∨,l

Γ, A ∨B ⇒ C | H | H′

Γ⇒ Ai | H∨i,r i ∈ {1, 2}
Γ⇒ A1 ∨A2 | H

Γ, Ai ⇒ C | H
∧i,l i ∈ {1, 2}

Γ, A1 ∧A2 ⇒ C | H
Γ⇒ A | H Γ⇒ B | H′∧,r

Γ⇒ A ∧B | H | H′

Communication:
Γ1 ⇒ A1 | H Γ2 ⇒ A2 | H′com

Γ1 ⇒ A2 | Γ2 ⇒ A1 | H | H′

Split:
Π,Γ⇒ A | H

split
Π⇒ A | Γ⇒ A | H

Theorem 1 ( [11]). GLC is sound and complete for infinitary
propositional Gödel logic GL.

As pointed out by Avron [11], a hypersequent can be
thought of as a specification of a multi-process. With respect



to this interpretation the communication rule models the ex-
change of information within multi-processes. In the following
we will define an extension of natural deduction (denoted
Hyper Natural Deduction GLHN) which will be equivalent
to GLC. One motivation for defining and studying GLHN is
to make the kind of communication inherent in GLC under
the above interpretation more explicit.

IV. HYPER NATURAL DEDUCTION

The proposed Hyper Natural Deduction system extends
Gentzen’s Natural Deduction system (NJ) by two main adap-
tations: First, we extend Gentzen’s NJ by three more rules
(Definition 1) intended to model split, communication and
external contraction in Avron’s Hypersequent Calculus. The
derivation trees obtained in this system will be called ‘GLHN
pre-derivation’ (Definition 2) — ‘pre-derivation’ as the new
rules are meaningless without further ingredients. In the sim-
plest case where the additional rules are not used, a GLHN
pre-derivation is also a NJ derivation.

The second adaptation is that we consider sets of GLHN
pre-derivations. Not every set of GLHN pre-derivations will
provide a structure that can be interpreted as a meaningful
proof in Gödel logic. We will define ‘GLHN deductions’
as finite sets of GLHN pre-derivations satisfying several
conditions (Definition 7). We then show that GLHN deduc-
tions correspond to GLC derivations by providing translations
between the two (Theorem 3 and Corollary 2).

A. Gentzen’s Natural Deduction
Our system of Hyper Natural Deductions will be based on

Gentzen’s Natural Deduction system NJ [12]. We will present
NJ in the version given in [29]. As usual, a Natural Deduction
style derivation consists of an upward rooted tree, where
the nodes are formulas. Formulas at leaf nodes are called
assumptions. All non-leaf nodes are carrying labels providing
information about the rule which has been applied plus some
other information (like which assumptions have been closed).
We say that A is derivable from assumptions Γ and write

Γ

A
if there is a derivation σ with root A such that the union of all
open assumptions of σ is a subset of Γ. Derivations in NJ are
generated inductively using the following initial, introduction
and elimination rules:

Any formula, viewed as a tree consisting of one node, is a
derivation.

Γ

A

∆

B∧-i
A ∧B

Γ

A ∧B∧-e
A

Γ

A ∧B
B

Γ

A∨-i
A ∨B

Γ

B
A ∨B

Γ

A ∨B

∆, k[A]

C

Π, k[B]

Ck∨-e C

Γ, k[A]

Bk →-i A→ B

Γ

A

∆

A→ B→-e
B

Γ

⊥⊥-i
A

For any rule occurrence in a derivation, we employ notions
like immediate sub-derivation, upper derivations, upper left
(middle, right) derivation etc. in the natural way related to the
pictorial definition of the rules.

B. Rules for Hyper Natural Deduction

To define a Hyper Natural Deduction system for Gödel
Logic (GLHN), we expand NJ by three new rules. Besides
communication and split rules which correspond to those in
GLC, we will also need a contraction rule to be able to
define all conversion rules needed for normalisation. The new
communication and split rules employ ideas from process
algebra: They come in pairs of duals (technically realised by
using so called names in the following), and the idea is that
such dual labels form a connection which will be used during
normalisation to “communicate” sub-derivations.

Definition 1 (Rules of GLHN). Let X be a countable infinite
set of names. Let x 7→ x̄ be a function from X to X such
that for each name x its dual name x̄ is distinct from x, and
x and x̄ are duals of each other, that is, ¯̄x = x.

The set of rules of GLHN consists of the above rules for
Natural Deduction, plus the following three rules:

[Γ]k,∆

AkSx
Γ,∆ A

Γ

Acomx
A,B

B

Γ

A

∆

Acontr
A

where x is a name in X .

The superscript k in the left rule is used to connect dis-
charged assumptions to rule applications in the usual way;
most of the time we will drop it in the following.

Definition 2 (GLHN pre-derivation). A GLHN pre-
derivation is a tree defined using the rules of GLHN. A
GLHN pre-derivation is often just called pre-derivation.

We shall use ρ, σ . . . to range over pre-derivations. Labels
of the form Sx

Γ,∆ are called splitting labels and the rule
introducing them splitting rules or simply splitting. Those of
the form comx

A,B are called communication labels and rules



introducing them communication rules or simply communi-
cation. Communication and splitting labels are often jointly
referred to as labels.

Furthermore, we stipulate a duality on labels as follows: The
dual of Sx

Γ,∆ (resp. comx
A,B), denoted Sx

Γ,∆ (resp. comx
A,B),

is Sx̄
∆,Γ (resp. comx̄

B,A).
The following notations and concepts will be useful:

Definition 3. For pre-derivations ρ, ρ1, . . . , ρn we define the
following formulas and sets: Labels(ρ1, . . . , ρn) is the set
of labels occurring in any of the pre-derivations ρ1, . . . , ρn;
Assum(ρ) is the set of not discharged assumptions of ρ;
Conc(ρ) is the final conclusion, i.e., last formula, of ρ. For
an occurrence of a formula A in a pre-derivation, we define
the sub-pre-derivation rooted in A as the sub-tree up to and
including A. An immediate sub-pre-derivation of ρ is a sub-
pre-derivation rooted in one of the premises of the final rule
of ρ.

