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Abstract

Inspired from Buchholz’ ordinal analysis of ID1 and Beckmann’s
analysis of the simple typed λ-calculus we classify the derivation lengths
for Gödel’s system T in the λ-formulation (where the η-rule is included).

1 Introduction

In this paper we develop a perspicuous method for classifying the derivation
lengths of Gödel’s T . Following ideas from [Be98] we assign canonically to
each term t ∈ T an expanded head reduction tree. The size of this tree, if it
is finite, yields a nontrivial bound on the maximal length of a reduction chain
starting with t, since the expanded head reduction trees represent worst case
reductions. Using ideas from infinitary proof theory we show that it is indeed
possible to define a finite expanded head reduction tree for any term of T . For
this purpose we enlarge the concept of expanded head reduction trees by a cut
rule and an appropriate miniaturization of Buchholz’ Ω-rule (for dealing with
terms containing recursors). The embedding and cut elimination procedure is
carried out by adapting Buchholz’ treatment of ID1 (cf. [Bu80]). To obtain
optimal complexity bounds even for the fragments of T we utilize a system T of
formal ordinal terms for the ordinals less than ε0 and an appropriate collapsing
function D : T → ω. To obtain an unnested recursive definition of D we
utilize crucial properties of the theory of the ψ function which is developed, for
example, in [W98].
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Compared with prior treatments of classifying the T -derivation lengths (cf.,
e.g., [W98, WW98]) the method described in this paper has the advantage that
the ordinals assigned to the terms of T are assigned in a more genuine and
intrinsic way.

2 Expanded head reduction trees

The derivation length d(r) of a term r is the longest possible reduction sequence
starting from r:

d(r) := max{k : ∃s ∈ T(V), r −→k s}.

In case of simple typed λ-calculus it is shown in [Be98] that computing the
expanded head reduction tree of r leads to estimations on d(r). Here we will
extend this approach to Gödel’s T . To this end we first have to fix what
the head redex of a term is. Of course the presence of the recursor R makes
thing much more complicated than in the case of simple typed λ-calculus. The
head redex can occur deep inside the term. E.g. let b := λx.λy.S y, then the
head redex of v := R(R((λx.S x)t)bc)de is (λx.S x)t, so v reduces with head
reductions in the following way:

v −→1 R(R(S t)bc)de −→1 R(bt(R tbc))de

−→2 R(S(R tbc))de −→1 d(R tbc)(R(R tbc)de)

The terms T(V) of Gödel’s T are build up from a set of variables V (count-
ably many for each type) and the symbols for the recursor R for any type, for
zero 0 of type 0 and for the successor S of type 0 → 0. We will decompose
every term t ∈ T(V) into its head redex redex(t) and the rest coatt(⋆) which
we call coat such that t = coatt(redex(t)). Not every head redex is reducible,
e.g. if redex(t) starts with a variable. In this case reductions are only possible
in all other terms which occur up to the depth of redex(t) and these reductions
can be considered in parallel. Therefore we collect those terms into a multiset
mat(t) called the material of t. Furthermore we split the redex of t into its
characteristic part rr(t) which is needed to define the expanded head reduction
tree.

With {{. . . }} we indicate multisets, with ∪ their union and with # their
cardinality. Let VR := V ∪ {R}, V0,S := V ∪ {0,S} and V0,S,R := V0,S ∪ {R}.

Definition 2.1 We define terms redex(s), rr(s) ∈ T(V) and coats(⋆) ∈ T(V ∪
{⋆}) and a multiset of T(V)-terms mat(s) by recursion on s ∈ T(V).

s rr(s) redex(s) coats(⋆) mat(s)

x~t x ∈ V0,S x x~t ⋆ {{~t}}
λxr (λxr)x λxr ⋆ ∅
(λxr)u~t (λxr)u (λxr)u ⋆~t ∅
R u1 . . . ul l ≤ 2 R R ~u ⋆ {{~u}}
R tab~s

t = 0,S t′ R tab R tab ⋆~s ∅
t = x~u, x ∈ V x R tab ⋆~s {{~u, a, b, ~s}}
t 6= x~u, x ∈ V0,S rr(t) redex(t) R coatt(⋆)ab~s mat(t) ∪ {{a, b, ~s}}
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Obviously we have coatt(redex(t)) = t, rr(t) = rr(redex(t)) and

rr(t) ∈ V ∪ {0,S,R} ∪ {(λxr)s,R 0ab,R(S s)ab | a, b, r, s ∈ T(V)}

redex(t) ∈ {λxr, (λxr)s, y~t,R(y~t)rs | r, s,~t ∈ T(V), y ∈ V0,S}

∪ {Ru1 . . . ul | l ≤ 2 & ~u ∈ T(V)}

Definition 2.2 We inductively define
α

t for t ∈ T(V) and α < ω if one of the
following cases holds:

(V0,S,R-Rule) rr(t) ∈ V0,S,R and there is some β such that β + #mat(t) ≤ α

and ∀s ∈ mat(t)
β

s.

(β-Rule) rr(t) = (λxr)s and
β

coatt(r[x := s]) and
β

s for some β < α.

(R0-Rule) rr(t) = R 0ab and
β

coatt(b) and
β

a for some β < α.

(RS-Rule) rr(t) = R(S t′)ab and
β

coatt(at′(R t′ab)) for some β < α.

The β-Rule is well-defined because redex(t) = λxr ⇒ t = λxr. Observe that we
have redex(t) = rr(t) for the R0-Rule and the RS-Rule .

Obviously
0
x for any variable x and 0, S.

We observe that
α

r can be viewed as a tree which is generated in a unique
way. We call this tree (with the α’s stripped off) the expanded head reduction
tree of r. We are going to define a number #t for any term t which computes
the number of nodes with conversion in the expanded head reduction tree of
that term.

Definition 2.3 Define #t for t ∈ T(V) by recursion on
α

t. This is well-
defined because the expanded head reduction tree is unique.

1. rr(t) ∈ V ∪ {0,S,R} then #t :=
∑

s∈mat(t) #s.

2. rr(t) = (λxr)s then #t := #coatt(r[x := s]) + #s + 1.

3. rr(t) = R0ab then #t := #coatt(b) + #a + 1.

4. rr(t) = R(S t′)ab then #t := #coatt(at′(R t′ab)) + 1.

Lemma 2.4 If rr(r) 6= z and z ∈ V then

1. redex(r[z := s]) = redex(r)[z := s]

2. coatr[z:=s](⋆) = coatr(⋆)[z := s]

3. mat(r[z := s]) = mat(r)[z := s]

Lemma 2.5 Assume rr(r) = z ∈ V ∪ {R}. If redex(r) = z~t then redex(r) = r.
Otherwise redex(r) = R(z~t)ab and z ∈ V, thus

1. mat(r) = mat(coatr(z
′)) ∪ {{~t, a, b}} for some suitable z′.

2. if s ∈ T(V) with z /∈ fvar(s) then
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(a) redex(r[z := s]) = redex(R(z~t)[z := s]ab)[z := s]

(b) coatr[z:=s](⋆) = coatr(coatR(z~t)[z:=s]ab(⋆))[z := s]

In order to handle η-reductions we need #rx ≥ #r, then we can compute
#λx.px = #px + 1 > #p. But in order to obtain #rx ≥ #r we need a Lemma
which comes with a rather technical proof.

Lemma 2.6 #r[z := u] ≥ #r + #u if z ∈ fvar(r).

Using this we immediately obtain

Lemma 2.7 1. #r[x := y] = #r.
2. #rx ≥ #r.

Proof. 1. is clear.
For 2. we compute #rx ≥ #yx + #r ≥ #r using Lemma 2.6 for the first ≥.
qed.

