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Abstract. We introduce a system of Hyper Natural Deduction for Gödel
Logic as an extension of Gentzen’s system of Natural Deduction. A de-
duction in this system consists of a finite set of derivations which uses
the typical rules of Natural Deduction, plus additional rules providing
means for communication between derivations. We show that our sys-
tem is sound and complete for infinite-valued propositional Gödel Logic,
by giving translations to and from Avron’s Hypersequent Calculus. We
provide conversions for normalization extending usual conversions for
Natural Deduction and prove the existence of normal forms for Hyper
Natural Deduction for Gödel Logic. We show that normal deductions
satisfy the subformula property.

1 Introduction

Gentzen introduced his Natural Deduction system with the aim to create “einen
Formulismus [..] der dem wirklichen Schließen möglichst nahe kommt” – a for-
malism which reproduces as precisely as possible the actual logical reasoning
to be found in mathematical proofs [Gen35]. Natural Deduction achieves this
aim. But for other purposes, in particular proving his “Hauptsatz” in the case of
classical logic, Gentzen had to introduce a different, related system, his Sequent
Calculus. The “Hauptsatz” shows that every proof can be transformed into nor-
mal form, and is one of the most important properties of Natural Deduction.
Since their inception, both systems have been the basis for many investigations
in various fields ranging from proof theory and artificial intelligence, to formal
methods for system design, see [TS00,GTL89,Geu09] for further information and
pointers to relevant literature.

One of the most astonishing discoveries related to Natural Deduction, which
had a significant impact on proof theory and Computer Science, is the Curry-
Howard isomorphism between intuitionistic Natural Deduction proofs and typed
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λ-terms. The Curry-Howard isomorphism identifies a formula with a set (or
rather – type) of its proofs, and a proof of an implication A → B with a com-
putable function that given a proof ofA returns a proof ofB, that is a computable
function of type A → B — in the context of λ-calculus, this computation step
is called β-conversion, in the context of normalisation →-conversion. This cor-
respondence is also used to design tools like theorem provers with the ability to
extract programs from proofs, as done in Coq, Minlog and Nuprl [SW12]. Many
approaches have been made to extend Curry-Howard correspondences to other
logics [Gri89,Par92,GDQ92,Kri09] and concurrent programming [KY95,CPT12].

Following Gentzen’s approach, Avron [Avr91] introduced the Hypersequent
Calculus as an extension of Gentzen’s Sequent Calculus [Gen35], providing a uni-
form framework for capturing intermediate logics, that is logics which are strictly
between intuitionistic and classical logic. In particular he devised a Hypersequent
Calculus which is sound and complete for one important intermediate logic called
Dummett’s LC [Dum59] or (infinite-valued propositional) Gödel Logic — when
speaking about Hypersequent Calculus we mean this formalism in the following.
Avron’s approach has been very successful, and nowadays Hypersequent Cal-
culi for a wide variety of non-classical logics as well as modal logics have been
discovered [MM07,Lah13,CGT08].

A second motivation for Avron was “to contribute towards a better under-
standing of the notion of logical consequence in general, and especially its possi-
ble relations with parallel computations” [Avr91]. Avron conjectured that it may
be possible to interpret his formalism with multiprocesses exchanging informa-
tion, and stated “It seems to us extremely important to determine the exact
computational content of [related logics] ” [Avr91]. We claim that so far this aim
has not been achieved: Previous approaches to explore this conjecture can be
distinguished into either semantical (computational) or syntactic (proof theo-
retic) ones. Examples of the first category are game theoretic interpretation
[Fer08] and extensions of the λ-calculus to work with Gödel logics [Hir12]. While
these semantical approaches look tempting, they either fail to connect to the
proof-theoretic side, or do not provide a computational interpretation. On the
syntactical side, Baaz et al. [BCF01] introduced an extension of Natural Deduc-
tion to the hyper-level, which operates on sequences of derivations. Their system
lacks a normalization procedure via conversions — normalization is shown by
translation into Hypersequent Calculus, followed by cut-elimination and finally
translation back into their system. As a consequence, they do not obtain a com-
putational interpretation via a Curry-Howard correspondence. Aschieri [Asc16]
extends Natural Deduction by a rule modelling Dummett’s axiom [Dum59] and
proves a Curry-Howard correspondence for the resulting system. However, that
system resembles a different logic and has no direct relation to Avron’s Hyperse-
quent Calculus. Aschieri et. al. [ACG17] refines the previous result by providing
a system which captures Gödel logic. The normalization procedure for the lat-
ter system does not extend the usual one for Natural Deduction, in the sense
that →-conversions can only be applied after communication rule occurrences
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have been permuted down, thus missing the opportunity of having an interplay
between β-conversions and communication.

Our approach to Avron’s conjecture is to define a new system of Hyper Nat-
ural Deduction for Gödel Logic related to Natural Deduction which is motivated
by the following guiding principles: The first is that our system should follow
Gentzen’s original aim to reproduce real logical reasoning, so that our system
deserves the attribute natural in the sense of Gentzen. We argue below that we
achieve this aim. A detailed discussion with precise definitions supporting our
claim is given in Sections 3.

The second principle is that our system should honestly reflect as directly as
possible Avron’s original Hypersequent Calculus, meaning that the rules of Hy-
persequent Calculus should correspond in a direct way to rules in our system,
similar to the correspondence between Gentzen’s Sequent Calculus and Natu-
ral Deduction. The translations between our system and Avron’s Hypersequent
Calculus as given in Sections 3.4 and 3.5 show that this aim has been achieved.

The third guiding principle is that our formalism should admit a normaliza-
tion procedure based on conversions extending the normalization procedure for
Natural Deduction, so that normal deductions enjoy similar structural properties
as normal proofs in Natural Deduction do. Based on the discussion in Section 4,
we provide an alternative definition of Hyper Natural Deduction for Gödel Logic
in Section 6, which instead of relying on an inductive definition, provides an ex-
plicit characterization of correct deductions in our system. We then show in
Section 7 that we achieve the third aim by showing that each deduction in Hy-
per Natural Deduction for Gödel Logic can be transformed into normal form via
appropriate conversions extending usual ones, including →-conversion. We also
show that normal deductions satisfy the subformula property, namely that each
formula occurring in a normal proof is a subformula of either an open assump-
tion or conclusion. Our conversions on first sight look much more involved than
those of Natural Deduction, but careful analysis reveals that they are a natural
choice.

Future work will be dedicated to complete the Curry-Howard correspondence
for Hyper Natural Deduction for Gödel Logic, and thus for Avron’s Hypersequent
Calculus, by defining an appropriate parallel λ calculus (to use an expression
coined by Avron [Avr91]) by incorporating suitable elements of process calculi,
in particular Milner’s π calculus [MPW92], into λ calculus to extend the Curry-
Howard isomorphism from Natural Deduction to Hyper Natural Deduction for
Gödel Logic.

1.1 Differences to previous version

The results in this paper were first announced in [BP15]. However, there are sev-
eral changes: First of all, we have switched to an inductive definition of HNGL,
and we introduce the previous explicit definition as an equivalent alternative
definition needed to prove normalization — in this paper we denote the alter-
native, explicit definition with X . Second, we improved the mathematical pre-
sentation of X using notions from graph theory. Finally, we made one essential
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change to correct an error in the definition given in [BP15] — without that
change the system defined there is not sound. In the version given in [BP15]
we only demanded the existence of a total order on labels for communication
and split rules, which is compatible with their occurrences on branches through
derivations. We now add additional requirements for labels of contraction rules.
The reason for this is that without considering contraction labels, the definition
in [BP15] would not be sound for Gödel Logic. The following two prederiva-
tions form a set which is a valid deduction according to [BP15] of the formula
((A ∧ C → B) ∧ (C → D)) ∨ ((B ∧D → C) ∧ (B → A)).

[A ∧ C]
∧-e

A1: ComA,B
B

A ∧ C∧-e
C2: ComC,B
B

4:Ctr
B→-i

A ∧ C → B

[C]
3: ComC,D

D→-i
C → D∧-i

(A ∧ C → B) ∧ (C → D)

[B ∧D]
∧-e

D
3̄: Com3,DC

C

B ∧D∧-e
B

2̄: ComB,C
C

6:Ctr
C→-i

B ∧D → C

[B]
1̄: ComB,A

A→-i
B → A∧-i

(B ∧D → C) ∧ (B → A)

Fig. 1. A deduction given by two derivations that derives an invalid formula.

However, this formula is not valid in Gödel Logic — the counter-model is
given by a valuation function v satisfying 0 < v(A) < v(B) < v(D) < v(C) < 1,
see Section 2 for a definition of valuations for Gödel Logic.

In the present paper we often consider a set of derivations as a graph, with
vertices given by rule occurrences. The above set or derivations drawn as a graph
has the form given in Figure 2.

A procedural reason why the deduction in Fig. 1 is not sound is that it cannot
be transformed into a Hypersequent Calculus GLC derivation. In order to apply
contraction 4, its premises need to be connected in the remaining graph, which
involves contraction 6 and hence procedurally requires 6 before 4. But the same
holds for 6 which then requires 4 before 6. So none of them can come before the
other in an attempt to stepwise introducing them.

There is a cut (indicated with single slashes) which deletes edges in the
graph, such that the above is a correct HNGL derivation according to [BP15].
Observe that for a different cut (indicated by double backslashes) the deduction
in Fig. 1 would not be correct according to [BP15]. We conjecture that the version
presented in [BP15] is correct if we demand that its conditions are satisfied
for any possible cut operation. From a complexity perspective this gives an
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∧-e ∧-e

1:com 2:com

4:ctr

→-i

3:com

→-i

5:∧-i

3̄:com 2̄:com

∧-e ∧-e

6:ctr 1̄:com

7:∧-i

→-i →-i

\\/ / \\

Fig. 2. The graph corresponding to the set of prederivations in Fig. 1.

exponential blow-up, thus does not present a suitable, efficient definition. In any
case the above is not a correct derivation according to the new definition to be
given in Section 6.

1.2 Layout of the article

We start off in Section 2 by briefly reviewing Gödel logics and Avron’s Hyper-
sequent Calculus. In Section 3 we extend Natural Deduction with new rules to
form prederivations, and give an inductive definition of our system HNGL of
Hyper Natural Deduction for Gödel Logic. We show that each GLC derivation
can be transformed in a direct way into a HNGL deduction, and vice versa,
which proves soundness and completeness of our system with respect to infinite-
valued propositional Gödel logic. Section 4 discusses the reasons why the implicit
definition given in the previous section is not sufficient to obtain normalization,
and lays out our alternative representation. Section 5 provides definitions and
basic properties of labeled graphs which are needed for an alternative, explicit
definition of HNGL in the subsequent section. Section 6 introduces this alter-
native definition of HNGL, and proves its equivalence to the original definition.
Section 7 uses the explicit representation of HNGL to provide a proof of weak
normalization, and to prove that normal HNGL deductions satisfy the subfor-
mula property. A technical Appendix provides full proofs of some of the technical
properties used in Sections 4–6.

2 Hypersequent Calculus

We briefly review the main results about Gödel logics. More details can be found
in the handbook article on Gödel logics [BP11].

Propositional finite-valued Gödel logics were introduced by Gödel [Gö33]
to show that intuitionistic logic does not have a finite characteristic matrix.
They provide the first examples of intermediate logics (intermediate, that is, in
strength between classical and intuitionistic logic). Dummett [Dum59] was the
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first to study infinite valued Gödel logics, axiomatizing the set of tautologies over
infinite truth-value sets by intuitionistic logic extended by the linearity axiom
(A → B) ∨ (B → A). Hence, infinite-valued propositional Gödel logic is also
called Gödel-Dummett logic or Dummett’s LC. In terms of Kripke semantics,
the characteristic linearity axiom picks out those accessibility relations which
are linear orders.

Perhaps the most surprising fact is that whereas there is only one infinite-
valued propositional Gödel logic, there are infinitely many different logics at the
first-order level [BLZ96,Baa96,Pre02], and in fact countably many [BGP08]. In
the light of the general result of Scarpellini [Sca62] on non-axiomatizability, it
is interesting that some of the infinite-valued Gödel logics belong to the limited
class of recursively enumerable linearly ordered first-order logics [Hor69,TT84].

The language for propositional Gödel logics is a standard propositional lan-
guage, which we fix with the following definition:

Definition 1. The language L0 for propositional Gödel logics consists of the
propositional constant ⊥, countably many propositional variables (p1, p2, . . . )
and the binary connectives ∧, ∨ and→. The set of well formed formulas, denoted
by Frm(L0), is defined inductively in the usual way.

Definition 2. Let V ⊆ [0, 1] be some set containing 0 and 1. We call V a set
of truth values. A propositional Gödel valuation v (short valuation) based on V
is a function from the set of propositional variables into V with v(⊥) = 0. This
valuation can be extended to a function mapping formulas from Frm(L0) into V
as follows:

v(A ∧B) = min{v(A), v(B)}
v(A ∨B) = max{v(A), v(B)}

v(A→ B) =

{
v(B) if v(A) > v(B)

1 if v(A) ≤ v(B).

A formula is called valid with respect to V if it is mapped to 1 for all valu-
ations based on V . The set of all formulas which are valid with respect to V is
called the propositional Gödel logic based on V , and is denoted by G0

V .
Infinitary propositional Gödel logic GL is given by the propositional Gödel

logic G0
[0,1] based on the full interval [0, 1].

In the following a formula is always a propositional formula. We shall use
A,B,C . . . to range over formulas, and Γ,∆,Ξ . . . to range over finite sets of
formulas.

We describe a version of Avron’s Hypersequent Calculus [Avr91] following
[BCF01]. As the version based on multi-conclusion sequents does not play a role
for our exposition, we only define the single-conclusion version here. Thus, a
sequent is an expression of the form Γ ⇒ A, where Γ is a finite set of formulas,
and A is a formula. In particular, Γ being a set implies that structural rules
of exchange, contraction and expansion (the converse of contraction) are build
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into our calculus. A hypersequent, in turn, is a finite multiset of sequents, which
implies that the external version of exchange, but not contraction and expansion,
is also build into our calculus. We shall use the usual hypersequent notation
s1 | . . . | sn (for the multiset consisting of s1, . . . , sn), and H,H′ . . . to range
over hypersequents. We also employ further standard notations like Γ,A ⇒ B
for Γ ∪ {A} ⇒ B, and H | s for H ∪ {s}, etc.

The Hypersequent Calculus for propositional Gödel logic, GLC, is given by
the following axioms and rules:

Axioms: (id ) A⇒ A and (⊥) ⊥ ⇒ A

Cut Rule:
Γ ⇒ A | H1 A,Γ ⇒ C | H2

cut
Γ ⇒ C | H1 | H2

Internal Structural Rule:
Γ ⇒ C | H

w
Γ,B ⇒ C | H

External Structural Rules:
Γ ⇒ C | H

EW
Γ ⇒ C | Γ ′ ⇒ C ′ | H

Γ ⇒ C | Γ ⇒ C | H
EC

Γ ⇒ C | H
Logical rules

Γ ⇒ A | H Γ,B ⇒ C | H′
→,l

Γ,A→ B ⇒ C | H | H′
Γ,A⇒ B | H→,r
Γ ⇒ A→ B | H

Γ,A⇒ C | H Γ,B ⇒ C | H′
∨,l

Γ,A ∨B ⇒ C | H | H′
Γ ⇒ Ai | H∨i,r i ∈ {1, 2}

Γ ⇒ A1 ∨A2 | H

Γ,Ai ⇒ C | H
∧i,l i ∈ {1, 2}

Γ,A1 ∧A2 ⇒ C | H
Γ ⇒ A | H Γ ⇒ B | H′∧,r

Γ ⇒ A ∧B | H | H′

Communication and Split:

Γ1 ⇒ A1 | H Γ2 ⇒ A2 | H′com
Γ1 ⇒ A2 | Γ2 ⇒ A1 | H | H′

Π,Γ ⇒ A | H
split

Π ⇒ A | Γ ⇒ A | H

Theorem 1 ([Avr91]). GLC is sound and complete for infinitary propositional
Gödel logic GL.

3 Hyper Natural Deduction for Gödel Logic

The proposed system HNGL of Hyper Natural Deduction for Gödel Logic ex-
tends Gentzen’s system NJ of Natural Deduction [Gen35] by two main adapta-
tions: First, we extend NJ by four more rules (Definition 3) intended to model
split, communication and external contraction in Avron’s Hypersequent Calcu-
lus, plus an additional repetition rule needed for normalisation. The derivation
trees obtained in this system are called ‘prederivations’ (Definition 5). We use
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the term ‘prederivations’ to stress that the derivation-like trees involving new
rules in general do not derive valid assertions. Concerning terminology, we use
the term ‘deduction’ to denote a well-formed hyper natural deduction. The term
‘derivation’ is also used for well-formed natural deductions elsewhere in the lit-
erature, but we avoided using it to clearly distinguish between prederivations
and hyper natural deductions.

The second adaptation is that we consider sets of prederivations, which we
call prehyper deductions. Not every set of prederivations provides a structure
that can be interpreted as a meaningful proof in Gödel logic. We give an induc-
tive definition of those finite sets of prederivations which are HNGL deductions
in Definition 10. We then show that HNGL deductions correspond to GLC
derivations by providing translations between the two formalisms (Theorems 2
and 3).

3.1 Gentzen’s system of Natural Deduction

We present NJ in the version given in [Bus98], but with an enhanced labeling
of rules. As usual, a Natural Deduction style derivation consists of an upward
rooted tree, where the nodes are formulas. Formulas at leaf nodes are called
assumptions. All non-leaf nodes are carrying labels providing information about
the rule which has been applied plus some other information (like which as-
sumptions have been closed). We say that A is derivable from assumptions Γ
and write

Γ

A

if there is a derivation σ with root A such that the set of all open assumptions of
σ is a subset of Γ . Derivations in NJ are generated inductively using the following
initial, introduction and elimination rules. Rules are labeled with labels of the
form

r : s

where r is a label from a given set of labels, and s is an inference descriptor.
We introduce labels already now for consistency with later notation; we make it
precise in Definition 4.

Any formula, viewed as a tree consisting of one node, is a derivation. Fur-
thermore, derivations can be build using the following rules:

Γ

A

∆

B
r:∧-i

A ∧B

Γ

A ∧Br:∧-e
A

Γ

A ∧B
B
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Γ

A
r:∨-i

A ∨B

Γ

B
A ∨B

Γ

A ∨B

∆, k[A]

C

Π, k[B]

C
r:k∨-e C

Γ, k[A]

B
r:k →-i A→ B

Γ

A→ B

∆

Ar:→-e
B

Γ

⊥
r:⊥-i

A

The superscript k in expressions like k[A] is used to connect discharged assump-
tions to rule applications in the usual way; we drop it in the following if it is
clear from the context.

For any rule occurrence in a derivation, we employ notions like immediate
subderivation, upper derivations, upper left (middle, right) derivation etc. in the
usual way related to the pictorial definition of the rules, see [Bus98,TS00] for
more details.