We want to define Hyper Natural Deductions as sets of
pre-derivations, with the aim to establish a correspondence
to GLC. The idea is that communication and splitting labels
come in pairs of duals which together correspond to instances
of communication and splitting, resp., in GLC. So far, the use
of communication and splitting labels in pre-derivations is not
restricted, and we will have to impose various restrictions on
their occurrence for the above idea to work. These restriction
will impose conditions on GLHN deductions which mainly
intend to model independence of parts of GLHN deductions:
Non-unary rules on the sequent-level in GLC require that
the derivations of their premises are independent. We will
have to model this through our conditions on GLHN: For
example, for each pair of dual communication labels in an
GLHN deduction, the conditions will have to allow us to
identify ‘independent’ parts of the deduction which indepen-
dently justify the premises of the communication application.
The following equivalence relation on pre-derivations will be
needed to achieve this.

Definition 4 (Induced equivalence relation and partition). For
a finite set R = {ρ1, . . . , ρn} of pre-derivations, define the
following relation ∼R on R: ρi ∼R ρj if there is an l ∈
Labels(ρi) and l′ ∈ Labels(ρj) such that l and l′ are dual to
each other. Note that a label is never dual to itself, thus we
may have ρi �R ρi even if Labels(ρi) 6= ∅.

The transitive and reflexive closure of ∼R, denoted by ≈R,
is an equivalence relation on R.

For an arbitrary pre-derivation σ (not necessary in R) let
lnkR(σ), the set of pre-derivations in R linked to σ, be
[σ]≈R∪{σ} \ {σ}.

The contraction rule, which is necessary to formulate the
conversion rules for the normalisation procedure, provides a
challenge for expressing the above mentioned independence
condition as it is the only rule which allows to combine
dependent pre-derivations and thus effects equivalent classes
obtained from the previously defined equivalence relation. In
order to obtain a working definition of independence, we

introduce the concept of expansions of pre-derivations which
removes contractions and in this way splits dependent sub-
pre-derivations into separate pre-derivations. The following
definition is used only to later define appropriate equiva-
lence relations for characterising independence. The apparent
asymmetry in the definition is harmless: both options can be
chosen without an effect on the induced independence of pre-
derivations.

Definition 5 (Expansion of pre-derivations). With each pre-
derivation ρ we associate the expansion of ρ, a set of
contraction-free pre-derivations ρ∗, inductively as follows: If
contraction does not occur in ρ, then ρ∗ = {ρ}. Otherwise
choose an uppermost occurrence of contraction in ρ, and let
σ1 and σ2 be the upper left and right, respectively, sub-pre-
derivation at this occurrence. Then ρ∗ is defined as the union
of {σ1} and the expansion of the pre-derivation obtained from
ρ by replacing the sub-pre-derivation rooted in the conclusion
of the contraction occurrence, with σ2.

For a set of pre-derivations R = {ρ1, . . . , ρn}, we define
the expansion of R as R∗ =

⋃n
i=1 ρ

∗
i .

Observe that expansions of pre-derivation do not contain
contractions.

The definition of Hyper Natural Deduction will require a
total order on the set of labels, which ignores duality. To
express this, the following definition will be helpful:

Definition 6 (Induced orders on labels). Let L be a set of
labels closed under taking duals. Let L/_ be the set of classes
of dual labels in L, and let

L 3 x 7→ [x]_ := {x, x̄} ∈ L/_

be an embedding of L into L/_. A total order - on L/_
induces a total pre-order � on L in the obvious way by

x � y ⇔ [x]_ - [y]_

Obviously, dual labels are at the same position of the induced
total pre-order.

C. Hyper Natural Deduction

We are now in the position to give the definition of our
Hyper Natural Deduction system GLHN.

Definition 7 (Hyper Natural Deduction for Gödel Logic). Let
R = {ρ1, . . . , ρn} be a finite set of pre-derivations, and let -
be a total order on Labels(R)/_. (R,-) is called a GL Hyper
Natural Deduction, or simply Hyper Natural Deduction, and
is denoted GLHN, if the following conditions are satisfied:

1) (Dual labels) Labels(R) is closed under taking duals.
That is, if l ∈ Labels(R), then also l̄ ∈ Labels(R). Recall
the definition of dual labels:

Sx
∆,Γ = Sx̄

Γ,∆ and comx
B,A = comx̄

A,B

2) (Separation of pre-derivations) If l ∈ Labels(R),
and if ρ and ρ′ are sub-pre-derivations of pre-derivations
in R rooted in the premise of rules labelled l and l̄,



respectively, then neither ρ is a sub-tree of ρ′, nor ρ′

a sub-tree of ρ.
3) (Consistent communication labelling) If l ∈ Labels(R)

is a communication label, then all sub-pre-derivations of
pre-derivations in R rooted in premises of rules labelled
by l are different occurrences of the same pre-derivation.

4) (Consistent splitting labelling) If l ∈ Labels(R)
is a splitting label, then all sub-pre-derivations of pre-
derivations in R rooted in premises of rules labelled by l
or l̄ are different occurrences of the same pre-derivation.

5) (Label ordering) The order of labels occurring on any
path through any pre-derivation in R respects the total
pre-order induced by -. The ordering on paths through
pre-derivations is from assumptions to conclusions.

