
Ordinal Notations and Well-Orderings in

Bounded Arithmetic

Arnold Beckmann1,3 Samuel R. Buss1,4 Chris Pollett2

July 6, 2000

1 Introduction

Ordinal notations and provability of well-foundedness have been a central tool
in the study of the consistency strength and computational strength of formal
theories of arithmetic. This development began with Gentzen’s consistency
proof for Peano arithmetic based on the well-foundedness of ordinal notations
up to ǫ0. Since the work of Gentzen, ordinal notations and provable well-
foundedness have been studied extensively for many other formal systems, some
stronger and some weaker than Peano arithmetic. In the present paper, we
investigate the provability and non-provability of well-foundedness of ordinal
notations in very weak theories of bounded arithmetic, notably the theories
Si

2 and T i
2 with 1 ≤ i ≤ 2. We prove several results about the provability of

well-foundedness for ordinal notations; our main results state that for the usual
ordinal notations for ordinals below ǫ0 and Γ0, the theories T 1

2 and S2
2 can prove

the ordinal Σb
1-minimization principle over a bounded domain. PLS is the class

of functions computed by a polynomial local search to minimize a cost function.
It is a corollary of our theorems that the cost function can be allowed to take
on ordinal values below Γ0, without increasing the class PLS.

The historical development of ordinal notations and formal theories of arith-
metic is far too extensive for us to survey here. We shall include the basic
definitions for ordinal notations of ordinals below ǫ0 and Γ0, and the reader can
refer to Feferman [7, 8] or the textbooks of Schütte [14] or Pohlers [13] for more
details.

Theories of bounded arithmetic are fragments of Peano arithmetic which
have induction strongly restricted, firstly to allow induction only on certain

1Dept. of Mathematics, Univ. of California, San Diego, La Jolla, CA 92093-0112.
2Dept. of Mathematics, Univ. of California, Los Angeles, Los Angeles, CA 90095-1555.
3Supported by the Deutschen Akademie der Naturforscher Leopoldina grant #BMBF-

LPD 9801-7 with funds from the Bundesministeriums für Bildung, Wissenschaft, Forschung
und Technologie.

4Supported in part by NSF grant DMS-9803515 and by a cooperative research grant INT-
9600919/ME-103 of the NSF (USA) and the MŠMT (Czech Republic).

1

types of bounded formulas, and secondly, in the case of the theories Si
2, to allow

only length induction instead of the usual successor induction. In order to get
meaningful results, we need to work with theories such as S1

2 , T 1
2 , S2

2 and T 2
2 as

introduced by the second author in [3]. We presume the reader is familiar with
these theories of bounded arithmetic: the necessary background can be found
in [3, 4, 9, 11].

Ordinal notations have been extensively used in the study of strong theo-
ries, ranging from primitive recursive arithmetic, to Peano arithmetic and to
fragments of second-order arithmetic; however, there has been little prior work
relating ordinals to proof systems as weak as fragments of bounded arithmetic.
This is due, in part, to the fact that the fragments of bounded arithmetic have
computational complexity related to (near) feasible classes such as polynomial
time and the various levels of the polynomial time hierarchy. There are no good
mechanisms available to combine such low-level complexity with ordinal recur-
sion, and thus traditional results on ordinal notations have not transferred to
the setting of bounded arithmetic. Sommer [16] investigated the formalizability
of abstract ordinal notations in full bounded arithmetic, I∆0, and showed that
I∆0 can represent ordinals up to Γ0 with the ordinal operations of addition and
the Veblen ϕ function. Beckmann introduced dynamic ordinals in fragments
of the bounded arithmetic as a tool to analyze predicative bounded arithmetic
and to obtain relativized separation results for bounded arithmetic theories [1].
His dynamic ordinals are based on exponential notations for integers, which are
similar to the Cantor normal form representation of ordinals less than ǫ0.

It is known (c.f. [15]) that if one formalizes transfinite induction on ordinals
in the usual way, then induction on ordinals below ωω (or even induction on just
ω2) is sufficient to give the full strength of primitive recursive arithmetic. Thus,
in order to get meaningful ordinal well-foundedness results for fragments of
bounded arithmetic it is necessary to limit the strength of the well-foundedness
principles. We shall do this by restricting to a finite domain as follows. Let
T be a first-order theory of bounded arithmetic and ≺ be a binary relation
which T -provably defines a total ordering on a domain D ⊆ N. In practice, we
will require that ≺ and D are polynomial time recognizable predicates, defined
by ∆b

1-formulas. We say that ≺ is well-founded on bounded domains provided
that whenever A(x) is a predicate and there is a d ∈ D such that d ≤ t and
A(d), then there is a ≺-least element d ∈ D satisfying both d ≤ t and A(d). In
symbols, we write this principle as the formula WFA(t):

(∃d ≤ t)(d ∈ D ∧ A(d)) →

(∃d ≤ t)[d ∈ D ∧ A(d) ∧ (∀d′ ≤ t)(d′ ∈ D ∧ A(d′) → d′ ⊀ d)]
(1)

It is of course a triviality that every total order is well-founded on bounded
domains, since bounded domains are finite sets. However, if a theory T can
prove (1) for all Σb

1-formulas A(x) then we say that ≺ is provably well-founded
on bounded domains in T . 5 We let WF≺ denote the axiom scheme containing
the formulas WFA for all Σb

1-formulas A.