3.2 Rules for HNGL

To define HNGL, we expand NJ by four new rules. Besides communication
and split rules which correspond to those in GLC, we also need a contraction
rule and a repetition rule to be able to effectively define all conversion rules
needed for normalization. The new communication and split rules employ ideas
from process algebra: They come in pairs of duals, technically realized by using
labels that come in pairs, and the idea is that such pairs of dual labels form a
connection called “channel” which is used during normalization to “communicate”
subderivations.

With this view, communication is introduced in our system in the following
way: Assume we have two HNGL deductions, one containing a derivation of A
and one of B. Then we can combine these two using communication, in the spirit
of Avron [Avr91], by forming one HNGL deduction:

From
A

and
B

form

{
Ax: ComA,B
B

, Bx̄: ComB,A
A

}

In this deduction, a communication channel (in the spirit of process algebra)
has been establish between two derivation trees, indicated by the label x and its
dual x̄, allowing to exchange the two formulas A and B after the introduction
of a pair of dually labeled communication rules.
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Definition 3 (Rules of HNGL). The set of rules of HNGL consists of the
rules for NJ, plus the following four rules:

k[Γ ], ∆

Ar:k SptΓ,∆ A

Γ

Ar: ComA,B
B

Γ

A

∆

A
r: Ctr

A

Γ

Ar: Rep
A

where r is a label from a set L that is fixed in Definition 4.

The repetition rule is included for technical reasons, as it allows us later
to express transformations of hyper natural deductions during normalisation
more smoothly. We can always remove occurrences of Rep from a hyper natural
deduction by contracting its premise and conclusion:

FRep
F

 F

Labels play a crucial role at various places for hyper natural deductions: They
are used to identify some rule occurrences, but distinguish those from others, all
carrying the same inference descriptor. They also play a similar role as labels in
process algebra in that they identify a communication channel. We make use of
this link during normalization in Section 7.

We fix now a set of labels which stays unchanged throughout the paper.
One essential property is the existence of dual labels for labels relating to com-
munication and split. This is realised via a partial map x 7→ x̄ on the set of
labels.

Definition 4 (Labels). Let L be some fixed set. We assume the existence of
some additional operations on L which we describe below. L is called the set
of labels, elements of L are called labels, and we assume that L satisfies the
following conditions:

1. There is a map from the set of labels to the set of inference descriptors. If
label x is mapped to inference descriptor s, we say that x is carrying s, and
denote this as x:s.

2. For each inference descriptor s, there are infinitely many labels carrying s.
3. There is an assignment x 7→ x̄ which is a partial function on L. For a label x,

if x̄ is defined, then we say that x̄ is the dual of x, and we require that ¯̄x
is also defined and satisfies ¯̄x = x. Furthermore, if x is a label with infer-
ence descriptor SptΓ,∆ (resp. ComA,B) then x̄ is defined and the inference
descriptor of x̄ is Spt∆,Γ (resp. ComB,A).
To express the latter condition succinctly, we say that the dual of x: SptΓ,∆,
denoted x: SptΓ,∆, is x̄: Spt∆,Γ , that is x: SptΓ,∆ = x̄: Spt∆,Γ . Similarly for
the dual of x: ComA,B, we have x: ComA,B = x̄: ComB,A.

As each label carries exactly one inference descriptor, we assume from now
on that rules are labeled by labels only, instead of the hitherto used notation x:s.
We may write x:s for convenience to the reader to succinctly express that x is
carrying s.
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Definition 5 (Prederivation). A prederivation is a well-formed derivation
tree based on the rules of HNGL.

Note that “well-formed” implies adherence to all the rules of Natural Deduc-
tion, and local syntactical consistency of the additional rules. We shall use ρ, σ . . .
to range over prederivations. A label of the form x: SptΓ,∆ is called splitting label
and a rule introducing it splitting rule or simply split. One of the form x: ComA,B

is called communication label and a rule introducing it communication rule or
simply communication. One of the form x: Ctr is called contraction label and
a rule introducing it contraction rule, or simply contraction. One of the form
x: Rep is called repetition label and a rule introducing it repetition rule, or sim-
ply repetition.

The following notations and concepts are useful:

Definition 6. For prederivations ρ, ρ1, . . . , ρn we define the following:
Labels(ρ1, . . . , ρn) is the set of all labels which label any rule occurring in

any of the ρi. We single out two specific subsets of Labels(ρ1, . . . , ρn), namely
DLabels(ρ1, . . . , ρn) for the set of labels carrying split or communication (these
labels have a dual, thus the “D” in DLabels), and CLabels(ρ1, . . . , ρn) for the set
of labels carrying contraction (the “C” in CLabels refers to contractions). For
any R, we denote with CDLabels(R) the set CLabels(R) ∪DLabels(R).

With Assum(ρ) we denote the set of assumptions of ρ which are not dis-
charged; Conc(ρ) is the final conclusion, i.e. last formula, of ρ.

For an occurrence of a formula A in a prederivation, we define the subpred-
erivation rooted in A as the subtree up to and including A. For a rule occur-
rence r, we define the subtree rooted in r as the subprederivation rooted in the
conclusion of r. An immediate subprederivation of ρ is a subprederivation rooted
in one of the premises of the final rule of ρ.

3.3 Defining the system

We define the system of Hyper Natural Deduction for Gödel Logic via an induc-
tive definition based on hyper rules, which operates on finite sets of prederiva-
tions.

Definition 7 (Prehyper deduction). A prehyper deduction is a finite set of
prederivations.

We follow [BCF01] to communicate hyper rules in a readable way. First, the
symbol | is also used to separate the elements of prehyper deductions, in the
same way as it was used to separate elements of hyper sequents. We extend
standard proof theoretic notation to the level of prehyper deductions: For pre-
hyper deductions R,R′ and prederivations ρ, ρ′, we write R | ρ for R∪ {ρ}, and
R | R′ | ρ | ρ′ for R ∪R′ ∪ {ρ, ρ′}, etc.

Definition 8 (Hyper rules). A hyper rule h-r of arity k is an operation which
takes k prehyper deductions and produces another prehyper deduction. It is dis-
played in the form
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R1 · · · Rk
h-r

R

and we say that h-r applied to R1 . . . , Rk yields R. Without loss of generality
we assume in this case that the sets of labels for Ri, Labels(Ri), for i ≤ k, are
pairwise disjoint.

Each NJ-rule r induces a corresponding hyper rule h-r. If r has k premises,
then h-r has arity k. In addition to these, we have a hyper communication rule
h-Com of arity 2, a hyper splitting rule h-Spt, a hyper contraction rule h-Ctr,
and a hyper repetition rule h-Rep, all of arity 1.

Hyper rule h-r for NJ rule r: Each NJ rule induces a corresponding hy-
per rule in the obvious way. For example, consider the case of h-→-e:

R1

Γ
··

A→ B
R2

∆
··
A

h-→-e

R1 R2

Γ
··

A→ B

∆
··
A→-e

B

Applying the hyper rule h-→-e here means the following: Given two prehyper
deductions — one containing a prederivation of A→ B from Γ and side prehyper
deduction R1, the other one containing a prederivation of A from ∆ and side
prehyper deduction R2 — we form one prehyper deduction consisting of the
indicated prederivation of B from Γ,∆, together with the union of the side
prehyper deductions R1 and R2.

Hyper communication rule: Applying the hyper communication rule

R1

Γ
··
A

R2

∆
··
B

h-Com

R1 R2

Γ
··
A

x: ComA,B B

∆
··
B

x̄: ComB,A A

means that two prehyper deductions — one containing a prederivation of A
from Γ , the other containing a prederivation of B from ∆ — are replaced by
one prehyper deduction consisting of the two indicated components with their
conclusion interchanged, together with the union of the side prehyper deductions
R1 and R2. Here x is a fresh label carrying ComA,B .
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Hyper splitting rule: For the hyper splitting rule we have

R
Γ,∆
··
A

h-Spt

R

k[Γ ], ∆
··
A

x:k SptΓ,∆ A

Γ, l[∆]
··
A

x̄:l Spt∆,Γ A

Applying this rule means that the set Γ,∆ of assumptions of the indicated
component of the upper prehyper deduction is split into two (not necessary
disjoint) subsets ∆ and Γ . The application itself can be described in three steps:
First, we fix a partitioning of the open assumption occurrences related to Γ
and ∆. Second, the indicated component of the upper prehyper deduction is
duplicated while maintaining the partitioning also in the duplicated copy. Third,
we discharge open assumptions related to Γ from the first copy and add A to
its root with label x:k SptΓ,∆, and we discharge open assumptions related to ∆
from the second copy and add A to its root with label x̄:` Spt∆,Γ , where x is a
fresh label carrying SptΓ,∆.

Hyper contraction rule: Applying the hyper contraction rule

R
Γ
··
A

∆
··
A

h-Ctr

R

Γ
··
A

∆
··
A

x: Ctr
A

means the following. Assume that the upper prehyper deduction has two compo-
nents that end in the same formula A. For the new, lower prehyper deduction we
combine these two prederivations into one by appending another occurrence of
A as the common root of those components, and label the new root with x: Ctr
for some fresh label x.

Hyper repetition rule: In applying the hyper repetition rule

R
Γ
··
A

h-Rep

R

Γ
··
A

x: Rep
A

we repeat the conclusion A of some prederivation in the upper prehyper deduc-
tion by appending another occurrence of A as the new root and label it with
x: Rep for some fresh label x.

13



Definition 9 (Hyper rules for HNGL). The HNGL hyper rules, also just
called hyper rules, are given by the hyper rules corresponding to NJ rules, plus
the hyper communication rule h-Com, the hyper splitting rule h-Spt, the hyper
contraction rule h-Ctr, and the hyper repetition rule h-Rep.

Definition 10 (HNGL). We inductively define HNGL as the collection of
prehyper deductions which contains all initial NJ deductions, viewed as singleton
sets, and which is closed under applying hyper rules for HNGL. A prehyper de-
duction derived in this way is called a deduction in Hyper Natural Deduction for
Gödel Logic, or short a HNGL deduction, or simply a hyper natural deduction.

3.4 Translation from GLC to HNGL

In the following, we translate GLC derivations into HNGL deductions. As an
illustration consider the linearity formula C = (A → B) ∨ (B → A), which has
the following GLC derivation:

A⇒ A B ⇒ Bcom
A⇒ B | B ⇒ A→,r
⇒ A→ B | B ⇒ A→,r
⇒ A→ B | ⇒ B → A∨1,r ⇒ C | ⇒ B → A∨2,r ⇒ C | ⇒ C
EC ⇒ C

The corresponding HNGL deduction has the following form:

1[A]
x: ComA,B

B1→-i A→ B∨-i
C

2[B]
x: ComA,B A2→-i B → A∨-i

Cy: Ctr
C

It can be obtained by a direct translation of the GLC derivation above using
corresponding hyper rules, as shown in Figure 3. The first two lines in the figure
should be read as follows: The set consisting of the initial NJ deduction given
by A is a hyper natural deduction. Similar for B. To these two hyper natural
deductions we apply the hyper communication rule h-Com to obtain the hyper
natural deduction displayed below the first double line, which is a set with two
prederivations. Etc.

With the next two definitions we fix the notion of a derived hypersequent of
a hyper natural deduction, and how to compare hypersequents semantically.

Definition 11. Let

H = Γ1 ⇒ A1 | . . . | Γk ⇒ Ak

14



A B
h-Com

A
x: ComA,B

B

B
x̄: ComB,A

A
h-→-i

1[A]
x: ComA,B

B1 →:i
A→ B

B
x̄: ComB,A

A

h-→-i
1[A]

x: ComA,B
B1 →:i

A→ B

2[B]
x̄: ComB,A

A2 →:i
B → A

h-∨-i
1[A]

x: ComA,B
B1 →:i
A→ B∨:i
C

2[B]
x̄: ComB,A

A2 →:i
B → A

h-∨-i
1[A]

x: ComA,B
B1 →:i
A→ B∨:i
C

2[B]
x̄: ComB,A

A2 →:i
B → A∨:i
C

h-Ctr
1[A]

x: ComA,B
B1 →:i
A→ B∨:i
C

2[B]
x̄: ComB,A

A2 →:i
B → A∨:i
C

y: Ctr
C

Fig. 3. HNGL deduction of linearity C = A→ B ∨B → A

and
H′ = ∆1 ⇒ B1 | . . . | ∆` ⇒ B` .

H is a syntactic subhypersequent of H′, denoted H v H′, if and only if there
exists an injection f : {1, . . . , k} → {1, . . . , `} such that for all i = 1, . . . , k,

Ai = Bf(i) and Γi ⊆ ∆f(i) .

We observe that if H v H′ and H is valid, then also H′ is valid, under the
usual definition of validity of hypersequents which interprets

Γ1 ⇒ A1 | . . . | Γk ⇒ Ak

as
(
∧
Γ1 → A1) ∨ · · · ∨ (

∧
Γk → Ak) .
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Definition 12. The derived sequent of a prederivation ρ, denoted Seq(ρ), is
given by Assum(ρ)⇒ Conc(ρ).
The derived hypersequent of a prehyper deduction R = {ρ1, . . . , ρk}, denoted
HypSeq(R), is given by Seq(ρ1) | . . . | Seq(ρk).

We are now ready to translate GLC derivations into corresponding hyper
natural deductions.

Theorem 2. Assume that the hypersequent H has a GLC derivation. Then
there exists a deduction R in HNGL such that the derived hypersequent of R is
a syntactic subhypersequent of H.

Proof. Fix a GLC derivation D of H. We prove the claim by induction on the
length of D. If D is an axiom A⇒ A, we form the HNGL deduction consisting
just of A. If D is an axiom of the form ⊥ ⇒ A, then we form the HNGL

deduction consisting of ⊥⊥-i
A

.

EC, (→,r), (∨,l), (∨i,r), (∧,r), (com), (split)
In all these cases the assertion follows by applying the corresponding hyper rule
to the HNGL deductions obtained by induction hypothesis: For EC use the
hyper contraction rule, for (→,r) the hyper→:i rule, for (∨,l) the hyper ∨:e rule,
for (∨i,r) the hyper ∨:i rule, for (∧,r) the hyper ∧:i rule, for (com) the hyper
communication rule, and for (split) the hyper splitting rule.

weakenings
Internal and external weakenings can be ignored, as we require the derived hy-
persequent to be a syntactic subhypersequent only.

cut rule
If the last rule in D is an application of the cut rule of the form

Γ ⇒ A | H1 A,Γ ⇒ C | H2

Γ ⇒ C | H1 | H2

let π1 and π2 be the subderivations ending in the left and right, respectively,
premises of the rule. By induction hypothesis we have two HNGL deductions R1

andR2 such that HypSeq(R1) v Γ ⇒ A | H1 and HypSeq(R2) v A,Γ ⇒ C | H2.
Without loss of generality we assume that the sets of labels of R1 and R2 are
disjoint.

If HypSeq(R1) v H1 then the required HNGL deduction is given by R1.
Similar if HypSeq(R2) v H2. Otherwise, there are prederivations ρ1, ρ2 such that
the following holds: (i) R1 = R′1 | ρ1, Seq(ρ1) v Γ ⇒ A and HypSeq(R′1) v H1;
and (ii) R2 = R′2 | ρ2, Seq(ρ2) v Γ,A⇒ C, and HypSeq(R′2) v H2. We generate
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R by applying hyper rules in the following way:

R′2

Γ,A
··
C

h-→-i

R′2

Γ, [A]
··
C→:i

A→ C

R′1

Γ
··
A

h-→-e

R′1 R′2

Γ, [A]
··
C→:i

A→ C

Γ
··
A→:e

C

It is easy to see that

HypSeq(R) v Γ ⇒ C | H1 | H2 .

(→,l)
Assume the last rule of D is an application of (→,l) of the form

Γ ⇒ A | H1 Γ,B ⇒ C | H2→,l
Γ,A→ B ⇒ C | H1 | H2

Similar to the case for the cut rule, we can assume using induction hypothesis
that there are two hyper natural deductions R1 and R2 with disjoint sets of
labels, such that HypSeq(R1) v Γ ⇒ A | H1 and HypSeq(R2) v Γ,B ⇒ C | H2.
Furthermore, we can assume R1 = R′1 | ρ1 with HypSeq(R′1) v H1, and R2 =
R′2 | ρ2 with HypSeq(R′2) v H2, such that Seq(ρ1) v Γ ⇒ A and Seq(ρ2) v
Γ,B ⇒ C. We now form the following hyper natural deduction R:

R′2

Γ,B
··
C

h-→-i

R′2

Γ, [B]
··
C→:i

B → C

A→ B

R′1

Γ
··
A

h-→-e

R′1 A→ B

Γ
··
A→:e

B
h-→-e

R′1 R′2

Γ, [B]
··
C→:i

B → C

A→ B

Γ
··
A→:e

B→:e
C

We observe that HypSeq(R) v Γ,A→ B ⇒ C | H1 | H2.

(∧i,l)
Assume the last rule in D is an application of (∧,l) of the form
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Γ,Ai ⇒ C | H
∧i,l

Γ,A1 ∧A2 ⇒ C | H

for some i ∈ {1, 2}. Similar to the two previous cases, we can assume using
induction hypothesis that there is a hyper natural deduction R1 such that
HypSeq(R1) v Γ,Ai ⇒ C | H, and R1 = R′1 | ρ1 with HypSeq(R′1) v H, and
Seq(ρ1) v Γ,Ai ⇒ C. We now form the following hyper natural deduction R:

R′1

Γ,Ai
··
C

h-→-i

R′1

Γ, [Ai]
··
C→:i

Ai → C

A1 ∧A2h-∧-e
A1 ∧A2∧-e
Aih-→-e

R′1

Γ, [Ai]
··
C→:i

Ai → C

A1 ∧A2∧-e
Ai→:e

C

We observe HypSeq(R) v Γ,A1 ∧A2 ⇒ C | H.
This concludes the proof of Theorem 2. ut

A formula A is GLC derivable if the hypersequent ⇒ A is GLC derivable.
A is HNGL derivable if there is a HNGL deduction consisting of one prederiva-
tion ρ, which has no free assumptions and ends in A, that is, Assum(ρ) = ∅ and
Conc(ρ) = A.

Corollary 1. If A is GLC derivable, then A is also HNGL derivable.

3.5 Translation from HNGL to GLC

The missing piece for soundness and completeness of HNGL is the reverse di-
rection of Theorem 2.

Theorem 3. Let R be a deduction in HNGL. Then there exists a derivation in
GLC of HypSeq(R), the derived hypersequent of R.

Proof. The proof is by induction on the build-up of R as a hyper natural deduc-
tion.

Initial deductions
If R is an initial NJ deduction, that is a tree consisting of one node made from
some formula A, then the corresponding GLC-derivation consists just of the
axiom A⇒ A.