6) (Independence of premises) For any non-unary logical
rule occurring in R, that is ∧-i, ∨-e, →-e, and any pair
of dually labelled communication rules occurring in R,
we require an independence of their immediate sub-pre-
derivations in the following way. For occurrences of ∧-i,
→-e, denote the two upper pre-derivations with σi for
i = 1, 2. For occurrences of ∨-e, denote the three upper
pre-derivations with σi i = 1, 2, 3. In the case of a pair
of dually labelled communication rules occurring in R,
denote one sub-pre-derivation by σ1 and the other by σ2.
Furthermore, assume w.l.o.g. that in the case of a logical
rule, this rule occurs in ρ1, that is, σ1, σ2(, σ3) are part
of ρ1, and in case of communication σ1 and σ2 appear
in ρ1 and ρ2, respectively.
That is, we are in one of the following situations:

Γ1

σ1

A1

Γ2

σ2

A2∧-i or →-e
B

ρ1 or

Γ1

σ1

Acomx
A,B

B

ρ1

Γ2

σ2

Bcomx
A,B A

ρ2 or

Γ
σ1

A ∨B

[A]

σ2

C

[B]

σ3

C∨-e
C

Denote with R′ the remaining pre-derivations, i.e., for the
logical rules R′ = {ρ2, . . . , ρn}, and for communication
R′ = {ρ3, . . . , ρn}. Denote with Ri = R′ ∪ {σi} for
i = 1, 2(, 3).

Then we require for any such rule occurrence, that the
equivalence classes of σi with respect to ≈R∗i

as sets of
pre-derivations are pairwise disjoint, that is,

∀i 6= j ∈ {1, 2(, 3)} : lnkR∗i
(σi) ∩ lnkR∗j

(σj) = ∅

It is important to note that the equivalence classes are
build with respect to the expansions R∗i of the pre-
derivations Ri.

7) (Local dependence of contraction premises) For any
occurrence of a contraction rule, we stipulate a depen-
dency of the immediate sub-pre-derivations. With the
notions from the previous condition, that is, σ1 and
σ2 being the upper left and right, respectively, sub-pre-
derivations of this contraction occurrence, and R′, R1,
R2 being defined as before, we require that the two
equivalence classes coincide:

lnkR∗1
(σ1) = lnkR∗2

(σ2)

8) (Global dependence of pre-derivations) The whole
set R forms one equivalence class: R = [ρ1]≈R . Note
that we do not build the equivalence class with respect
to expansion R∗, but with respect to R.

We require that a total order on the labels is given as part
of the definition of a Hyper Natural Deduction. This is not
necessary as there is an efficient algorithm which, given a
set of pre-derivations, checks whether such an order exists
(and in this case computes it). Thus, in the following we will
usually not mention this order when giving a Hyper Natural
Deduction.

Observe that the previous definition induces an efficient
(logspace) decision procedure to determine whether a given
set of pre-derivations forms a Hyper Natural Deduction. As
discussed above this is true even if the total order is omitted, as
it can be computed efficiently from the set of pre-derivations.

D. Hyper rules for Hyper Natural Deduction

We will now define rules which operate on Hyper Natural
Deductions. They will be useful for building Hyper Natural
Deductions, needed for example in the translation from hyper-
sequent derivations to Hyper Natural Deductions.

We start by defining a general notion of a rule operating
on sets of pre-derivations which we denote a hyper rule. In
the following, when saying “set of pre-derivations” we mean
“finite set of pre-derivations”.

Definition 8 (Hyper rule). A hyper rule r of arity k is a k+1-
ary relation where the arguments are sets of pre-derivations. If
a hyper rule r of arity k > 1 is defined on some R1 . . . , Rk, R
where R1 . . . , Rk, R are sets of pre-derivations, then we say
that r applied to R1 . . . , Rk yields R.

A hyper rule of arity k > 1 will always satisfy that if
it yields R from R1 . . . , Rk, then the sets of labels for Ri,
Labels(Ri) for i ≤ k, are pairwise disjoint.

We now define hyper rules based on rules for NJ, and on
communication, splitting and contraction rules. Let k be the



arity of the rule under consideration. For the following, assume
that Ri is a set of pre-derivations, and that ρi ∈ Ri, for i ≤ k.
Furthermore, assume that Labels(Ri) for i ≤ k are pairwise
disjoint.

Each NJ-rule r induces a corresponding hyper rule r. If r
has k premises, then r has arity k. In addition to these, we
have a hyper communication rule com of arity 2, a hyper
splitting rule split of arity 1, and a hyper contraction rule
contr of arity 1.

Hyper rule r for NJ rule r of arity k: Assume that
ρ1, . . . , ρk together with the NJ rule r form a pre-derivation
ρ with conclusion A, that is

ρ =
ρ1 . . .ρkr

A
Then r applied to R1, . . . , Rk yields

{ρ} ∪ R1\{ρ1} ∪ · · · ∪ Rk\{ρk} .

Hyper communication rule: Assume Conc(ρ1) = A,
Conc(ρ2) = B, and let x be a fresh name. Let

ρ̄1 :=
ρ1

Acomx
A,B

B

and ρ̄2 :=
ρ2

Bcomx̄
B,A A

Then com applied to R1, R2 yields

{ρ̄1, ρ̄2} ∪ R1\{ρ1} ∪ R2\{ρ2} .

Hyper splitting rule: Assume

ρ1 =

Γ,∆

A
and let x be a fresh name. Let

ρ̄1,1 :=

Γ, k[∆]

ρ1

AkSx
Γ,∆ A

and ρ̄1,2 :=

`[Γ],∆

ρ1

A`Sx̄
∆,Γ A

Then split applied to R1 yields

{ρ̄1,1, ρ̄1,2} ∪ R1\{ρ1} .

Hyper contraction rule: Assume ρ2 is a second element
in R1, i.e. ρ2 ∈ R1 \ {ρ1}. Furthermore, assume Conc(ρ1) =
A = Conc(ρ2). Let

ρ̄1 :=

ρ1

A

ρ2

Acontr
A

Then contr applied to R1 yields

{ρ̄1} ∪ R1\{ρ1, ρ2} .

