
Generalised Dynamic Ordinals – universal measures

for implicit computational complexity

Arnold Beckmann∗

University of Wales Swansea

Singleton Park

Swansea SA2 8PP, UK

A.Beckmann@swansea.ac.uk

June 29, 2005

Abstract

We extend the definition of dynamic ordinals to generalised dy-
namic ordinals. We compute generalised dynamic ordinals of all frag-
ments of relativised bounded arithmetic by utilising methods from
Boolean complexity theory, similar to Kraj́ıček in [14]. We indicate the
role of generalised dynamic ordinals as universal measures for implicit
computational complexity. I.e., we describe the connections between
generalised dynamic ordinals and witness oracle Turing machines for
bounded arithmetic theories. In particular, through the determination
of generalised dynamic ordinals we re-obtain well-known independence
results for relativised bounded arithmetic theories.
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1 Introduction

Implicit computational complexity denotes the collection of approaches to
computational complexity which define and classify the complexity of com-
putations without direct reference to an underlying machine model. These
approaches are formal systems which cover a wide range, including applica-
tive functional programming languages, linear logic, bounded arithmetic
and finite model theory (cf. [17]). In this paper, we contribute to the idea
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of characterising the computational complexity of such formal systems by
universal measures, such that the formal systems describe exactly the same
complexity class, if and only if they agree in their universal measures. In
general, we aim at connections which can be represented as follows:

complexity class oo // formal systems

universal measure
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OOjjUUUUUUUUUUUUUUUUUUUUUUUU

Many formal systems admit such kind of universal measures. For exam-
ple, in case of “strong” implicit computational complexity, e.g. for number-
theoretic functions which are computable by primitive recursive functionals
in finite types, so-called proof-theoretic ordinals have proven useful as uni-
versal measures of proof and computation (and also consistency) strength
(cf. [19]). With respect to our general picture this situation can be repre-
sented as follows:

PA

primitive recursive in all finite types
rr

22ddddddddddddddddddddddddddddddddddd
oo //

kk

++VVVV
VVVV

VVVV
VVVV

VV
ACA0
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In this paper, we will focus on weak, also called low-level, complex-
ity classes, i.e. complexity classes below EXPTIME. We will approach the
general idea of finding universal measures by doing a case study for a partic-
ular framework of weak implicit computational complexity called bounded
arithmetic. We already argued in [3] that so-called dynamic ordinals can be
viewed as universal measures for some fragments of bounded arithmetic and
corresponding bounded witness oracle Turing machine classes. In this paper,
we will extend this project by defining and computing generalised dynamic
ordinals and indicating their role as universal measures for all bounded
arithmetic theories.

Bounded arithmetic theories are logical theories of arithmetic given as
restrictions of Peano arithmetic. Quantification and induction are restricted
(“bounded”) in such a manner that complexity-theoretic classes can be
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closely tied to provability in these theories. A hierarchy of bounded for-
mulas, Σb

i , and of theories S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ S3
2 . . . has been defined by

Buss [6]. The class of predicates definable by Σb
i (or Πb

i) formulas is precisely
the class of predicates in the ith level Σp

i (respectively Πp
i ) of the polynomial

time hierarchy. The Σb
i -definable functions of Si

2 are precisely the functions
which are polynomial time computable with an oracle from Σp

i−1 (cf. [6]).

Kraj́ıček [13] has characterised the Σb
i+1-definable multivalued functions of

Si
2 as FPΣb

i (wit, O(logn)). Here, FPΣb
i (wit, O(logn)) denotes the class of

multivalued functions computable by a polytime Σb
i -witness oracle Turing

machine with the number of queries bounded by O(logn), see Section 3 for
a precise definition. These results are extended and generalised by Pollett
[20] to all bounded arithmetic theories.

It is an open problem of bounded arithmetic whether the hierarchy of
theories collapses. This problem is connected with the open problem in
complexity theory whether the polynomial time hierarchy PH collapses –
the P=?NP problem is a sub-problem of this – in the following way: The
hierarchy of bounded arithmetic theories collapses, if and only if the polyno-
mial time hierarchy collapses provably in bounded arithmetic (cf. [16, 8, 23]).
The case of relativised complexity classes and theories is completely differ-
ent. The existence of an oracle A is proven in [1, 22, 10], such that the
polynomial time hierarchy in this oracle PHA does not collapse, hence in par-
ticular PA 6= NPA holds. Building on this one can show Ti

2(α) 6= Si+1
2 (α)

[16]. Here, the relativised theories Si
2(α) and Ti

2(α) result from Si
2, and

Ti
2 respectively, by adding a free set variable α and the relation symbol ∈.

Similarly also, Si
2(α) 6= Ti

2(α) is proven in [13], and separation results for
further relativised theories (dubbed Σb

n(α)-LmIND) are proven in [20]. In-
dependently of these, and with completely different methods (see below), we
have shown separation results for theories of relativised bounded arithmetic
in [2, 4]. Despite all answers in the relativised case, all separation questions
continue to be open for theories without set parameters.

The above mentioned alternative approach to the study of relativised
bounded arithmetic theories is called dynamic ordinal analysis [2, 4]. In-
spired from proof-theoretic ordinal analysis, which has its origin in Gentzen’s
consistency proof for PA, the proof theoretic strengths of bounded arith-
metic theories are characterised by so-called dynamic ordinals. The dy-
namic ordinals DO(T (α)) for some relativised bounded arithmetic theories
T (α) have been defined and computed in [2, 4]. DO(T (α)) is a set of unary
number-theoretic functions, which characterises the amount of Πb

1(α)-order-
induction provable in T (α). In [3], we have described how this fits into
our general program on finding universal measure by connecting dynamic
ordinals with witness oracle computations. The above mentioned charac-
terisation of definable multivalued functions of higher bounded arithmetic
theories suggests the following definition of generalised dynamic ordinals
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(for more details on this motivation see the discussion in [3]): The i-th
generalised dynamic ordinal DOi(T (α)) of a relativised theory of bounded
arithmetic T (α) characterises the amount of Πb

i(α)-order-induction provable
in T (α) (thus, the usual dynamic ordinal is just the first generalised dynamic
ordinal).

In this paper, we will define and compute generalised dynamic ordi-
nals for all bounded arithmetic theories. This computation utilises methods
from Boolean complexity like H̊astad’s Switching Lemmas [10, 11] to obtain
a special cut-elimination technique, which we denote by “cut-reduction by
switching”. Kraj́ıček has been the first utilising such methods from Boolean
complexity to reduce the complexity of propositional proofs [14], and Buss
and Kraj́ıček successfully adapted these methods to reduce the oracle com-
plexity of witnessing arguments [9]. Cut-reduction by switching will be
formulated as a cut-elimination method. Usual cut-elimination procedures
(like Gentzen or Tait style cut-elimination) eliminate outermost connectives
of cut-formulas first. In general, the cost of applying such cut-elimination
techniques is an exponential blow-up of certain parameters of derivations
like their height. This blow up would destroy the computation of gener-
alised dynamic ordinals. But still, the computation needs a reduction of
the complexity of cut-formulas. Cut-reduction by switching will reduce cuts
“inside-out”, but will leave the proof-skeleton unchanged, e.g. the height
of the derivation will remain the same. The price will be that not only the
cut-formulas are reduced, but also the formula which is derived. This can be
addressed by well-known utilisations of so-called Sipser functions ([14, 9]),
again originating from Boolean complexity [10, 11].

Our results will be, that for all i > 0, the generalised dynamic ordinals
are computed to

DOi(T
i
2(α)) = {λn.2|n|c : c a number}

DOi(S
i
2(α)) = {λn.|n|c : c a number}

DOi(sR
i+1
2 (α)) = {λn.2||n||c : c a number} ,

and more generally for m > 0

DOi(Σ
b
i+m−1(α)-LmIND) = {λn.2m(c · (|n|m+1)) : c a number} .

In particular we re-obtain the above mentioned separations of bounded arith-
metic theories by dynamic ordinal analysis. We have displayed this situation
in Fig. 1. The method of proving separations by dynamic ordinal analysis
heavily differs from the above mentioned separation results, as no character-
isations of definable functions and no oracle constructions are involved. In
the figure, we mean with S <i T that the theories S and T are separated by
a ∀Σb

i -sentence and that S is included in the consequences of T ; with S *i T
that S is separated from T by a ∀Σb

i -sentence, but not necessarily included;
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Figure 1: Independence results obtained by dynamic ordinal analysis

and with S ¹i T that T is ∀Σb
i -conservative over S. The conservation results

displayed in the figure have been proven by Buss [7].
Furthermore, we obtain the following connections between the i-th dy-

namic ordinal of relativised bounded arithmetic theories and the Σb
i+1-

definable multivalued functions of their unrelativised companions. For i > 0
and for T from the following infinite list of theories

Ti
2, Si+1

2 , Si
2, sRi+1

2 , and Σb
i+m−1-L

mIND for all m > 0,

we obtain:

A multivalued function f is Σb
i+1-definable in T , if and only if f is

computable by some polytime Σb
i -witness oracle Turing machine

with the number of queries bounded by log(DOi(T (α))).