Hyper NJ rules
If R has been formed by applying a hyper rule h-r for NJ rule r, then we can
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simply follow the standard translation of NJ to LK. For example, consider the
case of h-→-e:

R1

Γ
··

A→ B
R2

∆
··
A

h-→-e

R1 R2

Γ
··

A→ B

∆
··
A→-e

B

Let Hi = HypSeq(Ri). By induction hypothesis there exist GLC derivations
π1 of H1 | Γ ⇒ A → B, and π2 of H2 | ∆ ⇒ A. We form the following GLC
derivation:

π1

Γ ⇒ A→ B | H1w
Γ,∆⇒ A→ B | H1

π2

∆⇒ A | H2w
Γ,∆⇒ A | H2

B ⇒ Bw
Γ,∆,B ⇒ B

→,l
A→ B,Γ,∆⇒ B | H2

cut
Γ,∆⇒ B | H1 | H2

Hyper communication rule
Assume R has been formed by applying a hyper communication rule h-Com:

R1

Γ
··
A

R2

∆
··
B

h-Com

R1 R2

Γ
··
A

x: ComA,B B

∆
··
B

x̄: ComB,A A

Let Hi = HypSeq(Ri). By induction hypothesis there exist GLC derivations π1
of H1 | Γ ⇒ A, and π2 of H2 | ∆⇒ B. Applying com yields the required GLC
derivation:

π1

Γ ⇒ A | H1

π2

∆⇒ B | H2com
Γ ⇒ B | ∆⇒ A | H1 | H2

Hyper splitting rule
Assume R has been formed by applying a hyper split rule h-Spt:

R
Γ,∆
··
A

h-Spt

R

k[Γ ], ∆
··
A

x:k SptΓ,∆ A

Γ, l[∆]
··
A

x̄:l Spt∆,Γ A
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Let H = HypSeq(R). By induction hypothesis there exist a GLC derivations π
of H | Γ,∆⇒ A. Applying split yields the required GLC derivation:

π

Γ,∆⇒ A | H
split

Γ ⇒ A | ∆⇒ A | H

Hyper contraction rule
Assume R has been formed by applying the hyper contraction rule h-Ctr:

R
Γ
··
A

∆
··
A

h-Ctr

R

Γ
··
A

∆
··
A

x: Ctr
A

LetH = HypSeq(R). By induction hypothesis there exist a GLC derivations π of
H | Γ ⇒ A | ∆⇒ A. Applying contraction yields the required GLC derivation:

π

Γ ⇒ A | ∆⇒ A | H
w

Γ,∆⇒ A | ∆⇒ A | H
w

Γ,∆⇒ A | Γ,∆⇒ A | H
contr

Γ,∆⇒ A | H

Hyper repetition rule
If R has been formed by applying the hyper repetition rule h-Rep

R
Γ
··
A

h-Rep

R

Γ
··
A

x: Rep
A

then the required derivation is given already by induction hypothesis.
This concludes the proof of Theorem 3. ut
As a consequence of the previous theorem we obtain the following corollary:

Corollary 2. If A is HNGL derivable, then A is also GLC derivable.

Corollaries 1 and 2 together show soundness and completeness of HNGL for
infinitary propositional Gödel logic, by employing soundness and completeness
of GLC [Avr91]:
Corollary 3. The system HNGL is sound and complete for infinitary proposi-
tional Gödel logic.
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4 Discussion

The approach laid out in the previous section is very close to the one taken
by Baaz et al. [BCF01], with the following differences: (1) we keep the form of
natural deduction rules close to the original, while Baaz et al. use elimination
style rules similar to ∨ elimination for all connectives; (2) we enrich inference
labels with more information; (3) in our system a deduction carries its gener-
ation process, while Baaz et al. need to consider deduction together with their
generation.

The last point exhibits a subtle difference between standard Natural Deduc-
tion and our system: In standard Natural Deduction a derivation carries already
the complete information of its generation, while in our system with prehyper
deduction, this is not automatically given, but needs extra information, as we
have seen in the example in the introduction.

We aim for a procedural normalization which extends usual Natural Deduc-
tion, which in particular admits →-conversions whenever corresponding redices
occur. Thus we need to be able to reshuffle parts of deductions and be sure that
the newly constructed deduction is still well-formed. Using the inductive, im-
plicit definition of [BCF01], or our Definition 23 of HNGL deductions, it seems
impossible to directly define such conversions. To overcome this hurdle, we take
a different approach in the following, namely providing an explicit characteriza-
tion that allows us to directly explore the structure of HNGL deductions and
define conversions on them for normalization.

In Section 6 we identify prehyper deductions via explicit conditions on the
structure of prederivations, and show that they coincide with Hyper Natural
Deduction for Gödel Logic deductions as defined in Section 3. In Section 7 we
use the explicit characterization to define conversions and prove normalization.
Although these two sections appear to be very technical, including the related
technical appendix, the actual operations used to define conversions are not
that complicated and in some sense natural. The quite involved technical part
is needed to show that those operations have the right properties.

5 Labeled graphs

We associate to each HNGL deduction a particular directed graph. These graphs
have a special structure, namely they consist of a set of directed trees with addi-
tional bidirectional connections between and within trees. The direction within
trees are from leaves to root.

We use basic concepts of graph theory without defining them, like the notion
of subgraphs. We use ⊆ to denote the subgraph relation on graphs.

Definition 13. A labeled graph G is a tuple (V,E, L, f) where V and L are
sets, E is a binary relation on V , i.e., E ⊆ V × V , and f is a function from V
to L. Elements in V are called vertices, in E edges, and in L labels. An edge
(r, s) ∈ E with (s, r) ∈ E is called symmetric.
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We write r →G s if (r, s) ∈ E, and indicate with →∗G the reflexive and
transitive closure of →G, and with ↔∗G the reflexive, symmetric, and transitive
closure of→G. We say that a vertex s is reachable from a vertex r in G if r →∗G s.

The connected components of a graph G are the subgraphs of G induced by the
equivalence classes of ↔∗G. The connected component of a vertex v in G, denoted
[v]G, is the subgraph of G induced by the equivalence class [v]↔∗G of v w.r.t. ↔∗G.

If no ambiguity arises we drop the index G of the various relations. In the
following we assume that all graphs under discussion are labeled, and just call
them graphs. A trivial observation is the following proposition:

Proposition 1. If G is a subgraph of H, then the connected components of G
are subgraphs of connected components of H.

We now repeat some standard graph theory notions, in the context of labeled
graphs. We define paths as simple paths, that is without repetition of vertices. We
have to distinguish between directed and undirected paths, and if not specified
otherwise a path denotes an undirected path.

Definition 14. An undirected path, also called upath or simply path, through
a directed graph G is a (non-empty) finite sequence of edges which connects a
sequence of vertices such that all vertices, except possibly the first and last, are
distinct. That is, a path p is a sequence of edges (e1, . . . , ek) such that there is
a sequence of vertices (v0, . . . , vk) which are pairwise distinct except for v0 = vk
being possible, such that ej = (vj−1, vj) or ej = (vj , vj−1) for j = 1, . . . , k.

A directed path, also called dipath, through a directed graph G is a undirected
path in which all edges are directed in the same direction. That is, a dipath p is
a sequence of edges (e1, . . . , ek) such that there is a sequence of pairwise distinct
vertices (v0, . . . , vk) except for v0 = vk being possible, such that ej = (vj−1, vj)
for j = 1, . . . , k.

We indicate with v0 − p− vk that the path p is leading from v0 to vk.

We have that w is reachable from v in G, v →∗G w, if v = w, or there is a
dipath p from v to w: v − p− w.

We define the following operations on graphs:

Definition 15 (Drop). Let G = (V,E, L, f) be a labeled graph, and let L′ be a
subset of the set of labels L. The graph obtained from G by dropping all vertices
reachable from some vertex with label in L′, as well as all edges involving one of
the dropped vertices, is denoted with Drop(G, L′).

For a subset V ′ ⊆ V of vertices, we defined Drop(G, V ′) as the graph obtained
from G by dropping the corresponding set of labels:

Drop(G, V ′) = Drop(G, {` | ∃v ∈ V ′ : f(v) = `}).

Let Drop(G, v) = Drop(G, {v}) for a vertex v.

Observe that we use Drop with different types of arguments to simplify read-
ability. Note that the Drop operation is quite radical, as it deletes everything
which can be reached from a specific node following edges in the directed graph.
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Definition 16 (Cut). Let G = (V,E,L, f) be a labeled graph, and let E′ be a
set of edges. We denote with Cut(G, E′) the graph obtained from G by removing
every edge e in E ∩ E′.

We continue with defining a specific class of directed graphs, called C-graphs,
which are central to our investigation of hyper natural deductions.

Definition 17. Let G = (V,E,L, f) be a labeled graph, and let Ec ⊆ E be the
set of symmetric edges, that is the set of all edges (r, s) ∈ E with (s, r) ∈ E. If
Cut(G, Ec) is a disjoint union of trees, we call G a C-graph or canopy graph.
The trees in Cut(G, Ec) are called subtrees of G. The edges in Ec are called
cross edges, and edges in Et = E \ Ec are called tree edges.

The set of edges of G form a binary relation which we have denoted with →G
in Definition 13. With →t,G and →c,G we denote the restriction of →G to the set
of tree edges Et and cross edges Ec, respectively. For →G, →t,G and →c,G, the
reflexive and transitive closure is indicated with →∗G, →∗t,G and →∗c,G, the sym-
metric closure is indicated with↔G,↔t,G and↔c,G, and the reflexive, transitive,
and symmetric closure with ↔∗G ↔∗t,G and ↔∗c,G, respectively.

Again, we drop the index G if no ambiguity arises. An alternative condition
for C-graphs is that every connected component of the graph with all symmetric
edges removed is a tree. In the following we prove some simple facts on C-graphs.

Lemma 1. Every subtree of a C-graph G is contained in exactly one connected
component of G.

Proof. Since every two nodes in a subtree are connected, the whole subtree is
contained in one connected component. ut

Lemma 2. Any subgraph of a C-graph which respects Ec, that is which always
removes symmetric edges in pairs, is also a C-graph.

Proof. Let Ecs be the set of symmetric edges of the subgraph, and Ets the set
of tree edges of the subgraph. Due to the requirement that the subgraph re-
spects Ec, we obtain that Ecs ⊆ Ec and Ets ⊆ Et. Combined with the fact that
every subgraph of a tree is again a set of trees, we obtain the result. ut

Lemma 3. If G = (V,E, L, f) is a C-graph, E′ a subset of Et, and L′ a subset
of L, then Cut(G, E′) and Drop(G, L′) are again C-graphs.

Proof. By the previous lemma and the fact that both operations respect Ec. ut

While we only need the case of two or three, we define the marriage of an
arbitrary number of C-graphs.

Definition 18 (Marriage of C-graphs). Assume Gi = (Vi, Ei, Li, fi) are C-
graphs, for i = 1, . . . , n. Let gi ∈ Gi be the root of some subtree in Gi. Let
G0 = (V0, E0, L0, f0) be the disjoint union of the graphs Gi for i = 1, . . . , n. We
call the graph G = (V,E, L, f) the marriage graph of G1, . . . ,Gn if one of the
following two cases holds:
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(i) V = V0 ∪ {r} for a new vertex r, E = E0 ∪ {(gi, r) : i = 1, . . . , n},
L = L0∪{x} for a new label x, f = f0∪{(r, x)}. That is, all the vertices gi
are connected to a new root vertex r;

(ii) V = V0 ∪ {ri : i = 1, . . . , n} for new vertices ri, E = E0 ∪ {(gi, ri) : i =
1, . . . , n} ∪ {(ri, rj) : i 6= j, i, j = 1, . . . , n}, L = L0 ∪ {xi : i = 1, . . . , n}
for new labels xi, f = f0 ∪ {(ri, xi) : i = 1, . . . , n}. That is each of the
vertices gi is connected to a new vertex ri via a tree edge, and each pair of
the vertices ri is connected with a symmetric pair of cross edges.

Lemma 4. The marriage graph of C-graphs is again a C-graph.

Proof. In the first case it is easy to see that the set of symmetric edges is Ec =
]ni=1E

c
i , while in the second case we have to add the pairs of edges between the

new vertices ri. In both cases, dropping all symmetric edges Ec we remain with
either the union of the subtrees of the single graphs in the second case, and with
the same set but with n subtrees connected to a new root r, which again is a
tree. ut

Lemma 5. Assume the notions from Definition 18, and let s be a vertex in G1
such that g1 is not reachable from s. Then Drop(G, s) is a marriage graph of
Drop(G1, s) and Gi for i = 2, . . . , n based on the same g1, . . . , gn. Furthermore, if
E′ ⊆ ∪ni=1E

t
i , then Cut(G, E′) is a marriage graph of Cut(Gi, E′) for i = 1, . . . , n

based on the same g1, . . . , gn

Proof. Obvious from the fact that the connecting point is not reachable in the
original graphs from the connected component of s. ut

Lemma 6. Let Gi for i = 1, . . . , n be C-graphs, and H one of their marriage
graphs. Assume the notions of Definition 18, and let E′ be a subset of the tree
edges of the original graphs, that is E′ ⊆ ∪ni=1E

t
i . Let cj for j = 1, . . . , k be

pairwise distinct connected components of Cut(G1, E′). Let di be the connected
component in Cut(H, E′) containing ci, respectively. Then ci 6= di for at most
one i.

Proof. The only additional connection is via the new edges that are added during
the wedding. Only one connected component of G1, namely the one containing g1,
obtains a new connections. Thus, the only candidate for changes is the connected
component [gi]Cut(G,E′1) of g1 in Cut(G, E′1). If this did not appear in the list of ci,
non of the components change, otherwise di is a proper superset of di since at
least the new vertex below g1 is included in d1. ut

6 Explicit definition of Hyper Natural Deduction for
Gödel Logic

As discussed in Section 4, the implicit definition of hyper natural deduction via
an inductive definition in Definition 23, while being intuitive, does not lend itself
directly to define conversions as needed for normalization. In the following we
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give an explicit characterisation of hyper natural deductions, which will overcome
those difficulties, in the following way: We state a set of conditions on prehyper
deduction, such that the set X of prehyper deductions satisfying those conditions
coincides with the set of all hyper natural deductions (Corollary 4).

Using the implicit definition we see that communication rules always come in
pairs, each one coming from separate HNGL deductions. The conditions we are
going to define model independence of parts of HNGL deductions — in a similar
way non-unary rules in GLC require that the derivations of their premises are
given as independent derivations. We have to model this through our conditions
on X : For example, for each pair of dually labeled communication rules in an
X deduction, we need to identify two parts of the deduction which can serve as
independent justifications of the premises of the communication application.

As a first step towards an explicit definition, we define the labeled graph
associated with a prehyper deduction.

Definition 19 (Prehyper deductions as labeled graphs). Let R = {ρ1, . . . , ρn}
be a prehyper deduction. We associate a labeled graph (V,E, L, f) with R as fol-
lows:

– V is given as the set of rule occurrences in R;
– The set of labels L is given by Labels(R);
– The labeling function f is defined by mapping each vertex to its label.
– The set of edges E is defined as follows: If the conclusion of a rule occur-

rence r is the premise of a rule occurrence r′, then add an edge (r, r′) to E;
Furthermore, for dually labeled vertices add symmetric edges between them
to E.

To use the lemmas obtained earlier, we observe that a set of prederivations
seen as a labeled graph forms a C-graph:

Lemma 7. The associated graph of a prehyper deduction is a C-graph.

In the context of prederivations, we have introduced the notation x:s to
denote that label x is carrying the inference descriptor s. We extend this notation
to vertices of the associated labeled graph, that is, rule occurrences. Each rule
occurrence v is carrying a label x which we denote as v:x. If we also want to
stress the inference descriptor carried by x, say s, we write v:x:s.

Using this alternative view onto prehyper deductions it is easy to describe
the subprederivations rooted in a rule occurrence r: this is the subgraph induced
by the set of vertices from which r can be reached via tree edges, that is {v ∈
R : v →∗t r}. Furthermore, it allows us to speak about connected components of
a prehyper deduction R, and use notions like [r]R for a rule occurrence r in R
to indicate the connected component containing r.

Connected components are intended to characterize dependent parts of a de-
duction. For all non-unary logical rules, like ∧-i, it is a necessary condition that
their premises have been derived with independent deductions. For contraction
we demand the opposite, that their premises have been derived with the same de-
duction. To express dependence or independence via connected components, we
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make use of the operations Drop and Cut on graphs as defined in Definitions 15
and 16.

When forming hyper natural deductions, many rules demand that two inde-
pendently derived deductions are combined. Once this has happened, we need
to remove the introduced node in order to be able to discover its premises as
members of different connected components — the ‘Drop’ operation is doing
exactly this, removing a rule in a minimal way so that the result is still a reason-
able deduction-like object. Contractions on the other hand are applied within
one hyper natural deduction, thus we want to demand that their premises are
dependent at the time of their introduction, which implies that the connection
coming from a contraction rule itself is not needed for providing dependency —
the ‘Cut’ operation is used to reflect exactly this.

In the following we need the Cut operation not on arbitrary sets of edges,
but only for edges leading to a node labeled with a contraction rule. We thus
extend the definition of Cut as follows:

Definition 20. Let R be a prehyper deduction, and c be a contraction rule oc-
currence in R. Let r be the left premise of c. Then we denote with Cut(R, c) the
graph Cut(R, (r, c)). With Cut(R) we denote the graph obtained from applying
the Cut operation to all contraction rules occurring in R.

The apparent asymmetry in choosing the left predecessor of a contraction
rule occurrence is harmless: We show later in Lemma 11 that the definition of
HNGL does not depend on this choice. Recall also that we have defined the
Drop operation on both set of labels as well as sets of vertices, see Definition 15.

6.1 Motivation of the above concepts

To make the concepts introduced above clearer, we discuss an example before
giving the definition of X .

Example 1. Consider the following hypersequent derivation:

B ⇒ B
C,B ⇒ B A⇒ Acom1
C,B ⇒ A | A⇒ B

C ⇒ C
C,B ⇒ C A⇒ Acom2
C,B ⇒ A | A⇒ C

∧-r
C,B ⇒ A | C,B ⇒ A | A⇒ B ∧ C

contr
C,B ⇒ A | A⇒ B ∧ C

3× →-i
⇒ C → (B → A) | ⇒ A→ B ∧ C

This hypersequent derivation contains two independent proofs ending in the
respective communication rules, which are then merged into one derivation. We
aim to translate this derivation into the following set Rex consisting of two
prederivations:
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[C]
x1: ComC,A

A

[B]
x2: ComB,A

Ay: Ctr
Az

B → Aw
C → (B → A)

[A]
x̄1: ComA,C

C

[A]
x̄2: ComA,B

B
u:∧-i

B ∧ Cv
A→ (B ∧ C)

where the communication pair xi/x̄i in the latter corresponds to comi in the
former GLC derivation.

In the following we often exhibit prehyper deductions as C-graphs, but indi-
cating vertices only by their labels. Furthermore, to make a distinction between
∧:i node and contraction nodes, the former ones are drawn with diagonal edges,
while the latter ones are drawn via step merge. The following graph shows the as-
sociated graph of the hyper natural deduction from above (note that we bended
the lower branches to save space):

x1 x2 x̄2 x̄1

y uz w v

Considering the connected components of this graph, we see that there is only
one, the whole graph. In the following definition we give conditions on binary
rules like ∧-i above, and contraction rules, to express that the prederivations
rooted in their premises are independent (in case of ∧-i) or dependent (in case
of contraction). Consider for example the conjunction introduction in the above
case. We need to ensure that the components above the conjunction rule (here u)
are independent, which we want to capture by having different connected com-
ponents when the conjunction node is dropped:

x1 x2 x̄2 x̄1

y z w

Observe that there is still only one connected component, as the contraction
rule labelled y connects x̄1 and x̄2. Applying the Cut-operation, we obtain the
following graph:
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x1 x2 x̄2 x̄1

y z w

There are two connected components: {x̄1, x1} of x̄1, and {x̄2, x2, y, z, w} of
x̄2, reflecting that the predecessor nodes x̄1 and x̄2 of u belong to independent
deductions.