5One could consider more general concepts, e.g., Σb

i
-well-foundedness on bounded domains

2

The use of the domain D in the above definition is merely a convenience;
there would be no loss in generality in taking D = N. Indeed, the ordering ≺
can always be extended to have domain all integers by making d ≺ x for all
d ∈ D and x /∈ D. The reason for using the domain D is that we will consider
natural orderings on ordinal notations for ordinals below ǫ0 and Γ0: it will be
convenient to take D to be the set of valid Gödel numbers for ordinal notations.

Very recently (and independently of our own work), Sommer has announced
sharpened versions of the above-mentioned results from [15]. In our notation,
what he has done is modify the quantifier (∀d′ ≤ t) of formula (1) by replacing t
with a bound f(d) which depends on d (and remove the other uses of t). We
know no direct connection of this to our well-ordering principles on bounded
domains.

The outline of the present paper is as follows. In the next section, we show
first that T 2

2 is strong enough to prove the well-foundedness on bounded do-
mains of any ∆b

1-defined total ordering. On the other hand, we show that if
the ordering is defined with an oracle, then T 1

2 and S2
2 cannot prove the well-

foundedness on bounded domains of the ordering. Section 3 considers the usual
Cantor normal form representation of ordinals below ǫ0: First we show that the
well-foundedness of this system is not provable in S1

2 unless S1
2 = T 1

2 . Second,
we prove that T 1

2 can prove the well-foundedness of these ordinals on bounded
domains, by giving an order-preserving embedding of the ordinals less than ǫ0
restricted to a bounded number of operators into Nk for some integer k. Sec-
tion 4 introduces the usual Veblen ϕ-function notation for ordinals less than Γ0.
It is shown that S1

2 can ∆b
1 define the ordering on ordinals below Γ0 by giving

straightforward polynomial time algorithms (this re-obtains, more concretely,
some results of Sommer [16]). In addition, S1

2 can define the normal form on
ordinals below Γ0 and prove that normal forms exist and are unique. After
this, we reach the central results of the paper: we prove that T 1

2 and S2
2 can

prove the well-foundedness on bounded domains of usual ordinal notations for
ordinals below Γ0.

Section 5 is a short diversion discussing order-preserving embeddings of or-
dinals into the set of lexicographically-ordered words over a finite alphabet.

Finally, in section 6, we discuss a corollary of our theorems for the class
Polynomial Local Search, PLS, introduced by Johnson, Papadimitriou and Yan-
nakakis [10]. Buss-Kraj́ıček [6] showed that the Σb

1-definable functions of T 1
2 are

precisely the (multivalued) functions which are definable as the composition of
a projection function and a PLS function. We define the classes (ǫ0,4)-PLS
and (Γ0,4)-PLS by generalizing PLS to allow the cost function to take on or-
dinal values less than ǫ0 or Γ0, respectively. It is a corollary of our theorems on
the provability of well-foundedness of ordinal notations in T 1

2 , that the classes
(ǫ0,4)-PLS and (Γ0,4)-PLS are identical to the class PLS.

We thank R. Sommer for useful discussions and remarks, which lead to a
considerable simplification of some of the proofs.

defined with A ranging over Σb

i
-formulas. However, we shall not consider these generalizations

in this paper.

3

2 General orderings

This section states a couple results about general orderings. By a “general
ordering” we mean any order defined by a ∆b

1-formula; by comparison the results
of sections 3 and 4 concern specific natural well-orderings based on ordinal
notations.

To formalize general well-orderings, it is best to introduce ≺ as new relation
symbol in the language. Let Total(≺) be the formula expressing the condition
that ≺ is a total ordering, i.e., that ≺ is transitive and satisfies trichotomy. This
can be formalized by

(∀x)(∀y)(∀z)[(x 6≺ x) ∧ (x ≺ y ∨ x = y ∨ y ≺ x)

∧ (x ≺ y ∧ y ≺ z → x ≺ z)]

Note that Total(≺) is a ∀∆b
0(≺)-formula. Let T 2

2 (≺)+Total(≺) be the theory of
bounded arithmetic axiomatized by the BASIC axioms, the successor induction
axioms (IND) for Σb

2(≺) formulas and the axiom Total(≺).

Theorem 1 The ordering ≺ is provably well-founded on bounded domains over
T 2

2 (≺) + Total(≺).

Proof Fix A(x) ∈ Σb
1 (or even, A ∈ Σb

1(≺)). Clearly, WFA(y) is a Σb
2(≺)-

formula. Let T be the theory T 2
2 (≺) + Total(≺). Clearly, T ⊢ WFA(0) be-

cause the trichotomy of ≺ is implied by the axiom Total(≺). Also, T proves
WFA(y) → WFA(y+1). Thus, by Σb

2(≺)-IND, T ⊢ (∀y)WFA(y), which is what
we needed to prove. 2

For weaker theories, we have:

Theorem 2 The ordering ≺ is not provably well-founded on bounded domains
over S2

2(≺) + Total(≺). In fact, S2
2(≺) + Total(≺) does not prove (∀y)WFA(y)

even for the case where A(x) is the universally true formula x = x.

Theorem 2 holds for T 1
2 (≺) + Total(≺) as well, since T 1

2 ⊆ S2
2 .