Proof of Lemma 2.6. More generally we will prove

∀r, u ∈ T(V)∀z ∈ V
(
z occurs exactly once free in r and #r[z := u] = k

⇒ #r + #u ≤ #r[z := u]
)

by induction on k. Let k, r, u, z fulfill the premise of this assertion. Define s∗ to
be s[z := u] for terms s.

rr(r) = (λxs)t. By Lemma 2.4 we have redex(r∗) = redex(r)∗ and coatr∗ =
coat∗r , thus rr(r∗) = rr(redex(r∗)) = rr((λxs∗)t∗) = (λxs∗)t∗. Hence

#r∗ = #coatr(s[x := t])∗ + #t∗ + 1

∗1
≥ #coatr(s[x := t]) + #t + 1 + #u = #r + #u

where for estimation ∗1 we used the induction hypothesis eventually several
times.

Similar are the cases for rr(r) = R0ab, rr(r) = R(S t)ab and rr(r) = y ∈
V ∪ {0,S,R} with y 6= z.

The case rr(r) = z needs very much effort. Observe that rr(r) is the only
occurrence of z in r.

• redex(u) = y~v with y ∈ V0,S, hence u = y~v by Lemma 2.5. In the case
redex(r) = z~t Lemma 2.5 shows r = z~t, hence

#r∗ = #y~v~t =
∑

#~v +
∑

#~t = #u + #r.

Otherwise redex(r) = R(z~t)ab and Lemma 2.5 2. shows

redex(r∗) = R(y~v~t)ab

coatr∗(⋆) = coatr(⋆)
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1. y ∈ V, then Lemma 2.5 1. shows

mat(r∗) = mat(coatr(z
′)) ∪ {{~v,~t, a, b}}

= mat(r) ∪ mat(u)

Thus
#r∗ =

∑

v∈mat(r)

#v +
∑

v∈mat(u)

#v = #r + #u.

2. y = 0, hence y~v~t = 0 and we compute

#r∗ = #coatr(b) + #a + 1
i.h.

≥ #coatr(z
′) + #b + #a + 1

= #r + 1 > #r + #u

where the last equation uses Lemma 2.5 1.

3. y = S, hence y~v~t = S v and we compute

#r∗ = #coatr(av(R vab)) + 1
i.h.

≥ #coatr(z
′) + #a + #b + #v + 1

= #r + #u + 1 > #r + #u

and we used the induction hypothesis several times.

• redex(u) = R(y~v)cd with y ∈ V0,S. If redex(r) = z~t then

redex(r∗) = R(y~v)cd

coatr∗(⋆) = coatu(⋆)~t,

otherwise redex(r) = R(z~t)ab, hence

redex(r∗) = R(y~v)cd

coatr∗(⋆) = coatr(R(coatu(⋆)~t)ab)

Similar to the previous case we compute

#r∗ ≥ #r + #u.

For the following cases we state some abbreviations. If redex(r) = z~t then
r = z~t by Lemma 2.5. Let cr(⋆) := ⋆. Otherwise redex(r) = R(z~t)ab. Let
cr(⋆) := coatr(R ⋆ab). In both cases we have using Lemma 2.5

r = cr(z~t)

mat(r) = mat(cr(z
′)) ∪ {{~t}}

• redex(u) = Ru1 . . . ul with l ≤ 2. Then u = Ru1 . . . ul by Lemma 2.5.
Let u1 . . . ul

~t =: v1 . . . vm for some m, v1, . . . , vm. Then

r∗ = cr(R~v)

redex(r∗) = redex(R~v)

coatr∗(⋆) = cr(coatR~v(⋆))
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We compute with Lemma 2.5 1.

#r + #u = #cr(z
′) +

∑
#~t +

l∑

j=1

#uj = #cr(z
′) +

m∑

j=1

#vj (1)

We distinguish the cases for m and redex(v1).

1. m ≤ 2, then by Lemma 2.5 r = z~t, r∗ = R v1 . . . vm and cr(⋆) = ⋆, hence

#r∗ =

m∑

j=1

#vj = #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

For the following cases assume m ≥ 3.

2. v1 = 0, then redex(r∗) = R 0v2v3 and coatr∗(⋆) = cr(⋆v4 . . . vm). Thus

#r∗ = #cr(v3 . . . vm) + #v2 + 1

i.h.
> #cr(z

′) + #(v3 . . . vm) + #v2

∗2
≥ #cr(z

′) + #(x3 . . . xm) +
m∑

j=2

#vj

≥ #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

where for estimation ∗2 we used several times the induction hypothesis
and x3 . . . xm are suitable new variables.

3. v1 = S v, then redex(r∗) = R(S v)v2v3 and coatr∗(⋆) = cr(⋆v4 . . . vm).
Hence

#r∗ = #cr(v2v(R vv2v3)v4 . . . vm) + 1

i.h.
> #cr(z

′) + #v2v(Rx1x2x3)x4 . . . xm + #v +
m∑

j=2

#vj

∗3
≥ #cr(z

′) +

m∑

j=1

#vj
(1)
= #r + #u

where for estimation ∗3 we observe #v = #S v.

4. redex(v1) = x~w with x ∈ V, then v1 = x~w, thus redex(r∗) = R(x~w)v2v3

and coatr∗(⋆) = cr(⋆v4 . . . vm). Hence

#r∗ = #cr(z
′) +

∑

w∈mat(v1)

#w +

m∑

j=2

#vj

= #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

5. redex(v1) = Rw1 . . . wn with n ≤ 2 and redex(v1) = λxs not possible
because lev(v1) = 0.
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6. redex(v1) = (λxs)t, then redex(r∗) = (λxs)t and

coatr∗(⋆) = cr(R coatv1
(⋆)v2 . . . vm).

Hence

#r∗ = #cr(R coatv1
(s[x := t])v2 . . . vm) + #s + 1

i.h.

≥ #cr(z
′) + #coatv1

(s[x := t]) + #s + 1 +
m∑

j=2

#vj

= #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

7. redex(v1) = R0cd, then redex(r∗) = R0cd

coatr∗(⋆) = cr(R coatv1
(⋆)v2 . . . vm).

Hence

#r∗ = #cr(R coatv1
(d)v2 . . . vm) + #c + 1

i.h.

≥ #cr(z
′) + #coatv1

(d) + #c + 1 +

m∑

j=2

#vj

= #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

8. redex(v1) = R(Sw)cd, then redex(r∗) = R(Sw)cd

coatr∗(⋆) = cr(R coatv1
(⋆)v2 . . . vm).

Hence

#r∗ = #cr(R coatv1
(cw(R wcd))v2 . . . vm) + 1

i.h.

≥ #cr(z
′) + #coatv1

(cw(R wcd)) + 1 +

m∑

j=2

#vj

= #cr(z
′) +

m∑

j=1

#vj
(1)
= #r + #u

• redex(u) = λxs then u = λxs by induction on the definition of redex(u). If
z~t = z then r = z because lev(z) > 0. Hence

#r∗ = #u = #r + #u.

Otherwise z~t = zv0~v, thus redex(r∗) = (λxs)v0 and coatr∗(⋆) = cr(⋆~v). Hence

#r∗ = #cr(s[x := v0]~v) + #v0 + 1

i.h.

≥ #cr(z
′) + #s[x := v0] + #~v + #v0 + 1

(i.h.)

≥ #cr(z
′) + #v0 + #~v + #s + 1

∗4
= #cr(z~t) + #λxs = #r + #u

7



With (i.h.) we mean that we eventually used the induction hypothesis and at
*4 we used Lemma 2.5.

• redex(u) = (λxs)v, then redex(r∗) = (λxs)v and coatr∗(⋆) = cr(coatu(⋆)~t).
Hence

#r∗ = #cr(coatu(s[x := v])~t) + #v + 1

i.h.

≥ #cr(z~t) + #coatu(s[x := v]) + #v + 1 = #r + #u

• The cases for redex(u) = R0cd and for redex(u) = R(S v)cd are similar to the
previous one. qed.