6.2 Total order modulo duality

Another condition which we need for defining X is that for a HNGL deduction R,
the CDLabels on any dipath through any prederivation in R are respecting some
total order which respects duality. We make these kind of orderings precise with
the following definitions.

Definition 21. Let ≈ be the equivalence relation on the set L of labels, given
by identifying dual labels; that is

x ≈ y iff x = y, or x̄ is defined and x̄ = y.

It follows from our assumptions on labels that ≈ is an equivalence relation.

Definition 22 (Total order modulo duality). Let R be a prehyper deduction,
and let L be CDLabels(R). Let ≈ be the equivalence relation on labels from the
previous definition. A binary relation � on L is a total order on L modulo
duality if and only if the induced relation - on L/≈ given by

[x]≈ - [y]≈ iff x � y

is well-defined and a total order.

In the example above, CDLabels(Rex) consists of Lex = {x1, x̄1, x2, x̄2, y},
and a total order on Lex modulo duality is given by

x1 = x̄1 ≺ x2 = x̄2 ≺ y .

We see by inspection that this order respects the order of occurrences of labels
in Lex on any branch through a prederivation in Rex.

We are now in the position to define the set X . We subsequently show that
X gives an explicit description of Hyper Natural Deduction for Gödel Logic.

Definition 23. Let R = {ρ1, . . . , ρn} be a prehyper deduction, and let � be a
total order on CDLabels(R) modulo duality. (R,�) is in X , and called a X
deduction, if the following conditions are satisfied:
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1. (Dual labels) DLabels(R) is closed under taking duals. That is, if l ∈
DLabels(R), then also l̄ ∈ DLabels(R). Recall the definition of dual labels:

r: Spt∆,Γ = r̄: SptΓ,∆ and r: ComB,A = r̄: ComA,B

2. (Consistent labeling) For all labels l ∈ Labels(R), all subtrees in R rooted
in a rule labeled by l are different occurrences of the same prederivation.

3. (Consistent splitting labeling) If l ∈ DLabels(R) is a splitting label,
then all subprederivations of prederivations in R rooted in premises of rules
labeled by l or l̄ are different occurrences of the same prederivation.

4. (Label ordering) The label order is compatible with the tree-edge relation
of R. That is, if r and r′ are nodes with labels in CDLabels(R), such that
there is a path from r to r′ w.r.t. tree-edges, r →∗t r′, then r � r′.

5. (Independence of premises) For any non-unary logical rule occurrence r
in R with label x, that is r:x:∧-i, r:x:∨-e, or r:x:→-e, and any pair of dually
labeled communication rules occurrences r1 and r2 in R, with x the label of
r1 and x̄ of r2, that is r1:x and r2:x̄, we require an independence of their
premises as follows: For any two different premises s1 and s2 of r, respec-
tive premises si of ri, i = 1, 2, in case of communication, we require that
s1 and s2 are in different connected components in Cut(Drop(R, x)), i.e.,
[s1]Cut(Drop(R,x)) 6= [s2]Cut(Drop(R,x)).

6. (Local dependence of contraction premises) For any occurrences r of a
contraction rule with label c, we stipulate a dependency of its premises as fol-
lows: Let c′ be any contraction label such that c � c′, and let s1 and s2 be the
premises of r. We require that s1 and s2 are in the same connected component
in Cut(Drop(R, {c, c′})), i.e., [s1]Cut(Drop(R,{c,c′})) = [s2]Cut(Drop(R,{c,c′})).

7. (Global dependence of prederivations) R is connected.

Note that for conditions on (in)dependence the graphs considered in the def-
inition (like Cut(Drop(R, r))) are all C-graphs, according to Lemma 3. In the
following we refer to the conditions in the previous definition as “X -conditions”,
like “X -condition 1 (dual labels)” to refer to the first, without explicitely men-
tioning “Definition 23”.

Example 2 (Cont.). We continue the example of Section 6.1 and show that the
HNGL-conditions are satisfied. The conditions of dual labels and consistent
communication and splitting labeling are obvious. The order has already been
identified as

x1 = x̄1 ≺ x2 = x̄2 ≺ y .

Concerning independence of premises, we only have to consider the rule ∧-i,
and we have already discussed in Section 6.1 that the Cut operation provides
the necessary separation between the connected components. Concerning the
dependence of the contraction premises, we need to consider Cut(Drop(R, y))
since y is the only contraction rule:
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x1 x2 x̄2 x̄1

u v

We see that there is only one connected component, and thus the requirements
are fulfilled. Finally for the global dependence of prederivations, the original
graph

x1 x2 x̄2 x̄1

y uz w v

as a whole is obviously connected. ut

Example 3. Let us come back to the graph of the problematic prehyper deduc-
tion from Figure 1, reproduced here:

∧-e ∧-e

1:com 2:com

4:ctr

→-i

3:com

→-i

5:∧-i

3̄:com 2̄:com

∧-e ∧-e

6:ctr 1̄:com

7:∧-i

→-i →-i

/ /

According to the version of HNGL as given in [BP15], the above figure would
be considered a hyper natural deduction, if based on the cut as indicated with
single slashes. But, as mentioned in the introduction, the derived formula of the
underlying derivation is not valid in Gödel logic. The new definition of X is es-
sentially unchanged to the one given in [BP15], except that X -condition 6 (contr.
premise) has changed to exclude these cases. With the new condition, assume
that contraction 4 is ordered before contraction 6 (4 ≺ 6), then the premises of
contraction 4, that is 1 and 2, are not connected in Cut(Drop(R, {4, 6})). Simi-
larly in the case that contraction 6 is ordered before contraction 4, considering
the premises of contraction 6 in Cut(Drop(R, {6, 4})).

Observe that the previous definition induces an efficient (quadratic in number
of nodes) decision procedure to determine whether a given set of prederivations
forms an X deduction. Although testing whether two nodes are connected is
known to be in logspace, and computing the Drop-operation in linear time,
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the test in X -condition 6 (contr. premise) loops over all pairs of contraction
nodes and thus is only quadratic. To improve efficiency one could redefine this
condition to test for each contraction dependency in which all later contraction
are dropped, and obtain a linear time algorithm in this way. As we are not aiming
to obtain the most efficient decision procedure, we leave the X conditions as
introduced.

We require that a total order on the labels is given as part of the definition
of X . This is not necessary as there is an efficient (quadratic) algorithm (based
on topological sorting [Knu97]) which, given a prehyper deduction, determines
whether such an order exists (and in this case computes it).

6.3 Properties of the set X

In the following section we present all theorems and propositions with their
proofs, and also include statements of lemmata used in their proof, but defer
proofs of lemmata to a technical appendix.

A first observation is that all vertices in a tree of a premise of a rule are in
the same connected component:

Lemma 8. Let R be in X . Let r, s and v be rule occurrences in R, such that s
is a premise of rule r, that is s→t r. If s is reachable in R by tree edges from v,
then v is in the connected component of s in Cut(Drop(R, r)):

v →∗t s→t r =⇒ v ∈ [s]Cut(Drop(R,r)).

Proof. See Appendix.

We now aim to show a more involved property that certain cycles in an X
deductions are excluded. First we observe that for any u ↔∗ v we can find
x1, . . . xn and y1, . . . , yn such that u = x1, v = yn, xi ↔∗t yi for i = 1, . . . , n, and
yi ↔c xi+1 for i = 1, . . . , n−1, that is we have:

u = x1 ↔∗t y1 ↔c x2 ↔∗t y2 ↔c . . .↔c xn ↔∗t yn = v

We also observe that x↔∗t y implies that there exists w such that x→∗t w and
y →∗t w.

Lemma 9. Let R be a prehyper deduction, and let G = Cut(R). Assume that
there are vertices x1 . . . , x`, y1, . . . , y` in G carrying dual labels, such that xi ↔∗t
yi and yi ↔c xi+1, for i = 1, . . . , `, where we let x`+1 denote x1. Assume that
the set of labels of the xi, yi contains at least three elements (that is there are at
least two different labels modulo duality). Furthermore, if xi is reachable from yi
via tree edges, and xi 6= yi, then xi is not a splitting label; similar for the roles
of yi and xi swapped.

Then R is not an X deduction.

Proof. See Appendix.
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In the above Lemma the restriction on splitting labels is essential to prove
the assertion; e.g., consider the following hyper natural deduction

Bx: ComB,A
A

[A]
x̄: ComA,B

By: SptB,
B

[A]
x̄: ComA,B

Bȳ: Spt,B
B

and its graph

1 2 3

4 5

where 1 is carrying label x, 2 and 3 are carrying label x̄, 4 is carrying y, and
5 is carrying ȳ. With the notion from the Lemma, we can choose x1 = 1 = y1,
x2 = 2, y2 = 4, x3 = 5, y3 = 3 satisfying the assumptions of the proposition,
except for the last as e.g., 4 is carrying a splitting label and is reachable from 2.

Definition 24 (Regular paths). Let R be an X deduction. An undirected path
in Cut(R) is irregular if its sequence of vertices u1, . . . , uk contains one of the
following patterns: for some i,

1. ui is connected to ui+1 via a tree edge, and ui+1, ui+2, ui+3 are labeled c, c̄, c
for some communication label c; that is

ui →t ui+1:c↔c ui+2:c̄↔c ui+3:c

2. ui+3 is connected to ui+2 via a tree edge, and ui, ui+1, ui+2 are labeled c, c̄, c
for some communication label c; that is

ui+3 →t ui+2:c↔c ui+1:c̄↔c ui:c

3. ui is connected to ui+1 via a tree edge, and ui+1 and ui+2 carry dual splitting
labels; that is, for some splitting label s,

ui →t ui+1:s↔c ui+2:s̄

4. ui+2 is connected to ui+1 via a tree edge, and ui+1 and ui carry dual splitting
labels; that is, for some splitting label s,

ui+2 →t ui+1:s↔c ui:s̄

5. ui, ui+1, ui+2, ui+3 are labeled r, r̄, r, r̄ for some dual label r; that is

ui:r ↔c ui+1:r̄ ↔c ui+2:r ↔c ui+3:r̄

for some r ∈ DLabels.
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An occurrence of such a pattern on a path is called an irregular step.
An undirected path in Cut(R) is regular if it is not irregular.

Irregular steps on a path usually indicate a detour which can be avoided.
Thus a reasonable conjecture is that shortest paths should be regular. We see
that this is true, except for the beginning or end of a path. For example, if the
path is between two copies of the same prederivation due to split they may use
an unavoidable irregular step u:r − v:r̄ − w:r where u:r and w:r refer to two
different occurrences of a rule with label r.

Shortest paths are regular if we consider paths p where neither the first step
is a →t-step, nor the last a ←t-step. That is, let u1, u2, . . . , uk be the sequence
of vertices of p, then neither u1 →t u2 nor uk →t uk−1.

Lemma 10. Let R be in X . Let p be an irregular path in Cut(R), such that
neither the first step is a →t-step, nor the last a ←t-step.

Then we can find a shorter regular path p′ in Cut(R) with the same start and
end vertex as p.

Proof. See Appendix.

Definition 25 (Cycles). A cycle is a path p of length ≥ 2 which connects a
vertex v with itself, v−p−v. A cycle is trivial if its sequence of vertices is of the
form u, v, u. A cycle w.r.t. regular paths is a non-trivial cycle given by a regular
path.

The next Theorem states an important property of X , namely that cycles
wrt. regular paths do not occur in X deductions.

Theorem 4. Let R be an X deduction. Then Cut(R) is acyclic wrt. regular
paths.

Proof. Let R be in X , and consider the graph G = Cut(R). Assume that G con-
tains a cycle wrt. regular paths. Let p be a regular path with sequence of vertices
u1, u2, . . . , uk, u1 of minimal length, that is, k is minimal with this property. Ob-
serve k ≥ 3, because k = 1 is impossible for paths through G, and for k = 2 we
would have a trivial cycle. p must contain a tree edge, as u, ū, u, ū is irregular.
p must also contain a cross edge, as a path consisting only of tree edges cannot
form a non-trivial cycle. Without loss of generality uk ↔c u1 →t u2.

Analyzing p, we can identify indices 1 < i1 < · · · < i` = k such that the uij
are carrying dual labels, and u1+ij−1

↔∗t uij and uij ↔c u1+ij , for j = 1, . . . , `
(with i0 = 0 and u`+1 = u1). That is, we have

u1 ↔∗t ui1 ↔c u1+i1 ↔∗t ui2 ↔c . . .↔∗t ui`−1
↔c u1+i`−1

↔∗t uk ↔c u1

Thus, if we set xj = u1+ij−1 and yj = uij for j = 1, . . . , `, the first conditions
of Lemma 9 are satisfied. As x1 = u1 →t u2 ↔∗t y1, the labels of x1 and y1 are
different even modulo duality of labels.

Therefore, by Lemma 9, for some i, xi 6= yi, and either xi is reachable from yi
via tree edges and xi is a splitting rule, or yi is reachable from xi via tree edges

33



and yi is a splitting rule. Without loss of generality assume xi →∗t yi and yi is
a split rule. As xi 6= yi there is some v such that xi →∗t v →t yi. Thus we have
three consecutive vertices v, yi, xi+1 on path p such that v →t yi ↔c xi+1, such
that yi and xi+1 are carrying dual splitting labels, contradicting condition 3 of
Definition 24 for p. ut

We now address the point made after Definition 20, that the apparent asym-
metry in the definition of Cut(R, c) is harmless, in the sense that all X conditions
remain valid when changing to cut arbitrary left or right premises of contrac-
tions, as long as contraction rules with the same label are cut in the same way.

Lemma 11. The X conditions are preserved if the Cut operation cuts randomly
either the left or right upper edge of a contraction rule occurrence, as long as
contraction rule occurrences with the same label are cut on the same side.

Proof. See Appendix.

We have defined the Cut operation to always delete the left edge leading to a
contraction. For some conversions during normalization it is necessary to switch
to alternative cuts. The following two assertions deal with this.

Lemma 12. Let R be in X , and r a rule occurrence in R. Let s be one of the
premises of r. Then there is an alternative cut operation Cut∗ such that the fol-
lowing property holds: Let C be the connected component of s in Cut∗(Drop(R, r)),
that is C = [s]Cut∗(Drop(R,r)).
(*) For any contraction c in R with premises a and b we have c ∈ C iff a, b ∈ C.

Proof. See Appendix.

Proposition 2. Let R be in X , r a rule in R, and s a premise of r. Let C =
[s]Cut(Drop(R,r)) be the connected component of s in Cut(Drop(R, r)). For any
contraction occurrence c in R with premises a and b assume that c ∈ C iff
a, b ∈ C. Let R′ be R \ C in which all contraction occurrences which had one of
their premises removed by C are re-label with the unary rule Rep. Let C ′ be the
prehyper deduction induced by C on R.

Then R′ and C ′ are in X .

Proof. The only conditions not being immediate consequences of R being in X
are conditions 6 (contr. premise) and 7 (one class). First consider the condition
on contractions, and let c � c′ be two contractions in R′ and s1, s2 the two
premises of c. For sake of contradiction, assume that s1 and s2 are not connected
in Cut(Drop(R′, {c, c′})). As they were connected in Cut(Drop(R, {c, c′})) by X -
condition 6 (contr. premise) for R, there is a path p1 connecting s1 and s2 in
Cut(Drop(R, {c, c′})), which is not present in Cut(Drop(R′, {c, c′})). But then
p1 must reach C, hence s1 or s2 are in C, contradicting that s1 and s2 both
occur in R′.

For X -condition 7 (one class) observe that in Cut(R), C is connected to
rest exactly via the edge (s, r). If R′ would not be connected, then there must
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be a path p in R connecting two different components C1 and C2 of R′. This
path has to go through C and at least one contraction which had their premise
removed by C. According to condition 6 (contr. premise) for R the premises of
such contraction c are connected in Cut(Drop(R, c)), and as (s, r) is the only
connection of C in Cut(R), c must be connected to r in R′. It follows that both
C1 and C2 must be connected to r in R′.

Similar arguments can be given for C ′. ut

The next Lemma is needed to prove that any X -deduction is a HNGL-
deduction.

Lemma 13. Consider a prehyper deduction R such that all conditions but the
last X -condition 7 (one class) are satisfied. Then the connected components of
R form a partition R = R1 ∪ · · · ∪Rk such that each Ri is in X , for i ≤ k.

Proof. The existence of the partition is a direct consequence of Lemma 1. Fur-
thermore, since all the conditions but X -condition 7 (one class) are satisfied
for R, they are also satisfied for each of the Ri. In addition Ri is connected, thus
each Ri is in X . ut

The next theorem establishes one direction of the equivalence between im-
plicit and explicit definitions of HNGL.

Theorem 5. Every HNGL deduction is a X deduction.

Proof. Every initial NJ deductions is in X . Thus, as HNGL is inductively de-
fined, it suffices to show that X is closed under applying HNGL hyper rules, in
order to show that HNGL ⊆ X .

Let Ri be a hyper natural deduction, such that the label sets Labels(Ri), for
i ≤ k, are pairwise disjoint. Let ρi ∈ Ri and define R−i as Ri \ {ρi}.
Unary hyper rules
For unary rules it is obvious that X -conditions 1–7 are satisfied and the new
figure forms a X deduction.

∧-i, ∨-e, →-e, communication
For ∧-i, ∨-e, →-e, and communication, the proof works similar, we only treat
∧-i: Let us assume that

ρ1 =

Π

A

ρ2 =

Γ

B

We show that R∧ = {ρ∧} ∪R−1 ∪R
−
2 is in X , where ρ∧ is

ρ∧ :=

Π
ρ1

A

Γ
ρ2

B
r:∧-i

A ∧B
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We have to show that R∧ satisfies the X -conditions 1–7. Combining the as-
sumption that R1 and R2 are in X , and that their sets of labels are disjoint,
we see that X -condition 1 (dual labels), X -condition 2 (consistent labels) and 3
(consistent split) are immediately satisfied.

Consider now X -condition 4 (label order): Since the label sets are disjoint, we
can combine the two orders of R1 and R2 in any way (even mixing), as long as
the combination is order preserving. In particular, we can choose Labels(R1) ≺
Labels(R2). For the case of the communication rule we stipulate that the com-
munication label is placed after any other label in the new order.

Before turning our attention to the critical condition on binary rules, let us
first treat the remaining two simpler conditions: X -condition 6 (contr. premise)
and X -condition 7 (one class) are trivially satisfied, as we are creating new
connections and the connected components can only become bigger.