Proof Our proof exploits a proof technique of Kraj́ıček [11, Thm. 11.2.5]. Let
S be the theory S2

2(≺) + Total(≺). Let A(x) be the formula “x = x”. (In fact
any formula A(x) which is true for a superpolynomial density of x’s could be
used.) If S proves (∀y)WFA(y), then S can also prove the assertion

(∀y)(∃x ≤ y)(∀z ≤ y)(x 4 z). (2)

Suppose for the sake of obtaining a contradiction, that S can prove (2). This is a
∀Σb

2-formula; therefore, by the relativization of the ‘main theorem’ for S2
2 , there

is a p
2(≺) = PNP (≺)-function f which, given an input y, produces a ≺-least x

below y [3]. The function f runs in polynomial time and uses an NP (≺)-oracle.6

6One might also let the computation of f query the predicate ≺, but this is not necessary,
since these queries may be made indirectly through the NP (≺) oracle.

4

The NP (≺) oracle is a nondeterministic oracle Turing machine M(u), which on
input u returns True iff it has an accepting computation. The machine M is
allowed to make queries of the form “v ≺ w?” to the oracle ≺. In addition,
f is Σb

2-defined by S, and S can prove all the relevant properties of f and the
machine M . In particular, S can prove ∀y∀z ≤ y(f(y) 4 z).

Since f(y) runs in polynomial time, say in time p(|y|), any query u to M
made during the computation of f must have |u| ≤ p(|y|). M also is polynomial
time, so there is a polynomial q bounding the runtime of M . In particular, any
particular computation path of M(u) can make at most q(|u|) queries “v ≺ w?”
to the oracle.

To prove Theorem 2, it will suffice to construct an oracle ≺ for which f fails
to correctly produce the ≺-least x ≤ y. To do this, choose y sufficiently large,
and run the polynomial time algorithm for computing f(y). As we compute
f(y), we construct a series of linear orders ≺i, i = 0, 1, 2, 3, The order ≺i

will have domain Di and with Di ⊆ Di+1 and each ≺i will be the restriction
of ≺i+1 to the domain Di.

Initially, we set ≺0 to be the empty binary relation with domain D0 = ∅.
When f(y) makes its (i + 1)-st query, u, to M , we define ≺i+1. To define
≺i+1, first consider the case that there is some total, linear order ≺ extending
≺i such that that M(u) accepts relative to ≺. Choose, arbitrarily, such a ≺
and an accepting computation of M(u) relative to u. Then, let Di+1 equal Di

union the set of values v, w such that M(u) made a query “v ≺ w?” in this
accepting computation. Let ≺i+1 equal ≺ restricted to the domain Di+1. This
same computation path will cause M(u) to accept relative to any linear ordering
containing ≺i+1. In this case, the computation of f(u) then continues with a
True answer from the oracle. In the second case, there is no such ordering ≺: set
≺i+1=≺i and Di+1 = Di. M(u) will not accept relative to any linear ordering
extending ≺i+1. In this case, the computation of f(y) is continued with a False
answer from the oracle query.

Note that in either case, Di+1 has at most 2q(|u|) ≤ 2q(p(|y|)) new elements
over Di. At the end of the computation f outputs a value x. The computation
made k ≤ p(|y|) queries to M(u), so we obtain a linear order ≺k with domain Dk

of cardinality at most 2p(|y|)·q(p(|y|)). If ≺ is any total linear order with domain
N which extends ≺k, then the computation of f relative to ≺ will will have the
same answers to its oracle queries and hence must output the same value x. If
y was sufficiently large, namely if y > 2p(|y|)q(p(|y|)) + 1, then we can extend
≺k to an ordering ≺ such that there is some z ≤ y with z ≺ x: this is done by
choosing z ∈ [0, y] \ (Dk ∪ {x}) and letting z be the least element of ≺. This
contradicts the fact that f(y) was to produce the ≺-least element x ≤ y. 2

We do not know of any way to extend Theorem 2 to a non-oracle style
result. For instance, does there exist a ∆b

1-definition of a binary predicate ≺
such that S1

2 ⊢ Total(≺) and such that the theory S1
2 + WF≺ includes all the

∀Σb
2-consequences of T 2

2 ?

5

3 Ordinals below ǫ0

3.1 Ordinal notations for ǫ0

We use < and ≤ to denote the usual ordering on ordinals; i.e., < denotes the
‘real’ semantic concept of ordinal orderings, and we will reserve the symbol ≺
for syntactically defined orderings on Gödel numbers of ordinals. We reserve
lowercase Greek letters to denote ordinals or Gödel numbers of ordinals. Recall
the Cantor normal form for ordinals; i.e., every ordinal α > 0 can be written
uniquely in the form

α = ωα1 + ωα2 + ωα3 + · · · + ωαk ,

where k ≥ 1 and α1 ≥ α2 ≥ α3 ≥ · · · ≥ αk. This is the basis for the well-known
representation of ordinals less than ǫ0: namely, write an ordinal α < ǫ0 as a
term in Cantor normal form, recursively writing the exponents of ω in the same
form.

This gives a syntactic representation of ordinals less than ǫ0. We need to
formalize this syntactic representation in the bounded arithmetic theory S1

2 , by
defining a set D which is the set of Gödel numbers of (syntactic representations
of) ordinals less than ǫ0 and a binary formula ≺ which defines the ordinal
ordering on the Gödel numbers. The formulas D and ≺ need to be ∆b

1-formulas,
that is to say, polynomial time computable, and S1

2 needs to be able to prove
that ≺ defines a total ordering on the domain D.