Main Lemma 2.8 r −→1 s ⇒ #r > #s

Proof. More generally we show for r such that z occurs exactly once:

1. #r[z := (λxp)q] > #r[z := p[x := q]]

2. #r[z := λx.px] > #r[z := p] if x /∈ fvar(p)

3. #r[z := R 0ab] > #r[z := b]

4. #r[z := R(S t)ab] > #r[z := at(R tab)]

For case 1. let r∗ := r[z := (λxp)q] and r′ := r[z := p[x := q]]. We prove 1. by
induction on r∗. W.l.o.g. assume z /∈ fvar(p, q) ∪ {x}.

i) rr(r) = (λxs)t. By Lemma 2.4 we know

redex(r∗) = redex(r)∗ and coatr∗(⋆) = coatr(⋆)∗ (2)

thus rr(r∗) = rr(r)∗ = (λxs∗)t∗. Analogously for r′. Hence

#r∗ = coatr∗(s∗[x := t∗]) + #t∗ + 1

(2)
= coatr(s[x := t])∗ + #t∗ + 1

(i.h.)
> coatr(s[x := t])′ + #t′ + 1

sim.
= r′

Observe that the induction hypothesis is applied at least once because z ∈
fvar(coatr(s[x := t]), t).

ii) rr(r) = R 0ab, rr(r) = R(S t)ab and rr(r) = y ∈ V ∪ {0,S,R} for y 6= z. The
proofs are the same as in i), because in these cases we also have (2).

iii) rr(r) = z. If redex(r) = z~t then r = z~t by Lemma 2.5. By assumption
z /∈ fvar(~t), hence

#r∗ = #(λxp)q~t = #p[x := q]~t + #q + 1 > #p[x := q]~t = #r′.

The other case is redex(r) = R(z~t)ab. Then we obtain by Lemma 2.5

redex(r∗) = redex(R(z~t)∗ab)∗ and coatr∗(⋆) = coatr(coatR(z~t)∗ab(⋆))∗ (3)

Again z /∈ fvar(coatr,~t, a, b), thus we compute

redex(r∗) = redex(R((λxp)q~t)ab) = (λxp)q

coatr∗(⋆) = coatr(R(⋆~t)ab),
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hence

#r∗ = #coatr∗(p[x := q]) + #q + 1

> #coatr(R(p[x := q]~t)ab) = #coatr(redex(r))′ = #r′.

This proves 1. The cases 3. and 4. are proven the same way.
For 2. let r∗ := r[z := λx.px] and r′ := r[z := p]. Again the proof is by

induction on r∗. W.l.o.g. assume z /∈ fvar(p) ∪ {x}. If rr(r) 6= z we proceed as
in the proof of 1.

Assume rr(r) = z. If redex(r) = z~t then r = z~t by Lemma 2.5 and z /∈ fvar(~t).
First assume r = z. Then

#r∗ = #λx.px > #px
∗5
≥ #p = #r′.

At ∗5 we used Lemma 2.7.
Otherwise r = zt0~t. Hence

#r∗ = #(λx.px)t0~t = #pt0~t + #t0 + 1 > #pt0~t = #r′.

If redex(r) 6= z~t then redex(r) = R(z~t)ab by Lemma 2.5. As lev(z~t) = 0 we
must have ~t = u0~u. Again we obtain by Lemma 2.5 the equations (3), thus
we compute redex(r∗) = redex(R((λx.px)u0~u)ab) = (λx.px)u0 and coatr∗(⋆) =
coatr(R(⋆~u)ab), hence

#r∗ = #coatr∗(pu0) + #u0 + 1 > #coatr(R(pu0~u)ab) = #r′.

This proves 2. qed.

Estimate Lemma 2.9
α

t ⇒ #t ≤ 2α

Proof. We prove by induction on the definition of
α

t

α
t ⇒ #t ≤ 2α − 1.

i) rr(t) ∈ V ∪{0,S,R}. Let n := #mat(t), then there is a β such that β +n ≤ α

and ∀s ∈ mat(t)
β

s. We compute

#t =
∑

s∈mat(t)

#s
i.h.

≤
∑

s∈mat(t)

(2β − 1) =: m

If n = 0 then m = 0 ≤ 2α − 1. Otherwise

m ≤ n · (2β − 1) ≤ n · 2β − 1 ≤ 2β+n − 1 ≤ 2α − 1.

ii) rr(t) = (λxr)s. There is some β < α such that
β

coatt(r[x := s]) and
β

s.
Hence

#t = #coatt(r[x := s]) + #s + 1
i.h.

≤ (2β − 1) + (2β − 1) + 1

= 2β+1 − 1 ≤ 2α − 1.
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iii) rr(t) = R0ab. There is some β < α such that
β

coatt(b) and
β

a. Hence

#t = #coatt(b) + #a + 1
i.h.

≤ (2β − 1) + (2β − 1) + 1 ≤ 2α − 1.

iv) rr(t) = R(S s)ab. There is some β < α such that
β

coatt(as(R sab)). Hence

#t = #coatt(as(R sab)) + 1
i.h.

≤ (2β − 1) + 1 ≤ 2α − 1.

qed.

Combining the Main Lemma with the Estimate Lemma leads to the desired
estimation of derivation lengths.

Estimate Theorem 2.10
α

t ⇒ d(t) ≤ 2α

Proof. Let s ∈ T(V) and k ∈ ω such that t −→k s. Using the Main Lemma and
the Estimate Lemma we obtain k ≤ #t ≤ 2α. qed.

3 Formal ordinal terms, deduction relations and

hierarchies

In this section we develop in detail the technical machinery that is needed in
the proof-theoretical analysis of T in section 4.

Definition 3.1 Inductive definition of a set of terms T and a subset P of T .

1. 0 ∈ T ,

2. 1 ∈ P,

3. ω ∈ P,

4. α1, . . . , αm ∈ P & m ≥ 2 ⇒ 〈α1, . . . , αm〉 ∈ T .

5. α ∈ T ⇒ 2α ∈ P.

For α ∈ P we put 〈α〉 := α. Then every α ∈ T \ {0} has the form α =
〈α1, . . . , αm〉 with α1, . . . , αm ∈ P and m ≥ 1. For β ∈ T we define 0 + β :=
β + 0 := β and for 0 6= α = 〈α1, . . . , αm〉 and 0 6= β = 〈β1, . . . , βn〉 we put
α + β := 〈α1, . . . , αm, β1, . . . , βn〉. We identify 0 with the empty sequence 〈 〉.
We identify the natural numbers with the elements of {0, 1, 1 + 1, 1 + 1 + 1, ...}.

Definition 3.2 Inductive definition of an ordinal O(α) for α ∈ T .

1. O(0) := 0,

2. O(1) := 1,

3. O(ω) := ω,

4. O(〈α1, . . . , αm〉) := O(α1)# . . . #O(αm).
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5. O(2α) := 2O(α)+1.

Here the ordinal exponentiation with respect to base 2 is defined as follows. For
α = ω · β + m with m < ω let 2α := ωβ · 2m.

Definition 3.3 Inductive definition of a deduction relation ≤0 on T .
≤0 is the least binary relation on T such that the following holds (where α is
an arbitrary element of T ) :

1. α≤0 α + β for any β ∈ T .

2. α + 1≤0 α + β for any β ∈ T such that β 6= 0.

3. α + 2≤0 α + ω.

4. α + 2β + 2β ≤0 α + 2β+1.

5. α + β + 1≤0 α + 1 + β.

6. If β ≤0 γ then β + δ≤0 γ + δ

7. If β ≤0 γ then α + 2β ≤0 α + 2γ .

Lemma 3.4 1. α≤0 β ⇒ γ + α≤0 γ + β.

2. α + k + β + l≤0 k + l + α + β.

3. α≤0 1 + α.

Definition 3.5 1. Let N0 := 0 and Nα := n + Nα1 + · · · + Nαm if ε0 >
α = ωα1 + · · · + ωαm > α1 ≥ . . . ≥ αm.