Finally, let us turn to the critical X -condition 5 (indep. premises), and con-
sider another binary, ternary, or communication rule occurring in R∧. We only
consider the case of ∨-e, all other cases can be dealt with in a similar way. Thus,
we assume that we are in the following situation:

Π
ρ1

A

Π
ρ2

B
r:∧-i

A ∧B
ρ∧ . . .

∆
σ0

C ∨D

∆, k[C]

σ1

F

Π, k[D]

σ2

F
s:k∨-e F

ρ′

We assume without loss of generality that s:∨-e is occurring in R1.
First assume that the vertex r:∧-i is reachable from the vertex s:k∨-e in R∧.

In this case, the operation Drop(R∧, s) also drops the connection (or marriage)
node between the two original graphs, and thus the connected components of
the premises of s computed in Cut(Drop(R∧, s)) are the same as computed in
Cut(Drop(R1, s)). As a consequence, X -condition 5 (indep. premises) continues
to hold in this case, as R1 is an X deduction.

It remains the case where r is not reachable from s. By assumption we
have ρ′ ∈ R1. DefineG1 = Cut(Drop(R1, s)),G2 = Cut(R2), andG = Cut(Drop(R, s)).
By Lemma 5 we see that G and the Gi satisfy the conditions of Lemma 6. Let ci
be the connected component of Conc(σi) for i = 0, 1, 2 in G1, and di be those
in G. By the assumption that R1 is in X , X -condition 5 (indep. premises) implies
that the ci are pairwise different. From Lemma 1 and the fact that the Gi are
sub graphs of G, we obtain that ci ⊆ di. Finally from Lemma 6 we obtain that
for at most one i = 1, 2, 3, ci 6= di.

Now assume for the sake of contradiction that the condition for rule s in R∧
does not hold, thus, at least two connected components da and db (a 6= b, a, b ∈
{1, 2, 3}) coincide, da = db. Combined with the above that at most one ci 6= di
we obtain that either ca = da or cb = db. Assume without loss of generality
that ca = da. Together with da = db we obtain that ca = db, and cb ⊆ db = ca,
contradicting that ca and cb are different connected components.
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contraction
In the case of a contraction rule, we are starting from slightly different assump-
tions, namely that two prederivations in R1 have been combined with a con-
traction rule to form a new set R′. Again, we have to show that R′ is in X .
As in the previous case, it is easy to see that all conditions but X -condition 5
(indep. premises) are trivially satisfied. For condition X -condition 5 for R′, we
consider another binary rule r in R′ for which we have to show independence of
its premises. Since we compute connected components in Cut(Drop(R′, r)), and
the Cut in particular removes one edge of the new contraction node, we observe
that the connected components in Cut(Drop(R′, r)) and in Cut(Drop(R1, r))
are the same (modulo one new vertex in Cut(Drop(R′, r)) coming from the new
contraction node). In particular the property that the premises of r are not con-
nected in Cut(Drop(R1, r)), as R1 is a hyper natural deduction, is preserved
in Cut(Drop(R′, r)).

split rule
Next, we consider the splitting rule: Assume that we want to extend ρ1 ∈ R1 with
a splitting rule, where ρ1 is a prederivation of A from assumptions Γ,∆. Let ρ′1
be a copy of ρ1 (without any renaming of labels) and define RS as {ρa, ρb}∪R−1 ,
where

ρa =

[Γ ]k, ∆

ρ1

Ax:k SptΓ,∆ A

and ρb =

Γ, [∆]k

ρ′1
Ax̄:k Spt∆,Γ A

Checking the X -conditions, we see that due to R1 being in X , X -conditions 1
(dual labels)–2 (consistent labels) are trivially satisfied. X -condition 3 (consis-
tent split) is satisfied by construction of RS . Considering X -condition 4 (label
order), the new order is defined by adding the new splitting rule at the end
(largest element) of the order for R1.

Consider now X -condition 5 (indep. premises): As in the case of logical rules
above, we consider another binary or ternary logical rule, or communication
rule r occurring in RS , and want to check independence of its premises. As-
sume for sake of contradiction that two premises of r, a and b, are connected in
Cut(Drop(RS , r)) — they are not connected in Cut(Drop(R1, r)) as R1 is in X .
Let p be a path from a to b in Cut(Drop(RS , r)). Denote with p′ the result of
changing each vertex on path p, which also occurs in ρ′1, into the corresponding
vertex in ρ1. It is not difficult to see that p′ is a path in Cut(Drop(R1, r)) which
connects a and b, contradicting that R1 is in X .
X -condition 7 (one class), requiring that the graph RS is connected, is satis-

fied using that ρ1 and ρ′1 are connected via the new splitting nodes.

This concludes the proof of the lemma. ut

The remaining part of this section deals with the reverse direction of The-
orem 5, that all X deductions are HNGL deductions. To this end we need to
identify a potential hyper rule which can be used to generate a given X deduc-
tion.
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Definition 26 (Reducible deduction). Let R be an X deduction, and r the
root of a prederivation in R. We define that r is reducible in R as follows: Unary
logical rules and contraction rules are always reducible. Binary and ternary
rules r are reducible if any two premises of r are not connected in Drop(R, r).
A communication rule r is reducible if the premises of r and r̄ are again not
connected in Drop(R, r), and in addition all occurrences of r and r̄ are as roots
of prederivations in R. Split rules r are reducible if all occurrences of r and r̄
are as roots of prederivations in R.

Lemma 14 (Retraction). If a rule r of R ∈ X is reducible, then the pre-
derivations associated to the connected components of the premises of r again
form X deductions.

Proof. Let R′ be R with the rule occurrence r removed. R′ clearly satisfies the
assumptions of Lemma 13. The assertion follows from that Lemma. ut

Definition 27. Let R be in X . A path passes horizontally through a contraction
node c with premises s1 and s2, if either (s1, c) and (c, s2), or (s2, c) and (c, s1)
are part of the path.

The central proposition of our proof to show that every X deduction is also a
HNGL deduction is the property that we can always find a reducible rule. An X
deduction is called trivial if it consists of exactly one prederivation formed by
exactly one formula.

Proposition 3. Any X deduction is either trivial or has a reducible rule.

We first give a general overview of the layout for the proof of this proposition:
Assume some X deduction does not contain a reducible rule. First we show that if
all roots of prederivations are communication or split rules, then we can obtain
a contradiction to the order on dual labels for this X deduction. Thus, there
must be some non-reducible logical rule at a root position. Starting from such
a rule we construct a sequence of dual labels which forms a cycle, contradicting
Lemma 9.

Proof. Assume that (R,�) is a non-trivial X deduction without a reducible rule.
Contraction and unary rules occurring as roots of prederivations are always
reducible. Thus the rules occurring as roots of prederivations of R are either
non-unary logical rules, communication, or split.

First asume that no logical rule occurs as a root of a prederivation in R.
Let r1, . . . , rn be the roots of prederivations in R, andm1, . . . ,mn their respective
labels. Without loss of generality assume that m1 is maximal amongst the labels
(m̄1 could be another maximal element). Since r1 is not reducible, at least one
rule labeled with m1 or m̄1 must occur within another prederivation, without
loss of generality above r2. But then m1 ≺ m2 contradicting maximality of m1.

Thus, we can assume that there is at least one non-reducible logical rule
occurring at a root. We first proof the following fact:

38



Fact 1: Let r be a non reducible logical rule occurring as a root in R. Then
there is a path in Drop(R, r) from one premise of r to another premise of r,
which passes through exactly one contraction node horizontally. With the ex-
ception of the horizontal pass through the contraction, this path is a path
in Cut(Drop(R, r)).

To prove this fact, assume first that for all contractions c in R with premises
a and b, a and b are connected in Cut(Drop(R, {c, r})). Let p be some path
in Drop(R, r) between two distinct premises of r, say s1 and s2 — such a
path must exist as we assumed that r is non-reducible. Consider p as a path
in Cut(Drop(R, r)): for any edge in p removed by Cut, it must have been of the
form (a, c) or (c, a) for c a contraction and a one of its premises. Let b be the sec-
ond premise of c. By assumption, there is a path in Cut(Drop(R, {c, r})) which
connects a with b — use this path to repair the cut connection between a and
c in p. This can be done for any cut connection of p in Cut(Drop(R, r)), which
yields that s1 and s2 are connected in Cut(Drop(R, r)). But this contradicts
X -condition 5 (indep. premises) for r, since R is in X .

So we must have that there is a contraction c occurring in R with premises
a and b, such that a and b are not connected in Cut(Drop(R, {c, r})). By X -
condition 6 (contr. premise) a and b are connected in Cut(Drop(R, c)), hence
there must be a path in Cut(Drop(R, c)) of the form b− p2− s2− r− s1− p1−a
where s1 and s2 are premises of r. Consider the path s1−p1−a−c−b−p2−s2: this
is obviously a path in Drop(R, r) which passes though exactly one contraction
node (namely c) horizontally. (End of proof of Fact 1.)
Fact 2: For any non-reducible logical rule r occurring as a root in R, there is a
contraction s occurring in R, and another non-reducible logical rule r′ occurring
as a root in R, such that
(a) There is a path in Drop(R, r) from two different premises of r which passes

horizontally through exactly one contraction node, namely s. With the ex-
ception of the horizontal pass through s, this path is a path in Cut(Drop(R, r))

(b) s→∗tc,R r′

To prove this fact, consider a non-reducible logical root r in R. By Fact 1 we
can find such a contraction s satisfying (a). If we would have s →∗t,R r, that is
contraction s occurs in the tree above r, we obtain from X -condition 6 (contr.
premise) that there is a path in Cut(Drop(R, s)) connecting the premises of s;
this path then also exists in Cut(Drop(R, r)) and can be used to connect the
premises of r, contradicting X -condition 5 (indep. premises). To find another
root r′ satisfying (c), consider the following process: Let u1 be the root of the
tree in which s is occurring. If u1 is a logical rule we can choose r′ = u1.
Otherwise, u1 must be communication or split. As u1 is non-reducible, there
must be a rule occurrence u′1 which is not a root in R, and which is labeled with
the same or dual label of u1. Continue with the same process, with u1 in place
of s, to construct roots u2, u3 etc. As R is finite, this process must stop in some
logical root r′, satisfying (b). r′ must be different from r as otherwise the last ui
would have been a communication rule with dependent premises, contradicting
X -condition 5 (indep. premises). (End of proof of Fact 2.)
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By repeatedly applying Fact 2, construct a sequence r1, s1, r2, s2. . . of non-
reducible roots ri and contractions si, such that there exists a path in Drop(R, ri)
passing horizontally exactly through si, and si →∗tc,R ri+1. As R is finite, some
ri’s must be the same. Let r1, s1, r2, . . . , sk, rk+1 = r1 be a sequence of this
form of minimal length. By construction (Fact 2) r1 6= r2, hence k ≥ 2.

If s1 � s2, then X -condition 6 (contr. premise) yields that the premises
of s2 are connected in Cut(Drop(R, {s1, s2})). As s1 →∗tc,R r2 we obtain that
they are also connected in Cut(Drop(R, r2)). Together with (a) we obtain that
the premises of r2 would be connected in Cut(Drop(R, r2)), contradicting X -
condition 5 (indep. premises) for r2. Hence s1 ≺ s2. The same is true for all si,
thus si ≺ si+1 for i = 1, . . . , k (where sk+1 = s1).

Thus we have the following chain

s1 ≺ s2 ≺ s3 · · · ≺ s` ≺ s1

contradicting the totality of ≺. ut

Theorem 6. Every X deduction is a HNGL deduction.

Proof. The proof is by induction on the total number of nodes of R ∈ X . If R is
trivial, i.e. just consists of an initial NJ derivation, then clearly R ∈ HNGL.

Otherwise, we use Proposition 3 to find a reducible rule r in R. Let Ri for
i = 1, . . . , k (k ≤ 3), be the connected components in Drop(R, r) of the premises
of r. We observe that applying the hyper rule corresponding to r to R1, . . . , Rk
again yields R. Thus it suffices to show that the Ri’s are HNGL deductions in
order to finish the proof of Theorem 6.

Using the Retraction Lemma 14 we obtain that Ri ∈ X . As Ri has fewer
nodes than R we can apply the induction hypothesis to obtain that Ri ∈ HNGL.

ut

Theorems 5 and 6 together show that X and HNGL are the same.

Corollary 4. X deductions and HNGL deductions are the same.

In the following we identify X and HNGL, and treat X as an alternative
description for hyper natural deductions.

7 Normalization

The system NJ of Natural Deduction possesses the important property that
every derivation in NJ can be transformed into normal form. The aim of this
section is to describe a similar procedure for HNGL deductions. We follow [TS00,
Chapter 6] for providing a normalization strategy for HNGL via a specific set
of conversions. Our approach extends [TS00] in the sense that when restricted
to NJ, it coincides with the latter.

Staying close to the usual normalization procedure for Natural Deduction
implies that →-conversions can always be performed wherever corresponding
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redices occur. This is important for our long-term aim to establish a Curry-
Howard correspondence of Hyper Natural Deduction for Gödel Logic to some
kind of parallel lambda calculus. A→-conversion in HNGL will correspond to a
β-step for any kind of parallel lambda calculus. And as β-steps in lambda calculus
are the most important computational steps, there should be no restriction on
their execution. Without that freedom we do not think to be able to achieve a
full answer to the question of characterising the parallel computation content of
Hypersequent Calculus or Hyper Natural Deduction for Gödel Logic.

Thus, we want to be able to apply transformations like →-conversions as
liberally as possible. To be able to effectively describe the parts that need to
be reshuffled during such a conversion, we have to make use of the explicit
description of HNGL-deductions as X -deductions.

The notion of normal deduction depends on notions like segment and cuts,
which in turn need the notions minor and major premise of rules. We thus
start by defining the latter for communication, split and contraction rules. As
communication and split are linking different prederivations, we cannot define
the minor premise of such a rule locally, i.e. dependent on just this rule, anymore,
but have to define them in the context of a HNGL deduction.

Definition 28 (Minor premises for communication, split and contrac-
tion rules). Let R be a prehyper deduction.

A minor premise w.r.t. R of a communication rule of the form

Ax: ComA,B
B

is any occurrence of B in R as the premise of a rule labeled by x: ComA,B.
The premise of a splitting rule is the minor premise of that splitting occur-

rence.
Both premises of a contraction rule are minor premises of that contraction

occurrence.

During normalization, elimination rules are permuted over minor premises
of other disjunction elimination like rules (del-rules, see below) until they reach
an introduction rule. For communication, split and contraction the reason for
calling premises “minor” is the same as above, during normalization elimination
rules are just “permuted”. But due to the non-local nature of minor premises for
communication and split the situation now is much more involved.

We adapt the notion of segment, cut, cut-rank, and critical cut from [TS00,
Def. 6.1.2] to take the additional minor premises into account, which can be con-
veniently done by just defining the “del-rules of HNGL” (see [TS00, Def. 6.1.1]).
For the benefit of the reader we restate the definition of the former notions
from [TS00, Def. 6.1.2] as well. Let I-rules denote the introduction rules for logi-
cal connectives, and E-rules denote the elimination rules for logical connectives.
In E-rule applications, the premise containing the occurrence of the logical oper-
ator being eliminated is called major, the others minor. With |A| we denote the
length of formula A, given by the number of occurrences of logical connectives
in A.

41



Definition 29. The del-rules of HNGL are ∨-e, contr, com and split.

We adapt the notion of segment from [TS00, Def. 6.1.2] to one which allows
segments to extend via communication rules from one prederivation to another.

Definition 30 (Segment). A segment (of length k) in a HNGL deduction R
is a sequence A1, . . . , Ak of formula occurrences of a formula A in R such that
the following conditions are satisfied:

– for 1 < i ≤ k, there are rule occurrences ri in R, such that ri is a del-rule,
Ai−1 is minor premise of ri, and Ai is the conclusion of ri — observe that ri
may be a communication rule, in which case the two formula occurrences may
be in different prederivations in R;

– Ak is not a minor premise of a del-rule application,
– A1 is not the conclusions of a del-rule application.

A segment is maximal, or a cut (segment) if Ak is the major premise of an
E-rule, and either k > 1, or k = 1 and A1 is the conclusion of an I-rule. The
cut-rank cr(s) of a maximal segment s is |A|. The cut-rank cr(R) of a HNGL
deduction R is the maximum of the cut-ranks of cuts of R. If there is no cut, the
cut-rank of R is zero. A critical cut of R is a cut of maximal cut-rank among all
cuts in R. We shall use s, s′ for segments.

We shall say that s is a subformula of s′ if the formula A in s is a subformula
of B in s′. A deduction without critical cuts is said to be normal.

Observe that this definition coincides with [TS00, Def. 6.1.2] if restricted to
Natural Deduction NJ.

7.1 Conversions

We extend the conversions defined in [TS00, Chap. 6.1] to deal with our addi-
tional cases involving communication, splitting and contraction rules. We remark
already at this point, that due to X -condition 2 (consistent labels), conversions
need to be applied to all occurrences of redices carrying the same labels. Thus, in
the following, when converting a redex, we implicitly assume that the conversion
is applied to all such redex occurrences carrying the same labels.

Some conversions, like →-conversion, copy subderivations above other sub-
derivations. To certify that the resulting prehyper deduction again form a valid
deduction, we need to change the total order on labels to be consistent with
the newly created prederivations. The following lemma addresses this point by
showing that certain rearrangements of the order are acceptable.

Lemma 15. Let (R,�) be a deduction in HNGL. Let r be an occurrence of a
non-unary logical rule, and let s be a premise of r. Let C = [s]Cut(Drop(R,r)) be the
connected component of s in Cut(Drop(R, r)). For any contraction occurrence c
in R with premises a and b assume that c ∈ C iff a, b ∈ C.

Let L1 be the set of labels in CDLabels(R) which occur in C, and L0 the
remaining ones, i.e. L0 = CDLabels(R) \ L1. Let �′ be a total order modulo

42



duality on CDLabels(R), which coincides with � on Li, for i = 0, 1, and puts
L1 before L0, i.e. y ≺′ x for any x ∈ L0 and y ∈ L1.

Then (R,�′) is also a deduction in HNGL.

Proof. The only conditions which are affected from changing the order, are X -
conditions 4 (label order) and 6 (contr. premise).

For X -condition 4 (label order) let r and r′ be nodes with labels in CDLabels(R),
such that there is a dipath from r to r′ w.r.t. tree-edges, r →∗t r′. If both r and
r′ are in the same Li, i = 0, 1, then r � r′ as � and �′ coincide by construction.
So the critical case is when r and r′ are in different Li’s. But then we must have
r ∈ L1 and r′ ∈ L0 by construction, hence r �′ r′ as �′ puts L1 before L0.

For X -condition 6 (contr. premise), assume for sake of contradiction that
it is violated under �′. That is, for some pair of contraction rules c and c′,
with premises v and t of c, we have that c �′ c′ but v and t are not connected
in Cut(Drop(R, {c, c′})). As this condition is not violated under �, we must have
that c′ ≺ c, hence c ∈ L1 and c′ ∈ L0 by construction. Without loss of generality
assume that the edge (v, c) is the one which is removed in Cut(R). Let p0 be a
path connecting s and c in Cut(Drop(R, r)), which exists as c ∈ L1.