This indicates that dynamic ordinals do in fact also characterise the com-
putational complexity of bounded arithmetic theories. What is still missing
is an intrinsic insight into this connection; this is work in progress.

The paper is organised as follows. In the following section we review the
definition of bounded arithmetic theories. In Section 3 we define witness or-
acle Turing machines and review results characterising definable multivalued
functions of bounded arithmetic theories by witness oracle Turing machines.
The fourth section summarises definition of and results on dynamic ordinals,
and gives the definition as well as lower bounds of the i-th generalised dy-
namic ordinal. In Section 5 we introduce a version of Gentzen’s propositional
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proof system LK and prove basic properties like usual cut-elimination, and
review translations from bounded arithmetic to LK. Section 6 introduces
cut-reduction by switching and sketches of proof of this, which will be used
in Section 7 to prove lower bounds to the height of derivations of the order
induction principle. The results from Sections 5 to 7 have meanwhile been
subject of a technical report [5]. In Section 8 we utilise the lower bound on
derivation heights proved in Section 7 to compute the missing upper bounds
on dynamic ordinals, which in turn will be used to obtain the connections
between generalised dynamic ordinals and witness oracle Turing machines.

2 Bounded arithmetic

Let N denote the set of non-negative integers 0, 1, 2, . . . .
Bounded arithmetic can be formulated as the fragment I∆0 + Ω1 of

Peano arithmetic in which induction is restricted to bounded formulas and
Ω1 expresses a growth rate strictly smaller than exponentiation, namely that
2|x|

2
exists for all x. Here, |x| denotes the length of the binary representation

of x, i.e. an integer valued logarithm of x. The same fragment is obtained by
extending the language of Peano arithmetic, and we will follow this approach
first given by Buss, cf. [6]. Let us recall some definitions.

The language of bounded arithmetic1 LBA consists of function symbols
0 (zero), S (successor), + (addition), · (multiplication), |x| (binary length),
b12xc (binary shift right), x# y (smash, x#y := 2|x|·|y|), x ·− y (arithmetical
subtraction), MSP(x, i) (Most Significant Part) and LSP(x, i) (Less Signif-
icant Part), and relation symbols = (equality) and ≤ (less than or equal).
The meaning of MSP and LSP as number-theoretic functions is uniquely
determined by stipulating that

x = MSP(x, i) · 2i + LSP(x, i) and LSP(x, i) < 2i

holds for all x and i. Restricted exponentiation 2min(x,|y|) can be defined by
the term

2min(x,|y|) = MSP(y# 1, |y| ·− x) ,
hence we can assume that restricted exponentiation is also part of our lan-
guage LBA. We often write 2t and mean 2min(t,|x|) if t ≤ |x| is clear from
the context. Relativised bounded arithmetic is formulated in the language
LBA(α) which is LBA extended by one set variable α and the element relation
symbol ∈.

1For the sake of completeness we will fix a language for bounded arithmetic. In prin-
ciple, our results can be obtained for any sufficient formulation, because they are stable
under extending the language by arbitrary functions which have polynomial growth rate.
See [4] for a discussion.
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BASIC is a finite set of open axioms (cf. [6, 21, 12]) which axiomatises
the non-logical symbols. When dealing with LBA(α) we assume that BASIC
also contains the equality axioms for α.

Bounded quantifiers play an important role in bounded arithmetic. We
abbreviate

(∀x ≤ t)A := (∀x)(x ≤ t→ A) (∃x ≤ t)A := (∃x)(x ≤ t ∧A)

(∀x < t)A := (∀x ≤ t)(t £ x→ A) (∃x < t)A := (∃x ≤ t)(t £ x ∧A)

The quantifiers (Qx ≤ t), (Qx < t), Q ∈ {∀, ∃}, are called bounded quanti-
fiers. A bounded quantifier of the form (Qx ≤ |t|), Q ∈ {∀, ∃}, is called a
sharply bounded quantifier. A formula in which all quantifiers are (sharply)
bounded is called a (sharply) bounded formula. Bounded formulas are strat-
ified into levels:

i) ∆b
0 = Σb

0 = Πb
0 is the set of all sharply bounded formulas.

ii) Σb
n-formulas are those which have a block of n alternating bounded

quantifiers, starting with an existential one, in front of a sharply
bounded kernel.

iii) Πb
n is defined dually, i.e. the block of alternating quantifiers starts with

a universal one.

In the relativised case ∆b
0(α), Σb

n(α), Πb
n(α) are defined analogously.

Attention: In our definition, the class Σb
n consists only of prenex, also

called strict, formulas. In other places in the literature like [6, 15], the
definition of Σb

n is more liberal, and the class defined here is then denoted
sΣb

n, where the “s” indicates “strict”.

Induction is also stratified. Let |x|m denote the m-fold iteration of the
binary length function, which can recursively be defined by |x|0 := x and
|x|m+1 := |(|x|m)|.

For Ψ is a set of LBA-formulas and m is a natural number, let
Ψ-LmIND denote the schema

ϕ(0) ∧ (∀x < |t|m)(ϕ(x)→ ϕ(Sx))→ ϕ(|t|m)

for all ϕ ∈ Ψ and LBA-terms t.

For m = 0 this is the usual successor induction schema and will be denoted
by Ψ-IND. In case m = 1 we often write Ψ-LIND.

The bounded arithmetic theories under consideration are given by

BASIC + Σb
n-LmIND .
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Figure 2: The theories Σb
n-LmIND. Following any line rightwards takes one

to super-theories. For example, sR1
2 ⊆ T2

2 following e.g. the path sR1
2, S1

2,
T1

2, S2
2, T2

2

Usually we do not mention BASIC and simply call this theory Σb
n-LmIND.

Some of the theories have special names:

Ti
2 := Σb

i -IND ,

Si
2 := Σb

i -LIND ,

sRi
2 := Σb

i -L
2IND .

For theories S, T let S ⊆ T denote that all axioms in S are consequences
of T . From the definition of the theories, the following two inclusions im-
mediately follow:

Σb
n-Lm+1IND ⊆ Σb

n-LmIND ,

Σb
n-LmIND ⊆ Σb

n+1-L
mIND .

A little bit more insight is needed to obtain

Σb
n-LmIND ⊆ Σb

n+1-L
m+1IND ,

see [6] for a proof. Fig. 2 reflects the just obtained relations – going from
left to right in the diagram means that the theory on the lefthand side of
an edge is included in the theory on the righthand side.

Similar definitions and results can be stated for relativised bounded
arithmetic theories.
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3 Witness oracle query complexity

In this section we repeat the definition of witness oracle Turing machines
and summarise how definable multivalued functions in bounded arithmetic
theories are connected to witness oracle Turing machines.

A Turing machine with a witness oracle Q(x) = (∃y)R(x, y) is a Turing
machine with a query tape for queries to Q that answers a query a as follows:

i) if Q(a) holds, then it returns YES and some b such that R(a, b) holds;

ii) if ¬Q(a) holds, then it returns NO.

In general this type of Turing machines, called witness oracle Turing ma-
chines (WOTM), compute only multivalued functions rather than functions,
as there may be multiple witnesses to affirmative oracle answers. A multi-
valued function is a relation f ⊆ N× N such that for all x ∈ N there exists
some y ∈ N with (x, y) ∈ f . We express (x, y) ∈ f as f(x) = y. A natural
stratification of WOTMs, called bounded WOTMs, is obtained by bounding
the number of oracle queries.

For Φ is a set of formulas, a multivalued function f is called Φ-definable
in some theory T if there is a formula ϕ(x, y) in Φ such that ϕ describes the
graph of f and T proves the totality of f via ϕ, i.e.

T ` (∀x)(∃y)ϕ(x, y)

N ² (∀x)(∀y)[f(x) = y ↔ ϕ(x, y)]

Kraj́ıček [13] has characterised the Σb
i+1-definable multivalued functions

of Ti
2 and Si

2 as FPΣb
i (wit, poly), and FPΣb

i (wit, O(logn)) respectively.