The syntactic representation in S1
2 is developed in two stages: first repre-

senting ordinals in non-normal form, and then showing that ordinals can be
converted to the normal form. Ordinals will first be represented in a ‘basic
form’ and then to make our results more general, in a ‘compact form’. As an
example of the difference,

ωω0+ω0+ω0

+ ωω0+ω0+ω0

is in basic form, and its compact form is ωω0·3 · 2.

Definition The set of basic forms for ordinals less than ǫ0 is the set of expres-
sions inductively defined as follows:

1. 0 is a basic form.

2. If α is a basic form, then so is ωα. The expression ωα is called an ω-term.

3. If α and β are basic forms, and α is an ω-term and β 6= 0, then α + β is a
basic form.

S1
2 can formalize the notion of basic form by using standard sequence coding

methods to define the Gödel number of a basic form. We assume that some
efficient method of sequence coding is used for Gödel numbers so that the length
of the Gödel number of a basic form α is proportional to the number of symbols
in α.

6

It is immediate from the definition that every non-zero basic form α can be
written uniquely in its additive expansion

α = α1 + α2 + · · · + αk,

where each αi is an ω-term. Note that S1
2 is able to prove the existence and

uniqueness of the additive expansion of a basic form. To put basic forms into
a normal form, we wish to further require that the ordinals α1, . . . , αk form a
non-increasing sequence. To formalize this, we first need to define a syntactic
order, denoted ≺, on basic forms. Unfortunately, the definition of the ≺ is
complicated by the fact that basic forms are not (yet) in normal form.

Definition Let α and β be basic forms. We inductively define α 4 β and
α 64 β, letting α ≈ β mean that both α 4 β and β 4 α, and α ≺ β mean that
α 4 β and α 6≈ β. First if α = 0, then α 4 β. Also, if β = 0 and α 6= 0, then
α 64 β. Otherwise, let α1 + · · ·+αk and β1 + · · ·+βℓ be the additive expansions
of α and β. Then

a. If k = ℓ = 1, and α1 = ωα′

and β1 = ωβ′

, then α 4 β is defined to hold if
and only if α′ 4 β′.

b. If α1 ≺ αi for some i > 1, then α 4 β if and only if α2 + . . . + αk 4 β.

c. If β1 ≺ βi for some i > 1, then α 4 β if and only if α 4 β2 + . . . + βℓ.

d. Otherwise, if none of a., b., or c. apply, then α 4 β iff either (1) α1 ≺ β1

or (2) α1 ≈ β1 and α2 + · · ·+ αk 4 β2 + · · ·+ βℓ. (If either k or ℓ are one,
then the empty sum is interpreted as 0.)

It is easy to show that 4 is transitive and reflexive and satisfies dichotomy,
i.e., for all basic forms α, β, γ,

α 4 α,

α 4 β ∨ β 4 α,

α 4 β ∧ β 4 γ → α 4 γ.

Likewise, ≺ is transitive and antisymmetric. The proofs of these facts use
ordinary integer induction and do not require transfinite induction. To make ≺
a linear (non-partial) ordering, we need to mod out by the ≈ relation. The best
way to do this is identify normal forms for ordinal notations:

Definition The set of normal basic forms for ordinals less than ǫ0 is the set of
expressions inductively defined as follows:

1. 0 is a normal basic form.

2. If α is a normal basic form, then so is ωα.

3′. Let α and β be normal basic forms, α be an ω-term and β be non-zero
with β′ the leading term in the additive expansion of β. If β′ 4 α, then
α + β is a normal basic form.

7

It is straightforward to see that S1
2 can ∆b

1-define the syntactic concepts of
≺, 4 on basic forms, for instance using the techniques of [3, Ch. 7] for inductive
definitions S1

2 , or of [1, 2] for defining exponential notations. Probably the most
straightforward way to define these concepts in S1

2 is to follow [1, 2] and use the
following polynomial time algorithm for determining if α 4 β: Given α and β
as inputs, the algorithm first forms all pairs (α′, β′) with α′ a subterm of α and
β′ a subterm of β. Then, starting with shorter subterms, the algorithm decides
for each such pair, whether α′ ≺ β′ or α′ ≈ β′ or β′ ≺ α′. This algorithm
can readily be formalized in S1

2 , and based on this algorithm, S1
2 can prove

properties of 4 such as transitivity, reflexivity and dichotomy.
In addition, S1

2 can ∆b
1-define the set of (Gödel numbers of) normal basic

forms. Finally, S1
2 can prove that ≺ is a total ordering on the normal basic

forms, satisfying transitivity and trichotomy.

We now define the compact representations for ordinals less than ǫ0.

Definition The set of compact forms for ordinals less than ǫ0 is the set of
expressions inductively defined as follows:

1. 0 is a compact form.

2. If α is a compact form and n ∈ N, n > 0, then ωα · n is a compact form.
This is called an ω-term.

3. If α and β are compact forms, and α is an ω-term and β 6= 0, then α + β
is a compact form.

The definition of ≺ for compact forms is complicated by the fact that we
not only need to discard additive terms that are ‘out of order’, but also need to
collect together the integer coefficients of the maximum additive term.