Using X -condition 6 (contr. premise) for (R,�), there is a path p from t to
v in Cut(Drop(R, c)). As p is destroyed in Cut(Drop(R, {c, c′})), there must be
an edge (f, g) such that p is of the form t− p1− f →t g− p2− v, with p1 a path
in Cut(Drop(R, {c, c′})) and c′ →∗t g via a path p3 in Cut(R).

Now consider the path p4 in Cut(R) given by c←t t−p1−f →t g−p3−c′. As
this path is destroyed in Cut(Drop(R, r)), there must be an edge (a, b) such that
p4 is of the form c←t t−p5−a→t b−p6−c′, with p5 a path in Cut(Drop(R, r))
and r →∗t b via a path p7 in Cut(R).

In this case, b must be either a non-unary logical rule, or a communication,
thus we have a second premise a′ such that p7 is of the form r − p8 − a′ →t b
or r − p8 − a′ →t b̄ ↔t b. In both cases, b has to satisfy X -condition 5 (indep.
premises), which is violated because a− p5 − t→t c− p0 − s→t r− p8 − a′ is a
path in Cut(Drop(R, b)). ut

The detour conversions ∧-conversion, ∨-conversion and →-conversion, and
the simplification conversions from [TS00, Chap. 6.1] stay in principle the same.
The additional point to take care of is that whole connected components need
to be removed if parts of prederivations get discarded. We make this precise in
the case of ∧-conversion, other cases are similar. Consider an ∧-conversion redex
occurring in a hyper natural deduction R of the form

σ1
s
A1

σ2
t
A2

r:∧-i
A1 ∧A2x:∧-e
A1

By Lemma 12 we can find a cut operation Cut such that for C the connected
component of t in Cut(Drop(R, r)), C = [t]Cut(Drop(R,r)), for all contraction oc-
currences c in R with premises a and b, c ∈ C iff a, b ∈ C. Applying Proposition 2,
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we obtain for R′ := R \ C, in which all contraction occurrences which had one
of their premises removed by C with the unary rule Rep, that this R′ is a hyper
natural deduction.

In R′, any occurrence of the above redex has been transformed to

σ1
s
A1 A2

r:∧-i
A1 ∧A2x:∧-e
A1

We now convert such trees into
σ1
s
A1

The resulting prehyper deduction again forms a hyper natural deduction, and
has the property that its derived hypersequent is a syntactic subhypersequent
of the derived hypersequent of R.

We also consider the case of→-conversion in detail. Consider an→-conversion
redex occurring in a hyper natural deduction (R,�) of the form

1[A]

σ1
t
B1x:→-i A→ B

σ2
s
Ay:→-e

B

If no assumption of σ1 is discharged at →-i, then this redex converts to

σ1

B

and we remove the connected component of s in Cut(Drop(R, y)) in a similar
way as discussed above for ∧-conversion.

Now consider the case that at least one assumption of σ1 is discharged
at x:→-i. We only treat the case of two discharged assumptions, the other cases
follow a similar pattern. We cannot simply copy σ2 above these discharged as-
sumptions, as we have to ensure that the resulting figure again forms a valid hy-
per natural deduction. In particular, we need to make sure that the X -condition 5
(indep. premises) is satisfied.

Let CCi be the connected component of σi in Cut(Drop(R, y)). Let Li be
the set of labels in CDLabels(R) which occur in CCi, and L0 = CDLabels(R) \
(L1 ∪ L2). Using Lemma 15 we can assume without loss of generality that �
puts L2 before L1, and L1 before L0.

CC2 induces a prehyper deduction in R, by choosing those subtrees of pred-
erivations in R which are given by nodes in CC2. The induced component can
be written as R2 := {σ2, ρ1, . . . , ρk}. Create an independent copy R′2 of R2 of
the form R′2 := {σ′2, ρ′1, . . . , ρ′k} by choosing fresh labels for all rules. Using fresh
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contraction labels c1, . . . , ck form prederivations ρ̃i by combining ρ′i and ρi with
a contraction labeled ci.

Also form the following prederivation, which we abbreviate with δ:

σ2

s
A

σ1

σ′2

s′
A

t
B

Let L3 be the set CDLabels(R′2), and define a new order �′ on L0 ∪ L1 ∪
L2 ∪ L3 ∪ {c1, . . . , ck}, which satisfies

– on Li, �′ coincides with �, for i = 0, 1, 2, 3;
– �′ orders {c1, . . . , ck} arbitrarily;
– �′ orders L3 before L2, L2 before L1, L1 before {c1, . . . , ck}, and the latter

before L0:
L3 �′ L2 �′ L1 �′ {c1, . . . , ck} �′ L0

Now convert R in the following way:
– replace all subtrees rooted in y with δ;
– replace ρi with ρ̃i.
We argue that the resulting prehyper deduction R′ forms a hyper natural de-

duction. By construction it is obvious that its derived hypersequent is a syntactic
subhypersequent of the derived hypersequent of R.

With the assumption that at least one discharged assumption [A] is occurring
in σ1, we obtain that all conditions except X -conditions 5 (indep. premises) and
6 (contr. premise) are immediately satisfied.

We observe that, as R2 relates to a connected component in Cut(Drop(R, y)),
the only connection between Cut(R2) to the rest in Cut(R′) is via s. Similarly
for R′2: let s′ be the copy of s in R′2, then the only connection between Cut(R′2)
to the rest of Cut(R′) is via s′.

Consider X -condition 5 (indep. premises) for R′. Let r be a non-unary logical
rule occurring in R′, and a and b two of its premises. For sake of contradiction,
assume that there is a path p from a to b in Cut(Drop(R′, r)). This path cannot
go through s, as it would have to go via s a second time to be able to go from
a to b, as s is the only connection between Cut(R2) to the rest of Cut(R′).
Similarly it cannot go through s′. Thus the path is either completely in R2, or
completely in R′2, or completely outside of R2 and R′2 in R′. In any case, p gives
rise to a similar path in Cut(Drop(R, r)), contradicting X -condition 5 (indep.
premises) for R.

Consider X -condition 6 (contr. premise) for R′. Let c and c′ be two contrac-
tion rules occurring in R′, with c�′ c′. Let a and b be the premises of c. Assume
c, c′ are both in L3, L2, or L1 ∪ L0, and p a path in Cut(Drop(R, {c, c′})) con-
necting a and b (or corresponding a, b in case i = 3). As before, p cannot go
through s or s′, thus has to stay completely in R2, or completely in R′2, or com-
pletely outside of R2 and R′2 in R′. In any case, p gives rise to a similar path in
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Cut(Drop(R′, {c, c′})). Now assume that c is in Li for some i = 1, 2, 3, but c′ not.
Consider p a path in Cut(Drop(R, {c})) connecting a and b (or corresponding a, b
in case i = 3). Again, p cannot go through s or s′, hence p gives rise to a similar
path in Cut(Drop(R′, {c, c′})). Finally, consider c = ci for some i = 1, . . . k, and
c �′ c′. Then a is the root of ρi ∈ R2, and b of ρ′i ∈ R′2. Thus, using Lemma 8,
we can find the following path in Cut(Drop(R′, {c, c′})): a− s− t− s′ − b.

The permutation conversion ∨-perm conversion for E-rules from [TS00, Chap. 6.1]
in principle also stays the same. As parts of the prederivation get duplicated, we
have to use a similar construction as in the previous case.

Consider an ∨-perm conversion redex occurring in a hyper natural deduction
(R,�) of the form

σ0

A ∨B
σ1

C

σ2

Cx:∨-e
C σ3y:E-rule

D

Let CC be the connected component of σ3 in Cut(Drop(R, y)). CC induces
a prehyper deduction in R, by choosing those subtrees of prederivations in R
which are given by nodes in CC. The induced component can be written as
R1 := {σ3, ρ1, . . . , ρk}. Create an independent copy of R1 of the form R′1 :=
{σ′3, ρ′1, . . . , ρ′k} by choosing fresh labels for all rules. Using fresh contraction
labels c1, . . . , ck form prederivations ρ̃i by combining ρi and ρ′i with a contraction
labeled ci. Also form the following prederivation, which we abbreviate with δ:

σ0

A ∨B

σ1

C σ3E-rule
D

σ2

C σ′3E-rule
D∨-e

D

Define a new order �′ on the new set of labels similar to the case of→-conversion.
Now convert R in the following way:

– replace all subtrees rooted in y with δ;
– replace ρi with ρ̃i.

The resulting (R′,�′) is again a hyper natural deduction deriving the same
hypersequent as R.

In summary, we obtain that the conversions from [TS00, Chap. 6.1] transform
hyper natural deductions into hyper natural deductions.

Proposition 4. The adapted detour conversions (∧-conversion, ∨-conversion
and →-conversion), the simplification conversions and the permutation conver-
sion (∨-perm conversion for E-rules) from [TS00, Chap. 6.1] convert HNGL de-
ductions into HNGL deductions, with the additional property that the converted
HNGL deduction derives a structural subhypersequent of the original HNGL
deduction.
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We now turn our attention to three more permutation conversions which deal
with permuting an E-rule over a contraction, communication and split rule. For
the following, let (R,�) be a hyper natural deduction.

contr-perm conversion:
σ1
A

σ2
Acontr

A σE-rule
B

converts to
σ1
A σE-rule

B

σ2
A σ′E-rule

Bcontr
B

where σ′ is obtained as an independent copy from σ similar to the construc-
tion for ∨-perm conversion for E-rules. With the same argumentation as before
we obtain that the resulting set of prederivations form again a hyper natural
deduction deriving the same hyper sequent.

In the following we describe com-perm conversion and split-perm conversion
only for redices involving →-e, the cases for other E-rules are similar.

com-perm conversion: Consider a redex involving communication of the fol-
lowing form, where ` = x: ComC,A→B .

∆
σ1

Cx: ComC,A→B
A→ B

Π
σ2

Ay:→-e
B

By X -condition 1 (dual labels), also ¯̀= x̄: ComA→B,C must occur in R:

Γ
σ0

A→ Bx̄: ComA→B,C
C

Define the following prederivations:

µ:

Γ
σ0

A→ B

Π
σ2

A→-e
B

δ1:

Γ, 1[Π]

µ

Bz:1 SptΓ,Π Bx̄: ComB,C
C

δ3:

∆
σ1

Cx: ComC,B
B→-i

A→ B
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δ2:

1[Γ ], Π

µ

Bz̄:1 SptΠ,Γ B

∆
σ1

Cx: ComC,B
Bcontr

B

Then w.r.t. the previously defined com-perm conversion redex, R converts to R′
which is obtained by applying the following three steps to R:

– replace all subtrees rooted in x̄: ComA→B,C with δ1;
– replace all subtrees rooted in y:→-e with δ2;
– for all remaining occurrences of x: ComC,A→B , that is those not occurring

as major premise of y:→-e, replace the subtrees rooted in them by δ3.
As the subtrees and their replacements derive the same hypersequent, it is ob-
vious that also R′ derives the same hypersequent as R.

To see that R′ is also a hyper natural deduction, we define a new label order
�′ and consider all conditions in turn. Using Lemma 15 we can assume that �
puts the CDLabels of the connected component of σ2 in Cut(Drop(R, y)) before
the remaining labels. From this we obtain �′ by replacing x: ComA,B in � with
x: ComB,C , and inserting directly before it the new label z: SptΓ,Π .
X -condition 1 (dual labels): As all parts of the original deduction have been

reused, this condition is obviously satisfied.
X -conditions 2 (consistent labels) and 3 (consistent split) are obviously sat-

isfied by construction, using that R is a hyper natural deduction.
X -condition 4 (label order): Since we are introducing the new labels consis-

tently with old positions, this condition is easily satisfied.
X -condition 7 (one class) requires that all prederivations are in one connected

component in R′. This is satisfied as the replacement trees, like the original ones,
are all connected.
X -condition 5 (indep. premises) needs careful consideration. We first observe

that in Cut(Drop(R′, {x, y})) the connected components of σ0, σ1 and σ2 are
pairwise disjoint, which we can easily deduce from a similar situation in R. Thus
we immediately see that X -condition 5 in R′ for y:→-e and x: ComB,C are both
satisfied.

Now consider a non-unary logical rule r (communication behaves similar)
other than the ones considered above. If there is no path in Cut(R) from r to
the root of σ0, σ1 or σ2, X -condition 5 is satisfied as σ0, σ1 and σ2 are all
in the same connected component in Cut(R) and Cut(R′). If the root of σ0
can be reached from r in Cut(R), then the connected components of σ0, σ1
and σ2 are pairwise disjoint, whether computed in G := Cut(Drop(R, r)) or
G′ := Cut(Drop(R′, r)). If the root of σ2 can be reached from r in Cut(R), then
the connected components of σ0, σ1 and σ2 are pairwise disjoint in G′, where in
G those of σ0 and σ1 fall together, and stays disjoint from σ2. In both cases it is
obvious that in G′ we are not creating new dependencies between premises of r.

Now assume that the root of σ1 can be reached from r in Cut(R). Then the
connected components of σ0, σ1 and σ2 are pairwise disjoint inG := Cut(Drop(R, r)),
but in G′ := Cut(Drop(R′, r)) the connected components of σ0 and σ2 coincide,
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and are disjoint from the one of σ1. Assume for sake of contradiction, that the
premises of r are connected in G′. In particular, there must be a path from one
of the premises of r to the root of σ2 in G′ and in G. But then the premises of
y:→-e are dependent in Cut(Drop(R, y)) via latter path and the path from r to
the root of σ1.
X -condition 6 (contr. premise) also needs careful consideration. The premises

of the newly introduced contraction rule at the root of δ2 are connected using
x: ComC,B and z: SptΓ,Π . Now consider any other contraction c in R′ and a
second one c′ such that c �′ c′. With a similar analysis as in the previous case,
we see that if there is no path in Cut(R) from c or c′ to the root of σ2, then it is
obvious that in G′ := Cut(Drop(R′, {c, c′})) we are not destroying dependencies
between premises of c, simply because connected components only are increased
in these cases.

So assume that the root of σ2 can be reached from c or c′ in Cut(R). Then
the connected components of σ0, σ1 and σ2 are pairwise disjoint in G′, where
in G := Cut(Drop(R, {c, c′})) those of σ0 and σ1 fall together, and stay disjoint
from σ2. Assume for sake of contradiction, that the premises of c are disconnected
in G′. In particular, there must be a path from the premises of c to the roots of
σ0 and σ1 in G′ and in G. If the root of σ2 can be reached from c′, then c′ is
in the connected component of σ2, and as those CDLabels are put before others
and c �′ c′, we must also have that c is also in the connected component of σ2,
all relative to Cut(Drop(R, y)). But then the premises of y: →-e are dependent
in Cut(Drop(R, y)) via c being in the connected component of σ2, and both
premises of c being connected to the left premise of y:→-e, in Cut(Drop(R, y)).

split-perm conversion: Consider a redex involving split of the following form,
where ` = x: Spt∆,Γ .

Γ, 1[∆]

σ0

A→ B1` A→ B

Π
σ1

Ay:→-e
B

By X -condition 1 (dual labels), also ¯̀must occur in R in the form

2[Γ ], ∆

σ0

A→ B2 ¯̀
A→ B

We abbreviate subprederivations occurring above as

σ2:

2[Γ ], ∆

σ0

A→ B2 ¯̀
A→ B

σ3:

Γ, 1[∆]

σ0

A→ B1` A→ B

49



σ4:

Γ
σ3

A→ B

Π
σ1

Ay:→-e
B

Let µ be the following prederivation:

µ:

Γ,∆

σ0

A→ B

Π
σ1

A→-e
B

We consider cases depending on whether there are occurrences of x: Spt∆,Γ other
than those in occurrences of σ4.

Case I) ` = x: Spt∆,Γ only occurs within σ4 in R. Define the following two
prederivations

δ1:

1[Γ ], ∆, 1[Π]

µ

Bx:1 Spt(Γ,Π),∆ B→-i
A→ B

δ2:

Γ, 2[∆], Π

µ

Bx̄:2 Spt∆,(Γ,Π) B

W.r.t. the redex defined above, R converts to R′ which is obtained by applying
the following two steps to R:

– replace all occurrences of σ2 with δ1,
– replace all occurrences of σ4 with δ2.
Case II) ` = x: Spt∆,Γ occurs outside of occurrences of σ4. Define the fol-

lowing three prederivations

δ0:

Γ,∆, 1[Π]

µ

Bx:1 SptΠ,(Γ,∆) B

δ2:

2[Γ,∆], Π

µ

Bx̄:2 Spt(Γ,∆),Π B

δ1:

3[Γ ], ∆

δ0
Bz:3 SptΓ,∆ B→-i

A→ B

δ3:

Γ, 4[∆]

δ0
Bz̄:4 Spt∆,Γ B→-i

A→ B

W.r.t. the redex defined above, R converts to R′ which is obtained by applying
the following three steps to R:

– replace all occurrences of σ2 with δ1;
– replace all occurrences of σ4 with δ2.
– replace all remaining occurrences of σ3, that is those not occurring as

major premises of y:→-e, with δ3.
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To see that in both cases R′ is also a hyper natural deduction, we define a new
label order �′ and consider again all conditions. Using Lemma 15 we can assume
that � puts the CDLabels of the connected component of σ1 in Cut(Drop(R, y))
before the remaining labels. From this we obtain �′ by replacing x: Spt∆,Γ in �
with x: Spt(Γ,Π),∆ for Case I), and for Case II) with x: SptΠ,(Γ,∆) and inserting
directly after it the new label z: SptΓ,∆.
X -conditions 1 (dual labels), 2 (consistent labels), 3 (consistent split), 4 (label

order) and 7 (one class) follow similar as in the case for com-perm conversion.
X -condition 5 (indep. premises) also follows immediately, because connected
components when computed over R′ at most can get smaller compared to being
computer over R.

So let turn to X -condition 6 (contr. premise), and consider contractions c
and c′ in R′ such that c �′ c′. With a similar analysis as in the case for com-
perm conversion, we see that if there is no path in Cut(R) from c or c′ to the
root of σ1, then it is obvious that in G′ := Cut(Drop(R′, {c, c′})) we are not
destroying dependencies between premises of c, because connected components
stay the same.

So assume that the root of σ1 can be reached from c or c′ in Cut(R).
Then the connected component of σ0 in G′ is smaller than computed in G :=
Cut(Drop(R, {c, c′})). Assume for sake of contradiction, that the premises of c
are disconnected in G′. Then there must be a path in G′ from the premises of
c which passes through the root of σ0 in δ1 or δ3, and corresponds to a path p
in G which passes through the root of σ0 in σ2 respectively σ3.

If c would not be in the connected component of σ1, we obtain that c′ is
in the connected component of σ1, by assumption that the root of σ1 can be
reached from c or c′. As those CDLabels in the connected component of σ1 are
put before others and c �′ c′, we must then have that c is also in the connected
component of σ1, a contradiction. Thus c is in the connected component of σ1
w.r.t. Cut(Drop(R, y)).