2. Let F0(x) := 2x and Fn+1(x) := F x+1
n (x).

3. Let Ψ(0) := 0 and for nonzero β let Ψ(β) := max{Ψ(γ)+1: γ < β & Nγ ≤
Φ(N(β))} where Φ(x) := F3(x + 3).

Lemma 3.6 1. α < β & N(α) ≤ Φ(N(β)) ⇒ Ψα < Ψβ.

2. Ψ(α#Ψ(β)) ≤ Ψ(α#β).

3. Ψ(k) = k.

4. α ≥ ω ⇒ Ψ(α) ≥ Φ(Nα).

Proof. Only assertion 2) needs a proof. The proof of 2) proceeds via induction
on β. Assume without loss of generality that α 6= 0 6= β. Then

Ψ(α#Ψ(β)) = Ψ(α#Ψ(γ) + 1)

for some γ < β such that N(γ) ≤ Φ(N(β)). The induction hypothesis yields

Ψ(α#Ψ(γ) + 1) = Ψ(α#1 + Ψ(γ)) ≤ Ψ(α#1#γ).

If γ + 1 = β then we are done. Otherwise γ + 1 < β, hence α#1#γ < α#β and

N(α#1#γ) = N(α)#N(1#γ) ≤ N(α) + 1 + Φ(N(β)) < Φ(N(α#β)).

Thus assertion 1) yields Ψ(α#1#γ) < Ψ(α#β). qed.

The function k 7→ ψ(α + k) is α-descent recursive as can be seen from
[BCW94]. More directly this follows from the next lemma.
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Definition 3.7 Let λ be a limit ordinal.

λ[k] := max{α < λ : N(α) ≤ Φ(Nλ + k)}

Lemma 3.8 Let λ be a limit ordinal. Then Ψ(λ + k) = Ψ(λ[k]) + 1

Proof. We have N(λ[k] = Φ(Nλ + k) since λ is a limit. Thus Ψ(λ + k) ≥
Ψ(λ[k] + 1). We show Ψ(λ + k) ≤ Ψ(λ[k] + 1) by induction on k. Assume
Ψ(λ + k) = Ψ(α) + 1 with α < λ + k and N(α) ≤ Φ(N(λ) + k). If α = λ + m
with m < k then the induction hypothesis yields Ψ(α) ≤ Ψ(λ[m]) < Ψ(λ[k])
since λ[m] < λ[k] and N(λ[m]) ≤ Φ(N(λ[k])). Thus Ψ(λ+k) ≤ Ψ(λ[k]). Assume
now α < λ. Then α ≤ λ[k] by the definition of λ[k] and N(α) ≤ Φ(N(λ[k])).
Hence Ψ(α) ≤ Ψ(λ[k]). qed.

Definition 3.9 Recursive definition of a natural number D(α) for α ∈ T .

1. D(0) := 0,

2. D(1) := 1,

3. D(ω) := Ψ(ω),

4. D(2α) := Ψ(2O(α)+1).

5. D(〈α1, . . . , αm〉) :=
Ψ(O(αm) + Ψ(O(αm−1) + Ψ(... + Ψ(O(α2) + Ψ(O(α1)))...))).

Then we have D(〈α1, . . . , αm〉) = Ψ(O(αm)+D(〈α1, . . . , αm−1〉) and D(α+1) =
D(α) + 1.

Lemma 3.10 1. N(2α) ≤ 2Nα,

2. N(α) + 1 ≤ N(2α+1), N(α) ≤ N(2α) · 2,

3. α≤0 β ⇒ N(O(α)) ≤ F2(N(O(β))).

Proof. Assertions 1) and 2) are easy to prove. Assertion 3) follows by an
induction along the inductive definition of ≤0 . For the critical case assume
that α = γ +2α′

, β = γ +2β′

and α′ ≤0 β′. Then the induction hypothesis yields

N(O(α)) ≤ N(O(γ) + 2N(O(α′))+1) ≤ N(O(γ) + 2F2(N(O(β′)))+1)

< N(O(γ)) + F2(N(O(β′)) + 1)

≤ N(O(γ)) + F2(N(O(2β′

))

≤ F2(N(O(γ + 2β′

)))

qed.

Lemma 3.11 α≤0 β =⇒ D(α) ≤ D(β).
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Proof by an induction along the inductive definition of ≤0 .
1. Assume that

α≤0 β = α + 〈γ1, . . . , γm〉

where m ≥ 0 and γ1, . . . , γm ∈ P. Then

D(β) = D(α + 〈γ1, . . . , γm〉)

= Ψ(O(γm) + D(α + 〈γ1, . . . , γm−1〉))

≥ D(α + 〈γ1, . . . , γm−1〉)

≥ . . .

≥ D(α + γ1)

= Ψ(O(γ1) + D(α))

≥ D(α).

2. Assume that α = α′ + 1 and β = α′ + 〈γ1, . . . , γm〉 where m ≥ 1 and
γ1, . . . , γm ∈ P. Then

D(β) = D(α′ + 〈γ1, . . . , γm〉)

= Ψ(O(γm) + D(α′ + 〈γ1, . . . , γm−1〉)

≥ D(α′ + 〈γ1, . . . , γm−1〉)

≥ . . .

≥ D(α′ + γ1)

= Ψ(O(γ1) + D(α′))

≥ 1 + D(α′) = D(α′ + 1) = D(α).

3. Assume that α = α′ + 2 and β = α′ + ω. Then

D(β) = D(α′ + ω) = Ψ(ω + D(α′)) > 2 + D(α′) = D(α).

4. Assume that α = α′ + 2γ + 2γ and β = α′ + 2γ+1. Then

D(β) = D(α′ + 2γ+1)

= Ψ(2O(γ)+1+1 + D(α′))

= Ψ(2O(γ)+1#2O(γ)+1 + D(α′))

≥ Ψ(2O(γ)+1#Ψ(2O(γ)+1 + D(α′)))

= D(α′ + 2γ + 2γ) = D(α).

5. Assume that α = α′ + 〈β1, . . . , βm〉+ 1 and β = α′ + 1 + 〈β1, . . . , βm〉. Then

D(β) = Ψ(O(β1) + Ψ(... + Ψ(O(βm) + D(α′ + 1))...))

≥ Ψ(O(β1) + Ψ(... + Ψ(O(βm) + 1 + D(α′)...))

≥ Ψ(O(β1) + Ψ(...Ψ(O(βm−1) + 1 + Ψ(O(βm) + D(α′)))...))

≥ Ψ(O(β1) + 1 + Ψ(...Ψ(O(βm−1) + Ψ(O(βm) + D(α′)))...))

≥ 1 + Ψ(O(β1) + Ψ(...Ψ(O(βm−1) + Ψ(O(βm) + D(α′)))...)

= D(α).

6. Assume that α = α′ + δ, β = β′ + δ where α′ ≤0 β′ and δ = 〈δ1, . . . , δn〉
with n ≥ 0 and δ1, . . . , δn ∈ P. The induction hypothesis yields D(α′) ≤ D(β′).
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Then

D(α) = ψ(O(δn) + ψ(... + ψ(O(δ1) + D(α′))...))

≥ ψ(O(δn) + ψ(... + ψ(O(δ1) + D(β′))...))

= D(β).

7. Assume now that α = γ+2α′

, β = γ+2β′

and α′ ≤0 β′. Then O(α′) ≤ O(β′).
If O(α′) = O(β′) then D(α) = D(β). We may thus assume that O(α′) < O(β′).
Then

2O(α′)+1 + D(γ) < 2O(β′)+1 + D(γ).

The assumption α′ ≤0 β′ yields N(O(α′)) ≤ F2(N(O(β′))) hence

N(2O(α′)+1 + D(γ)) ≤ 2F2(N(O(β′)))+1 + D(γ)

≤ F2(N(2O(β′)+1)) + D(γ)

≤ Φ(N(2O(β′)+1 + D(γ)))

Therefore assertion 1) of Lemma 3.6 yields

D(α) = D(γ + 2α′

) < D(γ + 2β′

) = D(β).

qed.

