Analyzing Gödel's T via expanded head reduction trees

Arnold Beckmann*
Mathematical Institute, University of Oxford
24-29 St. Giles', Oxford OX1 3LB, UK ${ }^{\dagger}$
Andreas Weiermann ${ }^{\ddagger}$
Institut für mathematische Logik und Grundlagenforschung der Westfälischen Wilhelms-Universität Münster
Einsteinstr. 62, D-48149 Münster, Germany ${ }^{\S}$

February 26, 1999

Abstract

Inspired from Buchholz' ordinal analysis of $I D_{1}$ and Beckmann's analysis of the simple typed λ-calculus we classify the derivation lengths for GÖDEL's system T in the λ-formulation (where the η-rule is included).

1 Introduction

In this paper we develop a perspicuous method for classifying the derivation lengths of GöDEL's T. Following ideas from [Be98] we assign canonically to each term $t \in T$ an expanded head reduction tree. The size of this tree, if it is finite, yields a nontrivial bound on the maximal length of a reduction chain starting with t, since the expanded head reduction trees represent worst case reductions. Using ideas from infinitary proof theory we show that it is indeed possible to define a finite expanded head reduction tree for any term of T. For this purpose we enlarge the concept of expanded head reduction trees by a cut rule and an appropriate miniaturization of BuchHolz' Ω-rule (for dealing with terms containing recursors). The embedding and cut elimination procedure is carried out by adapting Buchholz' treatment of $I D_{1}$ (cf. [Bu80]). To obtain optimal complexity bounds even for the fragments of T we utilize a system \mathcal{T} of formal ordinal terms for the ordinals less than ε_{0} and an appropriate collapsing function $\mathcal{D}: \mathcal{T} \rightarrow \omega$. To obtain an unnested recursive definition of \mathcal{D} we utilize crucial properties of the theory of the ψ function which is developed, for example, in [W98].

[^0]Compared with prior treatments of classifying the T-derivation lengths (cf., e.g., [W98, WW98]) the method described in this paper has the advantage that the ordinals assigned to the terms of T are assigned in a more genuine and intrinsic way.

2 Expanded head reduction trees

The derivation length $\mathrm{d}(r)$ of a term r is the longest possible reduction sequence starting from r :

$$
\mathrm{d}(r):=\max \left\{k: \exists s \in \mathrm{~T}(\mathcal{V}), r \longrightarrow^{k} s\right\} .
$$

In case of simple typed λ-calculus it is shown in [Be98] that computing the expanded head reduction tree of r leads to estimations on $\mathrm{d}(r)$. Here we will extend this approach to Gödel's T. To this end we first have to fix what the head redex of a term is. Of course the presence of the recursor R makes thing much more complicated than in the case of simple typed λ-calculus. The head redex can occur deep inside the term. E.g. let $b:=\lambda x . \lambda y$. $\mathrm{S} y$, then the head redex of $v:=\mathrm{R}(\mathrm{R}((\lambda x . \mathrm{S} x) t) b c) d e$ is $(\lambda x . \mathrm{S} x) t$, so v reduces with head reductions in the following way:

$$
\begin{aligned}
v & \longrightarrow^{1} \mathrm{R}(\mathrm{R}(\mathrm{~S} t) b c) d e \longrightarrow^{1} \mathrm{R}(b t(\mathrm{R} t b c)) d e \\
& { }^{2} \mathrm{R}(\mathrm{~S}(\mathrm{R} t b c)) d e \longrightarrow^{1} d(\mathrm{R} t b c)(\mathrm{R}(\mathrm{R} t b c) d e)
\end{aligned}
$$

The terms $\mathrm{T}(\mathcal{V})$ of GöDEL's T are build up from a set of variables \mathcal{V} (countably many for each type) and the symbols for the recursor R for any type, for zero 0 of type 0 and for the successor S of type $0 \rightarrow 0$. We will decompose every term $t \in \mathrm{~T}(\mathcal{V})$ into its head redex $\operatorname{redex}(t)$ and the rest $\operatorname{coat}_{t}(\star)$ which we call coat such that $t=\operatorname{coat}_{t}(\operatorname{redex}(t))$. Not every head redex is reducible, e.g. if redex (t) starts with a variable. In this case reductions are only possible in all other terms which occur up to the depth of $\operatorname{redex}(t)$ and these reductions can be considered in parallel. Therefore we collect those terms into a multiset $\operatorname{mat}(t)$ called the material of t. Furthermore we split the redex of t into its characteristic part $\operatorname{rr}(t)$ which is needed to define the expanded head reduction tree.

With $\{\{\ldots\}\}$ we indicate multisets, with \cup their union and with \# their cardinality. Let $\mathcal{V}_{\mathrm{R}}:=\mathcal{V} \cup\{R\}, \mathcal{V}_{0, \mathrm{~S}}:=\mathcal{V} \cup\{0, \mathrm{~S}\}$ and $\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}:=\mathcal{V}_{0, \mathrm{~S}} \cup\{\mathrm{R}\}$.

Definition 2.1 We define terms $\operatorname{redex}(s), \operatorname{rr}(s) \in \mathrm{T}(\mathcal{V})$ and $\operatorname{coat}_{s}(\star) \in \mathrm{T}(\mathcal{V} \cup$ $\{\star\})$ and a multiset of $\mathrm{T}(\mathcal{V})$-terms $\operatorname{mat}(s)$ by recursion on $s \in \mathrm{~T}(\mathcal{V})$.

s	$\operatorname{rr}(s)$	$\operatorname{redex}(s)$	$\operatorname{coat}_{s}(\star)$	$\operatorname{mat}(s)$
$x \vec{t} \quad x \in \mathcal{V}_{0, \mathrm{~S}}$	x	$x \vec{t}$	\star	$\{\{\vec{t}\}\}$
$\lambda x r$	$(\lambda x r) x$	$\lambda x r$	\star	\emptyset
$(\lambda x r) u \vec{t}$	$(\lambda x r) u$	$(\lambda x r) u$	$\star \vec{t}$	\emptyset
$\mathrm{R} u_{1} \ldots u_{l} \quad l \leq 2$	R	$\mathrm{R} \vec{u}$	\star	$\{\{\vec{u}\}\}$
$\mathrm{R} t a b \vec{s}$				
$\quad t=0, \mathrm{~S} t^{\prime}$	$\mathrm{R} t a b$	$\mathrm{R} t a b$	$\star \vec{s}$	\emptyset
$\quad t=x \vec{u}, x \in \mathcal{V}$	x	$\mathrm{R} t a b$	$\star \vec{s}$	$\{\{\vec{u}, a, b, \vec{s}\}\}$
$\quad t \neq x \vec{u}, x \in \mathcal{V}_{0, \mathrm{~S}}$	$\operatorname{rr}(t)$	$\operatorname{redex}(t)$	$\operatorname{R~coat}_{t}(\star) a b \vec{s}$	$\operatorname{mat}(t) \cup\{\{a, b, \vec{s}\}\}$

Obviously we have $\operatorname{coat}_{t}(\operatorname{redex}(t))=t, \operatorname{rr}(t)=\operatorname{rr}(\operatorname{redex}(t))$ and

$$
\begin{aligned}
\operatorname{rr}(t) \in & \mathcal{V} \cup\{0, \mathrm{~S}, \mathrm{R}\} \cup\{(\lambda x r) s, \mathrm{R} 0 a b, \mathrm{R}(\mathrm{~S} s) a b \mid a, b, r, s \in \mathrm{~T}(\mathcal{V})\} \\
\operatorname{redex}(t) \in & \left\{\lambda x r,(\lambda x r) s, y \vec{t}, \mathrm{R}(y \vec{t}) r s \mid r, s, \vec{t} \in \mathrm{~T}(\mathcal{V}), y \in \mathcal{V}_{0, \mathrm{~S}}\right\} \\
& \cup\left\{\mathrm{R} u_{1} \ldots u_{l} \mid l \leq 2 \& \vec{u} \in \mathrm{~T}(\mathcal{V})\right\}
\end{aligned}
$$

Definition 2.2 We inductively define $\models^{\alpha} t$ for $t \in \mathrm{~T}(\mathcal{V})$ and $\alpha<\omega$ if one of the following cases holds:
$\left(\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}-\mathrm{Rule}\right) \operatorname{rr}(t) \in \mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$ and there is some β such that $\beta+\# \operatorname{mat}(t) \leq \alpha$ and $\forall s \in \operatorname{mat}(t) \models^{\beta} s$.
(β-Rule) $\operatorname{rr}(t)=(\lambda x r) s$ and $\models^{\beta} \operatorname{coat}_{t}(r[x:=s])$ and $\models^{\beta} s$ for some $\beta<\alpha$.
(R 0-Rule) $\operatorname{rr}(t)=\mathrm{R} 0 a b$ and $\xlongequal{\beta} \operatorname{coat}_{t}(b)$ and $\stackrel{\beta}{=}$ a for some $\beta<\alpha$.
(R S-Rule) $\operatorname{rr}(t)=\mathrm{R}\left(\mathrm{S} t^{\prime}\right) a b$ and $\stackrel{\beta}{ }{ }^{\beta} \operatorname{coat}_{t}\left(a t^{\prime}\left(\mathrm{R} t^{\prime} a b\right)\right)$ for some $\beta<\alpha$.
The β-Rule is well-defined because redex $(t)=\lambda x r \Rightarrow t=\lambda x r$. Observe that we have $\operatorname{redex}(t)=\operatorname{rr}(t)$ for the R 0-Rule and the R S-Rule.

Obviously $\Vdash^{0} x$ for any variable x and $0, \mathrm{~S}$.
We observe that $\models^{\alpha} r$ can be viewed as a tree which is generated in a unique way. We call this tree (with the α 's stripped off) the expanded head reduction tree of r. We are going to define a number $\# t$ for any term t which computes the number of nodes with conversion in the expanded head reduction tree of that term.

Definition 2.3 Define $\# t$ for $t \in \mathrm{~T}(\mathcal{V})$ by recursion on $\models^{\alpha} t$. This is welldefined because the expanded head reduction tree is unique.

1. $\operatorname{rr}(t) \in \mathcal{V} \cup\{0, \mathrm{~S}, \mathrm{R}\}$ then $\# t:=\sum_{s \in \operatorname{mat}(t)} \# s$.
2. $\operatorname{rr}(t)=(\lambda x r) s$ then $\# t:=\# \operatorname{coat}_{t}(r[x:=s])+\# s+1$.
3. $\operatorname{rr}(t)=\mathrm{R} 0 a b$ then $\# t:=\# \operatorname{coat}_{t}(b)+\# a+1$.
4. $\operatorname{rr}(t)=\mathrm{R}\left(\mathrm{S} t^{\prime}\right) a b$ then $\# t:=\# \operatorname{coat}_{t}\left(a t^{\prime}\left(\mathrm{R} t^{\prime} a b\right)\right)+1$.

Lemma 2.4 If $\operatorname{rr}(r) \neq z$ and $z \in \mathcal{V}$ then

1. $\operatorname{redex}(r[z:=s])=\operatorname{redex}(r)[z:=s]$
2. $\operatorname{coat}_{r[z:=s]}(\star)=\operatorname{coat}_{r}(\star)[z:=s]$
3. $\operatorname{mat}(r[z:=s])=\operatorname{mat}(r)[z:=s]$

Lemma 2.5 Assume $\operatorname{rr}(r)=z \in \mathcal{V} \cup\{\mathrm{R}\}$. If $\operatorname{redex}(r)=z \vec{t}$ then $\operatorname{redex}(r)=r$. Otherwise $\operatorname{redex}(r)=\mathrm{R}(z \vec{t})$ ab and $z \in \mathcal{V}$, thus

1. $\operatorname{mat}(r)=\operatorname{mat}\left(\operatorname{coat}_{r}\left(z^{\prime}\right)\right) \cup\{\{\vec{t}, a, b\}\}$ for some suitable z^{\prime}.
2. if $s \in \mathrm{~T}(\mathcal{V})$ with $z \notin \operatorname{fvar}(s)$ then
(a) $\operatorname{redex}(r[z:=s])=\operatorname{redex}(\mathrm{R}(z \vec{t})[z:=s] a b)[z:=s]$
(b) $\operatorname{coat}_{r[z:=s]}(\star)=\operatorname{coat}_{r}\left(\operatorname{coat}_{\mathrm{R}(z \vec{t})[z:=s] a b}(\star)\right)[z:=s]$

In order to handle η-reductions we need $\# r x \geq \# r$, then we can compute $\# \lambda x \cdot p x=\# p x+1>\# p$. But in order to obtain $\# r x \geq \# r$ we need a Lemma which comes with a rather technical proof.

Lemma $2.6 \# r[z:=u] \geq \# r+\# u$ if $z \in \operatorname{fvar}(r)$.
Using this we immediately obtain
Lemma 2.7 1. $\# r[x:=y]=\# r$.
2. $\# r x \geq \# r$.

Proof. 1. is clear.
For 2. we compute $\# r x \geq \# y x+\# r \geq \# r$ using Lemma 2.6 for the first \geq. QED.

Proof of Lemma 2.6. More generally we will prove
$\forall r, u \in \mathrm{~T}(\mathcal{V}) \forall z \in \mathcal{V}(z$ occurs exactly once free in r and $\# r[z:=u]=k$

$$
\Rightarrow \# r+\# u \leq \# r[z:=u])
$$

by induction on k. Let k, r, u, z fulfill the premise of this assertion. Define s^{*} to be $s[z:=u]$ for terms s.
$\operatorname{rr}(r)=(\lambda x s) t$. By Lemma 2.4 we have redex $\left(r^{*}\right)=\operatorname{redex}(r)^{*}$ and $\operatorname{coat}_{r^{*}}=$ $\operatorname{coat}_{r}^{*}$, thus $\operatorname{rr}\left(r^{*}\right)=\operatorname{rr}\left(\operatorname{redex}\left(r^{*}\right)\right)=\operatorname{rr}\left(\left(\lambda x s^{*}\right) t^{*}\right)=\left(\lambda x s^{*}\right) t^{*}$. Hence

$$
\begin{aligned}
\# r^{*} & =\# \operatorname{coat}_{r}(s[x:=t])^{*}+\# t^{*}+1 \\
& \stackrel{* 1}{\geq} \# \operatorname{coat}_{r}(s[x:=t])+\# t+1+\# u=\# r+\# u
\end{aligned}
$$

where for estimation $* 1$ we used the induction hypothesis eventually several times.

Similar are the cases for $\operatorname{rr}(r)=\mathrm{R} 0 a b, \operatorname{rr}(r)=\mathrm{R}(\mathrm{S} t) a b$ and $\operatorname{rr}(r)=y \in$ $\mathcal{V} \cup\{0, \mathrm{~S}, \mathrm{R}\}$ with $y \neq z$.