So the latter together with that both premises of c are connected to the
root of σ3 in G, we obtain that either the premises of y: →-e are dependent in
Cut(Drop(R, y)), or we have created a regular cycle in Cut(R), contradicting
our assumption that X -condition 6 (contr. premise) fails in G′.

In summary, we obtain that the new conversions transform hyper natural
deductions into hyper natural deductions.

Proposition 5. Contr-perm, com-perm and split-perm conversions convert HNGL
deductions into HNGL deductions, with the property that the converted hyper
natural deduction derives a structural subhypersequent of the original hyper nat-
ural deduction.

7.2 Normalization

Before we turn to the central theorem in this section on normalization, we need
to develop an appropriate notion of branch for hyper natural deductions, taking
into account that minor premises of communications can jump between subtrees.
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Definition 31. Let R be a hyper natural deduction, and G = (V,E, L, f) its
associated graph, with tree edges →t and cross edges →c. The branch relation
→b for R is defined as a binary relation on V in the following way: u →b v iff
either v is not a communication and u →t v, or v is a communication and for
some w∈V , u→t w →c v.

Lemma 16. Let (R,�) be a hyper natural deduction, and →b its branch rela-
tion. Then (R,→b) is a directed acyclic graph.

Proof. Assume there would be a cycle in (R,→b). This cycle must contain at
least two nodes carrying distinct dual labels, which cannot be ordered wrt. � as
the latter has to respect tree edges. ut

Definition 32. Let (R,→b) be the branch relation for a hyper natural deduc-
tion R. The branches through R are the dipaths wrt. →b of maximal length.

Let b and b′ be two branches, then we say that b is left of b′, b lof b′, iff
there exists a node v on b with s and t two of v’s premises such that v is not
a contraction rule, s is left of t (as premises of v), s occurs in b, and b′ has a
common node with [t]Cut(Drop(R,v)).

A branch b is a rightmost branch of a set of branches B iff it is not left of
any other branch in B.

To illustrate the definition of branches, consider the following hyper natural
deduction R:

A B1:∧-i
A ∧B3:Com
C → C

D4:→-i
A ∧B → D

[C]
2:→-i

C → C
5:Com A ∧B6:→-e

D

The associated graph is given by:

1:∧-i 2:→-i

3:Com 4:→-i 5:Com

6:→-e

The branches through R are b1 := 1→b 5→b 6, b2 := 2→b 3 and b3 := 4→b 6.
b3 is left of b1 and b2, and b1 and b2 are incompatible w.r.t. “left of”. Thus b1
and b2 are rightmost branches in {b1, b2, b3}.

Lemma 17. Let (R,→b) be the branch relation for a hyper natural deduction R.
Any non-empty set of branches has a rightmost element.

Proof. Assume a non-empty finite set of branches B of a hyper natural de-
duction R does not contains a rightmost element. Then we have a sequence of
branches b1, . . . , bk+1 = b1 in B with bi lof bi+1. W.l.o.g. assume that the cut
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operation does not cut any edge on the first branch, using Lemma 11. For each i,
let vi be the node in bi which certifies bi lof bi+1 in the definition of “left of”, and
ti be the premise of vi such that bi+1 has a common node with [ti]Cut(Drop(R,vi)).
Hence there is a path in Cut(Drop(R, vi)) from ti to some node in bi+1 — let
wi+1 be the first node on this path which is in bi+1. Let pi be the path from
vi − ti to wi+1 following the latter described path.

Let qi be a path in Cut(R) which goes from wi to vi — as premises of
contractions are connected in Cut(R), this can be done even in the case that
edges on bi are removed by the cut.

If w1 is above v1 on b1, choose q̄1 as the path from w1 to s1 along b1. Then
we can form the following cycle in Cut(R):

v1 ←t t1 − p1 − w2 − · · · − w1 − q̄1 − s1 →t v1

Otherwise, if w1 is below v1 on b1, choose w̄1 as the penultimate node on pk,
and p̄k as its first part: vk − p̄k − w̄1 — we have w̄1 →t w1 or w̄1 →c w1 as w̄1

is not on b1. Also let w+
1 be the predecessor of w1 on b1, i.e. w+

1 →t w1, and
choose q̄1 as the path from w+

1 to v1 along b1. Then we can form the following
cycle in Cut(R):

w1 ←t w
+
1 − q̄1 − v1 − p1 − · · · − p̄k − w̄1 →tc w1

In both cases we can use Lemma 10 to find a regular cycle in Cut(R), con-
tradicting Theorem 4. ut

When applying conversions, several copies of the same subprederivation may
be produced, like in the case of com-perm-conversion. Segments contained in
them will have identical label sequences. Thus, for the proof of normalization
those segments are counted only once, whose sequence of labels of rules inferring
consecutive elements are identical. To capture this, we define the notion of the
label sequence of a segment.

Definition 33. Let R be a hyper natural deduction, and s = A1, . . . , Ak a seg-
ment in R of formula A. With s we associate a sequence of rule occurrences
r2, . . . , rk in R such that Ai−1 is a minor premise of ri, and Ai the conclusion
of ri. Let ni be the label of ri, for i = 2, . . . , k. Then we associate with s the
sequence of labels n2, . . . , nk, which is the sequence of labels of rules associated
with s. The length of this sequence of labels is k.

A critical label sequence in R is the sequence of labels of a critical cut in R.

We are now ready to proof our main theorem on normalization.

Theorem 7 (Normalization). Each HNGL deduction R reduces to a normal
HNGL deduction.

Proof. We adapt the proof of normalization [TS00, Theorem 6.1.8] to our setting.
It is an extension of [TS00] in the sense that they are the same when restricted
to NJ.
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We use main induction on the cut-rank n of R, with side-induction on m,
the sum of lengths of all critical label sequences in R.

By a suitable choice of the critical cut to which we apply a conversion we
can achieve that either n decreases, or that n remains constant but m decreases.
Let us call s a t.c.c. (top critical cut) in R if no critical cut occurs in a branch
above s. Choose a rightmost t.c.c. s. Applying a conversion to s, the resulting
R′ has a lower cut-rank (if s has length 1, and it is the only maximal segment
in R), or has the same cut-rank but a lower value for m.

We discuss two cases in detail, which contain typical construction steps oc-
curring in conversions during normalisation. These cases are →- and com-perm
conversion.

For the case of a →-conversion redex of the form

[A]1

σ1

B1x:→-i A→ B

σ2
s
Ay:→-e

B

we observe that by definition of “rightmost” σ2 and its connected component
in Cut(Drop(R, y)) has no common node with any other critical segment. Also
the additional contractions used to reconnect copies of connected components
of σ2 are not impacting any other critical segment for the same reason. Thus
reducing this redex does not impact the length of any other critical segments,
but eliminates the current one.

Consider the case of a communication redex of the form

∆
σ1

Cx: ComC,A→B
A→ B

Π
σ2

Ay:→-e
B

where also

Γ
σ0

A→ Bx̄: ComA→B,C
C

is occurring in R. The conversions are defined via the following prederivations:

µ:

Γ
σ0

A→ B

Π
σ2

A→-e
B
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δ1:

Γ, 1[Π]

µ

Bz:1 SptΓ,Π Bx̄: ComB,C
C

δ3:

∆
σ1

Cx: ComC,B
B→-i

A→ B

δ2:

1[Γ ], Π

µ

Bz̄:1 SptΠ,Γ B

∆
σ1

Cx: ComC,B
Bcontr

B

The critical segment under consideration involves A→ B, thus the repetition
of B in δ1 and δ2 has no impact on the length of a critical segment. C may occur
in another critical segment containing the communication. This is harmless as the
length of those critical segments does not change. Furthermore, the duplication
of derivations like µ does not effect the length measure as it is defined over label
sequences, which do not change by performing this conversion. ut

7.3 Subformula property

We adapt the notion of track from [TS00, Def. 6.2.2], so that tracks for hyper
natural deductions may span communication rules, thus may jump from one
prederivation to another. For two formula occurrences A and B, we say that
A is premise of B if there is a rule occurrence r such that A is a (major or
minor) premise of r, and B is the conclusion of r. In this case we say that B is a
successor of A. Observe that in case of A being the premise of a communication,
the successor of A is the conclusion of a dual communication, thus jumps from
one branch containing A to another.

Definition 34 ([TS00, Def. 6.2.2]). A track of a hyper natural deduction R
is a sequence of formula occurrences A0, . . . , Ak such that

1. A0 is a top formula occurrence in R not discharged by an application of
del-rule;

2. Ai for i < k is not the minor premise of an instance of →-e, and either
(a) Ai is not the major premise of an instance of a del-rule, and Ai+1 is

successor of Ai, or
(b) Ai is the major premise of an instance u of a del-rule, and Ai+1 is an

assumption discharged by u;
3. Ak is either

(a) the minor premise of an instance of →-e, or
(b) the conclusion of a root node in R, or
(c) the major premise of an instance u of a del-rule in case there are no

assumptions discharged by u.
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We repeat the definitions of strictly positive subformula and strictly positive
part from [TS00]. A formula A is a strictly positive subformula of itself. If B∧C
or B∨C is a strictly positive subformula of A, then so are B and C. If B → C is
a strictly positive subformula of A, then so is C. A strictly positive subformula
of A is also called a strictly positive part (s.p.p.) of A.

The following proposition is literally the same as in [TS00, Prop. 6.2.4]. Again
observe that tracks may span communication rules, thus may jump from one
prederivation to another. A track below is written as τ = s0, . . . , sk using seg-
ments instead of formula occurrences in the obvious way.

Proposition 6 ([TS00, Prop. 6.2.4]). Let R be a normal hyper natural de-
duction, and let τ = s0, . . . , sk be a track in R. Then there is a segment si
in τ , the minimum segment or minimum part of the track, which separates two
(possibly empty) parts of τ , called the E-part (elimination part) and the I-part
(introduction part) of τ such that:

1. for each sj in the E-part we have j < i, sj is a major premise of an E-rule,
and sj+1 is a s.p.p. of sj, and therefore each sj is an s.p.p. of s0;

2. for each sj in the I-part we have j > i, and if j 6= k, then sj is a premise of
an I-rule and a s.p.p. of sj+1, so each sj is a s.p.p. of sk;

3. if i 6= k, then si is a premise of an I-rule or a premise of ⊥i and is an s.p.p.
of s0;

Proposition 7. In a normal HNGL deduction, each formula occurrence be-
longs to some track.

Proof. By induction on the height of normal deductions. ut

Before being able to prove the subformula property, we have to choose a nice
order on labels which orders also all labels on tracks.

Proposition 8. Let R be a hyper natural deduction. We can choose a total order
� on CDLabels(R) modulo duality such that X -condition 4 (label order) extends
to tracks: (R,�) is a hyper natural deduction, and for any track in R, the labels
in CDLabels(R) of rules on this track are ordered according to �.

Proof. Using Lemma 15, we can assume that for any del-rule, the labels of the
connected component of its major premise are ordered before all other labels,
w.r.t. �. To see this, let r be an occurrence of ∨-e, with major premises u.
According to Lemma 15, we can choose � such that the labels of [u]Cut(Drop(R,r))

come before the rest. Then it is easy to see that tracks respect this ordering: if the
track follows the tree order then this follows from X -condition 4 (label order);
if it jumps to another prederivation then this happens due to a communication
rule, which extends the tree order; and if it jumps within a prederivation, this
is from a major premise of some del-rule r to one of the discharged assumptions
of r, but in this case the choice of � enforces that the order is respected. ut
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Each track decomposes into track-parts which do not span communications.
That is, for a track A0, . . . , Ak in a hyper natural deduction R we can find
i0 = −1 < i1 < · · · < i` < i`+1 = k such that within each part Aij+1, . . . , Aij+1 ,
j = 0, . . . , `, consecutive formulas are not minor premise and conclusion of com-
munication, but Aij is minor premise of some communication, and Aij+1 its
conclusion, j = 1, . . . , `. Thus track-parts may start at top of R, or at conclu-
sions of communications, and end in conclusions of roots of R, or minor premises
of →-e, or minor premises of communications.

Definition 35. Let (R,�) be a hyper natural deduction, and let c1, . . . , ck be
the communication labels in R. Without loss of generality assume that they form
a decreasing sequence w.r.t. �, that is c1 � c2 � · · · � ck.

A track-part of order (c1, 0) is a track-part ending in a conclusion of a root
in R, and starting at the top of R or at a conclusion of a rule labeled c1 or c̄1.

A track-part of order (ci, 0), for i > 1, is a track-part ending in a conclusion
of a root in R and starting at a conclusion of a rule labeled ci or c̄i, or a track-
part ending in a premise of some rule labeled cj or c̄j for j < i, and starting at
the top of R or at a conclusion of a rule labeled ci or c̄i.

A track-part of order (ci, n+1), for i ≥ 1, is a track-part ending in a minor
premise of an →-e application with major premise belonging to a track-part of
order (ci, n), and starting at the top of R or at a conclusion of a rule labeled ci
or c̄i.

Theorem 8 (Subformula Property). Let R be a normal hyper natural de-
duction with derived hypersequent H. Then each formula in R is a subformula
of a formula in H.

Proof. Let (R,�) be a normal hyper natural deduction, and let c1, . . . , ck be the
communication labels in R, ordered as c1 � c2 � · · · � ck. The conclusion of
each communication rule in R occurs either in an E-part or an I-part of some
track in R (for this we count the occurrences in the minimal part to the E-part.)
Let us call those occurring in E-part E-com formulas, and those in I-parts I-com
formulas. Let E be the set of all E-com formulas occurring in R.

Claim 1: Each formula in R is a subformula of a formula in H or E .
We prove this claim for track-parts of order (ci, n), by main induction on i

and side induction on n.
For example, let A0, . . . , Ak be a track-part of order (c1, 0), and assume that

A0 is the conclusion of c1 and Ak at a root of R. Then Ak is occurring as a
formula in H. If A0 is a I-com formula, then all formulas occurring on this track-
part are subformulas of Ak, hence of H. If A0 is an E-com formula, then all
occurring on this track-part are subformulas of either A0, hence of E , or of Ak,
hence of H.

As another example consider a track-part A0, . . . , Ak of order (ci, 0), i > 1,
and assume that A0 is at the top of R and Ak a premise of cj for j < i. Hence all
formulas on this track are either subformulas of A0, or subformulas of Ak. The
formula Ak also occurs as conclusion of c̄j . If this occurrence is a I-com formula,
then it is subformula of H ∪ E by i.h. If it is an E-com formula, then it clearly
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is in E . If A0 is not discharged, then it is in H. If it is discharged, then this
must have happened through an I-rule in a way that A0 is part of its conclusion,
where the I-rule occurred within the track, or below it. If within the track, then
A0 is a subformula of Ak. If below the track, then it has already been shown to
be subformula of H ∪ E by i.h.

Claim 2: Each formula in E is a subformula of a formula in H.
Let B1, . . . , Bm be the formulas in E , and nj the communication label of

which Bj is the conclusion. Without loss of generality assume nj ≺ nj+1. We
prove that Bj is a subformula of a formula in H by induction on j. Consider a
track-part ending in Bj . As Bj is a E-com formula, it is a subformula of the first
formula in the track-part. If the first element in the track-part is on top of R
then we already know that it is a subformula of a formula in H by Claim 1. If it
is a Bj′ for j′ < j, then we obtain this by i.h. ut

8 Conclusion

While we have achieved our main aim of giving a system of Hyper Natural De-
duction for Gödel Logic which admits a normalisation procedure extending the
usual one for Natural Deduction, many questions remain open: First of all our
long term aim to provide a Curry-Howard style connection to some form of par-
allel λ-calculus is still outstanding. Procedural normalization as achieved in this
paper is a main step in the direction of a suitable Curry-Howard correspondence.

Another open area is to study a normalisation procedure on the hyper-rule
level based on the definition of HNGL in Section 3, and to describe its relation-
ship to cut-elimination for the Hypersequent Calculus GLC. A related question
is whether the normalization procedure described in this paper could be resem-
bled on the hyper-rule level.
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A Technical Appendix

This technical appendix collects the following items: Lemmata only stated in
Section 6 are restated and proven here. The restated lemmata are numbered as
in the main part. Further lemmata and definitions needed for their proofs are
also included, and are numbered within the appendix.

Lemma A.1. Let R be an X deduction, and v and v′ be two occurrences of
rules in R, such that v′ is reachable by tree edges from v, that is, v →∗t,R v′.
Then Drop(R, v) is a subgraph of Drop(R, v′), Drop(R, v) ⊆ Drop(R, v′).

Proof. Let n be label of v and m the label of v′. The only complication that
might occur is that the Drop operation removes all occurrences of rules labeled
with n and m, respectively. But by X -condition 2 (consistent labels) we see that
every occurrence of a rule labeled with m carries an occurrence of a rule labeled
with n in the subprederivation leading up to it. The Drop operation removes
at least all vertices reachable via tree edges, so we see that the set of vertices
removed for Drop(R,m) is a subset of Drop(R,n), which proves the lemma. ut

Lemma A.2. Let R be an X deduction. Any dipath in R is acyclic.
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Proof. Observe that by X -condition 4 (label order), if r →∗t r′, then r � r′.
Furthermore, since � is an order modulo duality, r →∗tc r′ also implies that
r � r′. Assume that there is an cyclic dipath p of the form v →∗tc v in R. So
there exists u and w which carry labels from DLabels(R) such that the cycle
given by p contains

u→∗t v →∗t w.
Thus, u→∗t w and we obtain u � w. We also obtain w →∗tc u as part of dipath p,
thus w � u, contradiction as u and w are distinct. ut

Next we turn our attention to connected components: When testing for X -
conditions 5 (indep. premises) and 6 (contr. premise), we only consider the con-
nected components of the premises of a non-unary logical rule. We want to
show that in fact all the vertices in the subprederivation rooted in a rule occur-
rence r are in the same connected component. These connected components are
computed in Cut(Drop(R, r)), though, which means we have to be careful that
neither the Cut nor the Drop-operation destroys this aim.

Lemma A.3. Let R be in X . Let r, s and v be rule occurrences in R, such
that s is a premise of rule r, that is s→t,R r. If s is reachable in R by tree edges
from v, then it is also reachable in Drop(R, r) by tree edges from v, i.e.,

v →∗t,R s→t,R r ⇒ v →∗t,Drop(R,r) s

In other words, the Drop operation does not delete tree edges above the rule
occurrence that is dropped. This is a first step into showing later that certain
cycles cannot happen in X deductions.

Proof. Assuming that v →∗t,R s →t,R r, let us write the dipath from v to r in
more details:

v = v0 →t,R v1 →t,R . . .→t,R vj →t,R . . .→t,R vk = s→t,R r

If v →∗t,Drop(R,r) s does not hold, some vj must be reachable from r by a dipath
in R. Thus we obtain a proper loop in R via vj →∗t,R s →t,R r →∗R vj , contra-
dicting the previous Lemma A.2. ut

Lemma 8. Let R be in X . Let r, s and v be rule occurrences in R, such that s
is a premise of rule r, that is s→t r. If s is reachable in R by tree edges from v,
then v is in the connected component of s in Cut(Drop(R, r)):

v →∗t s→t r =⇒ v ∈ [s]Cut(Drop(R,r)).