Definition 3.12 Inductive definition of a set C of contexts.

1. α + ⋆ ∈ C for any α ∈ T .

2. f ∈ C ⇒ α + 2f ∈ C for any α ∈ T .

For α ∈ T we denote by f(α) the result of substituting the placeholder ⋆ in f
by α. The result f(α) is then an element of T .

Lemma 3.13 Assume that f ∈ C.

1. O(f(k)) + l < O(f(ω)) for any k, l < ω.

2. N(O(f(k))) ≤ F2(N(O(f(ω))) + k).

3. Ψ(α#2O(f(k))+1+l) < Ψ(α#2O(f(ω))+k) for any k, l < ω such that l ≤ k.

Proof. 1. Assume first that f = α + ⋆. Then

O(f(k)) + l = O(α)#k + l < O(α)#ω.

Assume now that f = α + 2g. Then the induction hypothesis yields

O(f(k)) + l = O(α)#2O(g(k))+1 + l

≤ O(α)#2O(g(k))+1+l

< O(α)#2O(g(ω))+1

= O(α + 2g(ω)).
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2. Assume first that f = α + ⋆. Then

N(O(f(k))) = N(O(α) + k)

< F2(N(O(α)#ω)) + k)

= F2(N(O(f(ω))) + k).

Assume now that f = α + 2g. Then the induction hypothesis yields

N(O(f(k))) = N(O(α) + N(2O(g(k))+1)

≤ N(O(α)) + 2F2(N(O(g(ω)))+k)+1

≤ N(O(α)) + F2(N(O(g(ω))) + k + 1)

≤ N(O(α)) + F2(N(2O(g(ω))+1 + k)

≤ F2(N(O(α + 2g(ω)))) + k)

3. Assertion 1) yields

α#2O(f(k))+1 + l < α#2O(f(k))+1+l < α#2O(f(ω)).

Assertion 2) yields

N(α#2O(f(k))+1 + l) ≤ N(α)#2N(O(f(k)))+1 + l

≤ N(α)#2F2(N(O(f(ω))+k))+1 + l

≤ N(α)#2F2(N(2O(f(ω)))·2+k))+1 + l

≤ Φ(N(α#2O(f(ω)) + k))

since Nα ≤ N(2α) · 2.
The assertion follows by assertion 1) of Lemma 3.6 qed.

Lemma 3.14 f ∈ C ⇒ D(f(Df(0))) < D(f(ω)).

Proof. Assume first that f = α + ⋆. Then

D(f(D(f(0)))) = D(α + D(α)) = D(α) · 2

and

D(f(ω)) = D(α + ω) = ψ(ω + D(α))

≥ Φ(N(ω + D(α))) > D(α) · 2 = D(f(D(f(0)))).

Assume now that f = α + 2g. Then assertion 2) of Lemma 3.6 and assertion 3)
of Lemma 3.13 yield

D(f(D(f(0)))) = D(α + 2g(D(α+2g(0)))))

= Ψ(2O(g(Ψ(2O(g(0))+1+D(α)))))+1 + D(α))

< Ψ(2O(g(ω) + Ψ(2O(g(0))+1 + D(α)))

≤ Ψ(2O(g(ω) + 2O(g(0))+1 + D(α))

< Ψ(2O(g(ω) + 2O(g(ω)) + D(α))

= Ψ(2O(g(ω)+1 + D(α)) = D(f(ω)).

qed.
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4 Adding cut-rule and Buchholz’ Ω-rule

Our strategy for estimating d(r) is to compute the expanded head reduction
tree of r. Therefore we extend the expanded head reduction trees by a cut-rule
and an appropriate miniaturization of Buchholz’ Ω-rule which allow a simple
embedding of any term of Gödel’s T into the extended calculus. Then we first
eliminate cuts and afterwards the Ω-rule by adapting collapsing techniques from
Buchholz’ treatment of ID1 (cf. [Bu80]). In this way we obtain expanded head
reduction trees for any term of Gödel’s T with an optimal upper bound on its
size.

The above mentioned Ω-rule will have the following form: If

∀k ∈ ω∀t ∈ T(V)
(

k
t and t of type 0 ⇒

f [k]
R tab

)

then
f [ω]

R where a, b are suitable variables. We should observe at this point
the special meaning of the terms t in this context. They are in some sense
bounded, especially the variables which occur in such a term serve rather as a
parameter than a variable. This means that during the cut-elimination proce-
dure, where cuts are replaced by substitutions, these parameter-variables are
not allowed to be substituted because the Ω-rule is not robust under such sub-
stitution. From this it follows that also recursors which occur in such terms
have another meaning than those which are derived via Ω-rule, i.e. they can be
derived as before. In order to model this difference technically we need a copy
T′(V) of T(V) for which substitution can be handled.

Let V ′ := {v′ : v ∈ V} be a distinct copy of V. Let V := V ∪ V ′ and define
V ′

R,V ′
0,S,V ′

0,S,R,VR,V0,S,V0,S,R analogously to VR,V0,S,V0,S,R. Let R′ be a new

symbol and define R := {R,R′}. Observe that R′ /∈ V ′
R,VR etc.

With x we mean x or x′ for x ∈ V.
A ground type ι has level lev(ι) = 0 and lev(ρ → σ) = max(lev(ρ)+1, lev(σ)).

The level lev(r) of r is defined to be the level lev(σ) of its type σ, the degree
g(r) of r is defined to be the maximum of the levels of subterms of r.

Definition 4.1 We define T′(V) inductively by

• V ′ ∪ {0,S,R′} ⊂ T′(V)

• r, s ∈ T′(V) and x ∈ V ′ ⇒ (λxr), (rs) ∈ T′(V)

• t ∈ T(V) and lev(t) = 0 ⇒ (R′ t) ∈ T′(V)

Let T(V) := T′(V) ∪ T(V).
There are two canonical mappings, the embedding . : T(V) → T(V) and the

breakup .̂ : T(V) → T(V) which are recursively defined by

• x := x′ and x̂′ := x for x ∈ VR

• 0 := 0, S := S and x̂ := x for x ∈ V0,S

• λxr := λx′r for x ∈ V, rs := r s.

• λ̂xr := λxr̂ for x ∈ V, r̂s := r̂ ŝ.

Obviously t̂ = t for t ∈ T(V).
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We are considering λ-terms only modulo α-conversion without making this

too explicit. Of course sometimes this causes problems, e.g. in defining λ̂xr :=
λxr̂ we have to make sure x does not occur in r. One way obtaining this is to

define λ̂x′r := λy.(r[x′ := y′])b for some y ∈ V such that y, y′ do not occur in r.
Another possibility is – and we will consider this in the following – to assume
always x not occurring in r when writing λx′r for x ∈ V.

We state some simple observations about the relationship of T(V), T′(V)
and T(V).

1. T′(V) ∩ T(V) = {S} ∪ {Sk 0 : k ∈ ω}

2. (rs) ∈ T′(V) ⇒ r ∈ T′(V)

3. T(V) is closed under subterms.

4. (rs) ∈ T(V) and r ∈ T(V) ⇒ r = S or s ∈ T(V)
Proof. If (rs) ∈ T′(V) then r ∈ T′(V) ∩ T(V) thus r = S. Otherwise
(rs) ∈ T(V), hence s ∈ T(V). qed.