FPΣb
i (wit, poly) and FPΣb

i (wit, O(logn)) are the classes of multivalued func-
tions computable by a polynomial time WOTM which on inputs of length
n uses fewer than respectively nO(1) and O(logn) witness queries to a Σb

i -
oracle.

Pollett [20] obtains further relationships of definable multivalued func-
tions and bounded polynomial time WOTM classes. The following version
of bounded polynomial time WOTM classes goes back to [20].

Definition 1. Let τ be a set of unary functions represented by terms in LBA.
FPΣb

i (wit, τ) is the class of multivalued functions computable by a polyno-
mial time WOTM which on input x uses fewer than l(t(x)) witness queries
to a Σb

i -oracle for some l ∈ τ and LBA-term t.

With id we denote the identity function, id(n) = n. The classes

FPΣb
i (wit, poly) and FPΣb

i (wit, O(logn)) considered by Kraj́ıček can be ex-

pressed as respectively FPΣb
i (wit, | id |) and FPΣb

i (wit, O(| id |2)) using the
previous definition. The following characterisations of definable multivalued
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functions by bounded polynomial time WOTMs can be read of the results
by Pollett [20], see [20] or [3] for more details. Let us remind that 2m(x) and
|x|m denote them-fold iterations of the exponentiation function, respectively
binary length function.

Theorem 2 (Pollett [20]). Let i ≥ 0 and m ≥ 1.
A multivalued function f is Σb

i+2-definable in Σb
m+i-L

mIND, if and only

if f ∈ FPΣb
i+1(wit, 2m−1(O(| id |m+1))) .

4 Generalised dynamic ordinals

We start this section by repeating definitions of and results on dynamic
ordinals for some fragments of bounded arithmetic from [4] and [3]. The un-
derlying language will always be the language LBA(α) of relativised bounded
arithmetic.

For A(a) is a formula, let SInd(t, A) and OInd(t, A) be defined by

SInd(t, A) := A(0) ∧ (∀x < t)(A(x)→ A(Sx))→ A(t)

OInd(t, A) := (∀x < t)((∀y < x)A(y)→ A(x))→ (∀x < t)A(x)

Order induction, denoted by OInd, applied to a formula A is logically equiv-
alent to minimisation applied to the negation of A. It is well-known that
over the base theory BASIC the schema Σb

i -IND is equivalent to minimisa-
tion for Σb

i -formulas which is equivalent (by coding one existential quantifier)
to minimisation for Πb

i−1-formulas [6, 15].
For Φ is a set of formulas, let OInd(t,Φ) denote the schema of all in-

stances OInd(t, A) for A ∈ Φ and LBA-terms t. Similarly for SInd. When
saying “let T be a theory” we always mean that T contains some weak base
theory, say S0

2 ⊆ T .
In [4] we have defined the dynamic ordinal DO(T ) of a theory T by

DO(T ) := {λx.t : T ` (∀x) OInd(t,Πb
1(α))} .

In this definition, it is understood that t ranges over LBA-terms in which at
most x occurs as a variable. Dynamic ordinals are sets of number theoretic
functions, i.e. subsets of NN. Subsets of NN can be arranged by eventual
majorisability:

f E g :⇔ g eventually majorises f ⇔ (∃m)(∀n ≥ m)f(n) ≤ g(n) .

For subsets of number theoretic functions D,E ⊆ NN we define

D E E :⇔ (∀f ∈ D)(∃g ∈ E)f E g

D ≡ E :⇔ D E E & E E D

D C E :⇔ D E E & E 6E D

10



E is a partial, transitive, reflexive ordering, C is a partial, transitive, ir-
reflexive, not well-founded ordering, and ≡ is an equivalence relation.

Using the big-O notation we will denote sets of unary number-theoretic
functions in the following way:

f(O(g(id))) := {λn.f(c · g(n)) : c ∈ N}

for unary number-theoretic functions f and g.
The dynamic ordinals for certain bounded arithmetic theories are well

established (cf. [4]):

DO(T1
2(α)) ≡ 22(O(| id |2)) ≡ DO(S2

2(α))

DO(S1
2(α)) ≡ 21(O(| id |2))

DO(sR2
2(α)) ≡ 22(O(| id |3))

and more generally for m > 0

DO(Σb
m(α)-LmInd) ≡ 2m(O(| id |m+1)) .

In [3] we have described the following connections between the dynamic
ordinal of some relativised bounded arithmetic theories and the Σb

2-definable
multivalued functions of their unrelativised companions. For T from the
following infinite list of theories

T1
2, S2

2, S1
2, sR2

2, and Σb
m-LmIND for all m > 0,

we obtain:

A multivalued function f is Σb
2-definable in T , if and only if f is

computable by some polytime Σb
1-witness oracle Turing machine

with the number of queries bounded by log(DO(T (α))).

Hence, the characterisation of definable multivalued functions of bounded
arithmetic theories from the previous section suggests the following defini-
tion of generalised dynamic ordinals (see discussion in [3] for more details):

Definition 3. The i-th generalised dynamic ordinal of an LBA(α)-theory T
is defined by

DOi(T ) := {λx.t : T ` (∀x) OInd(t,Πb
i(α))} .

In this definition and in the next theorem, it is understood that t ranges
over LBA-terms in which at most x occurs as a variable. Observe that the
previous definition of the dynamic ordinal of a theory T , DO(T ), is the same
as the first generalised dynamic ordinal of T , DO1(T ).
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As generalised dynamic ordinals consist of terms in the language LBA, a
crude upper bound on generalised dynamic ordinals is always given by the
growth rates of the functions representable by LBA-terms:

DOi(T ) E 2| id |O(1)
= 22(O(| id |2)) .

Generalised dynamic ordinals can also be characterised in terms of SInd.
In [4] we have shown that for sets of bounded formulas Φ which are closed
under bounded universal quantification, we have T ` OInd(t,Φ) if and only
if T ` SInd(t,Φ). Hence we have the following alternative characterisation
of generalised dynamic ordinals:

Corollary 4. DOi(T ) = {λx.t : T ` (∀x) SInd(t,Πb
i(α))} .

In [4] we have shown that different dynamic ordinals imply a separation
of the underlying theories. A similar property holds for generalised dynamic
ordinals.

Lemma 5. Let S, T be two theories in the language of bounded arith-
metic and assume DOi(S) 6= DOi(T ). Then S is separated from T by some
∀Σb

i+1(α)-sentence.

Proof. Assume f ∈ DOi(T ) \ DOi(S). By the definition of generalised
dynamic ordinals there is a term t(x) and a Πb

i(α)-formula A such that
f(n) = t(n) and T ` (∀x)OInd(t(x), A). But f /∈ DOi(S) implies
S 0 (∀x)OInd(t(x), A). Obviously, OInd(t(x), A) ∈ Σb

i+1(α) .

The language LBA includes the successor function, + and ·, which enables
us to speed-up induction polynomially. This has been carried out in [4]
showing

Theorem 6 ([4, Theorem 9]). Σb
n-LmIND ` OInd(p(|x|m),Πb

n) for poly-
nomials p, if m > 0 or n > 0.

Order induction for higher formula complexity is connected to order in-
duction on larger orderings by speed-up techniques. The reader unfamilier
with such speedup techniques may consult [19, Chaper 15] for the trans-
finite case of speeding up induction in Peano arithmetic, or [2, Chaper 9]
respectively [4, Section 3] for the adapted case to bounded arithmetic. The
main ingredient which formalises this is the following jump set Jp(t, x, α):

{

y ≤ t : t ≤ |x| ∧ (∀z ≤ 2t)[z ⊆ α ∧ z + 2y ≤ 2t + 1→ z + 2y ⊆ α]
}

.

Iterations of Jp are defined by

Jp0(t, x, α) = α ,

Jpi+1(t, x, α) = Jp(t, |x|i, Jpi(t, x, α)) .

12



Let us remind that | · |i denotes the i-fold iteration of | · |, and that 2m

denotes the m-fold iteration of exponentiation. Using the iterated jump set
we obtain the following connections:

Theorem 7 ([4, Corollary 15]).

BASIC ` t ≤ |x|m → [OInd(2m(t), A)↔ OInd(t, Jpm(t, x, A))] .

Proof idea. The direction from left to right follows directly. For the other
direction we would have to prove the following statement, see [4, Section 3]
for a definition of OProg and a proof of this:

BASIC ` t ≤ |x| ∧ OProg(2t, A)→ OProg(t, Jp(t, x, A)) .

Concerning the complexity of the iterated jump we observe that

Jpn(t, x,Πb
i) ⊂ Πb

n+i

hence Theorem 6 and Theorem 7 together show the following Corollary,
which has been formulated for the base case i = 1 in [4, Theorem 16].