Definition 9 (GLHN hyper rules). The GLHN hyper rules
are given by the hyper rules corresponding to NJ rules, plus
the hyper communication rule com, the hyper splitting rule
split, and the hyper contraction rule contr.

We have defined GLHN in an a priori or explicit way
by requiring that certain properties hold for a set of pre-
derivations. This is in contrast to a procedural definition

that is often used in proof-theoretic settings. The following
Lemma shows that we can take also this procedural point of
view, that is, if we start from Hyper Natural Deductions and
apply a GLHN hyper rule, then we again obtain a Hyper
Natural Deduction. This shows that in a natural way we
can create Hyper Natural Deductions by locally adding rules
to pre-derivations without destroying the global properties
needed for being a Hyper Natural Deduction. For example,
the independence of premises requirements are preserved when
applying GLHN hyper rules.

Lemma 1 (Stability). GLHN is closed under applying GLHN
hyper rules.

That is, assume r is a GLHN hyper rule of arity k,
and R1 . . . , Rk are GLHN deductions, such that the label
sets Labels(Ri) are pairwise disjoint. Assume as well that r
applied to R1, . . . , Rk yields R. Then, R is again a GLHN
deduction.

Proof sketch: The proof of the stability lemma consists of
meticulously checking for each GLHN rule that the resulting
set of pre-derivations again forms a GLHN if the original set
of pre-derivations formed GLHNs. We will only mention a
few cases in detail. Let Ri = {ρi1, . . . , ρini} be GLHNs, such
that Labels(Ri), i = 1, . . . , k, are pairwise disjoint. In the
following conditions 1–8 are referring to those of Definition 7.
Unary hyper rules
For unary rules it is obvious that conditions 1–8 are satisfied
and the new figure forms a GLHN.

∧-i, ∨-e, →-e, communication
For ∧-i, ∨-e, →-e, and communication, the proof works
similar, we only treat ∧-i: Let us assume that

ρ1
1 :

Π

A

ρ2
1 :

Γ

B

We show that R∧ = {ρ∧, ρi2, . . . , ρini : i = 1, 2} is a GLHN,
where ρ∧ is

ρ∧ :

Π

ρ1
1

A

Γ

ρ2
1

B∧-i
A ∧B

Skipping the treatment of most conditions, we only discuss
the critical condition 6 (indep. premises) for the case of an
∧-i rule occurrence in R. If this occurrence is the same as the
final rule in ρ∧, then the assertion follows from the assumption
that Labels(R1) and Labels(R2) are disjoint. Otherwise, it has
to appear in either the left-upper part of ρ∧, i.e., ρ1

1, or the
right-upper part, i.e., ρ2

1, or one of the ρij where i = 1, 2 and
j = 2, . . . , ni. If it is one of the first two cases, i.e., appearing
in ρ∧, then by the assumptions of Ri being GLHNs and the
disjointness of the respective label sets, also in R condition 6
(indep. premises) is satisfied for this rule occurrence.

On the other hand, if the rule appears in one of the ρij , then
we have the following figure:



Π

ρ1
1

A

Π

ρ2
1

B∧-i
A ∧B
ρ∧ . . .

∆
σ1

F

Ξ
σ2

G∧-i
F ∧G

ρij

Assume without loss of generality that ρij = ρ1
n1

. Let

S = {ρ1
1, . . . , ρ

1
n1−1, ρ

1
n1
}

S1 = {ρ1
1, . . . , ρ

1
n1−1, σ1}

S2 = {ρ1
1, . . . , ρ

1
n1−1, σ2}

As R1 is a GLHN deduction, the critical condition holds for
the displayed ∧-i rule occurrence in ρij in R1. Hence we obtain
that

lnkS∗1
(σ1) ∩ lnkS∗2

(σ2) = ∅

Now consider the same ∧-i rule, but in the new set of pre-
derivations, and let

S′ = {ρ∧, ρ1
2, . . . , ρ

1
n1
, ρ2

2, . . . , ρ
2
n2
}

S′1 = {ρ∧, ρ1
2, . . . , ρ2

2, . . . , ρ
2
n2
, σ1}

S′2 = {ρ∧, ρ1
2, . . . , ρ2

2, . . . , ρ
2
n2
, σ2}

We need to show that

lnkS′∗1
(σ1) ∩ lnkS′∗2

(σ2) = ∅

Assume for the sake of contradiction, that the intersection con-
tains a pre-derivation. There are three cases to be considered:
(i) this pre-derivation is contained in ρ∗∧, (ii) it is contained in
one of the ρ2∗

i (i = 2, . . . , n2), or (iii) it is contained in one
of the ρ1∗

i (i = 2, . . . , n2 − 1).
(i) If this pre-derivation is contained in ρ∗∧, since

Labels(R1) and Labels(R2) are disjoint, the only possible
connection between σ1 and σ2 is via the expansion of ρ1

1 in
the left-upper part of ρ∧. But this would have as a consequence
that also

lnkS∗1
(σ1) ∩ lnkS∗2

(σ2) 6= ∅,

as they are then also connected in the original deduction, a
contradiction to the assumption that R1 was a GLHN.

(ii) and (iii) are done similarly.

contraction
In the case of the contraction rule, we are starting from slightly
different assumptions, namely that the first two pre-derivations
have been contracted into one. Again, we have to show that
the new set is a GLHN. As in the previous case, it is easy to
see that all conditions but condition 6 (indep. premises) are
trivially satisfied. What remains to show is that for all other
critical rules in R′, condition 6 is still satisfied. We consider
again only the case of ∧-i, the other cases are similar. If an
application of ∧-i occurs in ρ1 or ρ2, then the definition of the
condition ignores the part below the binary rule, and thus the
contraction anyway, so there are no changes for these rules.