The case $\operatorname{rr}(r)=z$ needs very much effort. Observe that $\operatorname{rr}(r)$ is the only occurrence of z in r.

- $\operatorname{redex}(u)=y \vec{v}$ with $y \in \mathcal{V}_{0, \mathrm{~S}}$, hence $u=y \vec{v}$ by Lemma 2.5. In the case redex $(r)=z \vec{t}$ Lemma 2.5 shows $r=z \vec{t}$, hence

$$
\# r^{*}=\# y \vec{v} \vec{t}=\sum \# \vec{v}+\sum \# \vec{t}=\# u+\# r .
$$

Otherwise redex $(r)=\mathrm{R}(z \vec{t}) a b$ and Lemma 2.5 2. shows

$$
\begin{aligned}
\operatorname{redex}\left(r^{*}\right) & =\mathrm{R}(y \vec{v} \vec{t}) a b \\
\operatorname{coat}_{r^{*}}(\star) & =\operatorname{coat}_{r}(\star)
\end{aligned}
$$

1. $y \in \mathcal{V}$, then Lemma 2.51 . shows

$$
\begin{aligned}
\operatorname{mat}\left(r^{*}\right) & =\operatorname{mat}\left(\operatorname{coat}_{r}\left(z^{\prime}\right)\right) \cup\{\{\vec{v}, \vec{t}, a, b\}\} \\
& =\operatorname{mat}(r) \cup \operatorname{mat}(u)
\end{aligned}
$$

Thus

$$
\# r^{*}=\sum_{v \in \operatorname{mat}(r)} \# v+\sum_{v \in \operatorname{mat}(u)} \# v=\# r+\# u
$$

2. $y=0$, hence $y \vec{v} \vec{t}=0$ and we compute

$$
\begin{aligned}
\# r^{*} & =\# \operatorname{coat}_{r}(b)+\# a+1 \stackrel{i . h .}{\geq} \# \operatorname{coat}_{r}\left(z^{\prime}\right)+\# b+\# a+1 \\
& =\# r+1>\# r+\# u
\end{aligned}
$$

where the last equation uses Lemma 2.51.
3. $y=\mathrm{S}$, hence $y \vec{v} \vec{t}=\mathrm{S} v$ and we compute

$$
\begin{aligned}
\# r^{*} & =\# \operatorname{coat}_{r}(a v(\mathrm{R} v a b))+1 \stackrel{i . h .}{\geq} \# \operatorname{coat}_{r}\left(z^{\prime}\right)+\# a+\# b+\# v+1 \\
& =\# r+\# u+1>\# r+\# u
\end{aligned}
$$

and we used the induction hypothesis several times.

- $\operatorname{redex}(u)=\mathrm{R}(y \vec{v}) c d$ with $y \in \mathcal{V}_{0, \mathrm{~S}}$. If $\operatorname{redex}(r)=z \vec{t}$ then

$$
\begin{aligned}
\operatorname{redex}\left(r^{*}\right) & =\mathrm{R}(y \vec{v}) c d \\
\operatorname{coat}_{r^{*}}(\star) & =\operatorname{coat}_{u}(\star) \vec{t}
\end{aligned}
$$

otherwise $\operatorname{redex}(r)=\mathrm{R}(z \vec{t}) a b$, hence

$$
\begin{aligned}
\operatorname{redex}\left(r^{*}\right) & =\mathrm{R}(y \vec{v}) c d \\
\operatorname{coat}_{r^{*}}(\star) & =\operatorname{coat}_{r}\left(\mathrm{R}\left(\operatorname{coat}_{u}(\star) \vec{t}\right) a b\right)
\end{aligned}
$$

Similar to the previous case we compute

$$
\# r^{*} \geq \# r+\# u
$$

For the following cases we state some abbreviations. If $\operatorname{redex}(r)=z \vec{t}$ then $r=z \vec{t}$ by Lemma 2.5. Let $c_{r}(\star):=\star$. Otherwise $\operatorname{redex}(r)=\mathrm{R}(z \vec{t}) a b$. Let $c_{r}(\star):=\operatorname{coat}_{r}(\mathrm{R} \star a b)$. In both cases we have using Lemma 2.5

$$
\begin{aligned}
r & =c_{r}(z \vec{t}) \\
\operatorname{mat}(r) & =\operatorname{mat}\left(c_{r}\left(z^{\prime}\right)\right) \cup\{\{\vec{t}\}\}
\end{aligned}
$$

- $\operatorname{redex}(u)=\mathrm{R} u_{1} \ldots u_{l}$ with $l \leq 2$. Then $u=\mathrm{R} u_{1} \ldots u_{l}$ by Lemma 2.5.

Let $u_{1} \ldots u_{l} \vec{t}=: v_{1} \ldots v_{m}$ for some m, v_{1}, \ldots, v_{m}. Then

$$
\begin{aligned}
r^{*} & =c_{r}(\mathrm{R} \vec{v}) \\
\operatorname{redex}\left(r^{*}\right) & =\operatorname{redex}(\mathrm{R} \vec{v}) \\
\operatorname{coat}_{r^{*}}(\star) & =c_{r}\left(\operatorname{coat}_{\mathrm{R}} \vec{v}(\star)\right)
\end{aligned}
$$

We compute with Lemma 2.51.

$$
\begin{equation*}
\# r+\# u=\# c_{r}\left(z^{\prime}\right)+\sum \# \vec{t}+\sum_{j=1}^{l} \# u_{j}=\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \tag{1}
\end{equation*}
$$

We distinguish the cases for m and redex $\left(v_{1}\right)$.

1. $m \leq 2$, then by Lemma $2.5 r=z \vec{t}, r^{*}=\mathrm{R} v_{1} \ldots v_{m}$ and $c_{r}(\star)=\star$, hence

$$
\# r^{*}=\sum_{j=1}^{m} \# v_{j}=\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
$$

For the following cases assume $m \geq 3$.
2. $v_{1}=0$, then $\operatorname{redex}\left(r^{*}\right)=\mathrm{R} 0 v_{2} v_{3}$ and $\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\star v_{4} \ldots v_{m}\right)$. Thus

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(v_{3} \ldots v_{m}\right)+\# v_{2}+1 \\
& \stackrel{i . h .}{>} \# c_{r}\left(z^{\prime}\right)+\#\left(v_{3} \ldots v_{m}\right)+\# v_{2} \\
& \stackrel{* 2}{\geq} \# c_{r}\left(z^{\prime}\right)+\#\left(x_{3} \ldots x_{m}\right)+\sum_{j=2}^{m} \# v_{j} \\
& \geq \# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

where for estimation $* 2$ we used several times the induction hypothesis and $x_{3} \ldots x_{m}$ are suitable new variables.
3. $v_{1}=\mathrm{S} v$, then $\operatorname{redex}\left(r^{*}\right)=\mathrm{R}(\mathrm{S} v) v_{2} v_{3}$ and $\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\star v_{4} \ldots v_{m}\right)$. Hence

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(v_{2} v\left(\mathrm{R} v v_{2} v_{3}\right) v_{4} \ldots v_{m}\right)+1 \\
& \stackrel{i . h .}{>} \# c_{r}\left(z^{\prime}\right)+\# v_{2} v\left(\mathrm{R} x_{1} x_{2} x_{3}\right) x_{4} \ldots x_{m}+\# v+\sum_{j=2}^{m} \# v_{j} \\
& \stackrel{* 3}{\geq} \# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

where for estimation $* 3$ we observe $\# v=\# \mathrm{~S} v$.
4. $\operatorname{redex}\left(v_{1}\right)=x \vec{w}$ with $x \in \mathcal{V}$, then $v_{1}=x \vec{w}$, thus redex $\left(r^{*}\right)=\mathrm{R}(x \vec{w}) v_{2} v_{3}$ and $\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\star v_{4} \ldots v_{m}\right)$. Hence

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(z^{\prime}\right)+\sum_{w \in \operatorname{mat}\left(v_{1}\right)} \# w+\sum_{j=2}^{m} \# v_{j} \\
& =\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

5. redex $\left(v_{1}\right)=\mathrm{R} w_{1} \ldots w_{n}$ with $n \leq 2$ and redex $\left(v_{1}\right)=\lambda x s$ not possible because $\operatorname{lev}\left(v_{1}\right)=0$.
6. $\operatorname{redex}\left(v_{1}\right)=(\lambda x s) t$, then $\operatorname{redex}\left(r^{*}\right)=(\lambda x s) t$ and

$$
\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\mathrm{R}_{\operatorname{coat}}^{v_{1}}(\star) v_{2} \ldots v_{m}\right) .
$$

Hence

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(\operatorname{R~coat}_{v_{1}}(s[x:=t]) v_{2} \ldots v_{m}\right)+\# s+1 \\
& \stackrel{i . h .}{\geq} \# c_{r}\left(z^{\prime}\right)+\# \operatorname{coat}_{v_{1}}(s[x:=t])+\# s+1+\sum_{j=2}^{m} \# v_{j} \\
& =\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

7. $\operatorname{redex}\left(v_{1}\right)=\mathrm{R} 0 c d$, then $\operatorname{redex}\left(r^{*}\right)=\mathrm{R} 0 c d$

$$
\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\operatorname{R~coat}_{v_{1}}(\star) v_{2} \ldots v_{m}\right)
$$

Hence

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(\operatorname{R} \operatorname{coat}_{v_{1}}(d) v_{2} \ldots v_{m}\right)+\# c+1 \\
& \stackrel{i . h .}{\geq} \# c_{r}\left(z^{\prime}\right)+\# \operatorname{coat}_{v_{1}}(d)+\# c+1+\sum_{j=2}^{m} \# v_{j} \\
& =\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

8. $\operatorname{redex}\left(v_{1}\right)=\mathrm{R}(\mathrm{S} w) c d$, then $\operatorname{redex}\left(r^{*}\right)=\mathrm{R}(\mathrm{S} w) c d$

$$
\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\operatorname{R~coat}_{v_{1}}(\star) v_{2} \ldots v_{m}\right)
$$

Hence

$$
\begin{aligned}
\# r^{*} & =\# c_{r}\left(\mathrm{R} \operatorname{coat}_{v_{1}}(c w(\mathrm{R} w c d)) v_{2} \ldots v_{m}\right)+1 \\
& \stackrel{i . h .}{\geq} \# c_{r}\left(z^{\prime}\right)+\# \operatorname{coat}_{v_{1}}(c w(\mathrm{R} w c d))+1+\sum_{j=2}^{m} \# v_{j} \\
& =\# c_{r}\left(z^{\prime}\right)+\sum_{j=1}^{m} \# v_{j} \stackrel{(1)}{=} \# r+\# u
\end{aligned}
$$

- $\operatorname{redex}(u)=\lambda x s$ then $u=\lambda x s$ by induction on the definition of $\operatorname{redex}(u)$. If $z \vec{t}=z$ then $r=z$ because $\operatorname{lev}(z)>0$. Hence

$$
\# r^{*}=\# u=\# r+\# u
$$

$$
\begin{aligned}
& \# r^{*}=\# c_{r}\left(s\left[x:=v_{0}\right] \vec{v}\right)+\# v_{0}+1 \\
& \quad i . h . \\
& \quad \geq c_{r}\left(z^{\prime}\right)+\# s\left[x:=v_{0}\right]+\# \vec{v}+\# v_{0}+1 \\
& \quad \stackrel{(i . h .)}{\geq} \# c_{r}\left(z^{\prime}\right)+\# v_{0}+\# \vec{v}+\# s+1 \\
& \quad \stackrel{* 4}{=} \# c_{r}(z \vec{t})+\# \lambda x s=\# r+\# u
\end{aligned}
$$

With (i.h.) we mean that we eventually used the induction hypothesis and at *4 we used Lemma 2.5.

- $\operatorname{redex}(u)=(\lambda x s) v$, then $\operatorname{redex}\left(r^{*}\right)=(\lambda x s) v$ and $\operatorname{coat}_{r^{*}}(\star)=c_{r}\left(\operatorname{coat}_{u}(\star) \vec{t}\right)$. Hence

$$
\begin{aligned}
& \# r^{*}=\# c_{r}\left(\operatorname{coat}_{u}(s[x:=v]) \vec{t}\right)+\# v+1 \\
& \quad \stackrel{i . h .}{\geq} \# c_{r}(z \vec{t})+\# \operatorname{coat}_{u}(s[x:=v])+\# v+1=\# r+\# u
\end{aligned}
$$

- The cases for $\operatorname{redex}(u)=\mathrm{R} 0 c d$ and for $\operatorname{redex}(u)=\mathrm{R}(\mathrm{S} v) c d$ are similar to the previous one.

QED.