Corollary 8. Let 0 ≤ n < m or n = m = 1, let i > 0 and let
c be some natural number, then Σb

n+i-L
mIND ` OInd(2n(|x|cm),Πb

i) and
Σb

n+i-L
mIND ` OInd(2n+1(c · |x|m+1),Π

b
i).

This establishes lower bounds on general dynamic ordinals. E.g., we
obtain for m > 0:

DOi+1(Σ
b
m+i(α)-LmInd) D 2m(O(| id |m+1)) .

For upper bounds we will utilise translations to propositional proof systems,
which then will be studied proof-theoretically. But first we have to specify
our favourite propositional proof system.

5 The Proof System Σ
qp
i -LK

In the following we give a natural modification of the definition of language
and formulas of Gentzen’s propositional proof system LK. In the way we
will describe it here, it is sometimes attributed as “Tait-style”. LK consists
of constants 0, 1, propositional variables p0, p1, p2 . . . (also called atoms; we
may use x, y, . . . as meta-symbols for variables), the connectives negation ¬,
conjunction

∧

and disjunction
∨

(conjunction and disjunction are both of
unbounded finite arity), and auxiliary symbols like parentheses. Formulas
are defined inductively: constants, atoms and negated atoms are formulas
(they are called literals), and if Φ is a finite set of formulas, then

∧

Φ and
∨

Φ
are formulas, too. In general, negation is defined as an operation according
to the de Morgan laws, i.e., ¬ϕ denotes the formula obtained from ϕ by

13



interchanging
∧

and
∨

, 0 and 1, and atoms and their negations. The logical
depth, or just depth, dp(ϕ) of a formula ϕ, is the maximal nesting of

∧

and
∨

in it. In particular, constants and atoms have depth 0, the depths of ϕ
and ¬ϕ are equal, and dp(

∨

Φ) equals 1 + max {dp(ϕ) : ϕ ∈ Φ} .
In our setting, cedents Γ,∆, . . . are finite sets of formulas, not sequences

as in [14], and the meaning of a cedent Γ is
∨

Γ. We often abuse notation
by writing Γ, ϕ or Γ∨ϕ instead of Γ∪{ϕ} , or by writing ϕ1, . . . , ϕk instead
of {ϕ1, . . . , ϕk} .

Our version of LK does not have structural rules as special inferences,
they will be obtained as derivable rules. LK consists of four inference rules:
initial cedent rule, introduction rules for

∧

and
∨

, and cut-rule. We are
going to define C-LK where C denotes the set of permissable cut formulas.

Definition 9. We inductively define that Γ is C-LK provable with height η,
in symbols

η

C Γ, for Γ a cedent, C a set of formulas and η ∈ N.
η

C Γ holds if
and only if one of the following four conditions is fulfilled:

(Init) Γ is an initial cedent, i.e. 1 ∈ Γ, or x,¬x ∈ Γ for some variable x.

(
∧

) There is some
∧

Φ ∈ Γ and η′ < η such that
η′

C Γ, ϕ for all ϕ ∈ Φ.

(
∨

) There is some
∨

Φ ∈ Γ and ϕ ∈ Φ and η′ < η such that
η′

C Γ, ϕ .

(Cut) There is some ϕ ∈ C and η′ < η such that
η′

C Γ, ϕ and
η′

C Γ,¬ϕ .

The formula ϕ in the application of the cut-rule is called the cut-formula
of this inference.

In order to make our definition of Σqp
i -LK precise we have to define a

fine structure on constant depth formulas.

Definition 10. Let S, t, i be in N. We inductively define ϕ ∈ ΣS,t
i by the

following clauses:

i) ϕ ∈ ΣS,t
0 if and only if ϕ is a

∧

or
∨

of at most t many literals.

ii) ϕ ∈ ΣS,t
i+1 if and only if ϕ is in ΣS,t

i ∪ΠS,t
i , or it has the form of a

∨

of

at most S many formulas from ΣS,t
i ∪ΠS,t

i .

iii) A formula is in ΠS,t
i , if and only if its negation is in ΣS,t

i .

Now we are prepared to say what we mean by Σqp
i -LK. Here and in the

following, the superscript “qp” stands for “quasi-polynomial”.

Definition 11. Let i ∈ N, let f, η : N→ N be functions, and let (Γn)n be a
sequence of tautological cedents.

We say that (Γn)n is (i, f)-LK (or (Σi, f)-LK) provable with height η, if

and only if there is a sequence of subsets Cn ⊆ Σ
f(n),log(f(n))
i of cardinality

bounded by f(n) such that Γn is Cn-LK provable of height η(n).

14



Then Σqp
i -LK denotes (Σi, 2

(log n)O(1)
)-LK, i.e. (Γn)n is Σqp

i -LK provable
with height η iff there is a c ∈ N such that (Γn)n is (i, 2(log n)c

)-LK provable
with height η.

We will often abuse notation and write Γn is Σqp
i -LK provable with height

η(n), instead of (Γn)n is Σqp
i -LK provable with height η.

In the previous definition, we included a strange looking condition that
the number of distinct cut-formulas is bounded, too. The reason is technical:
during the computation of dynamic ordinals we will encounter LK deriva-
tions whose heights grow stronger than poly-logarithmically. For deriva-
tions with poly-logarithmic height we would not need such a condition as it
would be fulfilled implicitly: a derivation, in which all cut-formulas are in

Σ
2(log n)c ,(log n)c

i , has the property that the fan-in to each node in the deriva-
tion tree is bounded by 2(log n)c

. Hence, if the height of such a derivation
tree is bounded by (log n)c, then the number of nodes in the tree is bounded
by 2(log n)2c

, and thus the number of different cut-formulas in the deriva-
tion has the same bound. This argument obviously fails if the heights of
the derivation trees grow stronger than poly-logarithmically. Now, having
a quasi-polynomial upper bound on the number of different cut-formulas
is essential for the cut-reduction by switching method needed to compute
the generalised dynamic ordinals. It should be said at this point, that this
condition will be fulfilled by translations of bounded arithmetic derivations,
hence we obtain a stronger result this way.

Structural rules are not included in the definition of LK. They can be
obtained as derivable rules which is stated in the next proposition. It is
readily proven by induction on η.

Proposition 12 (Structural Rule). Assume η ≤ η′ , C ⊆ C′ and Γ ⊆ Γ′ ,

then
η

C Γ implies
η′

C′ Γ′.

The following propositions on
∧

-Inversion and
∨

-Exportation are readily
proven by induction on η.

Proposition 13 (
∧

-Inversion). Assume
η

C Γ,
∧

Φ, then
η

C Γ, ϕ holds for
all ϕ ∈ Φ.

Proposition 14 (
∨

-Exportation). Suppose
η

C Γ,
∨

Φ holds, then
η

C Γ,Φ .

The proof of the next Lemma and Proposition follows the same pattern
as the standard one which can be found e.g. in [2, 4].

Lemma 15 (Cut-Elimination Lemma). Let ϕ ∈ ΣS,t
i+1 and C ⊆ ΣS,t

i such

that C includes all ΣS,t
i -sub-formulas and all negations of ΠS,t

i -sub-formulas

of ϕ. If
η0

C Γ, ϕ and
η1

C ∆,¬ϕ , then
η0+η1

C Γ,∆ .
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Proposition 16 (Cut-Elimination Theorem). Let C ⊆ ΣS,t
i+1 be closed

under sub-formulas and let C ′ := C ∩ (ΣS,t
i ∪ΠS,t

i ). Then
η

C Γ implies 2η

C′ Γ .

We repeat the translation (also called embedding) of provability in Si
2(α),

Ti
2(α), and more general of Σb

i(α)-Lm+1IND , to LK from [2, 4]. Let log(k)(n)
be the k-times iterated logarithm applied to n, and 2k(n) the k-times iterated
exponentiation applied to n.

There exists a canonical translation due to Paris and Wilkie [18] from
the language of bounded arithmetic to the language of LK (see [15, 9.1.1],
or [2, 4]). Let ϕ be a formula in the language of bounded arithmetic in
which no individual (i.e. first order) variable occurs free – we call such a
formula (first order) closed. Then [[ϕ]] denotes the translation of ϕ to the
language of LK, which for example maps the atom α(t), for t a closed term
of value mt ∈ N , to the propositional variable pmt , and bounded quantifiers
to connectives

∧

, respectively
∨

, e.g. [[(∀x ≤ t)ϕ(x)]] =
∧

j≤mt
[[ϕ(j)]] . It

follows that a formula ϕ(x) from Σb
i(α) (with x being the only variable

occurring free in ϕ) translates to
(

[[ϕ(n)]]
)

n
in Σqp

i , i.e. there is some c ∈ N
such that [[ϕ(n)]] ∈ Σ

2(log n)c ,(log n)c

i for all n ∈ N.