On the other hand, if it occurs in some ρk for k ≥ 3, then
we have the following figure:

Γ1

ρ1

A

Γ2

ρ2

Acontr
A

ρc, . . .

∆
σ1

F

Ξ
σ2

G∧-i
F ∧G

ρk

Let us assume without loss of generality that k = n1 and let
n = n1. Let

R1 = {ρ1, ρ2, . . . , ρn−1, ρn}
S1 = {ρ1, ρ2, . . . , ρn−1, σ1}
S2 = {ρ1, ρ2, . . . , ρn−1, σ2} .

Since R1 is a GLHN, it satisfies condition 6 (indep. premises)
by assumption. Hence we have that

lnkS∗1
(σ1) ∩ lnkS∗2

(σ2) = ∅

Consider the corresponding sets after applying the contraction
rule:

R = {ρc, ρ3, . . . , ρn−1, ρn}
S′1 = {ρc, ρ3, . . . , ρn−1, σ1}
S′2 = {ρc, ρ3, . . . , ρn−1, σ2}

Reviewing the definition of expansion, we see that the expan-
sion of S′i, and the expansion of the original Si, coincide:
S′∗i = S∗i . As a consequence we obtain that the condition 6
(indep. premises) is also satisfied in R.

Remark. Here we see the importance of defining the equiv-
alence via the expansion. Without this, it is easy to give
a counter-example: Consider the proof in GLC given in
Figure 2. The intended translation into GLHN would be:

Acomx
A,B

B
Acomy

A,C C∧:i
B ∧ C

B ∧ C∧:e
Bcomx̄

B,A A

B ∧ C∧:e
Ccomȳ

C,A Acontr
A

Here, condition 6 (indep. premises) would not be satisfied for
the binary rule ∧:i if we drop expansions, as both upper sub-
pre-derivations are connected to the same pre-derivation due
to the merge of contraction. By unwinding the contractions
before checking the equivalence relations we can ensure that
the addition of a binary rule does not disturb other binary
rules.

Similar treatment of the other cases completes the proof.
The Hyper Natural Deduction system given by Baaz

et.al. [18] can be viewed as a description on the hyper rule
level, with resulting derived hypersequent.

Lemma 2. Conditions 2 (separate derivations) to 6 (indep.
premises) from Definition 7 are stable when taking a subset
of sub-pre-derivations. That is, if a set R of pre-derivations



A⇒ A
B ⇒ B(∧:l)

B ∧ C ⇒ B(com)
B ∧ C ⇒ A | A⇒ B

A⇒ A
C ⇒ C(∧:l)

B ∧ C ⇒ C(com)
B ∧ C ⇒ A | A⇒ C

(∧:r)
B ∧ C ⇒ A | B ∧ C ⇒ A | A⇒ B ∧ C

EC
B ∧ C ⇒ A | A⇒ B ∧ C

Fig. 2. GLC derivation exhibiting the necessity for expansion in corresponding GLHN deduction

satisfies Conditions 2 to 6 from Definition 7, then so does any
collection of sub-pre-derivations of sub-derivations in R.

Proof sketch: All conditions can be easily checked.
The following retraction lemma provides a means for in-

ductive proofs on the length of GLHNs.

Lemma 3 (Retraction). Let R = {ρ1, . . . , ρn} be a GLHN.
(i) If ρ1 ends in a unary logical rule, let σ be the immediate

sub-pre-derivation of ρ. Then {σ, ρ2, . . . , ρn} forms a GLHN.
(ii) If ρ1 ends in a non-unary logical rule (∧-i, ∨-e,→-e) or

contraction, let σi for i = 1, 2(, 3) be the immediate sub-pre-
derivations of ρ. Using the notations from Condition 6 (indep.
premises) of Definition 7, the equivalence classes [σi]≈Ri are
GLHNs, which as sets are pairwise disjoint.

(iii) If ρ1 and ρ2 end in a pair of dually labelled commu-
nication rules, let σi be the immediate sub-pre-derivations of
ρi, i = 1, 2. Again employing the notations from Condition 6
of Definition 7, the equivalence classes [σ1]≈R1

and [σ2]≈R2

are GLHNs, which as sets are disjoint.
(iv) If ρ1 and ρ2 end in a pair of dually labelled splitting

rules, let σ be the immediate sub-pre-derivation of ρ1 (ob-
serve that σ is also the immediate sub-pre-derivations of ρ2

according to Condition 4 (consistent split) of Definition 7).
Then {σ, ρ3, . . . , ρn} forms a GLHN.

Proof sketch: By inspection of the conditions and using
Lemma 2.

The following lemma provides us with a way to combine
two GLHNs by concatenating them.

Lemma 4 (Concatenation). Assume we have a GLHN R1 =
{ρ1

i : i = 1, . . . , n1} with Conc(ρ1
1) = A, and another

GLHN R2 = {ρ2
i : i = 1, . . . , n2} with A ∈ Assum(ρ2

1).
Furthermore, assume that the sets of labels of Ri are disjoint.
Generate ρ0 from ρ2

1 by attaching at each open assumption A
the pre-derivation ρ1

1. Then,

R = {ρ0, ρ
i
j : i = 1, 2, j = 2, . . . , ni}

is again a GLHN. Furthermore, Conc(ρ0) = Conc(ρ2
1) and

Assum(ρ0) = Assum(ρ1
1) ∪ (Assum(ρ2

1) \ {A}) .

Proof sketch: By inspection of the conditions.
Our last lemma concerns the relation between equivalence

classes in the non-unary case of logical rules. Let us assume
the same notions as in Condition 6 (indep. premises) of
Definition 7.