Main Lemma $2.8 r \longrightarrow^{1} s \Rightarrow \# r>\# s$
Proof. More generally we show for r such that z occurs exactly once:

1. $\# r[z:=(\lambda x p) q]>\# r[z:=p[x:=q]]$
2. $\# r[z:=\lambda x . p x]>\# r[z:=p]$ if $x \notin \operatorname{fvar}(p)$
3. $\# r[z:=\mathrm{R} 0 a b]>\# r[z:=b]$
4. $\# r[z:=\mathrm{R}(\mathrm{S} t) a b]>\# r[z:=a t(\mathrm{R} t a b)]$

For case 1. let $r^{*}:=r[z:=(\lambda x p) q]$ and $r^{\prime}:=r[z:=p[x:=q]]$. We prove 1. by induction on r^{*}. W.l.o.g. assume $z \notin \operatorname{fvar}(p, q) \cup\{x\}$.
i) $\operatorname{rr}(r)=(\lambda x s) t$. By Lemma 2.4 we know

$$
\begin{equation*}
\operatorname{redex}\left(r^{*}\right)=\operatorname{redex}(r)^{*} \text { and } \operatorname{coat}_{r^{*}}(\star)=\operatorname{coat}_{r}(\star)^{*} \tag{2}
\end{equation*}
$$

thus $\operatorname{rr}\left(r^{*}\right)=\operatorname{rr}(r)^{*}=\left(\lambda x s^{*}\right) t^{*}$. Analogously for r^{\prime}. Hence

$$
\begin{aligned}
\# r^{*} & =\operatorname{coat}_{r^{*}}\left(s^{*}\left[x:=t^{*}\right]\right)+\# t^{*}+1 \\
& \stackrel{(2)}{=} \operatorname{coat}_{r}(s[x:=t])^{*}+\# t^{*}+1 \stackrel{(i . h .)}{>} \operatorname{coat}_{r}(s[x:=t])^{\prime}+\# t^{\prime}+1 \stackrel{\text { sim. }}{=} r^{\prime}
\end{aligned}
$$

Observe that the induction hypothesis is applied at least once because $z \in$ $\operatorname{fvar}\left(\operatorname{coat}_{r}(s[x:=t]), t\right)$.
ii) $\operatorname{rr}(r)=\mathrm{R} 0 a b, \operatorname{rr}(r)=\mathrm{R}(\mathrm{S} t) a b$ and $\operatorname{rr}(r)=y \in \mathcal{V} \cup\{0, \mathrm{~S}, \mathrm{R}\}$ for $y \neq z$. The proofs are the same as in i), because in these cases we also have (2).
iii) $\operatorname{rr}(r)=z$. If $\operatorname{redex}(r)=z \vec{t}$ then $r=z \vec{t}$ by Lemma 2.5. By assumption $z \notin \operatorname{fvar}(\vec{t})$, hence

$$
\# r^{*}=\#(\lambda x p) q \vec{t}=\# p[x:=q] \vec{t}+\# q+1>\# p[x:=q] \vec{t}=\# r^{\prime}
$$

The other case is redex $(r)=\mathrm{R}(z \vec{t}) a b$. Then we obtain by Lemma 2.5

$$
\begin{equation*}
\operatorname{redex}\left(r^{*}\right)=\operatorname{redex}\left(\mathrm{R}(z \vec{t})^{*} a b\right)^{*} \text { and } \operatorname{coat}_{r^{*}}(\star)=\operatorname{coat}_{r}\left(\operatorname{coat}_{\mathrm{R}(z \vec{t})^{*} a b}(\star)\right)^{*} \tag{3}
\end{equation*}
$$

Again $z \notin \operatorname{fvar}\left(\operatorname{coat}_{r}, \vec{t}, a, b\right)$, thus we compute

$$
\begin{aligned}
\operatorname{redex}\left(r^{*}\right) & =\operatorname{redex}(\mathrm{R}((\lambda x p) q \vec{t}) a b)=(\lambda x p) q \\
\operatorname{coat}_{r^{*}}(\star) & =\operatorname{coat}_{r}(\mathrm{R}(\star \vec{t}) a b),
\end{aligned}
$$

hence

$$
\begin{aligned}
\# r^{*} & =\# \operatorname{coat}_{r^{*}}(p[x:=q])+\# q+1 \\
& >\# \operatorname{coat}_{r}(\mathrm{R}(p[x:=q] \vec{t}) a b)=\# \operatorname{coat}_{r}(\operatorname{redex}(r))^{\prime}=\# r^{\prime}
\end{aligned}
$$

This proves 1 . The cases 3 . and 4 . are proven the same way.
For 2. let $r^{*}:=r[z:=\lambda x . p x]$ and $r^{\prime}:=r[z:=p]$. Again the proof is by induction on r^{*}. W.l.o.g. assume $z \notin \operatorname{fvar}(p) \cup\{x\}$. If $\operatorname{rr}(r) \neq z$ we proceed as in the proof of 1 .
Assume $\operatorname{rr}(r)=z$. If redex $(r)=z \vec{t}$ then $r=z \vec{t}$ by Lemma 2.5 and $z \notin \operatorname{fvar}(\vec{t})$. First assume $r=z$. Then

$$
\# r^{*}=\# \lambda x \cdot p x>\# p x \stackrel{* 5}{\geq} \# p=\# r^{\prime}
$$

At $* 5$ we used Lemma 2.7.
Otherwise $r=z t_{0} \vec{t}$. Hence

$$
\# r^{*}=\#(\lambda x \cdot p x) t_{0} \vec{t}=\# p t_{0} \vec{t}+\# t_{0}+1>\# p t_{0} \vec{t}=\# r^{\prime} .
$$

If $\operatorname{redex}(r) \neq z \vec{t}$ then redex $(r)=\mathrm{R}(z \vec{t}) a b$ by Lemma 2.5. As $\operatorname{lev}(z \vec{t})=0$ we must have $\vec{t}=u_{0} \vec{u}$. Again we obtain by Lemma 2.5 the equations (3), thus we compute redex $\left(r^{*}\right)=\operatorname{redex}\left(\mathrm{R}\left((\lambda x . p x) u_{0} \vec{u}\right) a b\right)=(\lambda x \cdot p x) u_{0}$ and $\operatorname{coat}_{r^{*}}(\star)=$ $\operatorname{coat}_{r}(\mathrm{R}(\star \vec{u}) a b)$, hence

$$
\# r^{*}=\# \operatorname{coat}_{r^{*}}\left(p u_{0}\right)+\# u_{0}+1>\# \operatorname{coat}_{r}\left(\mathrm{R}\left(p u_{0} \vec{u}\right) a b\right)=\# r^{\prime}
$$

This proves 2.
QED.

Estimate Lemma $2.9 \models^{\alpha} t \Rightarrow \# t \leq 2^{\alpha}$
Proof. We prove by induction on the definition of $\models^{\alpha} t$

$$
{ }^{\alpha} t \Rightarrow \# t \leq 2^{\alpha}-1 .
$$

i) $\operatorname{rr}(t) \in \mathcal{V} \cup\{0, \mathrm{~S}, \mathrm{R}\}$. Let $n:=\# \operatorname{mat}(t)$, then there is a β such that $\beta+n \leq \alpha$ and $\forall s \in \operatorname{mat}(t) \xlongequal{\beta} s$. We compute

$$
\# t=\sum_{s \in \operatorname{mat}(t)} \# s \stackrel{i . h .}{\leq} \sum_{s \in \operatorname{mat}(t)}\left(2^{\beta}-1\right)=: m
$$

If $n=0$ then $m=0 \leq 2^{\alpha}-1$. Otherwise

$$
m \leq n \cdot\left(2^{\beta}-1\right) \leq n \cdot 2^{\beta}-1 \leq 2^{\beta+n}-1 \leq 2^{\alpha}-1
$$

ii) $\operatorname{rr}(t)=(\lambda x r) s$. There is some $\beta<\alpha$ such that $\vdash^{\beta} \operatorname{coat}_{t}(r[x:=s])$ and $\vDash^{\beta} s$. Hence

$$
\begin{aligned}
\# t & =\# \operatorname{coat}_{t}(r[x:=s])+\# s+1 \stackrel{i . h .}{\leq}\left(2^{\beta}-1\right)+\left(2^{\beta}-1\right)+1 \\
& =2^{\beta+1}-1 \leq 2^{\alpha}-1
\end{aligned}
$$

iii) $\operatorname{rr}(t)=\mathrm{R} 0 a b$. There is some $\beta<\alpha$ such that $\xlongequal{\wedge} \operatorname{coat}_{t}(b)$ and $\stackrel{\beta}{=} a$. Hence

$$
\# t=\# \operatorname{coat}_{t}(b)+\# a+1 \stackrel{i . h .}{\leq}\left(2^{\beta}-1\right)+\left(2^{\beta}-1\right)+1 \leq 2^{\alpha}-1
$$

iv) $\operatorname{rr}(t)=\mathrm{R}(\mathrm{S} s) a b$. There is some $\beta<\alpha$ such that $\Vdash^{\beta} \operatorname{coat}_{t}(a s(\mathrm{R} s a b))$. Hence

$$
\# t=\# \operatorname{coat}_{t}(\operatorname{as}(\mathrm{R} s a b))+1 \stackrel{i . h .}{\leq}\left(2^{\beta}-1\right)+1 \leq 2^{\alpha}-1 .
$$

QED.
Combining the Main Lemma with the Estimate Lemma leads to the desired estimation of derivation lengths.

Estimate Theorem $2.10 \Vdash^{\alpha} t \Rightarrow \mathrm{~d}(t) \leq 2^{\alpha}$
Proof. Let $s \in \mathrm{~T}(\mathcal{V})$ and $k \in \omega$ such that $t \longrightarrow^{k} s$. Using the Main Lemma and the Estimate Lemma we obtain $k \leq \# t \leq 2^{\alpha}$.

QED.

3 Formal ordinal terms, deduction relations and hierarchies

In this section we develop in detail the technical machinery that is needed in the proof-theoretical analysis of T in section 4.

Definition 3.1 Inductive definition of a set of terms \mathcal{T} and a subset \mathcal{P} of \mathcal{T}.

1. $0 \in \mathcal{T}$,
2. $1 \in \mathcal{P}$,
3. $\omega \in \mathcal{P}$,
4. $\alpha_{1}, \ldots, \alpha_{m} \in \mathcal{P} \& m \geq 2 \Rightarrow\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle \in \mathcal{T}$.
5. $\alpha \in \mathcal{T} \Rightarrow 2^{\alpha} \in \mathcal{P}$.

For $\alpha \in \mathcal{P}$ we put $\langle\alpha\rangle:=\alpha$. Then every $\alpha \in \mathcal{T} \backslash\{0\}$ has the form $\alpha=$ $\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$ with $\alpha_{1}, \ldots, \alpha_{m} \in \mathcal{P}$ and $m \geq 1$. For $\beta \in \mathcal{T}$ we define $0+\beta:=$ $\beta+0:=\beta$ and for $0 \neq \alpha=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$ and $0 \neq \beta=\left\langle\beta_{1}, \ldots, \beta_{n}\right\rangle$ we put $\alpha+\beta:=\left\langle\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right\rangle$. We identify 0 with the empty sequence \rangle. We identify the natural numbers with the elements of $\{0,1,1+1,1+1+1, \ldots\}$.

Definition 3.2 Inductive definition of an ordinal $\mathcal{O}(\alpha)$ for $\alpha \in \mathcal{T}$.

1. $\mathcal{O}(0):=0$,
2. $\mathcal{O}(1):=1$,
3. $\mathcal{O}(\omega):=\omega$,
4. $\mathcal{O}\left(\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle\right):=\mathcal{O}\left(\alpha_{1}\right) \# \ldots \# \mathcal{O}\left(\alpha_{m}\right)$.
5. $\mathcal{O}\left(2^{\alpha}\right):=2^{\mathcal{O}(\alpha)+1}$.

Here the ordinal exponentiation with respect to base 2 is defined as follows. For $\alpha=\omega \cdot \beta+m$ with $m<\omega$ let $2^{\alpha}:=\omega^{\beta} \cdot 2^{m}$.

Definition 3.3 Inductive definition of a deduction relation \leq_{0} on \mathcal{T}. \leq_{0} is the least binary relation on \mathcal{T} such that the following holds (where α is an arbitrary element of \mathcal{T}):

1. $\alpha \leq_{0} \alpha+\beta$ for any $\beta \in \mathcal{T}$.
2. $\alpha+1 \leq{ }_{0} \alpha+\beta$ for any $\beta \in \mathcal{T}$ such that $\beta \neq 0$.
3. $\alpha+2 \leq{ }_{0} \alpha+\omega$.
4. $\alpha+2^{\beta}+2^{\beta} \leq_{0} \alpha+2^{\beta+1}$.
5. $\alpha+\beta+1 \leq_{0} \alpha+1+\beta$.
6. If $\beta \leq_{0} \gamma$ then $\beta+\delta \leq_{0} \gamma+\delta$
7. If $\beta \leq_{0} \gamma$ then $\alpha+2^{\beta} \leq_{0} \alpha+2^{\gamma}$.

Lemma 3.4 1. $\alpha \leq_{0} \beta \Rightarrow \gamma+\alpha \leq_{0} \gamma+\beta$.
2. $\alpha+k+\beta+l \leq{ }_{0} k+l+\alpha+\beta$.
3. $\alpha \leq_{0} 1+\alpha$.

Definition 3.5 1. Let $N 0:=0$ and $N \alpha:=n+N \alpha_{1}+\cdots+N \alpha_{m}$ if $\varepsilon_{0}>$ $\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{m}}>\alpha_{1} \geq \ldots \geq \alpha_{m}$.
2. Let $F_{0}(x):=2^{x}$ and $F_{n+1}(x):=F_{n}^{x+1}(x)$.
3. Let $\Psi(0):=0$ and for nonzero β let $\Psi(\beta):=\max \{\Psi(\gamma)+1: \gamma<\beta \& N \gamma \leq$ $\Phi(N(\beta))\}$ where $\Phi(x):=F_{3}(x+3)$.

Lemma 3.6 1. $\alpha<\beta \& N(\alpha) \leq \Phi(N(\beta)) \Rightarrow \Psi \alpha<\Psi \beta$.
2. $\Psi(\alpha \# \Psi(\beta)) \leq \Psi(\alpha \# \beta)$.
3. $\Psi(k)=k$.
4. $\alpha \geq \omega \Rightarrow \Psi(\alpha) \geq \Phi(N \alpha)$.

Proof. Only assertion 2) needs a proof. The proof of 2) proceeds via induction on β. Assume without loss of generality that $\alpha \neq 0 \neq \beta$. Then

$$
\Psi(\alpha \# \Psi(\beta))=\Psi(\alpha \# \Psi(\gamma)+1)
$$

for some $\gamma<\beta$ such that $N(\gamma) \leq \Phi(N(\beta))$. The induction hypothesis yields

$$
\Psi(\alpha \# \Psi(\gamma)+1)=\Psi(\alpha \# 1+\Psi(\gamma)) \leq \Psi(\alpha \# 1 \# \gamma)
$$

If $\gamma+1=\beta$ then we are done. Otherwise $\gamma+1<\beta$, hence $\alpha \# 1 \# \gamma<\alpha \# \beta$ and

$$
N(\alpha \# 1 \# \gamma)=N(\alpha) \# N(1 \# \gamma) \leq N(\alpha)+1+\Phi(N(\beta))<\Phi(N(\alpha \# \beta))
$$

Thus assertion 1) yields $\Psi(\alpha \# 1 \# \gamma)<\Psi(\alpha \# \beta)$.
QED.
The function $k \mapsto \psi(\alpha+k)$ is α-descent recursive as can be seen from [BCW94]. More directly this follows from the next lemma.