Remark 17. The last statement is not totally correct in the way it is
stated, because, ∆b

0 formulas may have unbounded depth. If we want to
be really precise we could proceed as follows: First we define a more re-
stricted version of Σb

i and Πb
i . E.g., we define Σ̂b

1 formulas to be of the form:
one bounded existential quantifier followed by disjunctions of one sharply
bounded universal quantifier followed by conjunctions of atomic formulas.
It can be shown in weak theories of Bounded Arithmetic that Σb

1 formulas
are equivalent to Σ̂b

1 formulas. Hence we obtain an equivalent definition of

our theories using the more restricted classes. Second, we let Σ̂S,t
i be the

stratification of propositional formulas corresponding to the restrictions Σ̂b
i .

E.g., Σ̂S,t
0 are the formulas having at most two levels of fan-in t disjunctions.

Then we obviously have that Σ̂b
i formulas translate into Σ̂qp

i -formulas. Now
the translation of proofs in bounded arithmetic which we are going to de-
scribe will produce Σ̂qp

i -LK-derivations, which finally can be transformed
into Σqp

i -LK-derivations by merging two levels of connectives of the same
type using

h
C Γ,

∨

i<n (
∨

Φi) ⇒ h
C Γ,

∨
(
⋃

i<nΦi

)

and
h
C Γ,

∧

i<n (
∧

Φi) ⇒ h
C Γ,

∧
(
⋃

i<nΦi

)

.

For notational simplicity we will assume in this Section that ∆b
0 formula

have the form one sharply bounded quantifier followed by an atomic formula.
Assuming this, the above statement is correct.

The same proofs as in [2, 4] also show the following Theorem, which is
here formulated using Σqp

i -LK.
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Theorem 18. Let ϕ(x) be a formula in the language of bounded arithmetic,
in which at most the variable x occurs free.

i) If Si
2(α) ` ϕ(x), then [[ϕ(n)]] has some Σqp

i -LK derivation of height

O
(

log(2) n
)

.

ii) If Ti
2(α) ` ϕ(x), then [[ϕ(n)]] has some Σqp

i -LK derivation of height
(log n)O(1) .

iii) If Σb
i(α)-LmIND ` ϕ(x), then [[ϕ(n)]] has some Σqp

i -LK derivation of

height O
(

log(m+1) n
)

.

Combining this Theorem with the Cut-Elimination Theorem we obtain

Corollary 19. Let ϕ(x) be a formula in the language of bounded arithmetic,
in which at most the variable x occurs free.

i) If Ti
2(α) ` ϕ(x) or Si+1

2 (α) ` ϕ(x), then [[ϕ(n)]] is Σqp
i -LK prov-

able with height (log n)O(1) . In this case we say that [[ϕ(n)]] is poly-
logarithmic-height restricted Σqp

i -LK provable.

ii) If Σb
m+i+1(α)-Lm+1IND ` ϕ(x), then [[ϕ(n)]] is Σqp

i -LK provable with

height 2m

(

(log(m+1) n)O(1)
)

. In this case we say that [[ϕ(n)]] is

2m

(

(log(m+1) n)O(1)
)

-height restricted Σqp
i -LK provable.

Height restricted proof systems have been subject of a technical report
[5], which in particular covers the content of the next two sections. It is
the second part of the previous Corollary where the technical condition
discussed after Definition 11 comes into play. For example, if m = 1 then
the resulting heights are of size 2(log log n)c

which grow stronger than poly-
logarithmically in general. Hence, having the additional restriction on the
number of cut-formulas is a proper assertion, which is fulfilled as we are
considering translations of bounded arithmetic derivations.

6 Cut-reduction by switching

Usual cut-elimination procedures (like Gentzen or Tait style cut-elimination)
eliminate outermost connectives of cut-formulas first. In general, the cost
of applying such cut-elimination techniques is an exponential blow-up of
certain parameters of derivations like their heights, as seen in the previous
section. Later we want to show that the translations of the order induction
principles need certain heights of LK-proofs. Our lower bounds technique
will only work if the heights of the proofs grow sub-linear. Thus, in order
to reduce the degree of cut formulas in the derivations in Corollary 19 we
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cannot apply the Cut-Elimination Theorem any further, as this would result
in upper bounds on heights which grow too fast.

At this point, the elimination of cuts, which is necessary in our proof
of lower bounds, needs a different cut-elimination technique which we call
cut-reduction by switching. It relies on methods from boolean complexity,
i.e. H̊astad’s Switching Lemmas [10, 11]. In [14] such boolean complexity
techniques are successfully applied to reduce the complexity of Σqp

i -LK refu-
tations. We will follow [9] where the same approach is used to reduce the
complexity of oracle computations related to definable functions in bounded
arithmetic. Cut-reduction by switching will reduce cuts “inside-out”, but
will leave the proof-skeleton unchanged, e.g. the heights will remain the
same. The price will be that not only the cut-formulas are reduced, but
also the formula which is derived. The idea is to find a so-called restriction
(i.e. a partial substitution of propositional variables by truth values) for a
given derivation of a formula ϕ such that after applying that restriction to
the proof, cut-formulas are sufficiently reduced but the restriction of ϕ is
sufficiently meaningful.

In order to formulate cut-reduction by switching, we need some notation.
Our logarithms are always base 2.

(1) Fix m ≥ 1, i ≥ 0. Let [m] denote the set {0, . . . ,m − 1}. For
x, y1, . . . , yi ∈ N let px,y1,...,yi

be a Boolean variable, and let

Bi(m) = {px,y1,...,yi
: x, y1, . . . , yi < m} .

The cardinality of Bi(m) is mi+1. We shall henceforth use ~y as an abbrevi-
ation of y1, . . . , yi or y1, . . . , yi−1, depending on the context it occurs. Note
that B0(m) is the set of variables px with x < m.

(2) A propositional formula is Σt
1, if and only if it is a disjunction of con-

junctions of at most t literals, i.e. if it is in ΣS,t
1 for some S. A propositional

formula is Πt
1 if and only if its negation is Σt

1, and it is ∆t
1 if and only if it is

equivalent to both Σt
1 and Πt

1. A formula ϕ is hereditarily ∆t
1, denoted by

ϕ ∈ .∆t
1, if and only if every sub-formula of ϕ is ∆t

1. We inductively define
for i ≥ 0:

ϕ ∈ .ΠS,t
i ⇔ ¬ϕ ∈ .ΣS,t

i

ϕ ∈ .ΣS,t
0 ⇔ ϕ ∈ .∆t

1

ϕ ∈ .ΣS,t
1 ⇔ ϕ ≡ ∨

j<wϕj and ϕj ∈ .∆t
1 for all j < w

ϕ ∈ .ΣS,t
i+2 ⇔ ϕ ≡ ∨

j<wϕj and w ≤ S and ϕj ∈ .ΠS,t
i+1 for all j < w

Observe that for the definition of .ΣS,t
1 , we do not assume w ≤ S!

(3) We define for x < m some general Σm,1
i -formulas Di,m(x) in mi

variables from Bi(m). They compute so-called Sipser functions [11] and are
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defined by

Di,m(x) =
∧ ∨

. . . Qi−1 Qi px,~y
y1<m y2<m yi−1<m yi<m

where either Qi−1 or Qi is
∧

, depending on whether i is even or odd, re-
spectively, and the other is

∨

.

(4) We are now ready to formulate cut-reduction by switching. The
notation B[px ← ϕx : x ∈M ] denotes the result of simultaneously replacing
variable px by formula ϕx for all x ∈M .

Theorem 20 (Cut-Reduction by Switching). Let i ∈ N and ε ∈ R with
i ≥ 1 and 0 < ε < 1

2 . Let M ⊆ N be some infinite set. For m ∈ M , let

ηm ∈ N, t = t(m) = m
1
2
−ε, S = S(m) = 2t, Bm a formula with variables in

B0(m), and Cm ⊂ ΣS,t
i with |Cm| ≤ S. Furthermore, assume that Bm

[

px ←
Di,m(x) : x < m

]

is Cm-LK provable with height ηm.
Then, for all m ∈M which are sufficiently large, there is some Q ⊂ [m]

such that

i) |[m] \Q| ≥ √m · logm ;

ii) Bm

[

px ← 0: x ∈ Q
]

is .∆t
1-LK provable with height ηm.