5. (rs) ∈ T(V) and s ∈ T(V) \ T′(V) ⇒ r ∈ T(V) or r = R′

6. r ∈ T(V), x ∈ V ′ and s ∈ T′(V) ⇒ r[x := s] ∈ T(V) and
r ∈ T(V), x ∈ V and s ∈ T(V) ⇒ r[x := s] ∈ T(V)

7. redex(t), s ∈ T(V) ⇒ coatt(s) ∈ T(V) and
redex(t), s ∈ T′(V) ⇒ coatt(s) ∈ T(V)

Definition 4.2 We extend the definition of redex(s), rr(s), coats(⋆) and mat(s)
to s ∈ T(V).

s ∈ T′(V) rr(s) coats(⋆) mat(s)

x~t x ∈ V ′
0,S x ⋆ {{~t}}

λxr (λxr)x ⋆ ∅
(λxr)u~t (λxr)u ⋆~t ∅
R′ u1 . . . ul l ≤ 2 R′ ⋆ {{~u}}
R′ tab~s :

t = 0,S t′ R′ tab ⋆~s ∅
t = x~u, x ∈ V R′ ⋆~s {{~u, a, b, ~s}}
t 6= x~u, x ∈ V0,S rr(t) R′ coatt(⋆)ab~s mat(t) ∪ {{a, b, ~s}}

Again we have

rr(t) ∈ V0,S,R ∪ {R′} ∪ {(λxr)s,R∗ 0ab,R∗(S s)ab | a, b, r, s ∈ T(V),R∗ ∈ R}

Furthermore we observe rr(t̂) = rr(t)b if rr(t) 6= R′ and coatbt(⋆) = coatt(⋆)b.

We now extend
α

t by cuts and Ω-rules. Let a context c(⋆) be a term in
which ⋆ occurs exactly once. With ≤∗

0 we denote the transitive closure of ≤0.

Definition 4.3 We inductively define
α

ρ t for t ∈ T(V), α ∈ T and ρ < ω if
one of the following cases holds:

(Acc-Rule) There is some β such that β ≤0 α and
β

ρ t.
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(V0,S,R-Rule) rr(t) ∈ V0,S,R, α = β + #mat(t) and ∀s ∈ mat(t)
β

ρ s.

(β-Rule) rr(t) = (λxr)s (x ∈ V), α = β + 1 and
β

ρ coatt(r[x := s]) and
β

ρ s.

(R0-Rule) rr(t) = R∗ 0ab (R∗ ∈ R), α = β + 1 and
β

ρ coatt(b) and
β

ρ a.

(RS-Rule) rr(t) = R∗(S t′)ab (R∗ ∈ R), α = β + 1 and
β

ρ coatt(at′(R∗ t′ab)).

(Cut-Rule) t = (rs), lev(r) ≤ ρ, s ∈ T′(V), α = β + 1 and
β

ρ r and
β

ρ s.

(R′ Ω0-Rule) t = R′ u1 . . . ul, l ≤ 2, there are new variables ul+1, . . . , u3 ∈ V ′,
distinct in pairs, and some β[⋆] ∈ C such that α = β[ω]+1, β[0]+2 ≤∗

0 α,
β[0]

ρ ui for 1 ≤ i ≤ l and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

β[k]

ρ R′ uu2u3

)

(R′ Ω1-Rule) t = c(R′ sab) for some context c(⋆) and there is some β[⋆] ∈ C

such that α = β[ω] + 1,
β[0]

ρ s and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

β[k]

ρ c(R′ uab)
)

Structural Rule 4.4
α

ρ t, α ≤∗
0 α′, ρ ≤ ρ′ ⇒

α′

ρ′
t

Proof. A simple induction on the definition of
α

ρ t shows
α

ρ′
t, then we apply

several times the Acc-Rule. qed.

We observe that the cut-free system is a subsystem of the one with cuts.

Lemma 4.5
α

t ⇒
α

0
t

Proof. The proof is a simple induction on the definition of
α

t, because α <
β < ω ⇒ α + 1 ≤∗

0 β. qed.

Variable Substitution Lemma 4.6 Assume
α

ρ t.

1. x, y ∈ V ⇒
α

ρ t[x := y].

2. x, y ∈ V ′ ⇒
α

ρ t[x := y].

For the next lemma observe that α ≤0 α + 1 ≤0 1 + α holds for all α.

Appending Lemma 4.7 Assume
α

ρ t. If y ∈ V ′ and ty ∈ T(V) then
1+α

ρ ty.

Proof. The proof is by induction on the definition of
α

ρ t.

Acc-Rule. Follows directly from the induction hypothesis by Acc-Rule and the
fact that β ≤0 α ⇒ 1 + β ≤0 1 + α.
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V0,S,R-Rule. rr(t) = R is not possible because t = Ru1 . . . ul would imply
t ∈ T(V) \ T′(V) and therefore ty /∈ T(V).

In case rr(t) ∈ V0,S the assertion follows because rr(ty) = rr(t),
γ

ρ y for
arbitrary γ and β + n = α ⇒ β + n + 1 = α + 1 ≤0 1 + α.

β-Rule. rr(t) = (λxr)s, α = β + 1 and
β

ρ coatt(r[x := s]),
β

ρ s.
If t = λxr then s = x, hence coatt(r[x := s]) = r. Assuming x ∈ V would

imply t ∈ T(V) \ T′(V) contradicting ty ∈ T(V), thus x ∈ V ′ and therefore
β

ρ r[x := y] by the previous Lemma. Hence
α

ρ ty with
β

ρ y and β-Rule, thus
1+α

ρ ty with Acc-Rule.

Otherwise rr(ty) = rr(t) = (λxr)s. We obtain
1+β

ρ coatt(r[x := s])y by

induction hypothesis. As β ≤0 1 + β we also have
1+β

ρ s. Now coatty(⋆) =

coatt(⋆)y, hence
1+α

ρ ty by β-Rule.

R0-Rule and RS-Rule are similar to β-Rule.

Cut-Rule. t = rs with lev(r) ≤ ρ, thus lev(t) ≤ ρ, hence
α+1

ρ ty by a Cut-Rule

and we obtain
1+α

ρ ty by a Acc-Rule.

R′ Ω0-Rule. t = R′ u1 . . . ul, l ≤ 2, there are new variables ul+1, . . . , u3 ∈
V ′\{y}, distinct in pairs, and some β[⋆] ∈ C such that α = β[ω]+1, β[0]+2 ≤∗

0 α,
β[0]

ρ ui for 1 ≤ i ≤ l and for u ∈ T(V), k < ω with lev(u) = 0 and
k

u

also
β[k]

ρ R′ uu2u3. Let u′
1 . . . u′

3 be u1 . . . u3[ul+1 := y], then
1+β[k]

ρ R′ uu′
2u

′
3

by the previous Lemma and Acc-Rule. Let γ[⋆] := 1 + β[⋆], then γ[⋆] ∈ C,
γ[ω] + 1 = 1 + β[ω] + 1 = 1 + α and γ[0] + 2 = 1 + β[0] + 2 ≤∗

0 1 + α, hence
1+α

ρ t by R′ Ω0-Rule or R′ Ω1-Rule (if l = 2).

R′ Ω1-Rule. t = c(R′ sab) for some context c(⋆) and there is some β[⋆] ∈ C

such that α = β[ω] + 1,
β[0]

ρ s and for u ∈ T(V), k < ω with lev(u) = 0 and
k

u also
β[k]

ρ c(R′ uab), hence
1+β[k]

ρ c(R′ uab)y by induction hypothesis. Let

γ[⋆] := 1 + β[⋆], then γ[⋆] ∈ C, γ[ω] + 1 = 1 + β[ω] + 1 = 1 + α and
γ[0]

ρ s by

Acc-Rule, hence
1+α

ρ ty by R′ Ω1-Rule. qed.

Collapsing Theorem 4.8
α

0
t ⇒

Dα
t̂

Proof. The proof is by induction on the definition of
α

0
t.

Acc-Rule. The assertion follows directly from the induction hypothesis and the
fact that β ≤0 α ⇒ Dβ ≤ Dα.