Definition 3.7 Let λ be a limit ordinal.

$$
\lambda[k]:=\max \{\alpha<\lambda: N(\alpha) \leq \Phi(N \lambda+k)\}
$$

Lemma 3.8 Let λ be a limit ordinal. Then $\Psi(\lambda+k)=\Psi(\lambda[k])+1$
Proof. We have $N(\lambda[k]=\Phi(N \lambda+k)$ since λ is a limit. Thus $\Psi(\lambda+k) \geq$ $\Psi(\lambda[k]+1)$. We show $\Psi(\lambda+k) \leq \Psi(\lambda[k]+1)$ by induction on k. Assume $\Psi(\lambda+k)=\Psi(\alpha)+1$ with $\alpha<\lambda+k$ and $N(\alpha) \leq \Phi(N(\lambda)+k)$. If $\alpha=\lambda+m$ with $m<k$ then the induction hypothesis yields $\Psi(\alpha) \leq \Psi(\lambda[m])<\Psi(\lambda[k])$ since $\lambda[m]<\lambda[k]$ and $N(\lambda[m]) \leq \Phi(N(\lambda[k]))$. Thus $\Psi(\lambda+k) \leq \Psi(\lambda[k])$. Assume now $\alpha<\lambda$. Then $\alpha \leq \lambda[k]$ by the definition of $\lambda[k]$ and $N(\alpha) \leq \Phi(N(\lambda[k]))$. Hence $\Psi(\alpha) \leq \Psi(\lambda[k])$.

QED.

Definition 3.9 Recursive definition of a natural number $\mathcal{D}(\alpha)$ for $\alpha \in \mathcal{T}$.

1. $\mathcal{D}(0):=0$,
2. $\mathcal{D}(1):=1$,
3. $\mathcal{D}(\omega):=\Psi(\omega)$,
4. $\mathcal{D}\left(2^{\alpha}\right):=\Psi\left(2^{\mathcal{O}(\alpha)+1}\right)$.
5. $\mathcal{D}\left(\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle\right):=$
$\Psi\left(\mathcal{O}\left(\alpha_{m}\right)+\Psi\left(\mathcal{O}\left(\alpha_{m-1}\right)+\Psi\left(\ldots+\Psi\left(\mathcal{O}\left(\alpha_{2}\right)+\Psi\left(\mathcal{O}\left(\alpha_{1}\right)\right)\right) \ldots\right)\right)\right)$.
Then we have $\mathcal{D}\left(\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle\right)=\Psi\left(\mathcal{O}\left(\alpha_{m}\right)+\mathcal{D}\left(\left\langle\alpha_{1}, \ldots, \alpha_{m-1}\right\rangle\right)\right.$ and $\mathcal{D}(\alpha+1)=$ $\mathcal{D}(\alpha)+1$.

Lemma 3.10 1. $N\left(2^{\alpha}\right) \leq 2^{N \alpha}$,
2. $N(\alpha)+1 \leq N\left(2^{\alpha+1}\right), N(\alpha) \leq N\left(2^{\alpha}\right) \cdot 2$,
3. $\alpha \leq_{0} \beta \Rightarrow N(\mathcal{O}(\alpha)) \leq F_{2}(N(\mathcal{O}(\beta)))$.

Proof. Assertions 1) and 2) are easy to prove. Assertion 3) follows by an induction along the inductive definition of \leq_{0}. For the critical case assume that $\alpha=\gamma+2^{\alpha^{\prime}}, \beta=\gamma+2^{\beta^{\prime}}$ and $\alpha^{\prime} \leq_{0} \beta^{\prime}$. Then the induction hypothesis yields

$$
\begin{aligned}
N(\mathcal{O}(\alpha)) \leq N\left(\mathcal{O}(\gamma)+2^{N\left(\mathcal{O}\left(\alpha^{\prime}\right)\right)+1}\right) & \leq N\left(\mathcal{O}(\gamma)+2^{F_{2}\left(N\left(\mathcal{O}\left(\beta^{\prime}\right)\right)\right)+1}\right) \\
& <N(\mathcal{O}(\gamma))+F_{2}\left(N\left(\mathcal{O}\left(\beta^{\prime}\right)\right)+1\right) \\
& \leq N(\mathcal{O}(\gamma))+F_{2}\left(N\left(\mathcal{O}\left(2^{\beta^{\prime}}\right)\right)\right. \\
& \leq F_{2}\left(N\left(\mathcal{O}\left(\gamma+2^{\beta^{\prime}}\right)\right)\right)
\end{aligned}
$$

QED.

Lemma $3.11 \alpha \leq_{0} \beta \quad \Longrightarrow \quad \mathcal{D}(\alpha) \leq \mathcal{D}(\beta)$.

Proof by an induction along the inductive definition of \leq_{0}.

1. Assume that

$$
\alpha \leq_{0} \beta=\alpha+\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle
$$

where $m \geq 0$ and $\gamma_{1}, \ldots, \gamma_{m} \in \mathcal{P}$. Then

$$
\begin{aligned}
\mathcal{D}(\beta) & =\mathcal{D}\left(\alpha+\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle\right) \\
& =\Psi\left(\mathcal{O}\left(\gamma_{m}\right)+\mathcal{D}\left(\alpha+\left\langle\gamma_{1}, \ldots, \gamma_{m-1}\right\rangle\right)\right) \\
& \geq \mathcal{D}\left(\alpha+\left\langle\gamma_{1}, \ldots, \gamma_{m-1}\right\rangle\right) \\
& \geq \ldots \\
& \geq \mathcal{D}\left(\alpha+\gamma_{1}\right) \\
& =\Psi\left(\mathcal{O}\left(\gamma_{1}\right)+\mathcal{D}(\alpha)\right) \\
& \geq \mathcal{D}(\alpha)
\end{aligned}
$$

2. Assume that $\alpha=\alpha^{\prime}+1$ and $\beta=\alpha^{\prime}+\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$ where $m \geq 1$ and $\gamma_{1}, \ldots, \gamma_{m} \in \mathcal{P}$. Then

$$
\begin{aligned}
\mathcal{D}(\beta) & =\mathcal{D}\left(\alpha^{\prime}+\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle\right) \\
& =\Psi\left(\mathcal{O}\left(\gamma_{m}\right)+\mathcal{D}\left(\alpha^{\prime}+\left\langle\gamma_{1}, \ldots, \gamma_{m-1}\right\rangle\right)\right. \\
& \geq \mathcal{D}\left(\alpha^{\prime}+\left\langle\gamma_{1}, \ldots, \gamma_{m-1}\right\rangle\right) \\
& \geq \ldots \\
& \geq \mathcal{D}\left(\alpha^{\prime}+\gamma_{1}\right) \\
& =\Psi\left(\mathcal{O}\left(\gamma_{1}\right)+\mathcal{D}\left(\alpha^{\prime}\right)\right) \\
& \geq 1+\mathcal{D}\left(\alpha^{\prime}\right)=\mathcal{D}\left(\alpha^{\prime}+1\right)=\mathcal{D}(\alpha)
\end{aligned}
$$

3. Assume that $\alpha=\alpha^{\prime}+2$ and $\beta=\alpha^{\prime}+\omega$. Then

$$
\mathcal{D}(\beta)=\mathcal{D}\left(\alpha^{\prime}+\omega\right)=\Psi\left(\omega+\mathcal{D}\left(\alpha^{\prime}\right)\right)>2+\mathcal{D}\left(\alpha^{\prime}\right)=\mathcal{D}(\alpha)
$$

4. Assume that $\alpha=\alpha^{\prime}+2^{\gamma}+2^{\gamma}$ and $\beta=\alpha^{\prime}+2^{\gamma+1}$. Then

$$
\begin{aligned}
\mathcal{D}(\beta) & =\mathcal{D}\left(\alpha^{\prime}+2^{\gamma+1}\right) \\
& =\Psi\left(2^{\mathcal{O}(\gamma)+1+1}+\mathcal{D}\left(\alpha^{\prime}\right)\right) \\
& =\Psi\left(2^{\mathcal{O}(\gamma)+1} \# 2^{\mathcal{O}(\gamma)+1}+\mathcal{D}\left(\alpha^{\prime}\right)\right) \\
& \geq \Psi\left(2^{\mathcal{O}(\gamma)+1} \# \Psi\left(2^{\mathcal{O}(\gamma)+1}+\mathcal{D}\left(\alpha^{\prime}\right)\right)\right) \\
& =\mathcal{D}\left(\alpha^{\prime}+2^{\gamma}+2^{\gamma}\right)=\mathcal{D}(\alpha)
\end{aligned}
$$

5. Assume that $\alpha=\alpha^{\prime}+\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle+1$ and $\beta=\alpha^{\prime}+1+\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$. Then

$$
\begin{aligned}
\mathcal{D}(\beta) & =\Psi\left(\mathcal{O}\left(\beta_{1}\right)+\Psi\left(\ldots+\Psi\left(\mathcal{O}\left(\beta_{m}\right)+\mathcal{D}\left(\alpha^{\prime}+1\right)\right) \ldots\right)\right) \\
& \geq \Psi\left(\mathcal{O}\left(\beta_{1}\right)+\Psi\left(\ldots+\Psi\left(\mathcal{O}\left(\beta_{m}\right)+1+\mathcal{D}\left(\alpha^{\prime}\right) \ldots\right)\right)\right. \\
& \geq \Psi\left(\mathcal{O}\left(\beta_{1}\right)+\Psi\left(\ldots \Psi\left(\mathcal{O}\left(\beta_{m-1}\right)+1+\Psi\left(\mathcal{O}\left(\beta_{m}\right)+\mathcal{D}\left(\alpha^{\prime}\right)\right)\right) \ldots\right)\right) \\
& \geq \Psi\left(\mathcal{O}\left(\beta_{1}\right)+1+\Psi\left(\ldots \Psi\left(\mathcal{O}\left(\beta_{m-1}\right)+\Psi\left(\mathcal{O}\left(\beta_{m}\right)+\mathcal{D}\left(\alpha^{\prime}\right)\right)\right) \ldots\right)\right) \\
& \geq 1+\Psi\left(\mathcal{O}\left(\beta_{1}\right)+\Psi\left(\ldots \Psi\left(\mathcal{O}\left(\beta_{m-1}\right)+\Psi\left(\mathcal{O}\left(\beta_{m}\right)+\mathcal{D}\left(\alpha^{\prime}\right)\right)\right) \ldots\right)\right. \\
& =\mathcal{D}(\alpha) .
\end{aligned}
$$

6. Assume that $\alpha=\alpha^{\prime}+\delta, \beta=\beta^{\prime}+\delta$ where $\alpha^{\prime} \leq_{0} \beta^{\prime}$ and $\delta=\left\langle\delta_{1}, \ldots, \delta_{n}\right\rangle$ with $n \geq 0$ and $\delta_{1}, \ldots, \delta_{n} \in \mathcal{P}$. The induction hypothesis yields $\mathcal{D}\left(\alpha^{\prime}\right) \leq \mathcal{D}\left(\beta^{\prime}\right)$.

Then

$$
\begin{aligned}
\mathcal{D}(\alpha) & =\psi\left(\mathcal{O}\left(\delta_{n}\right)+\psi\left(\ldots+\psi\left(\mathcal{O}\left(\delta_{1}\right)+\mathcal{D}\left(\alpha^{\prime}\right)\right) \ldots\right)\right) \\
& \geq \psi\left(\mathcal{O}\left(\delta_{n}\right)+\psi\left(\ldots+\psi\left(\mathcal{O}\left(\delta_{1}\right)+\mathcal{D}\left(\beta^{\prime}\right)\right) \ldots\right)\right) \\
& =\mathcal{D}(\beta)
\end{aligned}
$$

7. Assume now that $\alpha=\gamma+2^{\alpha^{\prime}}, \beta=\gamma+2^{\beta^{\prime}}$ and $\alpha^{\prime} \leq{ }_{0} \beta^{\prime}$. Then $\mathcal{O}\left(\alpha^{\prime}\right) \leq \mathcal{O}\left(\beta^{\prime}\right)$. If $\mathcal{O}\left(\alpha^{\prime}\right)=\mathcal{O}\left(\beta^{\prime}\right)$ then $\mathcal{D}(\alpha)=\mathcal{D}(\beta)$. We may thus assume that $\mathcal{O}\left(\alpha^{\prime}\right)<\mathcal{O}\left(\beta^{\prime}\right)$.
Then

$$
2^{\mathcal{O}\left(\alpha^{\prime}\right)+1}+\mathcal{D}(\gamma)<2^{\mathcal{O}\left(\beta^{\prime}\right)+1}+\mathcal{D}(\gamma)
$$

The assumption $\alpha^{\prime} \leq 0 \beta^{\prime}$ yields $N\left(\mathcal{O}\left(\alpha^{\prime}\right)\right) \leq F_{2}\left(N\left(\mathcal{O}\left(\beta^{\prime}\right)\right)\right)$ hence

$$
\begin{aligned}
N\left(2^{\mathcal{O}\left(\alpha^{\prime}\right)+1}+\mathcal{D}(\gamma)\right) & \leq 2^{F_{2}\left(N\left(\mathcal{O}\left(\beta^{\prime}\right)\right)\right)+1}+\mathcal{D}(\gamma) \\
& \leq F_{2}\left(N\left(2^{\mathcal{O}\left(\beta^{\prime}\right)+1}\right)\right)+\mathcal{D}(\gamma) \\
& \leq \Phi\left(N\left(2^{\mathcal{O}\left(\beta^{\prime}\right)+1}+\mathcal{D}(\gamma)\right)\right)
\end{aligned}
$$

Therefore assertion 1) of Lemma 3.6 yields

$$
\mathcal{D}(\alpha)=\mathcal{D}\left(\gamma+2^{\alpha^{\prime}}\right)<\mathcal{D}\left(\gamma+2^{\beta^{\prime}}\right)=\mathcal{D}(\beta)
$$

QED.

Definition 3.12 Inductive definition of a set \mathcal{C} of contexts.

1. $\alpha+\star \in \mathcal{C}$ for any $\alpha \in \mathcal{T}$.
2. $f \in \mathcal{C} \Rightarrow \alpha+2^{f} \in \mathcal{C}$ for any $\alpha \in \mathcal{T}$.

For $\alpha \in \mathcal{T}$ we denote by $f(\alpha)$ the result of substituting the placeholder \star in f by α. The result $f(\alpha)$ is then an element of \mathcal{T}.

Lemma 3.13 Assume that $f \in \mathcal{C}$.

1. $\mathcal{O}(f(k))+l<\mathcal{O}(f(\omega))$ for any $k, l<\omega$.
2. $N(\mathcal{O}(f(k))) \leq F_{2}(N(\mathcal{O}(f(\omega)))+k)$.
3. $\Psi\left(\alpha \# 2^{\mathcal{O}(f(k))+1}+l\right)<\Psi\left(\alpha \# 2^{\mathcal{O}(f(\omega))}+k\right)$ for any $k, l<\omega$ such that $l \leq k$.