Definition Let α and β be compact forms. α 4 β and α 64 β are inductively
defined as follows. As before, let α ≈ β mean that α 4 β and β 4 α, and α ≺ β
mean that α 4 β and α 6≈ β. Also as before, if α = 0, then α 4 β; and if β = 0
and α 6= 0, then α 64 β. Otherwise, let α1 + · · · + αk and β1 + · · · + βℓ be the
additive expansions of α and β, where αi = ωα′

i · ni and βi = ωβ′

i · mi.

a. If k = ℓ = 1, then α 4 β is defined to hold if and only if either (1) α′
1 ≺ β′

1

or (2) α′
1 ≈ β′

1 and n1 ≤ m1.

b. If α′
1 ≺ α′

i for some i > 1, then α 4 β if and only if α2 + . . . + αk 4 β.

c. If β′
1 ≺ β′

i for some i > 1, then α 4 β if and only if α 4 β2 + . . . + βℓ.

d. Otherwise, if none of a., b. or c. apply, and if α′
1 6≈ β′

1, then α 4 β iff
α′

1 4 β′
1.

e. If none of a., b., c., or d. apply, then let S = {i : α′
i ≈ α′

1} and let
T = {i : β′

i ≈ β′
1}. Let nS =

∑

i∈S ni and mT =
∑

i∈T mi. If nS < mT ,
then α 4 β. If nS > mT , then α 64 β. If nS = mT , then α 4 β iff
∑

i>max(S) αi 4
∑

i>max(T) βi. If a summation is empty, it is interpreted
as zero.

8

To make ≺ a linear (non-partial) order, we restrict its domain to compact
forms in normal form:

Definition The set of normal compact forms for ordinals less than ǫ0 is the set
of expressions inductively defined as follows:

1. 0 is a normal compact form.

2. If α is a normal compact form and n > 0, then ωα ·n is a compact normal
form.

3′. Let α and β be normal compact forms, α = ωα′

· n an ω-term and β be
non-zero with ωβ′

· m the leading term in the additive expansion of β. If
β′ ≺ α′, then α + β is a normal compact form.

The predicates ≺ and 4 for compact forms can be seen to be polynomial time
computable based on their inductive definitions, and the bounded arithmetic
theory S1

2 can ∆b
1-define the syntactic concepts of ≺, 4 on compact forms.

Similarly, S1
2 can ∆b

1-define the set of (Gödel numbers of) normal compact forms
and the set of normal compact forms is polynomial time recognizable. Finally,
S1

2 can prove that ≺ is a total ordering on the normal compact forms, satisfying
transitivity and trichotomy.

3.2 Provable well-foundedness on bounded domains

By Theorem 1, the well-foundedness of ≺ on bounded domains can be proved
in T 2

2 . Theorem 4 will show that the well-foundedness on bounded domains of
(compact form) ordinal notations below ǫ0 is provable in T 1

2 . Before stating
and proving that result, we show that T 1

2 is the weakest fragment of bounded
arithmetic which can prove the well-foundedness of ≺ on ǫ0.

Theorem 3 Let ≺ be the ordering on normal basic (or, compact) forms for
ordinals less than ǫ0. Over the base theory S1

2 , WF≺ implies Σb
1-IND.

Therefore, S1
2 ⊢ WF≺ implies S1

2 = T 1
2 . The latter condition is unlikely to hold,

since it implies that PNP [log] equals PNP [11, Thm. 10.3.1].

Proof Since normal basic forms are essentially a special case of normal compact
forms, it suffices to prove the theorem for normal basic forms. The proof is
quite simple, we just need to give a natural, polynomial time computable, order
preserving, embedding of the integers into the normal basic forms. (The identity
mapping n 7→ ω0 + ω0 + · · · + ω0 from the integers into the normal basic forms
cannot be used, since it has exponential growth rate and is not polynomial
time.) The mapping we use is as follows: let n ∈ N have binary representation
(nk · · ·n1n0)2 with each ni ∈ {0, 1}. Let S = {i : ni = 1} and i0, i1, . . . ip
enumerate S in decreasing order. Let αi be the basic form representing the
ordinal i, αi = ω0 + · · · + ω0 (i summands). We define ι(0) = 0 and, for n > 0,

ι(n) = ωαi0 + ωαi1 + · · ·ωαip .

9

The mapping ι is readily seen to be polynomial time and Σb
1-definable in S1

2 .
Furthermore, S1

2 can prove that ι is order-preserving, so that n < m iff ι(n) ≺
ι(m). S1

2 can intensionally ∆b
1-define the range of ι, and can Σb

1-define the
inverse function ι−1.

To complete the proof, suppose that A(x) is a Σb
1-formula: we must show

that S1
2 can prove the least number principle (MIN) for A. Let A∗(w) be the

formula w ∈ ran(ι) ∧ A(ι−1(w)). Then the formula WFA∗ immediately implies
the least number principle for A(x). 2

The proof really showed that over the base theory S1
2 , WF≺′ implies Σb

1-IND,
where ≺′ is the restriction of ≺ to normal basic (or, compact) forms α ≺ ωω.

Theorem 4 Let ≺ be the ordering on normal basic (or, compact) forms. Then
T 1

2 ⊢ WF≺.