V0,S,R-Rule. rr(t) ∈ V0,S,R, α = β + #mat(t) and ∀s ∈ mat(t)
β

0
s. We have

rr(t̂) = r̂r(t) ∈ V0,S,R and mat(t) = mat(t)b, thus
Dβ

s for all s ∈ mat(t̂) by
induction hypothesis. As

Dβ + #mat(t̂) = Dβ + #mat(t) = D(β + #mat(t)) = Dα

we obtain
Dα

t by V0,S,R-Rule.
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β-Rule. rr(t) = (λxr)s, α = β + 1 and
β

0
coatt(r[x := s]),

β

0
s. We have

rr(t̂) = r̂r(t) = (λxr̂)ŝ, (r[x := s])b = r̂[x := ŝ] because if x = x′ then x does
not occur in r, and hence coatt(r[x := s])b = coatbt(r̂[x := ŝ]). By induction

hypothesis we get
Dβ

coatbt(r̂[x := ŝ]) and
Dβ

ŝ. As Dβ < Dβ + 1 = Dα we

obtain
Dα

t̂ by β-Rule.

R0-Rule and RS-Rule are similar to β-Rule.

Cut-Rule is not possible

R′ Ω0-Rule. t = R′ u1 . . . ul with l ≤ 2 and there is some γ := β[0] with γ +2 ≤∗
0

α and
γ

0
ui for 1 ≤ i ≤ l. Then t̂ = R û1 . . . ûl, rr(t̂) = R and mat(t̂) =

{{û1, . . . , ûl}}. By induction hypothesis
Dγ

s for all s ∈ mat(t̂) and hence
Dα

t̂
by V0,S,R-Rule because Dγ + l ≤ D(γ + 2) ≤ Dα.

R′ Ω1-Rule. t = c(R′ sab) and there is some β[⋆] ∈ C such that α = β[ω] + 1,
β[0]

0
s and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

β[k]

0
c(R′ uab)

)
(4)

With induction hypothesis we obtain
Dβ[0]

ŝ. Now ŝ ∈ T(V), lev(ŝ) = 0 and
Dβ[0] < ω, thus

β[Dβ[0]]

0
c(R′ ŝab)

by (4). We have (c(R′ ŝab))b= ĉ(R ŝâb̂) = t̂, hence
Dβ[Dβ[0]]

t̂ again by induction

hypothesis. Now comes the highlight: Dβ[Dβ[0]] < Dβ[ω] < Dα, hence
Dα

t̂.
qed.

Substitution Lemma 4.9
α

ρ r,
β

ρ sj, lev(sj) ≤ ρ, xj ∈ V ′, sj ∈ T′(V) for

j < l then
β+α

ρ r[~x := ~s].

Proof. The proof is by induction on the definition of
α

ρ r. Let u∗ be u[~x := ~s].

Acc-Rule. The assertion follows directly from the induction hypothesis and the
fact that γ ≤0 α ⇒ β + γ ≤0 β + α.

V0,S,R-Rule. rr(r) ∈ V0,S,R and there is some γ such that α = γ +#mat(r) and

∀u ∈ mat(r)
γ

ρ u.
If rr(r) /∈ {~x} then rr(r∗) = rr(r) because xj ∈ V ′ by assumption. We

have mat(r∗) = mat(r)∗ and therefore
β+γ

ρ u for all u ∈ mat(r∗) by induction
hypothesis. Now #mat(r∗) = #mat(r), hence β +γ +#mat(r∗) = β +α, thus

β+α

ρ r∗ by V0,S,R-Rule.
Now assume rr(r) = xj , then r = xjr1 . . . rn, n = #mat(r), and by induction

hypothesis
β+γ

ρ r∗i for 1 ≤ i ≤ n. From the assumptions we obtain
β+γ

ρ sj and

lev(sj) ≤ ρ. With Acc-Rule we receive
β+γ+i−1

ρ r∗i for 1 ≤ i ≤ n. Therefore

applying i cuts yields
β+γ+i

ρ sjr
∗
1 . . . r∗i , hence

β+α

ρ r∗.

β-Rule, R0-Rule, R S-Rule and Cut-Rule: The assertion follows directly from
the induction hypothesis by applying the same inference.
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R′ Ω0-Rule. r = R′ u1 . . . ul and l ≤ 2, there are new variables, distinct in pairs,
ul+1, . . . , u3 ∈ V ′ (w.l.o.g. they are also new for ~x and ~s) and γ[⋆] ∈ C such that

α = γ[ω] + 1, γ[0] + 2 ≤∗
0 α,

γ[0]

ρ ui for 1 ≤ i ≤ l and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

γ[k]

ρ R′ uu2u3

)

We have r∗ = R′ u∗
1 . . . u∗

l and β+γ[⋆] ∈ C with β+γ[ω]+1 = β+α, β+γ[0]+2 ≤∗
0

β + α. By induction hypothesis
β+γ[0]

ρ u∗
i for 1 ≤ i ≤ l and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

β+γ[k]

ρ R′ uu∗
2u

∗
3

)

because for u ∈ T(V) xj ∈ V ′ does not occur in u. Hence
β+α

ρ r∗ by R′ Ω0-Rule.

R′ Ω1-Rule. t = c(R′ sab) and there is some γ[⋆] ∈ C such that α = γ[ω] + 1,
γ[0]

ρ s and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

γ[k]

ρ c(R′ uab)
)

We have r∗ = c∗(R′ s∗a∗b∗) and β + γ[⋆] ∈ C with β + γ[ω] + 1 = β + α. By

induction hypothesis
β+γ[0]

ρ s∗ and

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

β+γ[k]

ρ c∗(R′ ua∗b∗)
)

hence
β+α

ρ r∗ by R′ Ω1-Rule. qed.

Cut Elimination Lemma 4.10
α

ρ+1
t ⇒

2α

ρ t

We cannot prove this Lemma in this formulation by induction on the defi-
nition of

α

ρ+1
t, because cuts are replaced by appending a variable and after-

wards applying the Substitution Lemma which leads to the sum of the derivation
lengths plus 1. Thus we would need 2β + 2β + 1 ≤∗

0 2β+1 which is only true if
we interpret the formal term 2α by some ordinal function 3O(β)+1 which we do
not want.

We will need the following estimations

n < ω ⇒ n + 1 ≤∗
0 2n (5)

β 6= 0, 0 < n < ω ⇒ n + 1 + 2β ≤∗
0 2β+n (6)

which can be proved by induction on n: 0+1 ≤∗
0 20, and by induction hypothesis

k + 1 ≤∗
0 2k, hence (k + 1) + 1 ≤∗

0 2k + 1 ≤0 2k + 2k ≤0 2k+1. Using (5) we
obtain 1 + 1 + 2β ≤0 21 + 2β ≤0 2β + 2β ≤0 2β+1. By induction hypothesis
k + 1 + 2β ≤∗

0 2β+k, hence (k + 1) + 1 + 2β ≤∗
0 1 + 2β+k ≤∗

0 2β+k+1.
Proof of the Cut Elimination Lemma. We show by induction on the definition
of

α

ρ+1
t

α

ρ+1
t ⇒ ∃β(1 + β ≤∗

0 2α &
β

ρ t).
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Then the main assertion simply follows by a Structural Rule.

Acc-Rule. The assertion follows directly from the induction hypothesis and the
fact that γ ≤0 α ⇒ 2γ ≤0 2α and therefore 1 + β ≤∗

0 2γ ⇒ 1 + β ≤∗
0 2α.

V0,S,R-Rule. rr(t) ∈ V0,S,R, α = β + #mat(t) and ∀s ∈ mat(t)
β

ρ+1
s. Let

n := #mat(t).

If n = 0 then
0

ρ t and 1 + 0 ≤0 2α. If β = 0 then ∀s ∈ mat(t)
0

ρ s, thus
n

ρ t.
Now n + 1 ≤∗

0 2n by (5).
Otherwise β 6= 0 and n = n′ + 1. By induction hypothesis we obtain ∀s ∈

mat(t)
2β

ρ s, thus
2β+n

ρ t and 1 + 2β + n ≤∗
0 1 + n + 2β ≤∗

0 2β+n by (6).