Proof. 1. Assume first that $f=\alpha+\star$. Then

$$
\mathcal{O}(f(k))+l=\mathcal{O}(\alpha) \# k+l<\mathcal{O}(\alpha) \# \omega
$$

Assume now that $f=\alpha+2^{g}$. Then the induction hypothesis yields

$$
\begin{aligned}
\mathcal{O}(f(k))+l & =\mathcal{O}(\alpha) \# 2^{\mathcal{O}(g(k))+1}+l \\
& \leq \mathcal{O}(\alpha) \# 2^{\mathcal{O}(g(k))+1+l} \\
& <\mathcal{O}(\alpha) \# 2^{\mathcal{O}(g(\omega))+1} \\
& =\mathcal{O}\left(\alpha+2^{g(\omega)}\right)
\end{aligned}
$$

2. Assume first that $f=\alpha+\star$. Then

$$
\begin{aligned}
N(\mathcal{O}(f(k))) & =N(\mathcal{O}(\alpha)+k) \\
& \left.<F_{2}(N(\mathcal{O}(\alpha) \# \omega))+k\right) \\
& =F_{2}(N(\mathcal{O}(f(\omega)))+k) .
\end{aligned}
$$

Assume now that $f=\alpha+2^{g}$. Then the induction hypothesis yields

$$
\begin{aligned}
& N(\mathcal{O}(f(k)))=N\left(\mathcal{O}(\alpha)+N\left(2^{\mathcal{O}(g(k))+1}\right)\right. \\
& \leq N(\mathcal{O}(\alpha))+2^{F_{2}(N(\mathcal{O}(g(\omega)))+k)+1} \\
& \leq N(\mathcal{O}(\alpha))+F_{2}(N(\mathcal{O}(g(\omega)))+k+1) \\
& \leq N(\mathcal{O}(\alpha))+F_{2}\left(N\left(2^{\mathcal{O}(g(\omega))+1}+k\right)\right. \\
&\left.\leq F_{2}\left(N\left(\mathcal{O}\left(\alpha+2^{g(\omega)}\right)\right)\right)+k\right)
\end{aligned}
$$

3. Assertion 1) yields

$$
\alpha \# 2^{\mathcal{O}(f(k))+1}+l<\alpha \# 2^{\mathcal{O}(f(k))+1+l}<\alpha \# 2^{\mathcal{O}(f(\omega))} .
$$

Assertion 2) yields

$$
\begin{aligned}
N\left(\alpha \# 2^{\mathcal{O}(f(k))+1}+l\right) & \leq N(\alpha) \# 2^{N(\mathcal{O}(f(k)))+1}+l \\
& \leq N(\alpha) \# 2^{F_{2}(N(\mathcal{O}(f(\omega))+k))+1}+l \\
& \leq N(\alpha) \# 2^{\left.F_{2}\left(N\left(2^{\mathcal{O}(f(\omega))}\right) \cdot 2+k\right)\right)+1}+l \\
& \leq \Phi\left(N\left(\alpha \# 2^{\mathcal{O}(f(\omega))}+k\right)\right)
\end{aligned}
$$

since $N \alpha \leq N\left(2^{\alpha}\right) \cdot 2$.
The assertion follows by assertion 1) of Lemma 3.6
QED.

Lemma $3.14 f \in \mathcal{C} \Rightarrow \mathcal{D}(f(\mathcal{D} f(0)))<\mathcal{D}(f(\omega))$.
Proof. Assume first that $f=\alpha+\star$. Then

$$
\mathcal{D}(f(\mathcal{D}(f(0))))=\mathcal{D}(\alpha+\mathcal{D}(\alpha))=\mathcal{D}(\alpha) \cdot 2
$$

and

$$
\begin{aligned}
\mathcal{D}(f(\omega)) & =\mathcal{D}(\alpha+\omega)=\psi(\omega+\mathcal{D}(\alpha)) \\
& \geq \Phi(N(\omega+\mathcal{D}(\alpha)))>\mathcal{D}(\alpha) \cdot 2=\mathcal{D}(f(\mathcal{D}(f(0)))) .
\end{aligned}
$$

Assume now that $f=\alpha+2^{g}$. Then assertion 2) of Lemma 3.6 and assertion 3) of Lemma 3.13 yield

$$
\begin{aligned}
\mathcal{D}(f(\mathcal{D}(f(0)))) & =\mathcal{D}\left(\alpha+2^{\left.g\left(\mathcal{D}\left(\alpha+2^{g(0)}\right)\right)\right)}\right) \\
& =\Psi\left(2^{\left.\mathcal{O}\left(g\left(\Psi\left(2^{\mathcal{O}(g(0))+1}+\mathcal{D}(\alpha)\right)\right)\right)\right)+1}+\mathcal{D}(\alpha)\right) \\
& <\Psi\left(2^{\mathcal{O}(g(\omega)}+\Psi\left(2^{\mathcal{O}(g(0))+1}+\mathcal{D}(\alpha)\right)\right) \\
& \leq \Psi\left(2^{\mathcal{O}(g(\omega)}+2^{\mathcal{O}(g(0))+1}+\mathcal{D}(\alpha)\right) \\
& <\Psi\left(2^{\mathcal{O}(g(\omega)}+2^{\mathcal{O}(g(\omega))}+\mathcal{D}(\alpha)\right) \\
& =\Psi\left(2^{\mathcal{O}(g(\omega)+1}+\mathcal{D}(\alpha)\right)=\mathcal{D}(f(\omega))
\end{aligned}
$$

QED.

4 Adding cut-rule and Buchholz' Ω-rule

Our strategy for estimating $\mathrm{d}(r)$ is to compute the expanded head reduction tree of r. Therefore we extend the expanded head reduction trees by a cut-rule and an appropriate miniaturization of BUCHHOLZ' Ω-rule which allow a simple embedding of any term of GÖDEL's T into the extended calculus. Then we first eliminate cuts and afterwards the Ω-rule by adapting collapsing techniques from Buchholz' treatment of $I D_{1}$ (cf. [Bu80]). In this way we obtain expanded head reduction trees for any term of GÖDEL's T with an optimal upper bound on its size.

The above mentioned Ω-rule will have the following form: If

$$
\forall k \in \omega \forall t \in \mathrm{~T}(\mathcal{V})\left(\models^{k} t \text { and } t \text { of type } 0 \Rightarrow \vdash^{f[k]} \mathrm{R} t a b\right)
$$

then $\left.\right|^{f[\omega]} \mathrm{R}$ where a, b are suitable variables. We should observe at this point the special meaning of the terms t in this context. They are in some sense bounded, especially the variables which occur in such a term serve rather as a parameter than a variable. This means that during the cut-elimination procedure, where cuts are replaced by substitutions, these parameter-variables are not allowed to be substituted because the Ω-rule is not robust under such substitution. From this it follows that also recursors which occur in such terms have another meaning than those which are derived via Ω-rule, i.e. they can be derived as before. In order to model this difference technically we need a copy $\mathrm{T}^{\prime}(\mathcal{V})$ of $\mathrm{T}(\mathcal{V})$ for which substitution can be handled.

Let $\mathcal{V}^{\prime}:=\left\{v^{\prime}: v \in \mathcal{V}\right\}$ be a distinct copy of \mathcal{V}. Let $\overline{\mathcal{V}}:=\mathcal{V} \cup \mathcal{V}^{\prime}$ and define $\mathcal{V}_{\mathrm{R}}^{\prime}, \mathcal{V}_{0, \mathrm{~S}}^{\prime}, \mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}^{\prime}, \overline{\mathcal{V}}_{\mathrm{R}}, \overline{\mathcal{V}}_{0, \mathrm{~S}}, \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$ analogously to $\mathcal{V}_{\mathrm{R}}, \mathcal{V}_{0, \mathrm{~S}}, \mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$. Let R^{\prime} be a new symbol and define $\overline{\mathrm{R}}:=\left\{\mathrm{R}, \mathrm{R}^{\prime}\right\}$. Observe that $\mathrm{R}^{\prime} \notin \mathcal{V}_{\mathrm{R}}^{\prime}, \overline{\mathcal{V}}_{\mathrm{R}}$ etc.

With \bar{x} we mean x or x^{\prime} for $x \in \mathcal{V}$.
A ground type ι has level $\operatorname{lev}(\iota)=0$ and $\operatorname{lev}(\rho \rightarrow \sigma)=\max (\operatorname{lev}(\rho)+1, \operatorname{lev}(\sigma))$. The level $\operatorname{lev}(r)$ of r is defined to be the $\operatorname{level} \operatorname{lev}(\sigma)$ of its type σ, the degree $\mathrm{g}(r)$ of r is defined to be the maximum of the levels of subterms of r.

Definition 4.1 We define $\mathrm{T}^{\prime}(\mathcal{V})$ inductively by

- $\mathcal{V}^{\prime} \cup\left\{0, S, R^{\prime}\right\} \subset T^{\prime}(\mathcal{V})$
- $r, s \in \mathrm{~T}^{\prime}(\mathcal{V})$ and $x \in \mathcal{V}^{\prime} \Rightarrow(\lambda x r),(r s) \in \mathrm{T}^{\prime}(\mathcal{V})$
- $t \in \mathrm{~T}(\mathcal{V})$ and $\operatorname{lev}(t)=0 \Rightarrow\left(\mathrm{R}^{\prime} t\right) \in \mathrm{T}^{\prime}(\mathcal{V})$

Let $\overline{\mathrm{T}}(\mathcal{V}):=\mathrm{T}^{\prime}(\mathcal{V}) \cup \mathrm{T}(\mathcal{V})$.
There are two canonical mappings, the embedding $:: \mathrm{T}(\mathcal{V}) \rightarrow \overline{\mathrm{T}}(\mathcal{V})$ and the breakup $\widehat{\mathrm{T}}(\mathcal{V}) \rightarrow \mathrm{T}(\mathcal{V})$ which are recursively defined by

- $\bar{x}:=x^{\prime}$ and $\widehat{x^{\prime}}:=x$ for $x \in \mathcal{V}_{\mathrm{R}}$
- $\overline{0}:=0, \overline{\mathrm{~S}}:=\mathrm{S}$ and $\widehat{x}:=x$ for $x \in \mathcal{V}_{0, \mathrm{~S}}$
- $\overline{\lambda x r}:=\lambda x^{\prime} \bar{r}$ for $x \in \mathcal{V}, \overline{r s}:=\bar{r} \bar{s}$.
- $\widehat{\lambda \bar{x} r}:=\lambda x \widehat{r}$ for $x \in \mathcal{V}, \widehat{r s}:=\widehat{r} \widehat{s}$.

Obviously $\widehat{\bar{t}}=t$ for $t \in \mathrm{~T}(\mathcal{V})$.

We are considering λ-terms only modulo α-conversion without making this too explicit. Of course sometimes this causes problems, e.g. in defining $\widehat{\lambda \bar{x} r}:=$ $\lambda x \widehat{r}$ we have to make sure x does not occur in r. One way obtaining this is to define $\widehat{\lambda x^{\prime} r}:=\lambda y \cdot\left(r\left[x^{\prime}:=y^{\prime}\right]\right)$ for some $y \in \mathcal{V}$ such that y, y^{\prime} do not occur in r. Another possibility is - and we will consider this in the following - to assume always x not occurring in r when writing $\lambda x^{\prime} r$ for $x \in \mathcal{V}$.

We state some simple observations about the relationship of $\mathrm{T}(\mathcal{V}), \mathrm{T}^{\prime}(\mathcal{V})$ and $\overline{\mathrm{T}}(\mathcal{V})$.

1. $\mathrm{T}^{\prime}(\mathcal{V}) \cap \mathrm{T}(\mathcal{V})=\{\mathrm{S}\} \cup\left\{\mathrm{S}^{k} 0: k \in \omega\right\}$
2. $(r s) \in \mathrm{T}^{\prime}(\mathcal{V}) \Rightarrow r \in \mathrm{~T}^{\prime}(\mathcal{V})$
3. $\overline{\mathrm{T}}(\mathcal{V})$ is closed under subterms.
4. $(r s) \in \overline{\mathrm{T}}(\mathcal{V})$ and $r \in \mathrm{~T}(\mathcal{V}) \Rightarrow r=\mathrm{S}$ or $s \in \mathrm{~T}(\mathcal{V})$

Proof. If ($r s) \in \mathrm{T}^{\prime}(\mathcal{V})$ then $r \in \mathrm{~T}^{\prime}(\mathcal{V}) \cap \mathrm{T}(\mathcal{V})$ thus $r=\mathrm{S}$. Otherwise $(r s) \in \mathrm{T}(\mathcal{V})$, hence $s \in \mathrm{~T}(\mathcal{V})$.

QED.
5. $(r s) \in \overline{\mathrm{T}}(\mathcal{V})$ and $s \in \mathrm{~T}(\mathcal{V}) \backslash \mathrm{T}^{\prime}(\mathcal{V}) \Rightarrow r \in \mathrm{~T}(\mathcal{V})$ or $r=\mathrm{R}^{\prime}$
6. $r \in \overline{\mathrm{~T}}(\mathcal{V}), x \in \mathcal{V}^{\prime}$ and $s \in \mathrm{~T}^{\prime}(\mathcal{V}) \Rightarrow r[x:=s] \in \overline{\mathrm{T}}(\mathcal{V})$ and $r \in \overline{\mathrm{~T}}(\mathcal{V}), x \in \mathcal{V}$ and $s \in \mathrm{~T}(\mathcal{V}) \Rightarrow r[x:=s] \in \overline{\mathrm{T}}(\mathcal{V})$
7. $\operatorname{redex}(t), s \in \mathrm{~T}(\mathcal{V}) \Rightarrow \operatorname{coat}_{t}(s) \in \overline{\mathrm{T}}(\mathcal{V})$ and $\operatorname{redex}(t), s \in \mathrm{~T}^{\prime}(\mathcal{V}) \Rightarrow \operatorname{coat}_{t}(s) \in \overline{\mathrm{T}}(\mathcal{V})$

Definition 4.2 We extend the definition of $\operatorname{redex}(s), \operatorname{rr}(s), \operatorname{coat}_{s}(\star)$ and mat (s) to $s \in \overline{\mathrm{~T}}(\mathcal{V})$.