It is sufficient to prove Theorem 4 for compact forms, since this subsumes
the case of basic forms. Before giving the proof, we give an order-preserving
embedding from bounded domains of normal compact forms into fixed-length
sequences of integers. A compact form may be thought of as a sequence of
symbols from the alphabet A containing “ω”, “+”, the integers, and a special
‘end of superscript’ symbol “↓”. The length of an ordinal notation is defined to
equal the number of symbols in the expression.

Definition The length of a compact form α is denoted lh(α) and is defined by

• lh(0) = 1.

• The length of ωα · n equals lh(α) + 3.

• The length of α + β equals lh(α) + lh(β) + 1.

We assume that an efficient Gödel encoding is used for compact forms; for
instance, based on encoding the sequences Seq(α) defined next. In particular,
we require that 2 · lh(α) ≤ |α| holds provably for S1

2 .

Definition A is the set N ∪ {ω,+, ↓}, and A∗ is the set of finite sequences

over A. We use the infix operator a to denote sequence concatenation. Let
α be a compact form. Then Seq(α) is the member of A∗ defined by:

• Seq(0) is 〈0〉. That is, the one element sequence containing the symbol 0.

• Seq(ωα · n) equals 〈w〉aSeq(α)a〈↓, n〉.

• Seq(α + β) equals Seq(α)a〈+〉aSeq(β).

Note that the symbols ω and ↓ will appear in Seq(α) in pairs, and are
balanced like left and right parentheses. Also, for every α 6= 0, the two last
elements of of Seq(α) will be ↓, n for some integer n.

10

Definition The set A is linearly ordered by the convention that ↓< + < N < ω
with the integers inheriting their usual ordering. The induced lexicographic
ordering on A∗ is also denoted <.

Lemma 5 For any normal compact forms α and β, α ≺ β holds if and only if
Seq(α) < Seq(β).

Proof The proof is by induction on the lengths of α and β. For either α or β
equal to zero, this fact is immediate. Otherwise, α will equal either ωα′

· n or
ωα′

· n + α′′ and likewise β will equal either ωβ′

· m or ωβ′

· m + β′′. If α′ ≺ β′,
then the induction hypothesis implies that that Seq(α′) < Seq(β′) and therefore
Seq(α) < Seq(β). Similarly, if β′ ≺ α′, then Seq(β) < Seq(α).

So suppose α′ = β′. Then, if either n < m or m < n, then Seq(α) < Seq(β)
or Seq(β) < Seq(α), respectively. Finally, if α′ = β′ and m = n, then we apply
the induction hypotheses to the forms α′′ and β′′ if they are both present. 2

Let N∗ be the set of finite sequences over the integers under the usual lexi-
cographic ordering. It is simple to give an order-preserving map from A∗ into
N∗. Namely, for w ∈ A∗, replace each element of the sequence w by a pair of
integers: ω is replaced by 1, 0; an integer n is replaced by 0, n+2; the symbol +
is replaced with 0, 1 and ↓ is replaced with 0, 0. The resulting sequence has
length twice as long as w. For α a compact form, we write Nat(α) to denote the
sequence in N∗ which is the image of the sequence Seq(α). The previous lemma
immediately implies that, for all normal compact forms, Nat(α) < Nat(β) if
and only if α ≺ β. We thus have:

Theorem 6 The mapping Nat is an order-preserving mapping from the set of
normal compact forms into N∗. Furthermore, the length of the sequence Nat(α)
is 2 · lh(α).

The theorem is proved from the discussion above. The bound on the length
is immediate from the definition. Furthermore, the definition of the function
Nat and the proof of the theorem can be carried out in S1

2 .
We are now ready to prove Theorem 4. We argue informally in T 1

2 to prove
WFA(y), for A a Σb

1-formula. Fix the value of y. Given an ordinal β < y, every
integer in the sequence Nat(β) is less than 2|y|. Thus, for any β ≤ y, we can
encode Nat(β) by the single integer

nβ :=

|y|
∑

i=0

2(|y|−i)|y|(Nat(β))i,

where the notation (−)i extracts the i-th entry of sequence, starting with i = 0
for the first entry, and (Nat(β))i is to equal 0 when i is greater than or equal
the length of Nat(β). The mapping β 7→ nβ , from normal compact forms to
integers is still order-preserving, at least for ordinals β with |β| ≤ |y|. Let A∗(n)
be the formula expressing

n = nβ for some β ≤ y such that A(β).

11

By Σb
1-minimization (which is provable in T 1

2), there is a <-least n such that
A∗(n) holds. From n = nβ , there is a simple polynomial time procedure to
obtain β. Therefore, T 1

2 proves that there is a ≺-least β ≤ y such that A(β)
holds.

That completes the proof of Theorem 4. 2

The construction from the proof of Theorem 6 can also be applied directly to
normal basic form ordinals. For basic form ordinals, Seq gives an order preserv-
ing map from the set of normal basic forms into finite sequences (words) over
the alphabet {↓,+, 0, 1, ω}, where the sequences are ordered lexicographically.
(In fact, the 1’s may be omitted w.l.o.g.)

This is a theme we shall return to briefly in section 5.