We now sketch the proof of this Theorem. We go on introducing nota-
tion.

(5) Let i,m ≥ 1. We have already defined sets Bi(m) of propositional
variables. They are partitioned into blocks via

(Bi(m))(x,y1,...,yi−1) := {px,y1,...,yi−1,z : z < m}
for (x, y1, . . . , yi−1) ∈ [m]i.

(6) A restriction ρ on Bi(m) is a map going from Bi(m) to {0, 1, ∗}:
ρ : Bi(m) → {0, 1, ∗} .

We should think of ρ(p) = 0 or ρ(p) = 1 as p is replaced by 0 or 1 respectively,
and of ρ(p) = ∗ as p is left unchanged. Alternatively, we can think of ρ as a
partial map going from Bi(m) to {0, 1}.

(7) The probability space R+
k,i,m(q) of restrictions ρ for 0 < q < 1 is given

as follows. Let x < m, ~y ∈ [m]i−1 and yi < m.

1

ρ ∈ R+
k,i,m(q) : p = px,~y,yi

+
1−q

55kkkkkkkkkkkk
¶

q ))SSS
SSSS

SSS 0

sx,~y(ρ)
+

1−q
55kkkkkkkkkkk

¶
q ))SSS

SSSS
SSSS

∗
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Meaning: first choose sx,~y such that sx,~y = ∗ with probability q and sx,~y = 0
with probability 1−q; then choose ρ(p) such that ρ(p) = sx,~y with probability
q and ρ(p) = 1 with probability 1− q.

Define R−
k,i,m(q) by interchanging 0 and 1:

0

ρ ∈ R−
k,i,m(q) : p = px,~y,yi

+
1−q

55kkkkkkkkkkkk
¶

q ))SSS
SSSS

SSS 1

sx,~y(ρ)
+

1−q
55kkkkkkkkkkk

¶
q ))SSS

SSSS
SSSS

∗

(8) Let ρ ∈ R+
k,i,m(q). We define a transformation ¹gρ which maps for-

mulas with variables in Bi(m) to formulas with variables in Bi−1(m):

i) Apply ρ.

ii) Assign 1 to every px,~y,z with ρ(px,~y,z) = ∗ such that there is some
z < z′ < m with ρ(px,~y,z′) = ∗. I.e., all but one variable in a block are
touched.

iii) Rename each px,~y,z by px,~y.

For ρ ∈ R−
k,i,m(q) replace 1 by 0.

(9) The following lemma is H̊astad’s second switching lemma, see [11].

Lemma 21 (H̊astad [11]). Let i ≥ 1 and ν ∈ {+,−}. Let ϕ be a .ΣS,t
i+1-

formula with variables from Bi(m) and 0 < q < 1. Then

Prρ∈Rv
k,i,m

(q)

[

ϕ¹gρ /∈ .ΣS,t
i

]

≤ Si · (6qt)t .

I.e., the probability of a randomly chosen ρ from Rv
k,i,m(q) that the formula

ϕ¹gρ is not equivalent to some .ΣS,t
i -formula is at most Si · (6qt)t.

(10) For the following inductive proof, the previously defined Sipser func-
tions Di,m(x) have to be modified. We define D̄i,m(x) for every x < m with
variables from Bi(m). They compute modified Sipser functions (cf. [11, 9])
and are defined by

D̄i,m(x) =
∧ ∨

. . . Qi−1 Qi px,~y
y1<m y2<m yi−1<m yi<

q

1
2

(i+1) m log m

where either Qi−1 or Qi is
∧

, depending on whether i is even or odd, respec-
tively, and the other is

∨

. Note that for distinct x, the formulas D̄i,m(x)
contain distinct propositional variables.
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(11) The next lemma is also due to H̊astad [11]. We repeat essentially
the version stated by Buss and Kraj́ıček [9].

We say that a formula ϕ contains formula ψ, written as ψ ⊆ ϕ, if by
renaming and/or erasing some variables, we can transform ϕ into ψ.

Lemma 22. Let m be big (i.e. m ≥ 1030), i ≥ 1, m :=
√

1
2(i+ 1)m logm,

q :=

√

2 (i+1) log m
m

and assume q ≤ 1
5 . Then the following holds:

i) Assume i ≥ 2 and let v(i) = + or v(i) = − if i is odd or even
respectively. For all x < m:

Pr
ρ∈R

v(i)
k,i,m

(q)

[

D̄i−1,m(x) * D̄i,m(x)¹gρ

]

≤ 1

3
m−2 .

I.e., the probability of a randomly chosen ρ from Rv(i)
k,i,m(q) that the

formula D̄i,m(x)¹gρ does not contain D̄i−1,m(x) is at most 1
3m

−2.

ii) For i = 1 we have for all x < m:

Prρ∈R
+
1,m(q)

[

D̄1,m(x)¹gρ = 1
]

≤ 1

6
m−2 .

I.e., the probability of a randomly chosen ρ from R+
1,m(q) that the for-

mula D̄1,m(x) is transformed to 1 by ¹gρ is at most 1
6m

−2.
For R ⊆ [m] with |R| ≥ m we have

Prρ∈R
+
1,m(q)

[

|{x ∈ R : sx(ρ) = ∗}| ≥ 1

2
q · |R|

]

≥ 1− 1

6
m−2 .

I.e., the probability of a randomly chosen ρ from R+
1,m(q) that for at

least an 1
2q-fraction of R the corresponding variables px are left un-

changed by ρ (i.e. are assigned ∗) is at least 1− 1
6m

−2.

(12) Utilising this we obtain the following lemmas which immediately
proof our Cut-Reduction by Switching Theorem 20. For the rest of this
section fix ε ∈ R with 0 < ε < 1

2 . Fix some infinite set M ⊆ N. For m ∈M ,

let t = t(m) = m
1
2
−ε, S = S(m) = 2t, and Bm a formula with variables in

B0(m).

Lemma 23. Let i ≥ 1, let f : N→ N be some function, and let Cm ⊂ .ΣS,t
i+1

be given such that |Cm| ≤ S and Bm

[

px ← D̄i+1,m(x) : x < m
]

is Cm-LK
provable with height f(m) for all m ∈M .

Then, for m ∈ M sufficiently large, there is some C ′m ⊂ .ΣS,t
i such that

|C′m| ≤ S and Bm

[

px ← D̄i,m(x) : x < m
]

is C′m-LK provable with height
f(m).
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Lemma 24. Let f : N → N be some function, and let Cm ⊂ .ΣS,t
1 be given

such that |Cm| ≤ S and Bm

[

px ← D̄1,m(x) : x < m
]

is Cm-LK provable with
height f(m) for all m ∈M .

Then, for m ∈ M sufficiently large, there is some Q = Qm ⊆ [m] such
that

i) |[m] \Q| ≥ √m · logm ;

ii) Bm

[

px ← 0: x ∈ Q
]

is .∆t
1-LK provable with height f(m).

7 Lower bounds on heights of Σ
qp
i -LK-proofs of or-

der induction

In this section we will prove lower bounds on heights of Σqp
i -LK proofs of

the order induction principle for some particular Σqp
i -property (given by

the Sipser functions Di,m(x)). This will be obtained by applying the Cut-
Reduction by Switching Theorem from the previous Section and the lower
bound theorem for .∆t

1-resolution proofs of the order induction principle to
be proven next. This lower bound is also called “Boundedness Theorem” in
the setting of ordinal analysis.

The order induction principle OInd(m) is given by the formula

OInd(m) :=
∧

x<m

((

∧

y<xpy

)

→ px

)

→ ∧

x<mpx

(of course A → B is an abbreviation of
∨{¬A,B}). The meaning is eas-

ily understood if we consider its contraposition which expresses minimisa-
tion: if some variables among p0, . . . , pm−1 are false then there is one with
minimal index. It is the translation of our previously defined LBA-formula
OInd(m,α) to LK.

Theorem 25 (Boundedness).
η
.∆t

1
OInd(n) ⇒ n ≤ η · t .

We will give a detailed proof of this Theorem in the next subsection.
But before we do this we utilise the Boundedness Theorem. The complex-
ity of the order induction principle is extended by replacing variables px by
the Sipser function Di,m(x) from the previous section. The next theorem
states the lower bound for Σqp

i -LK derivations of the extended order induc-
tion principle. With rng(f) we will denote the range of a number-theoretic
function f .