$s \in \mathrm{~T}^{\prime}(\mathcal{V})$		$\operatorname{rr}(s)$	$\operatorname{coat}_{s}(\star)$	$\operatorname{mat}(s)$
$x \vec{t}$	$x \in \mathcal{V}_{0, \mathrm{~S}}^{\prime}$	x	\star	$\{\{\vec{t}\}\}$
$\lambda x r$		$(\lambda x r) x$	\star	\emptyset
$(\lambda x r) u \vec{t}$		$(\lambda x r) u$	$\star \vec{t}$	\emptyset
$\mathrm{R}^{\prime} u_{1} \ldots u_{l}$	$l \leq 2$	R^{\prime}	\star	$\{\{\vec{u}\}\}$
$\mathrm{R}^{\prime} t a b \vec{s}:$				
$\quad t=0, \mathrm{~S} t^{\prime}$		$\mathrm{R}^{\prime} t a b$	$\star \vec{s}$	\emptyset
$\quad t=x \vec{u}, x \in \overline{\mathcal{V}}^{\prime}$	R^{\prime}	$\star \vec{s}$	$\{\{\vec{u}, a, b, \vec{s}\}\}$	
$\quad t \neq x \vec{u}, x \in \overline{\mathcal{V}}_{0, \mathrm{~S}}$	$\operatorname{rr}(t)$	$\mathrm{R}^{\prime} \operatorname{coat}_{t}(\star) a b \vec{s}$	$\operatorname{mat}(t) \cup\{\{a, b, \vec{s}\}\}$	

Again we have

$$
\operatorname{rr}(t) \in \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}} \cup\left\{\mathrm{R}^{\prime}\right\} \cup\left\{(\lambda x r) s, \mathrm{R}^{*} 0 a b, \mathrm{R}^{*}(\mathrm{~S} s) a b \mid a, b, r, s \in \overline{\mathrm{~T}}(\mathcal{V}), \mathrm{R}^{*} \in \overline{\mathrm{R}}\right\}
$$

Furthermore we observe $\operatorname{rr}(\hat{t})=\operatorname{rr}(t)$ if $\operatorname{rr}(t) \neq \mathrm{R}^{\prime}$ and $\operatorname{coat}_{\hat{t}}(\star)=\operatorname{coat}_{t}(\star)$.
We now extend $\Vdash^{\alpha} t$ by cuts and Ω-rules. Let a context $c(\star)$ be a term in which \star occurs exactly once. With \leq_{0}^{*} we denote the transitive closure of $\leq{ }_{0}$.

Definition 4.3 We inductively define $\left.\right|_{\rho} ^{\alpha}$ t for $t \in \overline{\mathrm{~T}}(\mathcal{V}), \alpha \in \mathcal{T}$ and $\rho<\omega$ if one of the following cases holds:
(Acc-Rule) There is some β such that $\beta \leq_{0} \alpha$ and $\left\lvert\, \frac{\beta}{\rho} t\right.$.
$\left(\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}\right.$-Rule) $\operatorname{rr}(t) \in \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}, \alpha=\beta+\# \operatorname{mat}(t)$ and $\left.\forall s \in \operatorname{mat}(t)\right|_{\rho} ^{\beta} s$.
(β-Rule) $\operatorname{rr}(t)=(\lambda x r) s(x \in \overline{\mathcal{V}}), \alpha=\beta+1$ and $\left\lvert\, \frac{\beta}{\rho} \operatorname{coat}_{t}(r[x:=s])\right.$ and $\left\lvert\, \frac{\beta}{\rho} s\right.$.
$(\overline{\mathrm{R}} 0-\mathrm{Rule}) \operatorname{rr}(t)=\mathrm{R}^{*} 0 a b\left(\mathrm{R}^{*} \in \overline{\mathrm{R}}\right), \alpha=\beta+1$ and $\left\lvert\, \frac{\beta}{\rho} \operatorname{coat}_{t}(b)\right.$ and $\left\lvert\, \frac{\beta}{\rho}\right.$ a.
$(\overline{\mathrm{R}} \mathrm{S}-\mathrm{Rule}) \operatorname{rr}(t)=\mathrm{R}^{*}\left(\mathrm{~S} t^{\prime}\right) a b\left(\mathrm{R}^{*} \in \overline{\mathrm{R}}\right), \alpha=\beta+1$ and $\left\lvert\, \frac{\beta}{\rho} \operatorname{coat}_{t}\left(a t^{\prime}\left(\mathrm{R}^{*} t^{\prime} a b\right)\right)\right.$.
(Cut-Rule) $t=(r s), \operatorname{lev}(r) \leq \rho, s \in \mathrm{~T}^{\prime}(\mathcal{V}), \alpha=\beta+1$ and $\left\lvert\, \frac{\beta}{\rho} r\right.$ and $\left\lvert\, \frac{\beta}{\rho} s\right.$.
($\mathrm{R}^{\prime} \Omega_{0}$-Rule) $t=\mathrm{R}^{\prime} u_{1} \ldots u_{l}, l \leq 2$, there are new variables $u_{l+1}, \ldots, u_{3} \in \mathcal{V}^{\prime}$, distinct in pairs, and some $\beta[\star] \in \mathcal{C}$ such that $\alpha=\beta[\omega]+1, \beta[0]+2 \leq_{0}^{*} \alpha$, $\left.\right|_{\rho} ^{\beta[0]} u_{i}$ for $1 \leq i \leq l$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=0 \& \stackrel{k}{\models} u \Rightarrow \left\lvert\, \frac{\beta[k]}{\rho} \mathrm{R}^{\prime} u u_{2} u_{3}\right.\right)
$$

($\mathrm{R}^{\prime} \Omega_{1}$-Rule) $t=c\left(\mathrm{R}^{\prime}\right.$ sab) for some context $c(\star)$ and there is some $\beta[\star] \in \mathcal{C}$ such that $\alpha=\beta[\omega]+1, \left\lvert\, \frac{\beta[0]}{\rho} s\right.$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \vdash^{k} u \Rightarrow\right|_{\rho} ^{\beta[k]} c\left(\mathrm{R}^{\prime} u a b\right)\right)
$$

Structural Rule $4.4 \vdash_{\rho}^{\alpha} t, \alpha \leq_{0}^{*} \alpha^{\prime}, \rho \leq \rho^{\prime} \Rightarrow \vdash_{\rho^{\prime}}^{\alpha^{\prime}} t$
Proof. A simple induction on the definition of $\left.\right|_{\rho} ^{\alpha} t$ shows $\left.\right|_{\rho^{\prime}} ^{\alpha}$, then we apply several times the Acc-Rule.

QED.
We observe that the cut-free system is a subsystem of the one with cuts.
Lemma 4.5 $\models^{\alpha} t \Rightarrow \vdash_{0}^{\alpha} t$
Proof. The proof is a simple induction on the definition of $\models^{\alpha} t$, because $\alpha<$ $\beta<\omega \Rightarrow \alpha+1 \leq_{0}^{*} \beta$.

QED.

Variable Substitution Lemma 4.6 Assume $\left.\right|_{\rho} ^{\alpha} t$.

1. $x, y \in \mathcal{V} \Rightarrow \vdash^{\alpha} t[x:=y]$.
2. $x,\left.y \in \mathcal{V}^{\prime} \Rightarrow\right|_{\rho} ^{\alpha} t[x:=y]$.

For the next lemma observe that $\alpha \leq_{0} \alpha+1 \leq_{0} 1+\alpha$ holds for all α.
Appending Lemma 4.7 Assume \vdash_{ρ}^{α} t. If $y \in \mathcal{V}^{\prime}$ and ty $\in \overline{\mathrm{T}}(\mathcal{V})$ then $\frac{1+\alpha}{\rho}$ ty.
Proof. The proof is by induction on the definition of $\vdash_{\rho}^{\alpha} t$.
Acc-Rule. Follows directly from the induction hypothesis by Acc-Rule and the fact that $\beta \leq_{0} \alpha \Rightarrow 1+\beta \leq_{0} 1+\alpha$.
$\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. $\operatorname{rr}(t)=\mathrm{R}$ is not possible because $t=\mathrm{R} u_{1} \ldots u_{l}$ would imply $t \in \mathrm{~T}(\mathcal{V}) \backslash \mathrm{T}^{\prime}(\mathcal{V})$ and therefore $t y \notin \overline{\mathrm{~T}}(\mathcal{V})$.

In case $\operatorname{rr}(t) \in \overline{\mathcal{V}}_{0, S}$ the assertion follows because $\operatorname{rr}(t y)=\operatorname{rr}(t), \quad{ }_{\rho}^{\gamma} y$ for arbitrary γ and $\beta+n=\alpha \Rightarrow \beta+n+1=\alpha+1 \leq_{0} 1+\alpha$.
β-Rule. $\operatorname{rr}(t)=(\lambda x r) s, \alpha=\beta+1$ and $\left|\frac{\beta}{\rho} \operatorname{coat}_{t}(r[x:=s]),\right| \frac{\beta}{\rho} s$.
If $t=\lambda x r$ then $s=x$, hence $\operatorname{coat}_{t}(r[x:=s])=r$. Assuming $x \in \mathcal{V}$ would imply $t \in \mathrm{~T}(\mathcal{V}) \backslash \mathrm{T}^{\prime}(\mathcal{V})$ contradicting $t y \in \overline{\mathrm{~T}}(\mathcal{V})$, thus $x \in \mathcal{V}^{\prime}$ and therefore $\vdash_{\rho}^{\beta} r[x:=y]$ by the previous Lemma. Hence \vdash_{ρ}^{α} ty with $\vdash_{\rho}^{\beta} y$ and β-Rule, thus $\frac{1+\alpha}{\rho} t y$ with Acc-Rule.

Otherwise $\operatorname{rr}(t y)=\operatorname{rr}(t)=(\lambda x r) s$. We obtain $\left.\right|_{\rho} ^{1+\beta} \operatorname{coat}_{t}(r[x:=s]) y$ by induction hypothesis. As $\beta \leq_{0} 1+\beta$ we also have $\left.\right|_{\rho} ^{1+\beta} s$. Now $\operatorname{coat}_{t y}(\star)=$ $\operatorname{coat}_{t}(\star) y$, hence $\left\lvert\, \frac{1+\alpha}{\rho}\right.$ ty by β-Rule.
$\overline{\mathrm{R}} 0$-Rule and $\overline{\mathrm{R}} \mathrm{S}$-Rule are similar to β-Rule.
Cut-Rule. $t=r s$ with $\operatorname{lev}(r) \leq \rho$, thus $\operatorname{lev}(t) \leq \rho$, hence $\left.\right|_{\rho} ^{\alpha+1} t y$ by a Cut-Rule and we obtain $\frac{1+\alpha}{\rho}$ ty by a Acc-Rule.
$\mathrm{R}^{\prime} \Omega_{0}$-Rule. $t=\mathrm{R}^{\prime} u_{1} \ldots u_{l}, l \leq 2$, there are new variables $u_{l+1}, \ldots, u_{3} \in$ $\mathcal{V}^{\prime} \backslash\{y\}$, distinct in pairs, and some $\beta[\star] \in \mathcal{C}$ such that $\alpha=\beta[\omega]+1, \beta[0]+2 \leq_{0}^{*} \alpha$, $\vdash_{\rho}^{\beta[0]} u_{i}$ for $1 \leq i \leq l$ and for $u \in \mathrm{~T}(\mathcal{V}), k<\omega$ with $\operatorname{lev}(u)=0$ and $\vdash^{k} u$ also $\left\lvert\, \frac{\beta[k]}{\rho} \mathrm{R}^{\prime} u u_{2} u_{3}\right.$. Let $u_{1}^{\prime} \ldots u_{3}^{\prime}$ be $u_{1} \ldots u_{3}\left[u_{l+1}:=y\right]$, then $\left.\right|_{\rho} ^{1+\beta[k]} \mathrm{R}^{\prime} u u_{2}^{\prime} u_{3}^{\prime}$ by the previous Lemma and Acc-Rule. Let $\gamma[\star]:=1+\beta[\star]$, then $\gamma[\star] \in \mathcal{C}$, $\gamma[\omega]+1=1+\beta[\omega]+1=1+\alpha$ and $\gamma[0]+2=1+\beta[0]+2 \leq_{0}^{*} 1+\alpha$, hence $\frac{1+\alpha}{\rho} t$ by $\mathrm{R}^{\prime} \Omega_{0}$-Rule or $\mathrm{R}^{\prime} \Omega_{1}$-Rule (if $l=2$).
$\mathrm{R}^{\prime} \Omega_{1}$-Rule. $t=c\left(\mathrm{R}^{\prime} \mathrm{sab}\right)$ for some context $c(\star)$ and there is some $\beta[\star] \in \mathcal{C}$ such that $\alpha=\beta[\omega]+1, \left\lvert\, \frac{\beta[0]}{\rho} s\right.$ and for $u \in \mathrm{~T}(\mathcal{V}), k<\omega$ with $\operatorname{lev}(u)=0$ and $\vdash^{k} u$ also $\left.\right|_{\rho} ^{\beta[k]} c\left(\mathrm{R}^{\prime} u a b\right)$, hence $\left.\right|_{\rho} ^{1+\beta[k]} c\left(\mathrm{R}^{\prime} u a b\right) y$ by induction hypothesis. Let $\gamma[\star]:=1+\beta[\star]$, then $\gamma[\star] \in \mathcal{C}, \gamma[\omega]+1=1+\beta[\omega]+1=1+\alpha$ and $\frac{\gamma[0]}{\rho} s$ by Acc-Rule, hence $\left.\right|_{\frac{1+\alpha}{1+\alpha}}$ ty by $\mathrm{R}^{\prime} \Omega_{1}$-Rule.

QED.