In other words, everything that is above (wrt tree edges) the premise of a
rule falls into the same connected component in Cut(Drop(R, r)).

Proof. By the previous lemma we obtain that v →∗t,Drop(R,r) s. What remains
to show is that even if we remove some of the tree edges leading to contrac-
tions, we still can reach s from v via ↔Cut(Drop(R,r)), which is equivalent to v ∈
[s]Cut(Drop(R,r)). Since v →∗t,Drop(R,r) s there exists a dipath

v = v0 →t,Drop(R,r) v1 →t,Drop(R,r) . . .→t,Drop(R,r) vk = s
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We now show by induction on the length of the chain that all the vj are in the
connected component of s in Cut(Drop(R, r)). If v = v0 = vk = s the fact is
obvious. Otherwise assume that we already know that vj+1 ∈ [s]Cut(Drop(R,r))

and we want to show that the same holds also for vj .
If vj+1 is not a contraction rule, then Cut does not remove edges leading

to vj+1, hence vj ∈ [s]Cut(Drop(R,r)) follows by induction hypothesis.
If vj+1 is a contraction we know that there are two predecessors: vj and

v′. The cut operations only cuts one of the two edges (v′, vj+1) or (vj , vj+1).
In the former case we already have vj →t,Cut(Drop(R,r)) vj+1 and by induction
hypothesis we obtain that vj ∈ [s]Cut(Drop(R,r)).

Consider now the latter case: According to X -condition 6 (contr. premise)
we know that

[vj ]Cut(Drop(R,vj+1)) = [v′]Cut(Drop(R,vj+1)),

that is there is a path p in Cut(Drop(R, vj+1)) from vj to v′. Note that we are
applying Drop to vj+1 and not r. Using Lemma A.1 we see that Drop(R, vj+1) ⊆
Drop(R, r) and thus also

Cut(Drop(R, vj+1)) ⊆ Cut(Drop(R, r)).

As a consequence, the path p is also in Cut(Drop(R, r)).
We consider the following path in Cut(Drop(R, r)): vj−p−v′ →t,Cut(Drop(R,r))

vj+1, and obtain again by the induction hypothesis that vj ∈ [s]Cut(Drop(R,r)),
which completes the proof. ut

We will show now that some information on the order of rules other than
communication, split and contraction rules can be derived. For this we define an
extension of the total order on CDLabels(R).

Definition A.1. Let (R,�) be in X . We extend the total order � on CDLabels(R)
with two elements −∞ and +∞ in the natural way as a new minimum and max-
imum, respectively, and define min ∅ = +∞ and max ∅ = −∞.

For each label n ∈ Labels(R) we define two subsets n↑ and n↓ of DLabels(R)
as follows:

n↑ = {d ∈ DLabels(R) | ∃u, v ∈ R, v:n→∗t,R u:d}
n↓ = {d ∈ DLabels(R) | ∃u, v ∈ R, u:d→∗t,R v:n}

That is we collect in n↑ all dual labels that are reachable with tree edges from
any occurrence of a rule labeled with n, and conversely for n↓.

Furthermore, we define labels n+ and n− ∈ DLabels(R) as follows:

n+ = minn↑ n− = maxn↓

Lemma A.4. Let (R,�) be in X and v a rule occurrence in R with n label of
v. If n ∈ DLabels(R) then n− = n+ = n. If n /∈ DLabels(R) then n− ≺ n+.
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Proof. If n ∈ DLabels(R), we obtain using X -condition 4 (label order) that
n+ = minn↑ = n and n− = maxn↓ = n.

In case n /∈ DLabels(R) we obtain, since n+ = minn↑, that there are rule
occurrences v:n and v′:n+ in R such that v →∗t,R v′. Similarly, there are rule
occurrences u:n and u′:n− in R such that u′ →∗t,R u. Due to X -condition 2
(consistent labels), there has to be another rule occurrence v′′ that is labeled
with n− such that v′′ →∗t,R v. Thus we obtain

v′′ →∗t,R v →∗t,R v′

and because v is not a dual label, there has to be at least one tree edge in the
above chain, from which we obtain that n− ≺ n+ using X -condition 4 (label
order).

We assumed above that both n↑ and n↓ are non-empty; the case that some
are empty follows immediately from the definitions of n+ and n+. ut

Lemma 9. Let R be a prehyper deduction, and let G = Cut(R). Assume that
there are vertices x1 . . . , x`, y1, . . . , y` in G carrying dual labels, such that xi ↔∗t
yi and yi ↔c xi+1, for i = 1, . . . , `, where we let x`+1 denote x1. Assume that
the set of labels of the xi, yi contains at least three elements (that is there are at
least two different labels modulo duality). Furthermore, if xi is reachable from yi
via tree edges, and xi 6= yi, then xi is not a splitting label; similar for the roles
of yi and xi swapped.

Then R is not an X deduction.

Proof. The reachability relations (like →∗t ) are always over G unless otherwise
indicated. We show the theorem by induction on `. For sake of contradiction we
assume that R is in X .

Our assumption, that the set of labels of the xi, yi contains at least three
elements, implies that ` > 1. Let ui be the first with respect to →t such that
xi →∗t ui and yi →∗t ui, for i = 1, . . . , `. Let ri be the label of ui. Recall that r+
for non-dual labels indicates the minimal dual label with respect to→t after any
occurrence of a rule labeled r, see Definition A.1. Also recall that d+ = d for
d ∈ DLabels(R).

Consider r+i : If r
+
i 6= +∞, then by definition we only know that there are

occurrence v:ri and u+i :r+i such that v →∗t u+i . By X -condition 2 (consistent
labels) there are rules x′i and y′i with the same labels as xi and yi, respectively,
occurring in the tree above v. We can obtain a chain of the same length via the
tree containing x′i, y′i, v, and u

+
i . Thus, we assume in the following that ui →∗t u+i ,

that is the vertex that is labeled with r+i is reachable from ui with tree edges.
We are in the following situation:
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x1

u1

y1

u+1

∗t ∗
t

∗t

x2

u2

y2

u+2

∗t ∗
t

∗t

. . .

x`

u`

y`

u+`

∗t ∗
t

∗t

If two of the r+i different from +∞ are the same, then we can obtain a shorter
cycle by omitting the part between two occurrences and apply the induction
hypothesis. If two of the r+i equal +∞, then we obtain a contradiction to X -
condition 5 (indep. premises) for either of the corresponding u+i ’s. Thus, we can
assume that the r+i are pairwise distinct.

Let m be maximal amongst all r+i (a second maximal element may be m̄).
By the previous paragraph, there is exactly one r+i with m = r+i . Without loss
of generality assume that m = r+1 .

Case 1) If m is the label of y1, then y1 = u1 = u+1 since m is the label of u+1 .
Furthermore, due to the assumption of the Theorem, m̄ is the label of x2. If m
is maximal, so is m̄, thus x2 = u2 = u+2 .

If x1 = y1 then m̄ would have to occur twice, which we have excluded above.
Similarly if x2 = y2. Thus we can choose v and w as premises of y1 and x2 such
that x1 →∗t v →t y1 and y2 →∗t w →t x2, obtaining the following situation:

x1 ȳ2

v w

y1:m x2:m̄

∗t
t

∗t
t

By assumption,m cannot be a splitting label, so it has to be a communication
label.

We first consider ` = 2: In this case there are two pairs of dual labels
(x1, y2) and (x2, y1). But then v and w are in the same connected component
in Cut(Drop(R,m)) due to x1 being dual to y2, contradicting X -condition 5
(indep. premises).

If ` ≥ 3 we show that u3,. . . ,u` are in Cut(Drop(R,m)), hence the connected
components of v and w in Cut(Drop(R,m)) are the same, contradicting again
X -condition 5 (indep. premises).
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To show the above, assume without loss of generality that u3 6∈ Cut(Drop(R,m)).
Thus there is another rule occurrence x:m or x:m̄ such that x →∗R u3 →∗t,R
r+3 :u+3 . Thus we have that m ≤ r+3 , which is in contradiction to the maximality
and uniqueness of m.

Case 2) If m is the label of x1, then m̄ is the label of y` and a similar proof
as in Case 1) applies.

Case 3) If m is neither the label of x1 nor y1, then we are in the case that u1
is a non-unary logical rule, and m is the label of u+1 . Let v and w be two premises
of u1 such that x1 →∗t v →t u1 and y1 →∗t w →t u1. Note that u1 could be a
ternary logical rule and we have to choose the correct premises.

x1

v

u1

w

y1

u+1

∗
t ∗

t

t t

∗t

We show u2,. . . ,u` are in Cut(Drop(R,m)), hence the connected components
of v and w in Cut(Drop(R,m)) are the same, contradicting again X -condition 5
(indep. premises).

To show the above, assume without loss of generality that u2 6∈ Cut(Drop(R,m)).
Thus there is another rule occurrence x:m such that x→∗R u2 →∗t,R u

+
2 :r+2 . Thus

we have that m ≤ r+2 , which is in contradiction to maximality and uniqueness
of m.

This completes the proof. ut

Lemma 10. Let R be in X . Let p be an irregular path in Cut(R), such that
neither the first step is a →t-step, nor the last a ←t-step.

Then we can find a shorter regular path p′ in Cut(R) with the same start and
end vertex as p.

Proof. The proof is by induction on the number of irregular steps within an
undirected path. In the critical case, assume that the first occurrence of an
irregular step on some path p is of form 3 in Definition 24:

u1 − p1 − ui →t ui+1:s↔c ui+2:s̄− p2 − uk

for some i and splitting label s. As the first step in p is not a →t-step, u1 and
ui are in different trees in Cut(R). Hence there must be some j < i such that p1
has the form

u1 − p′1 − uj ↔c uj+1 →∗t ui →t ui+1

By X -condition 3 (consistent split), the derivations leading to ui+1 and ui+2 are
the same. Hence we can find

u′j+1 →∗t u′i →t ui+2
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such that uν and u′ν carry the same label, for ν = j+1, . . . , i. Thus

u1 − p′1 − uj ↔c u
′
j+1 →∗t u′i →t ui+2

is also a path in Cut(R), containing one less irregular step than p. ut

Lemma A.5. Let R be in X . Let u and r be rule occurrences in R, such that
there is a undirected path connecting u and r in Cut(R).

Then there is a rule occurrence r′ in R (r′ may be the same as r) carrying
the same label as r, such that u and r′ are connected in Cut(R) with a regular
path.

Proof. Let p be the path in Cut(R) connecting u and r: r− p−u. We can prove
by induction on the number of irregular steps within p that we can find another
rule occurrence r′ in R carrying the same label as r, such that u is reachable
from r′ in Cut(R) with a regular path.

In the critical case, assume that the first occurrence of an irregular step on p
happens in the same tree in Cut(R) in which r occurs – the case that it is
occurring in a different tree is dealt with a proof similar to the previous one.
That is, p is of the form

r →∗t u1 →t u2:s↔c u3:s̄− p′ − u

for some splitting label s (the case that the first irregular step is based on
communication is done similarly).

By X -condition 3 (consistent split), the derivations leading to u2 and u3 are
the same. Hence we can find

r′ →∗t u′1 →t u3

such that r and r′, and u1 and u′1, respectively, carry the same label. Thus

r′ →∗t u′1 →t u3 − p′ − u

is also a path in Cut(R), containing one less irregular step than p. ut

Lemma 11. The X conditions are preserved if the Cut operation cuts randomly
either the left or right upper edge of a contraction rule occurrence, as long as
contraction rule occurrences with the same label are cut on the same side.

Proof. We show that if we switch the cutting position of all occurrences of con-
tractions with the same label c to a different side, the property of being in X
is preserved. The only two properties we need to check are those where the
Cut operation is employed, that is conditions 5 (indep. premises) and 6 (contr.
premise).

Assume that the contraction has premises a and b and that the cut operation
drops the edge (a, c). In the following we will indicate with Cut′ the graph where
we drop (b, c) instead of (a, c) for all occurrences of c.
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For X -condition 5 (indep. premises), we consider a non-unary logical rule r
with premises s and t, and assume that s and t are connected in Cut′(Drop(R, r)),
but not connected in Cut(Drop(R, r)). Thus, there is a path p1 in Cut′(Drop(R, r))
from t to a: t − p1 − a, and another path p2 in Cut′(Drop(R, r)) from c to s:
c − p2 − s such that their combination exhibits the dependency of s and t
in Cut′(Drop(R, r)) via t− p1 − a→t c− p2 − s.

a b s t

c

·

r

/ \
cut cut’ p2

p1

Furthermore, due to X -condition 6 (contr. premise), there is a path p3 in Cut(Drop(R, c))
from a to b: a− p3 − b.

a b s t

c

·

r

p3

First assume that p3 is also a path in Cut(Drop(R, r)). Then we can combine
the paths to t−p1−a−p3− b→t c−p2− s which is a path in Cut(Drop(R, r)),
contradicting the assumption that s and t are not connected in Cut(Drop(R, r)).

If this is not the case, there is a rule occurrence u in p3 such that r →∗Cut(R) u,
as this is the part that is dropped to obtain Drop(R, r). Choose u and v such
that p3 is of the form a − p′3 − v →t u − p′′3 − b or b − p′3 − v →t u − p′′3 − a,
and p′3 is a path in Cut(Drop(R, r)), which is possible since a, b, and c are
in Cut(Drop(R, r)).

a b s t

c

·

r

u

v

p1

p′3
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or

a b s t

c

·

r

u

v

p′3

p2

By Lemma A.5 we can assume that the path from r to u in Cut(R) is regular,
because if not then we can find some r′ carrying the same label as r, such that
u can be reached from r′ via a regular path. Then consider the same situation
with the premises of r′ in place of s and t.

As v is not reachable from r in Cut(R), u must be a non-unary logical rule,
or communication. Let w be the other premise of u on path from p′′3 . Then v
and w are in the same connected component in Cut(Drop(R, u)) contradicting
X -condition 5 (indep. premises), either via w − r − t − p1 − a − p′3 − v or w −
r − s− p2 − c− b− p′3 − v.

Consider now X -condition 6 (contr. premise), and let c1 and c2 be further con-
traction occurrences with c1 � c2, s and t the premises of c1 such that s and t are
connected in Cut(Drop(R, {c1, c2})) but not in Cut′(Drop(R, {c1, c2})). Thus,
there are paths p1 and p2 in Cut′(Drop(R, r)) connecting s and t to b and c such
that their combination exhibits the dependency of s and t in Cut(Drop(R, r))
via either t− p1 − b→t c− p2 − s or s− p1 − b→t c− p2 − t.

a b s t

c

·

c′

/ \ /
cut cut’

p2

p1

or

a b s t

c

·

c′

/ \ /
cut cut’

p2

p1

If c � c2, X -condition 6 (contr. premise) yields a path p3 in Cut(Drop(R, {c, c2}))
from a to b: a− p3− b. Similar to the previous case we obtain a contradiction as
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p3 is not a path in Cut(Drop(R, {c1, c2})), and hence there is some u in p3 such
that c1 →∗Cut(R) u — c1 now plays the role of r in the previous case.

Otherwise, c2 ≺ c, and we can use X -condition 6 (contr. premise) again to
find a path p3 from s to t in Cut(Drop(R, {c1, c})). Obviously p3 is also a path in
Cut′(Drop(R, {c1, c})) as c is dropped. p3 is not a path in Cut′(Drop(R, {c1, c2}))
as s and t are not connected in this graph by assumption. Similar to the previous
cases, we can find u and v on p3 such that p3 is of the form s−p′3−v−u−p′′3 − t
or t − p′3 − v − u − p′′3 − s, p′3 is a path in Cut(Drop(R, {c, c1, c2})) and p′′3 is a
path in Cut(Drop(R, u)).

s t

c1

v

u

c2

p′3p′′3

or

s t

c1

v

u

c2

p′′3

p′3

As before, we can assume that u is a non-unary logical rule, or communica-
tion, and u’s premises are in the same connected component in Cut(Drop(R, u))
contradicting X -condition 5 (indep. premises), either via v − p′3 − s− p2 − p1 −
t− p′′3 − u or v − p′3 − t− p1 − p2 − s− p′′3 − u. ut

Lemma A.6. Let R be in X , and r be any rule occurrence, and s one of r’s
premises. Let C be the connected component of s in Cut(Drop(R, r)), C =
[s]Cut(Drop(R,r)). Let c ∈ C be a contraction occurring in C. Denote the premises
of c with a and b, and assume that b ∈ C but a /∈ C. This in particular implies
that edge (b, c) is present in Cut(R), but (a, c) is removed.

Any path from s to c in Cut(Drop(R, r)) contains the edge (b, c).

Proof. Assume otherwise. Then there is a path p1 from s to c in Cut(Drop(R, r))
which does not contain the edge (b, c). By X -condition 6 (contr. premise) there is
a path p2 in Cut(Drop(R, c)) connecting a and b. p2 is not a path in Cut(Drop(R, r))
as a /∈ C. Furthermore, s is not reachable from c as otherwise Cut(Drop(R, c))
would be a subgraph of Cut(Drop(R, r)), contradicting that p2 is a path in Cut(Drop(R, c))
but not in Cut(Drop(R, r)).

Thus, we obtain a path p3 connecting b and s in Cut(Drop(R, c)). Further-
more, there are vertices u and v such that p1 is of the form s−p′1−v →t u−p′′1−c,
u is reachable from c in Cut(R) and p′1 is a path in Cut(Drop(R, c)).
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cut

p′′1
p3

p′1

As in the proof of the previous theorem, u can be chosen to be a non-unary
logical rule, or communication. Let w be another premise of u besides v, which
is reachable from c. Then v and w are in the same connected component in
Cut(Drop(R, u)) contradicting X -condition 5 (indep. premises), via the path
v − p′1 − s− p3 − b− c− p′′1 − w. ut

Lemma 12. Let R be in X , and r a rule occurrence in R. Let s be one of the
premises of r. Then there is an alternative cut operation Cut∗ such that the fol-
lowing property holds: Let C be the connected component of s in Cut∗(Drop(R, r)),
that is C = [s]Cut∗(Drop(R,r)).
(*) For any contraction c in R with premises a and b we have c ∈ C iff a, b ∈ C.

Proof. We construct a series of alternative cuts, where at each step exactly one
cut of a contraction is switched. Let C be the connected component of s at the
current step in Cut(Drop(R, r)). Let c1, . . . , cn be the set of contractions at the
current step that do not fulfill the property that ci ∈ C iff both premises of ci
are in C. We show by induction on ≺ that we can remove the contraction with
the smallest label amongst c1, . . . , cn by changing the cut for this contraction.
Without loss of generality assume c1 carries the minimal label of all the ci. In
particular, by X -condition 6 (contr. premise), the property (*) for any other
contraction c ≺ c1 is not effected by the choice which premise of c1 is cut.

By Lemma 11, we can change the cut side at c1, which we denote by Cut′,
obtaining again a X deduction. Using Lemma A.6, changing to Cut′ removes c1
from the connected component C ′ of s in Cut′(Drop(R, r)). Thus we obtain a
new set of contractions not satisfying (*) w.r.t. C ′ where the minimal label in
this set has increased. By finiteness this procedure terminates. ut
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