Lemma 5. Let R = {ρ1, . . . , ρn} be a GLHN, and assume we
are in case ii or iii of the Retraction Lemma 3, that is, we have

a non-unary logical rule or dually labelled communication
rules as final rules of some pre-derivation in R. With the
notations from Condition 6 (indep. premises) of Definition 7,
we can obtain all of R from the equivalence classes of [σi]≈Ri ,
disregarding ρ1 and σi:

[ρ1]≈R \ {ρ1} =

2(3)⋃
i=1

(
[σi]≈Ri \ {σi}

)
Proof sketch: By analysing the equivalence chains that

connect different labels.

V. TRANSLATIONS BETWEEN HYPERSEQUENT CALCULUS
AND HYPER NATURAL DEDUCTION

A. Translation from GLC to GLHN

We will translate GLC derivations into GLHN. As an
illustration consider the linearity formula C = (A → B) ∨
(B → A), which has the following GLC derivation:

A⇒ A B ⇒ Bcom
A⇒ B | B ⇒ A→,r
⇒ A→ B | B ⇒ A→,r
⇒ A→ B | ⇒ B → A∨,r
⇒ C | ⇒ B → A∨,r
⇒ C | ⇒ C

EC ⇒ C

The corresponding GLHN deduction would look like this:

1[A]
comx

A,B
B1 →-i

A→ B∨-i
C

2[B]
comx

A,B A2 →-i
B → A∨-i
Ccontr

C

Definition 10. Let

H = Γ1 ⇒ A1 | . . . | Γk ⇒ Ak

and
H′ = ∆1 ⇒ B1 | . . . | ∆` ⇒ B` .

H is a syntactic sub hypersequent of H′, denoted H v H′,
if and only if there exists an injection f : {1, . . . , k} →
{1, . . . , `} such that for all i = 1, . . . , k,

Ai = Bf(i) and Γi ⊆ ∆f(i) .

Remark: If H v H′ and H is valid, then also H′ is valid.

Definition 11. The derived sequent of a pre-derivation ρ,
denoted Seq(ρ), is given by Assum(ρ)⇒ Conc(ρ).



The derived hypersequent of a finite set of pre-
derivations R = {ρ1, . . . , ρk}, denoted HypSeq(R), is
given by Seq(ρ1) | . . . | Seq(ρk).

Theorem 2. Assume a hypersequentH has a GLC derivation.
Then there exists a deduction R in GLHN such that the
derived hypersequent of R is a syntactic sub hypersequent
of H.

Proof sketch: Fix a GLC derivation D of H. We prove
the claim by induction on the length of D. If D is an axiom
A⇒ A, we use the GLHN A. If D is an axiom of the form
⊥ ⇒ A, then we use the rule ⊥I of GLHN to form the
deduction ⊥/A.

For the other rules of GLC we use the corresponding
GLHN hyper rules in combination with the Stability Lemma 1
and the Concatenation Lemma 4.

A formula A is GLC derivable if the hypersequent ⇒ A
is GLC derivable. A is GLHN derivable if there is a GLHN
deduction consisting of one pre-derivation ρ, which has no
free assumptions and ends in A, that is, Assum(ρ) = ∅ and
Conc(ρ) = A.

Corollary 1. If A is GLC derivable, then A is also GLHN
derivable.

B. Translation from GLHN to GLC

We will show by induction on the total number of inference
steps over all pre-derivations, that any GLHN deduction
R = {ρ1, . . . , ρn} can be translated into a GLC derivation.
We see that as long as two branches are not connected with
communication or split, the translation needs to generated in-
dependent hypersequent proofs, while as soon as they become
connected, the two independent proofs need to be merged into
one hypersequent proof with multiple sequents.

Which branches go into different hypersequent proofs, and
which branches go into the same as different sequents, is
determined by the equivalence relation ≈R and its equivalence
classes.

Theorem 3. Let R be a GLHN deduction. Then there exists
a GLC derivation of the derived hypersequent HypSeq(R) of
R.

Proof sketch: Fix a total order - on Labels(R)/_ which
comes with R being a GLHN deduction. The proof is by
induction on the total number of nodes over all pre-derivations
in R. As GLC has external weakening, it will be sufficient to
provide a GLC-derivation for a sub-multi-set of HypSeq(R).
The proof layout is as follows: We distinguish cases according
to the final rules occurring in all pre-derivations in R, with the
intention to apply the Retraction Lemma 3 to obtain shorter
GLHNs to which we can apply the induction hypothesis. For
logical rules and contractions this is always possible. The
problematic cases are communication and split as we need, in
order to apply the Retraction Lemma, a pair of dually labelled
rules at the end of two pre-derivations, which is not guaranteed
to exist in general. Therefore, we will deal with logical rules

and contraction as long as this is possible, and will see that
if only communication and split labels occur at the end of
pre-derivations, a pair of dually labelled rules is guaranteed to
exist due to Condition 5 (label order) of Definition 7.

If one of the pre-derivations in R has the form of a single
node deduction consisting of just a formula A, then the GLC
axiom A⇒ A provides the required derivation.

Now assume that at least one pre-derivation in R ends in
an application of a logical rule or contraction. In this case, by
using the Retraction Lemma 3 and induction hypothesis, we
obtain a hypersequent derivation, which we follow with the
respective rules of GLC.

Finally, assume that all pre-derivations in R = {ρ1, . . . , ρk}
end in an application of communication or splitting. Let xi be
the label of the last inference in ρi, and let L = {x1, . . . , xk}.
In order to be able to apply the Retraction Lemma 3 we
need in L a pair of dual labels: Let � be the pre-order on
Labels(R) induced by - according to Definition 6. Choose
a largest element in L according to �, w.l.o.g. assume this is
x1. We will argue that the dual of x1 is also in L. For the sake
of contradiction assume that this is not the case. Then, due to
Condition 1 (dual labels), x1 has to appear somewhere in R,
say in ρi. By assumption it cannot be the label of the last rule
in ρi, xi. As there is a path through ρi which contains both
labels, we must have x1 ≺ xi using Condition 5 (label order).
This contradicts the maximality of x1 (and thus also of x1)
in L.