Theorem 26. Let i ∈ N with i ≥ 1. Let f, η : N → N be some
number-theoretic functions such that η(n) = (log n)Ω(1). Assume that
OInd(f(n))

[

px ← ¬Di,f(n)(x) : x < f(n)
]

is Σqp
i -LK provable with height

η(n). Then, η(n) = f(n)Ω(1), or, equivalently, f(n) = η(n)O(1).
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Proof. Assume for the sake of contradiction that the assumptions of the
Theorem are satisfied, but f(n) 6= η(n)O(1). In particular, rng(f) must be
unbounded.

By assumption, we have that OInd(f(n))
[

px ← ¬Di,f(n)(x) : x < f(n)
]

is Σqp
i -LK provable with height η(n). This means that there is some c ∈ N

such that for all n ∈ N we can fix a set of formulas C̄n with the following

properties: let t̄ = t̄(n) = (log n)c and S̄ = S̄(n) = 2t̄, then C̄n ⊆ ΣS̄,t̄
i ,

|C̄n| ≤ S̄ and OInd(f(n))
[

px ← ¬Di,f(n)(x) : x < f(n)
]

is C̄n-LK provable

with height η(n). By assumption log n = η(n)O(1), hence there is some d
and N0 ∈ N such that logn ≤ η(n)d for n ≥ N0. W.l.o.g., we can choose
c · d > 1.

We will construct some infinite subset M of rng(f) which can be used to
apply the Cut-Elimination by Switching Theorem. Let m0 be any number.
We will construct some m1 > m0 which we will put into the set M . Fix
some n0 ≥ N0 with (log n0)

4c ≥ m0. As f(n) 6= η(n)O(1) there must be
some n1 > n0 satisfying f(n1) > η(n1)

d·4·c. Let m1 := f(n1), then m1 >

η(n1)
d·4·c ≥ (log n1)

4c ≥ m0. Thus (log n1)
c ≤ m

1
4
1 and m0 < m1. Hence

C̄n1 ⊆ ΣS,t
i and |C̄n1 | ≤ S for t := m

1
4
1 and S := 2t. Put m1 into the set M

and define Cm1 := C̄n1 and ηm1 := η(n1). Go on defining m2,m3, . . . in the
same fashion.

Then, the prerequisites of the Cut-Reduction by Switching Theorem are
satisfied, and we obtain some large m ∈ M , some set Q ⊂ [m] not too big
(i.e. |[m]\Q| ≥ √m · logm ≥ √m) and a .∆t

1-LK derivation ofOInd(m)[px ←
1: x ∈ Q

]

of height ηm. By pruning and renaming of variables this can be
transformed into a .∆t

1-LK derivation of OInd(m− |Q|) of height ηm, hence

the Boundedness Theorem yields m−|Q| ≤ ηm · t = ηm ·m
1
4 , which together

with the largeness condition on Q rewrites to ηm ≥ m
1
4 . By construction

of M there is some n such that η(n) = ηm and m = f(n) > η(n)d·4·c,
contradicting the previously obtained m ≤ η(n)4, as c · d > 1.

7.1 The proof of the Boundedness Theorem

For this subsection we fix t ∈ N, t ≥ 1. By
η
• ϕ we denote that ϕ is .∆t

1-LK
provable with height η. A formula ϕ will always be one in the language
of LK. We want to prove the Boundedness Theorem, i.e.

η
• OInd(n) ⇒ n ≤ η · t .

Before we can do this we first have to fix some suitable notation.
Let ϕ be an LK-formula. For a set M ⊆ N we define ϕ[M ] to be the

result of replacing pi by 1 if i ∈ M , and by 0 if i /∈ M . Then let M ² ϕ if
and only if ϕ[M ] is true.
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For two sets M+,M− ⊆ N we define [M+,M−] to be the set of all
subsets M of N that contain M+ but are disjoint from M−:

[M+,M−] := {M : M+ ⊆M ⊆ N \M−} .

Definition 27. For a formula ϕ and a truth value ν ∈ {0, 1} we define that
(M+,M−) fixes ϕ to ν, if and only if M+ and M− are disjoint subsets of
N (this implies [M+,M−] 6= ∅) and the truth of ϕ is fixed on [M+,M−] to
ν, i.e. ϕ[M ] = ν for all M ∈ [M+,M−]. We say that (M+,M−) fixes ϕ, if
and only if (M+,M−) fixes ϕ to some truth value ν ∈ {0, 1}.

A true .∆t
1-formula ϕ can always be fixed to 1 by a pair M+,M− which is

small, i.e. the cardinality of M+ and M− together is bounded by t, denoted
by |M+| + |M−| ≤ t. In addition, M+,M− can be chosen to respect any
given satisfying assignment of ϕ:

Lemma 28. Let ϕ ∈ .∆t
1 and M0 ⊆ N such that M0 ² ϕ. Then there are

M+ ⊆ M0 and M− ⊆ N satisfying |M+| + |M−| ≤ t, M0 ∩M− = ∅ and
(M+,M−) fixes ϕ to 1.

Proof. The assumption ϕ ∈ .∆t
1 particularly implies ϕ ∈ ∆t

1. Hence, ϕ is
equivalent to some

∨

x<S

∧

y<t θxy for some S and some literals θxy. From
the assumption M0 ² ϕ it follows that there is some x0 < S such that
M0 ²

∧

y<t θx0y . Fix such an x0 < S. Let

M+ := {i : θx0y = pi for some y < t}
M− := {i : θx0y = ¬pi for some y < t} .

Then the assertion follows.

The following Lemma is the main technical part for proving the Bound-
edness Theorem 25. Let

OProg(m) :=
∧

x<m

((

∧

y<xpy

)

→ px

)

hence OInd(m) has the form ¬OProg(m) ∨∧x<m px.

Lemma 29.
η
• ¬OProg(n), pm ⇒ m < η · t .

Proof of the Boundedness Theorem 25. Assume
η
• OInd(n). By apply-

ing first
∨

-Exportation and then
∧

-Inversion from Section 5 we obtain
η
• ¬OProg(n), pn−1. Hence, the above Lemma shows n − 1 < η · t and

the assertion follows.

Proof of the above lemma. Assume for the sake of contradiction that

η
• ¬OProg(n), pm and η · t ≤ m .

24



For a finite set M ⊆ N let enM denote the enumeration function of N \M .
Let Rγ(M) be the set {a : a < enM (γ)} ∪M .

We will construct by recursion on l sets ∆l ⊆ .∆t
1, M

+
l ,M

−
l ⊆ N for

l = η, . . . , 0 satisfying the property G(l,∆l,M
+
l ,M

−
l ) given by

i) l
• ¬OProg(n),∆l .

ii) |M+
l |+ |M−

l | ≤ t · (η − l) .

iii) all ϕ ∈ ∆l, which are not variables, are fixed by (M+
l ,M

−
l ) to 0.

iv) Rl·t(M+
l ) 2 ∆l .

v) Rl·t(M+
l ) ∩M−

l = ∅ .

For l = 0 the assertion follows. Because, if we have constructed ∆0 ⊆ .∆t
1,

M+
0 ,M

−
0 ⊆ N which satisfy G(0,∆0,M

+
0 ,M

−
0 ), then G(0,∆0,M

+
0 ,M

−
0 ) i)

shows 0
• ¬OProg(n),∆0 , hence ∆0 must be an axiom. But this contradicts

G(0,∆0,M
+
0 ,M

−
0 ) iv) and the assertion follows.

We now prove the assertion by backwards-induction from l = η to 0.
To start the induction for l = η let ∆η := {pm} and M+

η := M−
η :=

∅. Then G(η,∆η,M
+
η ,M

−
η ) i), ii), iii), v) immediately follow. For

G(η,∆η,M
+
η ,M

−
η ) iv) observe that en∅(η · t) = η · t ≤ m, hence m /∈ Rη·t(∅).

For the induction step l + 1 Ã l assume that we have constructed
∆l+1 ⊆ .∆t

1, M
+
l+1,M

−
l+1 ⊆ N satisfying G(l + 1,∆l+1,M

+
l+1,M

−
l+1). We

will consider the last inference in G(l + 1,∆l+1,M
+
l+1,M

−
l+1) i) which leads

to l+1
• ¬OProg(n),∆l+1 . Let R∗ abbreviate R(l+1)·t(M+

l+1). In order to

simplify sub-cases, we first argue that it is enough to find some ψ ∈ .∆t
1 and

M+,M− ⊆ N satisfying the following property:

I) l
• ¬OProg(n),∆l+1, ψ .

II) (M+,M−) fixes ψ to 0.

III) |M+|+ |M−| ≤ t .

IV) M+ ⊆ R∗ .

V) R∗ ∩M− = ∅ .