4 Ordinals below Γ0

4.1 Ordinal notations for Γ0

Recall the binary Veblen function ϕ (cf. [7, 13]), which can be defined in
the following way: Letting ϕα(β) denote ϕαβ, then ϕ0 is the enumeration
of the “additiven Hauptzahlen” (i.e. ϕ0(β) = ωβ), and, for α > 0, ϕα is the
enumeration of the simultaneous fixed points of all ϕα′ with α′ < α, i.e. of
{β : (∀α′ < α)ϕα′(β) = β}. Now Γα is the αth element in the enumeration of
{γ : ϕγ0 = γ}. Then each ordinal α < Γ0 either is 0 or can be written uniquely
as

α = ϕα1β1 + . . . + ϕαkβk (3)

with αi, βi < ϕαiβi and ϕα1β1 ≥ . . . ≥ ϕαkβk. This is the basis for the well-
known representation of ordinals less than Γ0: namely, write an ordinal α < Γ0

in the form (3), recursively writing the subterms in the same form. It gives
a syntactic representation of ordinals less than Γ0. We need to formalize this
syntactic representation in the bounded arithmetic theory S1

2 , by defining a set
D which is the set of Gödel numbers of (syntactic representations of) ordinals
less than Γ0 and a binary formula ≺ which defines the ordinal ordering on the
Gödel numbers. The formulas D and ≺ need to be ∆b

1-formulas, that is to say,
polynomial time computable, and S1

2 needs to be able to prove that ≺ defines
a total ordering on the domain D.

The syntactic representation in S1
2 is developed in two stages: first repre-

senting ordinals in non-normal form, and then showing that ordinals can be
converted to the normal form.

Definition The set of basic forms for ordinals less than Γ0 is the set of expres-
sions inductively defined as follows:

1. 0 is a basic form.

2. If α, β are basic forms, then so is (ϕαβ). We call the expression (ϕαβ) a
ϕ-term.

12

3. If α and β are basic forms, and α is a ϕ-term, then α + β is a basic form.

We henceforth omit parentheses and write just ϕαβ for (ϕαβ) whenever there
is no ambiguity.

As in the case of ǫ0, S1
2 can formalize the notion of basic form. It is immediate

from the definition that every basic form α can be written uniquely in its additive
expansion

α = α1 + α2 + · · · + αk, (4)

where each αi for i < k is a ϕ-term, and αk either is zero or a ϕ-term. Note
that S1

2 is able to prove the existence and uniqueness of the additive expansion
of a basic form. The fact that we allow (only) the last term in the additive
expansion (4) to equal 0 will be a technical convenience later when we define
decompositions of normal forms. This does mean that we cannot directly com-
bine two basic forms α and β using addition: instead we define α + β to be a
basic term by defining: (a) 0 + β is the same as β and (b) for α 6= 0, α + β is
defined by writing α in its additive expansion (4), letting ℓ = k if αk 6= 0 and
ℓ = k − 1 if αk = 0, then letting α + β equal α1 + · · · + αℓ + β.

To put basic forms into a normal form, we wish to further require that any
additive expansion (4) has the αi’s in non-increasing order, and that all ϕ-terms
ϕαβ satisfy α, β < ϕαβ. To formalize this, we first need to formalize a syntactic
order, denoted ≺, on basic forms.

Definition Let α and β be basic forms. We inductively define α 4 β and
α 64 β, letting α ≈ β mean that both α 4 β and β 4 α, and α ≺ β mean that
α 4 β and α 6≈ β. First if α = 0, then α 4 β. Also, if β = 0 and α 6= 0, then
α 64 β. Otherwise, let α1 + · · ·+αk and β1 + · · ·+βℓ be the additive expansions
of α and β. Then

a. If k = ℓ = 1, α1 = ϕα′
1α

′
2 and β1 = ϕβ′

1β
′
2, then α 4 β is defined to hold

if and only if either (1) α′
1 ≺ β′

1 and α′
2 4 β1; or (2) α′

1 ≈ β′
1 and α′

2 4 β′
2;

or (3) β′
1 ≺ α′

1 and α1 4 β′
2 holds.

b. If α1 ≺ αi for some i > 1, then α 4 β if and only if α2 + . . . + αk 4 β.

c. If β1 ≺ βi for some i > 1, then α 4 β if and only if α 4 β2 + . . . + βℓ.

d. Otherwise, if none of a., b. or c. apply, then α 4 β iff either (1) α1 ≺ β1

or (2) α1 ≈ β1 and α2 + · · ·+ αk 4 β2 + · · ·+ βℓ. (If either k or ℓ are one,
then the empty sum is interpreted as 0.)

The predicates ≺ and 4 for basic forms can be seen to be polynomial time
computable based on their inductive definitions, and the bounded arithmetic
theory S1

2 can ∆b
1-define the syntactic concepts of ≺, 4 on basic forms. It is

easy to show that 4 is transitive and reflexive and satisfies dichotomy. Likewise,
≺ is transitive and antisymmetric. The proofs of these facts use ordinary integer
induction and do not require transfinite induction and can be carried out in S1

2 .
In fact, S1

2 can prove the following facts which we need for later work:

13

Proposition 7 (S1
2) For all basic forms α, β, γ,

1. α 4 β ∨ β 4 α. (Dichotomy)

2. α 4 β ∧ β 4 γ → α 4 γ. (Transitivity)

3. α ≺ β ∧ β ≺ γ → α ≺ γ. (Transitivity)

4. α 4 α + β ∧ β 4 α + β.

5. 0 ≺ ϕαβ.

6. α ≺ β → ϕα(ϕβγ) ≈ ϕβγ.

7. β ≺ γ ↔ ϕαβ ≺ ϕαγ.

8. α ≺ β ↔ ϕα0 ≺ ϕβ0.