Collapsing Theorem $\left.4.8\right|_{0} ^{\alpha} t \Rightarrow \xlongequal{\mathcal{D} \alpha} \widehat{t}$
Proof. The proof is by induction on the definition of $\vdash_{0}^{\alpha} t$.
Acc-Rule. The assertion follows directly from the induction hypothesis and the fact that $\beta \leq_{0} \alpha \Rightarrow \mathcal{D} \beta \leq \mathcal{D} \alpha$.
$\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. $\operatorname{rr}(t) \in \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}, \alpha=\beta+\# \operatorname{mat}(t)$ and $\left.\forall s \in \operatorname{mat}(t)\right|_{0} ^{\beta} s$. We have $\operatorname{rr}(\widehat{t})=\widehat{\operatorname{rr}(t)} \in \mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$ and $\operatorname{mat}(t)=\operatorname{mat}(t)$, thus $\xlongequal{\mathcal{D} \beta} s$ for all $s \in \operatorname{mat}(\widehat{t})$ by induction hypothesis. As

$$
\mathcal{D} \beta+\# \operatorname{mat}(\widehat{t})=\mathcal{D} \beta+\# \operatorname{mat}(t)=\mathcal{D}(\beta+\# \operatorname{mat}(t))=\mathcal{D} \alpha
$$

we obtain $\xlongequal{\mathcal{D} \alpha} t$ by $\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$-Rule.
β-Rule. $\operatorname{rr}(t)=(\lambda \bar{x} r) s, \alpha=\beta+1$ and $\left|\frac{\beta}{0} \operatorname{coat}_{t}(r[\bar{x}:=s]),\right| \frac{\beta}{0} s$. We have $\operatorname{rr}(\widehat{t})=\widehat{\operatorname{rr}(t)}=(\lambda x \widehat{r}) \widehat{s},(r[\bar{x}:=s]) \widehat{ }=\widehat{r}[x:=\widehat{s}]$ because if $\bar{x}=x^{\prime}$ then x does not occur in r, and hence $\operatorname{coat}_{t}(r[\bar{x}:=s])^{\wedge}=\operatorname{coat}_{\hat{t}}(\widehat{r}[x:=\widehat{s}])$. By induction hypothesis we get $\xlongequal{\mathcal{D} \beta} \operatorname{coat}_{\widehat{t}}(\widehat{r}[x:=\widehat{s}])$ and $\xlongequal{\mathcal{D} \beta} \widehat{s}$. As $\mathcal{D} \beta<\mathcal{D} \beta+1=\mathcal{D} \alpha$ we obtain $\xlongequal{\mathcal{D} \alpha} \widehat{t}$ by β-Rule.
$\overline{\mathrm{R}} 0$-Rule and $\overline{\mathrm{R}} \mathrm{S}$-Rule are similar to β-Rule.
Cut-Rule is not possible
$\mathrm{R}^{\prime} \Omega_{0}$-Rule. $t=\mathrm{R}^{\prime} u_{1} \ldots u_{l}$ with $l \leq 2$ and there is some $\gamma:=\beta[0]$ with $\gamma+2 \leq_{0}^{*}$ α and $\left.\right|_{0} ^{\gamma} u_{i}$ for $1 \leq i \leq l$. Then $\widehat{t}=\mathrm{R} \widehat{u_{1}} \ldots \widehat{u_{l}}, \operatorname{rr}(\widehat{t})=\mathrm{R}$ and $\operatorname{mat}(\widehat{t})=$ $\left\{\left\{\widehat{u_{1}}, \ldots, \widehat{u_{l}}\right\}\right\}$. By induction hypothesis $\xlongequal{\mathcal{D} \gamma} s$ for all $s \in \operatorname{mat}(\widehat{t})$ and hence $\xlongequal{\mathcal{D} \alpha} \widehat{t}$ by $\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$-Rule because $\mathcal{D} \gamma+l \leq \mathcal{D}(\gamma+2) \leq \mathcal{D} \alpha$.
$\mathrm{R}^{\prime} \Omega_{1}$-Rule. $t=c\left(\mathrm{R}^{\prime}\right.$ sab) and there is some $\beta[\star] \in \mathcal{C}$ such that $\alpha=\beta[\omega]+1$, $\frac{\beta[0]}{0} s$ and

$$
\begin{equation*}
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=0 \& \stackrel{k}{\models} u \Rightarrow \left\lvert\, \frac{\beta[k]}{0} c\left(\mathrm{R}^{\prime} u a b\right)\right.\right) \tag{4}
\end{equation*}
$$

With induction hypothesis we obtain $\xlongequal{\mathcal{D} \beta[0]} \widehat{s}$. Now $\widehat{s} \in \mathrm{~T}(\mathcal{V}), \operatorname{lev}(\widehat{s})=0$ and $\mathcal{D} \beta[0]<\omega$, thus

$$
\frac{\beta[\mathcal{D} \beta[0]]}{0} c\left(\mathrm{R}^{\prime} \widehat{s} a b\right)
$$

by (4). We have $\left(c\left(\mathrm{R}^{\prime} \widehat{s} a b\right)\right) \hat{c}=\widehat{c}(\mathrm{R} \widehat{s} \widehat{a} \widehat{b})=\widehat{t}$, hence $\xlongequal{\mathcal{D} \beta[\mathcal{D} \beta[0]]} \widehat{t}$ again by induction hypothesis. Now comes the highlight: $\mathcal{D} \beta[\mathcal{D} \beta[0]]<\mathcal{D} \beta[\omega]<\mathcal{D} \alpha$, hence $\xlongequal{\mathcal{D} \alpha} \widehat{t}$.

QED.

Substitution Lemma $4.9 \vdash_{\rho}^{\alpha} r, \nmid \frac{\beta}{\rho} s_{j}, \operatorname{lev}\left(s_{j}\right) \leq \rho, x_{j} \in \mathcal{V}^{\prime}, s_{j} \in \mathrm{~T}^{\prime}(\mathcal{V})$ for $j<l$ then $\left.\right|_{\rho} ^{\beta+\alpha} r[\vec{x}:=\vec{s}]$.

Proof. The proof is by induction on the definition of $\left\lvert\, \frac{\alpha}{\rho} r\right.$. Let u^{*} be $u[\vec{x}:=\vec{s}]$. Acc-Rule. The assertion follows directly from the induction hypothesis and the fact that $\gamma \leq_{0} \alpha \Rightarrow \beta+\gamma \leq_{0} \beta+\alpha$.
$\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. $\operatorname{rr}(r) \in \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$ and there is some γ such that $\alpha=\gamma+\# \operatorname{mat}(r)$ and $\forall u \in \operatorname{mat}(r) \left\lvert\, \frac{\gamma}{\rho} u\right.$.

If $\operatorname{rr}(r) \notin\{\vec{x}\}$ then $\operatorname{rr}\left(r^{*}\right)=\operatorname{rr}(r)$ because $x_{j} \in \mathcal{V}^{\prime}$ by assumption. We have $\operatorname{mat}\left(r^{*}\right)=\operatorname{mat}(r)^{*}$ and therefore $\frac{\beta+\gamma}{\rho} u$ for all $u \in \operatorname{mat}\left(r^{*}\right)$ by induction hypothesis. Now $\# \operatorname{mat}\left(r^{*}\right)=\# \operatorname{mat}(r)$, hence $\beta+\gamma+\# \operatorname{mat}\left(r^{*}\right)=\beta+\alpha$, thus $\frac{\beta+\alpha}{\rho} r^{*}$ by $\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule.

Now assume $\operatorname{rr}(r)=x_{j}$, then $r=x_{j} r_{1} \ldots r_{n}, n=\# \operatorname{mat}(r)$, and by induction hypothesis $\left.\right|_{\rho} ^{\beta+\gamma} r_{i}^{*}$ for $1 \leq i \leq n$. From the assumptions we obtain $\left.\right|_{\rho} ^{\beta+\gamma} s_{j}$ and $\operatorname{lev}\left(s_{j}\right) \leq \rho$. With Acc-Rule we receive $\left.\right|_{\rho} ^{\beta+\gamma+i-1} r_{i}^{*}$ for $1 \leq i \leq n$. Therefore applying i cuts yields $\frac{\beta+\gamma+i}{\rho} s_{j} r_{1}^{*} \ldots r_{i}^{*}$, hence $\left\lvert\, \frac{\beta+\alpha}{\rho} r^{*}\right.$.
β-Rule, $\overline{\mathrm{R}} 0$-Rule, $\overline{\mathrm{R}}$ S-Rule and Cut-Rule: The assertion follows directly from the induction hypothesis by applying the same inference.
$\mathrm{R}^{\prime} \Omega_{0}$-Rule. $r=\mathrm{R}^{\prime} u_{1} \ldots u_{l}$ and $l \leq 2$, there are new variables, distinct in pairs, $u_{l+1}, \ldots, u_{3} \in \mathcal{V}^{\prime}$ (w.l.o.g. they are also new for \vec{x} and \vec{s}) and $\gamma[\star] \in \mathcal{C}$ such that $\alpha=\gamma[\omega]+1, \gamma[0]+2 \leq_{0}^{*} \alpha, \left\lvert\, \frac{\gamma[0]}{\rho} u_{i}\right.$ for $1 \leq i \leq l$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \stackrel{k}{\models} u \Rightarrow\right|_{\rho} ^{\gamma[k]} \mathrm{R}^{\prime} u u_{2} u_{3}\right)
$$

We have $r^{*}=\mathrm{R}^{\prime} u_{1}^{*} \ldots u_{l}^{*}$ and $\beta+\gamma[\star] \in \mathcal{C}$ with $\beta+\gamma[\omega]+1=\beta+\alpha, \beta+\gamma[0]+2 \leq_{0}^{*}$ $\beta+\alpha$. By induction hypothesis $\frac{\beta+\gamma[0]}{\rho} u_{i}^{*}$ for $1 \leq i \leq l$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \vdash^{k} u \Rightarrow\right|_{\rho} ^{\beta+\gamma[k]} \mathrm{R}^{\prime} u u_{2}^{*} u_{3}^{*}\right)
$$

because for $u \in \mathrm{~T}(\mathcal{V}) x_{j} \in \mathcal{V}^{\prime}$ does not occur in u. Hence $\left.\right|_{\rho} ^{\beta+\alpha} r^{*}$ by $\mathrm{R}^{\prime} \Omega_{0}$-Rule. $\mathrm{R}^{\prime} \Omega_{1}$-Rule. $t=c\left(\mathrm{R}^{\prime} s a b\right)$ and there is some $\gamma[\star] \in \mathcal{C}$ such that $\alpha=\gamma[\omega]+1$, ${ }_{\frac{\gamma}{}}^{\frac{\gamma}{}[0]} s$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \stackrel{k}{\models} u \Rightarrow\right|_{\rho} ^{\gamma[k]} c\left(\mathrm{R}^{\prime} u a b\right)\right)
$$

We have $r^{*}=c^{*}\left(\mathrm{R}^{\prime} s^{*} a^{*} b^{*}\right)$ and $\beta+\gamma[\star] \in \mathcal{C}$ with $\beta+\gamma[\omega]+1=\beta+\alpha$. By induction hypothesis $\left\lvert\, \frac{\beta+\gamma[0]}{\rho} s^{*}\right.$ and

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \stackrel{k}{\models} u \Rightarrow\right|_{\rho} ^{\beta+\gamma[k]} c^{*}\left(\mathrm{R}^{\prime} u a^{*} b^{*}\right)\right)
$$

hence $\left.\right|_{\rho} ^{\frac{\beta+\alpha}{\rho}} r^{*}$ by $\mathrm{R}^{\prime} \Omega_{1}$-Rule.
QED.

Cut Elimination Lemma $\left.\left.4.10\right|_{\rho+1} ^{\alpha} t \Rightarrow\right|_{\rho} ^{2^{\alpha}} t$
We cannot prove this Lemma in this formulation by induction on the definition of $\frac{{ }_{\rho+1}^{\alpha}}{\rho+1} t$, because cuts are replaced by appending a variable and afterwards applying the Substitution Lemma which leads to the sum of the derivation lengths plus 1 . Thus we would need $2^{\beta}+2^{\beta}+1 \leq_{0}^{*} 2^{\beta+1}$ which is only true if we interpret the formal term 2^{α} by some ordinal function $3^{\mathcal{O}(\beta)+1}$ which we do not want.

We will need the following estimations

$$
\begin{align*}
n<\omega & \Rightarrow n+1 \leq_{0}^{*} 2^{n} \tag{5}\\
\beta \neq 0,0<n<\omega & \Rightarrow n+1+2^{\beta} \leq_{0}^{*} 2^{\beta+n} \tag{6}
\end{align*}
$$

which can be proved by induction on $n: 0+1 \leq_{0}^{*} 2^{0}$, and by induction hypothesis $k+1 \leq_{0}^{*} 2^{k}$, hence $(k+1)+1 \leq_{0}^{*} 2^{k}+1 \leq_{0} 2^{k}+2^{k} \leq_{0} 2^{k+1}$. Using (5) we obtain $1+1+2^{\beta} \leq_{0} 2^{1}+2^{\beta} \leq_{0} 2^{\beta}+2^{\beta} \leq_{0} 2^{\beta+1}$. By induction hypothesis $k+1+2^{\beta} \leq_{0}^{*} 2^{\beta+k}$, hence $(k+1)+1+2^{\beta} \leq_{0}^{*} 1+2^{\beta+k} \leq_{0}^{*} 2^{\beta+k+1}$.
Proof of the Cut Elimination Lemma. We show by induction on the definition of $\left.\right|_{\rho+1} ^{\alpha} t$

$$
\left.\right|_{\rho+1} ^{\alpha} t \Rightarrow \exists \beta\left(1+\beta \leq\left._{0}^{*} 2^{\alpha} \&\right|_{\rho} ^{\beta} t\right)
$$

Then the main assertion simply follows by a Structural Rule.
Acc-Rule. The assertion follows directly from the induction hypothesis and the fact that $\gamma \leq_{0} \alpha \Rightarrow 2^{\gamma} \leq_{0} 2^{\alpha}$ and therefore $1+\beta \leq_{0}^{*} 2^{\gamma} \Rightarrow 1+\beta \leq_{0}^{*} 2^{\alpha}$.
$\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. $\operatorname{rr}(t) \in \overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}, \alpha=\beta+\# \operatorname{mat}(t)$ and $\left.\forall s \in \operatorname{mat}(t)\right|_{\rho+1} ^{\beta} s$. Let $n:=\# \operatorname{mat}(t)$.

If $n=0$ then $\left\lvert\, \frac{0}{\rho} t\right.$ and $1+0 \leq_{0} 2^{\alpha}$. If $\beta=0$ then $\forall s \in \operatorname{mat}(t) \left\lvert\, \frac{0}{\rho} s\right.$, thus $\left\lvert\, \frac{n}{\rho} t\right.$. Now $n+1 \leq_{0}^{*} 2^{n}$ by (5).

Otherwise $\beta \neq 0$ and $n=n^{\prime}+1$. By induction hypothesis we obtain $\forall s \in$ $\left.\operatorname{mat}(t)\right|_{\rho} ^{2^{\beta}} s$, thus $\frac{2^{\beta}+n}{\rho} t$ and $1+2^{\beta}+n \leq_{0}^{*} 1+n+2^{\beta} \leq_{0}^{*} 2^{\beta+n}$ by (6).
β-Rule. $\operatorname{rr}(t)=(\lambda x r) s, \alpha=\beta+1$ and $\left.\right|_{\rho+1} ^{\beta} \operatorname{coat}_{t}(r[x:=s]),\left.\right|_{\rho+1} ^{\beta} s$.
If $\beta=0$ then $\left.\right|_{\rho} ^{0} \operatorname{coat}_{t}(r[x:=s]), \vdash_{\rho}^{0} s$, hence $\left.\right|_{\rho} ^{\frac{1}{\rho}} t$ by β-Rule and we have $1+1 \leq_{0}^{*} 2^{1}$ by (5).