Thus, we know that there is a pair of dual labels in L,
w.l.o.g. assume these are x1 and x2. Again, by using the
Retraction Lemma 3 and induction hypothesis, we obtain GLC
derivation(s) that can be extended with the corresponding
communication rule or splitting rule of GLC.

As a consequence of the previous theorem we obtain the
following corollary:

Corollary 2. If A is GLHN derivable, then A is also GLC
derivable.

Corollaries 1 and 2 together show, using the completeness
of GLC for infinitary propositional Gödel logic [11]:

Corollary 3. GLHN is sound and complete for infinitary
propositional Gödel logic.

VI. NORMALISATION

The natural deduction calculus NJ allows derivations to be
normalised. We will describe a similar results for GLHN.

In general, we will follow [30, Chapter 6] for proving
normalisation. The notion of normal derivation depends on
notions like segment and cuts, which in turn need the notions
minor and major premise of rules. We thus start by defining
the latter for communication, split and contraction rules. As
communication and split are linking different pre-derivations,
we cannot define the minor premise of such a rule locally, i.e.
dependent on just this rule, anymore, but have to define them
in context of a GLHN deduction.



Definition 12 (Minor premises for communication, split and
contraction rules). Let R be a (finite) set of pre-derivations.

A minor premise w.r.t. R of a communication rule of the
form

Acomx
A,B

B

is any occurrence of B in R as the premise of a rule labelled
by comx

A,B .
A minor premise w.r.t. R of a splitting rule of the form

ASx
Γ,∆ A

is any occurrence of A in R as the premise of a rule labelled
by Sx

Γ,∆ or Sx
Γ,∆.

Both premises of a contraction rule are minor premises of
that contraction occurrence.

During normalisation, elimination rules are permuted over
minor premises of other disjunction elimination like rules (del-
rules, see below) until they reach an introduction rule. For
communication, split and contraction the reason for calling
premises “minor” is the same as above, during nomalisation
elimination rules are just “permuted”. But due to the non-
local nature of minor premises for communication and split
the situation now is much more involved.

We adapt the notion of segment, cut, cutrank, and critical
cut from [30, Def. 6.1.2] to take the additional minor premises
into account, which can be conveniently done by just defining
the “del-rules” of GLHN [30, Def. 6.1.1]. For the benefit
of the reader we will restate the definition of the former
notions from [30, Def. 6.1.2] as well. Let I-rules denote the
introduction rules for logical connectives, and E-rules denote
the elimination rules for logical connectives. With |A| we
denote the length of formula A, given by the number of
occurrences of logical connectives in A.

Definition 13. The del-rules of GLHN are ∨-e, contr, com
and split.

Definition 14 ( [30, Def. 6.1.2]). A segment (of length n) in a
GLHN deduction R is a sequence A1, . . . , An of consecutive
occurrences of a formula A in R such that
• for 1 < n, i < n, Ai is a minor premise of a del-rule

application in R, with conclusion Ai+1,
• An is not a minor premise of a del-rule application,
• A1 is not the conclusion of a del-rule application.

A segment is maximal, or a cut (segment) if An is the major
premise of an E-rule, and either n > 1, or n = 1 and A1 = An

is the conclusion of an I-rule. The cutrank CR(s) of a maximal
segment s with formula A is |A|. The cutrank CR(R) of a
GLHN deduction R is the maximum of the cutranks of cuts
of R. If there is no cut, the cutrank of R is zero. A critical
cut of R is a cut of maximal cutrank among all cuts in R. We
shall use s, s′ for segments.

A deduction without critical cuts is said to be normal.

A. Conversions
We now extend the conversions defined in [30, Chap. 6.1]

to deal with our additional cases involving communication,
splitting and contraction rules.

The detour conversions ∧-conversion, ∨-conversion and
→-conversion, and the simplification conversions from [30,
Chap. 6.1] stay the same. The permutation conversion ∨-perm
conversion for E-rules from [30, Chap. 6.1] also stays the
same.

We now define three more permutation conversions which
deal with permuting an E-rule over a contraction, communi-
cation and split rule.

contr-perm conversion:
σ1

A

σ2

Acontr
A σE-rule

B
contracts to

σ1

A σE-rule
B

σ2

A σE-rule
Bcontr

B
com-perm conversion and split-perm conversion differ from

the previous cases in that they have to be defined w.r.t. a
GLHN deduction R = {ρ1, . . . , ρn}. We will define them
only for →-e, the cases for other E-rules are similar.

com-perm conversion: Consider a pair of dually labelled
communication rules occurring in R. Assume the label is of
the form ` = comx

A→B,C , and that the two occurrences are of
the form

Γ
σ0

A→ B
`

C

ρ1

∆
σ1

C¯̀
A→ B

Π
σ2

A→-e
B

ρ2

Let µ be

Γ
σ0

A→ B

Π
σ2

A→-e
B

and define the following three pre-derivations:

δ1:

Γ, 1[Π]

µ

B1SΓ,Π Bcomx
B,C

C

δ3:

∆
σ1

Ccomx̄
C,B B
A→ B

δ2:

1[Γ],Π

µ

B1SΠ,Γ B

∆
σ1

Ccomx̄
C,B Bcontr

B



Then w.r.t. this pair of dual label occurrences, R contracts
to R′ which is obtained by applying the following three steps
to R, where by “sub-tree rooted in a label-occurrence” we
mean “sub-pre-derivation rooted in the conclusion of the rule
carrying this label-occurrence”:
• Replace all sub-trees rooted in occurrences of comx