Then, ∆l := ∆l+1 ∪ {ψ}, M+
l := M+

l+1 ∪M+, M−
l := M−

l+1 ∪M− will

satisfy property G(l,∆l,M
+
l ,M

−
l ), because G(l,∆l,M

+
l ,M

−
l ) i) and ii) are

obvious; and for G(l,∆l,M
+
l ,M

−
l ) iii), iv) and v) we observe

A) Rl·t(M+
l ) ⊆ Rl·t+t(M+

l+1) ∪ M+ = R∗. This follows, because
enM∪{a}(γ) ≤ enM (γ + 1), hence Rγ(M ∪ {a}) ⊆ Rγ+1(M) ∪ {a}.

B) V) and the induction hypothesis G(l + 1,∆l+1,M
+
l+1,M

−
l+1) v) imply

R∗ ∩M−
l = ∅, hence G(l,∆l,M

+
l ,M

−
l ) v) follows using A).
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C) A) and B) show ∅ 6= [M+
l ,M

−
l ]. By construction [M+

l ,M
−
l ] ⊆

[M+
l+1,M

−
l+1], hence (M+

l ,M
−
l ) fixes all ϕ ∈ ∆l+1 which are not vari-

ables, to 0.

Furthermore, [M+
l ,M

−
l ] ⊆ [M+,M−], hence II) implies that ψ is fixed

to 0 by (M+
l ,M

−
l ). Thus, G(l,∆l,M

+
l ,M

−
l ) iii) follows.

D) Utilising B) and A) we obtain Rl·t(M+
l ),R∗ ∈ [M+

l ,M
−
l ] hence

G(l + 1,∆l+1,M
+
l+1,M

−
l+1) iv) shows that (M+

l ,M
−
l ) fixes every for-

mula in ∆l+1 to 0. In particular, Rl·t(M+
l ) 2 ∆l+1, which shows

G(l,∆l,M
+
l ,M

−
l ) iv).

Now we distinguish sub-cases according to the last inference which leads
to l+1

• ¬OProg(n),∆l+1 . In the sub-cases, we either construct ψ, M+,
M− satisfying I) to V), or we directly construct ∆l, M

+
l , M−

l satisfying
G(l,∆l,M

+
l ,M

−
l ), depending which is easier.

(
∧

) There is some ϕ =
∧

j<J ϕj ∈ ∆l+1 such that l
• ¬OProg(n),∆l+1, ϕj

for all j < J . By induction hypothesis G(l + 1,∆l+1,M
+
l+1,M

−
l+1) iv)

we have that R∗ 2 ϕ. Thus, there is some j0 < J such that R∗ 2 ϕj0 .

Let ψ := ϕj0 , then ψ ∈ .∆t
1 [⇒ I)]. By Lemma 28 there are some

M+ ⊆ R∗ [⇒ IV)] and M− ⊆ N such that R∗ ∩M− = ∅ [⇒ V)],
|M+|+ |M−| ≤ t [⇒ III)] and (M+,M−) fixes ψ to 0 [⇒ II)].

(
∨

) The first sub case is that ¬OInd(n) is not the main formula of the
inference. Then, there is some ϕ =

∨

j<J ϕJ ∈ ∆l+1 such that
l
• ¬OProg(n),∆l+1, ϕj0 for some j0 < J . By induction hypothesis
G(l+1,∆l+1,M

+
l+1,M

−
l+1) iv) we have thatR∗ 2 ϕ, thus alsoR∗ 2 ϕj0 .

Now the same argumentation as in the
∧

-case can be applied.

Now assume that the main formula is ¬OInd(n). Then, there is some
x < n such that

l
• ¬OProg(n),∆l+1,

(

∧

y<xpy

)

∧ ¬px .

A) Assume, there is some y < x such that y /∈ Rl·t(M+
l+1).

By
∧

-Inversion we obtain l
• ¬OProg(n),∆l+1, py. Let ∆l :=

∆l+1, py [⇒ G(l,∆l,M
+
l ,M

−
l ) i)], M+

l := M+
l+1 and M−

l :=

M−
l+1 [⇒ G(l,∆l,M

+
l ,M

−
l ) ii), iii)]. Now Rl·t(M+

l ) ⊆ R∗

[⇒ G(l,∆l,M
+
l ,M

−
l ) v)], hence, using the assumption y /∈

Rl·t(M+
l ), we obtain Rl·t(M+

l ) 2 ∆l [⇒ G(l,∆l,M
+
l ,M

−
l ) iv)].

B) Now assume that A) does not hold, hence y ∈ Rl·t(M+
l+1) for all

y < x. This implies x ∈ Rl·t+1(M+
l+1) ⊆ R∗. Because, enM (γ) /∈

Rγ(M), hence y ∈ Rγ(M) for all y < x implies enM (γ) ≥ x,
hence enM (γ + 1) > x and in sequel x ∈ Rγ+1(M).
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By
∧

-Inversion we obtain l
• ¬OProg(n),∆l+1,¬px. Let ψ :=

¬px [⇒ I)], M+ := {x} and M− := ∅ [⇒ II), III), IV), V)].

(Cut) There is some ϕ ∈ .∆t
1 such that l

• ¬OProg(n),∆l+1, ϕ and
l
• ¬OProg(n),∆l+1,¬ϕ. W.l.o.g. we may assume R∗ 2 ϕ. The same

argumentation as in the
∧

-case yields the assertion.

8 Generalised dynamic ordinals revisited

We have now collected all tools which are needed to compute the missing
upper bounds on generalised dynamic ordinals. Our strategy will be to
translate a Σb

m+i(α)-LmIND-proof of OInd(t(x),Πb
i) to Σqp

i -LK, and then
use the result on lower bounds of the order induction principle, Theorem 26,
to obtain tight upper bounds on generalised dynamic ordinals.

For the following considerations fix some i,m ∈ N with m > 0 and some

f ∈ DOi+1(Σ
b
m+i(α)-LmIND) .

First, we define some general Πb
i(α)-formula Aα,i(a, x), which is trans-

lated by the Paris-Wilkie translation to the Sipser function Di,a as defined
before. Aα,i(a, x) is given by the formula

(∀y1 < a) (∃y2 < a) . . . (Qi−1yi−1 < a) (Qiyi < a) α(〈x, y1, . . . , yi〉)

where either Qi−1 or Qi is ∀, depending on whether i is even or odd, respec-
tively, and the other is ∃. Here, 〈z1, . . . , zj〉 denotes some sequence coding
function expressible in the language of bounded arithmetic. Then, the def-
inition of DOi+1 yields that there is some term t such that f = λx.t(x)
and

Σb
m+i(α)-LmIND ` (∀x)OInd(t,¬Aα,i(t, .)) .

Utilising Theorem 19 shows that there is some c ≥ 1 such that eventually

[[OInd(t(n),¬Aα,i(t(n), .))]]

is Σqp
i -LK provable with height 2m−1

(

(log(m) n)c
)

. By identifying p〈x,~y〉

with px,~y, we see that these derivations transform to Σqp
i -LK proofs of

OInd(t(n))
[

px ← ¬Di,t(n)(x) : x < t(n)
]

of height 2m−1

(

(log(m) n)c
)

.
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Now we are in the situation that we can apply the Lower Bound Theo-

rem 26, because 2m−1

(

(log(m) n)c
)

= (log n)Ω(1). Hence, we obtain that

f(n) = t(n) = 2m−1

(

(log(m) n)c
)O(1)

= 2m(O(log(m+1) n)) .

Together with Corollary 8, this shows:

Theorem 30. Let m > 0. The i + 1 generalised dynamic ordinal of the
theory Σb

m+i(α)-LmIND can be described as:

DOi+1(Σ
b
m+i(α)-LmInd) ≡ 2m(O(| id |m+1)) .

Hence we have for i > 0:

DOi(T
i
2(α)) ≡ 22(O(| id |2)) ≡ DOi(S

i+1
2 (α))

DOi(S
i
2(α)) ≡ 21(O(| id |2))

DOi(sR
i+1
2 (α)) ≡ 22(O(| id |3))

We also compare definable multivalued functions of unrelativised theories
with the generalised dynamic ordinals of their relativised companions.

Theorem 31. Let i ≥ 0. For any theory T from the infinite list

Ti+1
2 , Si+2

2 , Si+1
2 , sRi+2

2 (= Σb
i+2-L

2IND), Σb
i+3-L

3IND, . . .

we have:

A multivalued function f is Σb
i+2-definable in T , if and only if

f ∈ FPΣb
i+1(wit, log(DOi+1(T (α)))).

This indicates that generalised dynamic ordinals do in fact also charac-
terise the computational complexity of bounded arithmetic theories.
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