Now assume $\beta \neq 0$, then by induction hypothesis $\frac{2^{\beta}}{\rho} \operatorname{coat}_{t}(r[x:=s]), \left\lvert\, \frac{2^{\beta}}{\rho} s\right.$, hence $\frac{\left.\right|^{\beta}+1}{\rho} t$ and $1+2^{\beta}+1 \leq_{0} 1+1+2^{\beta} \leq_{0}^{*} 2^{\beta+1}$ by (6).
$\overline{\mathrm{R}} 0$-Rule and $\overline{\mathrm{R}} \mathrm{S}$-Rule are similar to β-Rule.
Cut-Rule. $r=(s t), \operatorname{lev}(s) \leq \rho+1, t \in \mathrm{~T}^{\prime}(\mathcal{V}), \alpha=\beta+1$ and $\frac{\beta}{\rho+1} s$ and $\stackrel{\beta}{\rho+1}_{\beta}^{\rho} t$. By induction hypothesis there are γ_{1}, γ_{2} with $1+\gamma_{i} \leq_{0}^{*} 2^{\beta}$ and $\frac{\gamma_{1}}{\rho} s$ and $\frac{\gamma_{2}}{\rho} t$.
The Appending Lemma shows $\frac{2^{\beta}}{\rho} s y$ for some $y \in \mathcal{V}^{\prime}$, thus $\frac{\gamma_{\rho}^{\gamma_{2}+2^{\beta}}}{\rho} r$ by the Substitution Lemma as $\operatorname{lev}(t) \leq \rho$. We compute $1+\gamma_{2}+2^{\beta} \leq_{0}^{*} 2^{\beta}+2^{\beta} \leq_{0} 2^{\beta+1}$. $\mathrm{R}^{\prime} \Omega_{0}$-Rule, $\mathrm{R}^{\prime} \Omega_{1}$-Rule: By induction hypothesis we obtain $\frac{2^{\beta[\omega]}+1}{\rho} t$ for some $\beta[\star] \in \mathcal{C}$ with $\beta[\omega]+1=\alpha$, because we also have $2^{\beta[\star]} \in \mathcal{C}$. Now $1+2^{\beta[\omega]}+1 \leq_{0}$ $1+1+2^{\beta[\omega]} \leq_{0}^{*} 2^{\beta[\omega]+1}$ by (6).

QED.

Lemma 4.11 Let $\mathrm{R}^{\prime} 0 a b \in \overline{\mathrm{~T}}(\mathcal{V})$ with variables $a, b \in \mathcal{V}^{\prime}$ and let $\rho=\operatorname{lev}(a)$, then

$$
\vdash^{\alpha} t \text { and } \operatorname{lev}(t)=\left.0 \Rightarrow\right|_{\rho} ^{2+2 \cdot \alpha} \mathrm{R}^{\prime} t a b
$$

Proof. The proof is by induction on the definition of $\models^{\alpha} t$.
$\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. $\operatorname{rr}(t) \in \mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}, M:=\operatorname{mat}(t), n:=\# M$ and there is some β such that $\beta+n \leq \alpha$ and $\forall s \in M \stackrel{\beta}{=} s$.

If $\operatorname{rr}(t)=0$ then $t=0$. We have $\vdash_{\rho}^{0} a, \left\lvert\, \frac{0}{\rho} b\right.$, hence $\vdash_{\rho}^{1} \mathrm{R}^{\prime}$ tab by $\overline{\mathrm{R}} 0$-Rule.
If $\operatorname{rr}(t)=\mathrm{S}$ then $t=\mathrm{S} t^{\prime}$, hence $n=1$ and $\models^{\beta} t^{\prime}$. Let $\gamma=2 \cdot \beta+1$, then $\frac{\gamma}{\rho} t^{\prime}$ by the subsystem property. Now $\left.\right|_{\rho} ^{\gamma} a$ by the $\mathcal{V}_{0, \mathrm{~S}, \mathrm{R}}$-Rule, hence $\frac{\gamma+1}{\rho} a t^{\prime}$ by the Cut-Rule as $\operatorname{lev}(a)=\rho$. The induction hypothesis yields $\frac{\gamma+1}{\rho} \mathrm{R}^{\prime} t^{\prime} a b$, thus again applying the Cut-Rule produces $\frac{\gamma+2}{\rho} a t^{\prime}\left(\mathrm{R}^{\prime} t^{\prime} a b\right)$ as $\operatorname{lev}\left(a t^{\prime}\right) \leq \operatorname{lev}(a)=\rho$. Thus $\frac{\gamma+3}{\rho} \mathrm{R}^{\prime}$ tab using the $\overline{\mathrm{R}}$ S-Rule, and $\gamma+3=2+2 \cdot(\beta+1) \leq 2+2 \cdot \alpha$.
$\operatorname{rr}(t)=\mathrm{R}$ is not possible because $\operatorname{lev}(t)=0$.
It remains $\operatorname{rr}(t) \in \mathcal{V}$, thus $\operatorname{rr}\left(\mathrm{R}^{\prime} t a b\right)=\operatorname{rr}(t) \in \mathcal{V}$ and $\operatorname{mat}\left(\mathrm{R}^{\prime} t a b\right)=M \cup$ $\{\{a, b\}\}$. By the subsystem property we have $\forall s \in M \left\lvert\, \frac{\beta}{\rho} s\right.$, as well as $\left.\right|_{\rho} ^{0} a,\left.\right|_{\rho} ^{0} b$, thus $\frac{\beta+n+2}{\rho} \mathrm{R}^{\prime}$ tab by $\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule. Now $\beta+n+2 \leq 2+\alpha$.
β-Rule. $\operatorname{rr}(t)=(\lambda x r) s$ and there is some $\beta<\alpha$ such that $\xlongequal{\beta} \operatorname{coat}_{t}(r[x:=s])$ and $\stackrel{\beta}{\wedge} s$. We have $\operatorname{redex}(t)=(\lambda x r) s$ because $\operatorname{lev}(t)=0$. By induction hypothesis $\left.\right|_{\rho} ^{\gamma} \mathrm{R}^{\prime}$ coat $_{t}(r[x:=s]) a b$ for $\gamma=2+2 \cdot \beta$. The subsystem property shows $\left.\stackrel{\beta}{=} s \Rightarrow\right|_{0} ^{\beta} s$, hence $\left.\right|_{\rho} ^{\gamma} s$. Thus $\left.\right|_{\rho} ^{\gamma+1} \mathrm{R}^{\prime}$ tab by β-Rule.
R 0-Rule and R S-Rule are similar to β-Rule.
QED.
The length $\mathrm{l}(r)$ of r is defined by $\mathrm{l}(x)=1, \mathrm{l}(\lambda x r)=\mathrm{l}(r)+1, \mathrm{l}(r s)=\mathrm{l}(r)+\mathrm{l}(s)$, and the height $\mathrm{h}(r)$ by $\mathrm{h}(x)=0, \mathrm{~h}(\lambda x r)=\mathrm{h}(r)+1, \mathrm{~h}(r s)=\max (\mathrm{h}(r), \mathrm{h}(s))+1$. By induction on r we immediately see $\mathrm{l}(r) \leq 2^{\mathrm{h}(r)}$.
Embedding Lemma $4.12 t \in \mathrm{~T}(\mathcal{V})$ and $\mathrm{g}(t) \leq \rho+1 \Rightarrow \left\lvert\, \frac{2^{\omega+1} \cdot 1(t)}{\rho} \bar{t}\right.$.
Proof. . Let $e(k):=4 \cdot k-1+2^{\omega} \cdot k$ for $k>0$. Then $e(k) \leq_{0}^{*} 2^{2} \cdot k+2^{\omega} \cdot k \leq_{0}^{*}$ $\left(2^{\omega}+2^{\omega}\right) \cdot k \leq_{0}^{*} 2^{\omega+1} \cdot k$. We prove

$$
\mathrm{g}(t) \leq \rho+\left.1 \Rightarrow\right|_{\rho} ^{e(1(t))} \bar{t}
$$

by induction on the definition of $t \in \mathrm{~T}(\mathcal{V})$, then the assertion follows by a Structural Rule.
$t \in \mathcal{V}_{0, \mathrm{~S}}$. We have $\vdash_{0}^{0} \bar{t}$ by $\overline{\mathcal{V}}_{0, \mathrm{~S}, \mathrm{R}}$-Rule.
$t=\mathrm{R}$. Let $a, b \in \mathcal{V}^{\prime}$ such that $\mathrm{R}^{\prime} 0 a b \in \mathrm{~T}^{\prime}(\mathcal{V})$, then the previous Lemma shows

$$
\forall u \in \mathrm{~T}(\mathcal{V}) \forall k<\omega\left(\operatorname{lev}(u)=\left.0 \& \stackrel{k}{\models} u \Rightarrow\right|_{\rho} ^{\frac{2+2 \cdot k}{\rho}} \mathrm{R}^{\prime} u a b\right)
$$

because $\operatorname{lev}(a)<\operatorname{lev}\left(\mathrm{R}^{\prime}\right) \leq \rho+1$. Setting $\beta[\star]:=2+2^{\star} \in \mathcal{C}$ we obtain $2+2 \cdot k \leq_{0}^{*}$ $\beta[k]$ by induction on k, where $2 \leq_{0} \beta[0]$ and $4 \leq_{0}^{*} \beta[1]$ are clear, and for $k>0$ with induction hypothesis $2+2 \cdot(k+1) \leq_{0}^{*} \beta[k]+1+1 \leq_{0}^{*} 2+2^{k}+2^{k} \leq_{0} 2+2^{k+1}=$ $\beta[k+1]$. Furthermore $\beta[0]+2=2+2^{0}+1+1 \leq_{0}^{*} 2+2^{1}+1 \leq_{0} 2+2^{\omega}+1=\beta[\omega]+1$ and $\beta[\omega]+1=2+2^{\omega}+1 \leq_{0} 3+2^{\omega}=e(1)$, hence $\left.\right|_{\rho} ^{e(1)} \mathrm{R}^{\prime}$ by $\mathrm{R}^{\prime} \Omega_{0}$-Rule and a Structural Rule.
$t=\lambda x r$. Then $\mathrm{g}(r) \leq \rho+1$, hence $\left.\right|^{e(1(r))} \bar{\rho}$ by induction hypothesis. Hence $\eta_{\rho}^{e(1(r)+1)} \bar{t}$ by β-Rule.
$t=(r s)$. Then $\mathrm{g}(r), \mathrm{g}(s) \leq \rho+1$, hence $\vdash_{\rho}^{e(1(r))} \bar{r}$ and $\left.\right|_{\rho} ^{e^{(1(s))}} \bar{s}$ by induction hypothesis. The Appending Lemma shows $\left.\right|_{\rho} ^{e(1(r))+1} \bar{r} z$ for some suitable $z \in$
 $\operatorname{lev}(\bar{r}) \leq \rho+1$ and $\bar{s} \in \mathrm{~T}^{\prime}(\mathcal{V})$. Now $e(m)+e(n)+1 \leq_{0}^{*} 4 \cdot(m+n)-1+2^{\omega} \cdot(m+n)=$ $e(m+n)$, hence $\left.\right|_{\rho} ^{e(1(t))} \bar{t}$.

QED.
Now we put everything together. Let $t \in \mathrm{~T}(\mathcal{V})$ with $\mathrm{g}(t)=\rho+1$. The Embedding Lemma and the Cut Elimination Lemma show

$$
\left.\right|_{0} ^{2_{\rho}\left(2^{\omega+1} \cdot l(t)\right)} \bar{t}
$$

where $2_{n}(\alpha)$ is the obvious term defined by iteration of 2^{α}, i.e. $2_{0}(\alpha)=\alpha$ and $2_{n+1}(\alpha)=2^{2_{n}(\alpha)}$. Now the Collapsing Theorem leads to

$$
\xlongequal{\mathcal{D} 2_{\rho}\left(2^{\omega+1} \cdot 1(t)\right)} t
$$

because $\widehat{\bar{t}}=t$. Hence we obtain with the Estimate Theorem

$$
\begin{aligned}
\mathrm{d}(t) & \leq 2^{\mathcal{D} 2_{\rho}\left(2^{\omega+1} \cdot 1(t)\right)}=2^{\Psi\left(\mathcal{O}\left(2_{\rho}\left(2^{\omega+1} \cdot 1(t)\right)\right)\right.} \\
& \leq \begin{cases}2^{\Psi(\omega \cdot 4 \cdot 1(t))} & : \rho=0 \\
2^{\Psi\left(w_{\rho}(4 \cdot l(t)+1)\right)} & : \rho>0\end{cases} \\
& \leq \begin{cases}2^{\Psi\left(\omega \cdot 4 \cdot 2^{\mathrm{h}(t)}\right)} & : \rho=0 \\
2^{\Psi\left(w_{\rho}\left(4 \cdot 2^{\mathrm{h}(t)}+1\right)\right)} & : \rho>0\end{cases}
\end{aligned}
$$

It follows from [S97] and [BCW94] that these bounds are optimal.
Remark 4.13 Gödel's T in the formulation with combinators K and S can also be analyzed using the same machinary from this paper obtaining the same results. To this end we have to replace the β-Rules by rules for K and S. They are treated similiar to the recursor, of course without Ω-rules, but also with copies K^{\prime} and S^{\prime} for handling substitution, i.e. cut-elimination.

References

[Be98] Beckmann, A.: Exact bounds for lengths of reductions in typed λ calculus. submitted to JSL, Münster (1998)
[Bu80] Buchholz, W.: Three contributions to the conference on recent advances in proof theory Oxford 1980, mimeographed.
[BCW94] Buchholz, W., E.A. Cichon, and Weiermann A.: A uniform approach to fundamental sequences and hierarchies, Mathematical Logic Quarterly 40 (1994), 273-286.
[S97] Schwichtenberg, H.: Classifying recursive functions. Draft for the Handbook of Recursion Theory (ed. E. Griffor) (1997) http://www.mathematik.uni-muenchen.de/~schwicht/
[S91] Schwichtenberg, H.: An upper bound for reduction sequences in the typed λ-calculus. Arch. Math. Logic 30, 405-408 (1991)
[S82] Schwichtenberg, H.: Complexity of normalization in the pure typed lambda - calculus. In: The L.E.J.Brouwer Centenary Symposium, A.S. Troelstra and D. van Dalen (editors), North Holland, 453-457 (1982)
[W98] Weiermann, A.: How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study Journal of Symbolic Logic 63 (1998), 1348-1370.
[WW98] Wilken, G.,Weiermann, A.:Sharp upper bounds for the depths of reduction trees of typed λ - calculus with recursors (submitted).

[^0]: *Partially supported by the Deutschen Akademie der Naturforscher Leopoldina grant \#BMBF-LPD 9801-7 with funds from the Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie.
 \dagger email: Arnold.Beckmann@math.uni-muenster.de
 ${ }^{\ddagger}$ Supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft.
 § email: weierma@math.uni-muenster.de