β-Rule. rr(t) = (λxr)s, α = β + 1 and
β

ρ+1
coatt(r[x := s]),

β

ρ+1
s.

If β = 0 then
0

ρ coatt(r[x := s]),
0

ρ s, hence
1

ρ t by β-Rule and we have

1 + 1 ≤∗
0 21 by (5).

Now assume β 6= 0, then by induction hypothesis
2β

ρ coatt(r[x := s]),
2β

ρ s,

hence
2β+1

ρ t and 1 + 2β + 1 ≤0 1 + 1 + 2β ≤∗
0 2β+1 by (6).

R0-Rule and RS-Rule are similar to β-Rule.

Cut-Rule. r = (st), lev(s) ≤ ρ + 1, t ∈ T′(V), α = β + 1 and
β

ρ+1
s and

β

ρ+1
t.

By induction hypothesis there are γ1, γ2 with 1 + γi ≤
∗
0 2β and

γ1

ρ s and
γ2

ρ t.

The Appending Lemma shows
2β

ρ sy for some y ∈ V ′, thus
γ2+2β

ρ r by the

Substitution Lemma as lev(t) ≤ ρ. We compute 1+γ2 +2β ≤∗
0 2β +2β ≤0 2β+1.

R′ Ω0-Rule, R′ Ω1-Rule: By induction hypothesis we obtain
2β[ω]+1

ρ t for some

β[⋆] ∈ C with β[ω]+1 = α, because we also have 2β[⋆] ∈ C. Now 1+2β[ω] +1 ≤0

1 + 1 + 2β[ω] ≤∗
0 2β[ω]+1 by (6). qed.

Lemma 4.11 Let R′ 0ab ∈ T(V) with variables a, b ∈ V ′ and let ρ = lev(a),
then

α
t and lev(t) = 0 ⇒

2+2·α

ρ R′ tab.

Proof. The proof is by induction on the definition of
α

t.

V0,S,R-Rule. rr(t) ∈ V0,S,R, M := mat(t), n := #M and there is some β such

that β + n ≤ α and ∀s ∈ M
β

s.

If rr(t) = 0 then t = 0. We have
0

ρ a,
0

ρ b, hence
1

ρ R′ tab by R0-Rule.

If rr(t) = S then t = S t′, hence n = 1 and
β

t′. Let γ = 2 · β + 1, then
γ

ρ t′ by the subsystem property. Now
γ

ρ a by the V0,S,R-Rule, hence
γ+1

ρ at′ by

the Cut-Rule as lev(a) = ρ. The induction hypothesis yields
γ+1

ρ R′ t′ab, thus

again applying the Cut-Rule produces
γ+2

ρ at′(R′ t′ab) as lev(at′) ≤ lev(a) = ρ.

Thus
γ+3

ρ R′ tab using the R S-Rule, and γ + 3 = 2 + 2 · (β + 1) ≤ 2 + 2 · α.
rr(t) = R is not possible because lev(t) = 0.
It remains rr(t) ∈ V, thus rr(R′ tab) = rr(t) ∈ V and mat(R′ tab) = M ∪

{{a, b}}. By the subsystem property we have ∀s ∈ M
β

ρ s, as well as
0

ρ a,
0

ρ b,

thus
β+n+2

ρ R′ tab by V0,S,R-Rule. Now β + n + 2 ≤ 2 + α.
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β-Rule. rr(t) = (λxr)s and there is some β < α such that
β

coatt(r[x := s]) and
β

s. We have redex(t) = (λxr)s because lev(t) = 0. By induction hypothesis
γ

ρ R′ coatt(r[x := s])ab for γ = 2 + 2 · β. The subsystem property shows
β

s ⇒
β

0
s, hence

γ

ρ s. Thus
γ+1

ρ R′ tab by β-Rule.

R 0-Rule and R S-Rule are similar to β-Rule. qed.

The length l(r) of r is defined by l(x) = 1, l(λxr) = l(r)+1, l(rs) = l(r)+l(s),
and the height h(r) by h(x) = 0, h(λxr) = h(r)+1, h(rs) = max(h(r),h(s))+1.
By induction on r we immediately see l(r) ≤ 2h(r).

Embedding Lemma 4.12 t ∈ T(V) and g(t) ≤ ρ + 1 ⇒
2ω+1

·l(t)

ρ t.

Proof. . Let e(k) := 4 · k − 1 + 2ω · k for k > 0. Then e(k) ≤∗
0 22 · k + 2ω · k ≤∗

0

(2ω + 2ω) · k ≤∗
0 2ω+1 · k. We prove

g(t) ≤ ρ + 1 ⇒
e(l(t))

ρ t

by induction on the definition of t ∈ T(V), then the assertion follows by a
Structural Rule.

t ∈ V0,S. We have
0

0
t by V0,S,R-Rule.

t = R. Let a, b ∈ V ′ such that R′ 0ab ∈ T′(V), then the previous Lemma shows

∀u ∈ T(V)∀k < ω
(

lev(u) = 0 &
k
u ⇒

2+2·k

ρ R′ uab
)

because lev(a) < lev(R′) ≤ ρ+1. Setting β[⋆] := 2+2⋆ ∈ C we obtain 2+2·k ≤∗
0

β[k] by induction on k, where 2 ≤0 β[0] and 4 ≤∗
0 β[1] are clear, and for k > 0

with induction hypothesis 2+2·(k+1) ≤∗
0 β[k]+1+1 ≤∗

0 2+2k+2k ≤0 2+2k+1 =
β[k+1]. Furthermore β[0]+2 = 2+20+1+1 ≤∗

0 2+21+1 ≤0 2+2ω+1 = β[ω]+1

and β[ω] + 1 = 2 + 2ω + 1 ≤0 3 + 2ω = e(1), hence
e(1)

ρ R′ by R′ Ω0-Rule and
a Structural Rule.

t = λxr. Then g(r) ≤ ρ + 1, hence
e(l(r))

ρ r by induction hypothesis. Hence
e(l(r)+1)

ρ t by β-Rule.

t = (rs). Then g(r), g(s) ≤ ρ + 1, hence
e(l(r))

ρ r and
e(l(s))

ρ s by induction

hypothesis. The Appending Lemma shows
e(l(r))+1

ρ rz for some suitable z ∈

V ′, hence
e(l(s))+e(l(r))+1

ρ r s using the Substitution Lemma, because lev(s) <
lev(r) ≤ ρ+1 and s ∈ T′(V). Now e(m)+e(n)+1 ≤∗

0 4·(m+n)−1+2ω ·(m+n) =

e(m + n), hence
e(l(t))

ρ t. qed.

Now we put everything together. Let t ∈ T(V) with g(t) = ρ + 1. The
Embedding Lemma and the Cut Elimination Lemma show

2ρ(2ω+1
·l(t))

0
t

where 2n(α) is the obvious term defined by iteration of 2α, i.e. 20(α) = α and
2n+1(α) = 22n(α). Now the Collapsing Theorem leads to

D2ρ(2ω+1
·l(t))

t
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because t̂ = t. Hence we obtain with the Estimate Theorem

d(t) ≤ 2D2ρ(2ω+1
·l(t)) = 2Ψ(O(2ρ(2ω+1

·l(t)))

≤

{
2Ψ(ω·4·l(t)) : ρ = 0
2Ψ(wρ(4·l(t)+1)) : ρ > 0

≤

{
2Ψ(ω·4·2h(t)) : ρ = 0

2Ψ(wρ(4·2h(t)+1)) : ρ > 0

It follows from [S97] and [BCW94] that these bounds are optimal.

Remark 4.13 Gödel’s T in the formulation with combinators K and S can
also be analyzed using the same machinary from this paper obtaining the same
results. To this end we have to replace the β-Rules by rules for K and S. They
are treated similiar to the recursor, of course without Ω-rules, but also with
copies K ′ and S′ for handling substitution, i.e. cut-elimination.
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