A→B,C

with δ1
• replace the sub-tree rooted in the displayed occurrence

of →-e in ρ2 with δ2
• for all remaining occurrences of comx

A→B,C , replace the
sub-trees rooted in them with δ3.
These substitutions are possible since the proof trees rooted
in dual communications labels are separated (Condition 2
(separate derivations) of Definition 7).

split-perm conversion: Consider a pair of dually labelled
splitting rules occurring in R. Assume the label is of the form
` = Sx

Γ,∆, and that the two occurrences are of the form

1[Γ],∆

σ0

A→ B1` A→ B

ρ1

Γ, 2[∆]

σ0

A→ B2 ¯̀
A→ B

Π
σ1

A→-e
B

ρ2

Abbreviating sub-pre-derivations as

σ2:

1[Γ],∆

σ0

A→ B1` A→ B

σ3:

Γ, 2[∆]

σ0

A→ B2 ¯̀
A→ B

σ4:

Γ
σ3

A→ B

Π
σ1

A→-e
B

ρ1 and ρ2 can be written as

σ2

ρ1

σ4

ρ2

Let µ be the following pre-derivation:

Γ,∆

σ0

A→ B

Π
σ1

A→-e
B

We consider cases depending on whether there are occurrences
of Sx̄

∆,Γ other than those in occurrences of σ4.
Case I) Sx̄

∆,Γ only occurs within occurrences of σ4 in R.
Using µ, define the following two pre-derivations

δ1:

1[Γ],∆, 1[Π]

µ

B1Sx
(Γ,Π),∆ B→-i

A→ B

δ2:

Γ, 1[∆],Π

µ

B1Sx̄
∆,(Γ,Π) B

W.r.t. the fixed pair of dual label occurrences, R contracts
to R′ which is obtained by applying the following two steps
to R:
• Replace all occurrences of σ2 with δ1,
• replace all occurrences of σ4 with δ2.
Case II) Sx̄

∆,Γ occurs outside occurrences of σ4. Using µ,
define the following three pre-derivations

δ1:

3[Γ],∆, 1[Π]

µ

B1Sx
Π,(Γ,∆) B3Sy

Γ,∆ B→-i
A→ B

δ2:

2[Γ,∆],Π

µ

B1Sx̄
(Γ,∆),Π B

δ3:

Γ, 4[∆], 1[Π]

µ

B1Sx
Π,(Γ,∆) B4Sȳ

∆,Γ B→-i
A→ B

W.r.t. the fixed pair of dual label occurrences, R contracts
to R′ which is obtained by applying the following three steps
to R:
• Replace all occurrences of σ2 with δ1;
• replace all occurrences of σ4 with δ2.
• replace all remaining occurrences of σ3 with δ3.

These substitutions are possible since the proof trees rooted
in splitting rules carrying the same label (modulo duality) are
separated (Condition 2 (separate derivations) of Definition 7).

We now show that in the above cases, R′ again constitutes
a GLHN.

Lemma 6. Contr-perm, com-perm and split-perm conversions
convert GLHN deductions into GLHN deductions.

Proof sketch: For all three conversions we have to check
all conditions for GLHN. All conditions besides Condition 6
(indep. premises) follow immediately from the assumption that
the original figure formed a GLHN. What remains is to show
that due to the reshuffling and extension of sub-pre-derivations,
Condition 6 has not been violated, which can be proven by
inspecting the new binary rules one by one.

We now turn the central theorem on normalisation:

Theorem 4 (Normalisation). Each GLHN deduction R re-
duces to a normal GLHN deduction.

Proof: We adapt the proof of normalisation [30, Theorem
6.1.8] to our setting.

We use main induction on the cutrank n of R, with a side-
induction on

α =
∑

critical cut s in R

ωlength of s



By a suitable choice of the critical cut to which we apply
a conversion we can achieve that either n decreases, or that n
remains constant but α decreases. Let us call s a m.c.c. (max
critical cut) in R if it is a critical cut of maximal length. Choose
a m.c.c. s for which no m.c.c. occurs in a branch of R above
the lowest formula occurrence in s. Applying a conversion to
s, the resulting R′ has a lower cutrank (if s has length 1, and
it is the only maximal segment in R), or has the same cutrank
but a lower value for α.

To see this in the case of com-perm conversion, using
the notation form above, µ does not contain a m.c.c. (the
original segment s has been reduced in length). The performed
substitution may create many more critical cuts, but not of
original maximal length, thus the number of m.c.c.’s has been
reduced (which is reflected by α decreasing).

VII. CONCLUSION

We have provided a new system of Hyper Natural Deduc-
tions which is sound and complete for infinitary propositional
Gödel logic. It improves the previously known system by Baaz
et.al. [18] by giving a “low level” description of Hyper Natural
Deduction which is closer to Natural Deduction NJ — the
system of Baaz et.al. [18] can be viewed as a description
on, what we call, the hyper rule level with resulting derived
hypersequent.

The advantage of our system is that it allows to extend
the usual conversions used to prove normalisation of NJ,
to our setting, and using them to prove the existence of
normal forms (weak normalisation) for Hyper Natural De-
duction. In the standard Curry-Howard correspondence, a
detour-conversion step (→-conversion) for natural deduction
corresponds to β-reduction for λ-calculus. Thus, if we are
aiming for a computational interpretation of Hyper Natural
Deduction like a Curry-Howard correspondence, we need a
procedural normalisation procedure like the one based on
conversions. Another advantage in line with the conjecture
about communication inherent in Hyper Natural Deduction
mentioned in the introduction, is that the conversion rules for
communication and split can be viewed as “communicating”
sub-pre-derivations over a “channel” build by dual labels.

A lot of our set-up and new conversions resemble elements
of process algebras. In ongoing work we are investigating
this point of view by trying to provide a direct connection
to some process algebra like the π-calculus. A first step will
be to create a term system for the presented Hyper Natural
Deduction system, with the aim to have a simpler set-up to
investigate normalisation.
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