9. β 4 ϕαβ.

10. α ≺ ϕα0. Also, α ≺ ϕαβ.

11. β 6≈ 0 → 1 4 β.

12. α ≺ β → α + 1 4 β.

13. ϕβγ 6= ϕ00 ∧ α ≺ ϕβγ → α + 1 ≺ ϕβγ.

14. α ≺ β ↔ ϕα(γ + 1) ≺ ϕβ(γ + 1).

The expression “1” is an abbreviation for ϕ00. We shall not carry out the
proofs of the assertions in Proposition 7. The proofs use induction and should
be carried out in the order the assertions are listed in the proposition.

The ordering ≺ is only a partial order on basic forms. To make ≺ a linear
(non-partial) ordering, we need to mod out by the ≈ relation. The best way
to do this is identify normal forms for ordinal notations. Our definition of a
normal form will be slightly nonstandard for technical reasons. The difference
is that additive expansions will always end with the term 0.

Definition The set of normal forms, also represented by NF, for ordinals less
than Γ0 is the set of expressions inductively defined as follows:

1. 0 is a normal form.

2. Let α, β and γ be normal forms, α, β ≺ ϕαβ and γ′ be the leading term
in the additive expansion of γ. If γ′ 4 ϕαβ, then ϕαβ + γ is a normal
form.

The formulation of (2) has the effect that any ϕ-term is part of a summation
that ends with “+0”. This is a technical convenience which has the advantage
that any non-zero normal form β can be (uniquely) expressed in the form

β = ϕα1(ϕα2(. . . (ϕαb−1(ϕαb0 + γb) + γb−1) . . .) + γ2) + γ1

where of course some γi’s may be 0.
S1

2 can ∆b
1-define the set of (Gödel numbers of) normal forms and the set

of normal forms is polynomial time recognizable. Further, S1
2 can prove that ≺

is a total ordering on the normal forms, satisfying transitivity and trichotomy,
and that the following properties hold:

14

Proposition 8 (S1
2) Let “1” abbreviate the normal form ϕ00 + 0.

1. ∀α, β ∈ NF, if α ≈ β, then α = β.

2. ≺ is a total order on normal forms (satisfies trichotomy and transitivity).

3. ∀α, β ∈ NF, α + 1 and ϕα0 + 0 and ϕα(β + 1) + 0 are in NF.

4. If α1 + · · · + αk ∈ NF, then α1 6≺ αi for all i.

5. If α = β + γ ∈ NF and β ≺ δ and β and δ are ϕ-terms, then α ≺ δ.

6. For all basic forms α, there is a β ∈ NF such that α ≈ β. Also, β ≤ α.

7. If α ∈ NF and β is a proper subterm of α, then β ≺ α.

From items 1 and 6, every basic form corresponds to a unique normal form.
The proof of the proposition is carried out similarly to the proof of the previous
proposition. In order to prove 1, one first proves that

β ≺ ϕαβ ∧ δ ≺ ϕγδ ∧ ϕαβ ≈ ϕγδ → α ≈ γ ∧ β ≈ δ.

4.2 Decompositions

By Theorem 1 we know that the well-foundedness of ≺ on bounded domains can
be proved in T 2

2 . We will prove that the well-foundedness on bounded domains
of ordinal notations below Γ0 is provable in T 1

2 . We do this by describing a
p
1-algorithm that computes an order-preserving embedding of Γ0 into words,

i.e. finite sequences, over some finite alphabet together with the lexicographic
ordering. This embedding will map bounded domain ordinals to fixed length
words (i.e., the length will be bounded polynomially in the binary length of the
bound to the ordinal domain). Using the same technique as in Section 3 we
can code fixed length words in an order-preserving fashion by natural numbers.
This algorithm will be formalizable in S1

2 , and S1
2 will prove that it is order-

preserving. Hence the task of finding a ≺-minimal β satisfying a Σb
1-formula

A(β) can be reduced to finding a <-minimal n satisfying some Σb
1-formula A∗(n),

which can be solved in T 1
2 .

Our idea for computing the order-preserving embedding is to find certain
maximal elements in the decomposition of ordinals. E.g., assume β is a normal
form. As mentioned above, β has the form

β = ϕα1(ϕα2(. . . (ϕαb0 + γb) . . .) + γ2) + γ1. (5)

Let α∗ be the maximal element of α1, . . . , αb with respect to ≺. Lemma 9 will
show that

ϕα∗0 4 β ≺ ϕ(α∗ + 1)0,

hence α∗ is the most important subterm β concerning ≺, which will come (lex-
icographically) before others. We will recursively apply our algorithm to α∗,
which is simpler, because the length of α∗ is smaller than that of β. Then
the algorithm will make recursive calls to compute the other components of β,
namely, the parts of β which are not in the subterm α∗.

In order to formalize this idea we start by defining the decomposition of
non-zero normal forms in Γ0 as shown in equation (5).

15

Definition (Decomposition of β) Each normal form β ∈ Γ0 \ {0} can uniquely
be decomposed in the following way: Write β0 := β. Let βi 6= 0 be recursively
defined, then we define αi+1, βi+1 and γi+1 by βi = ϕαi+1βi+1 + γi+1. Let b be
the index of the last βi, i.e. βb = 0. This expresses β as in equation (5). Then
we define

α∗ := m1(β) := max≺{α1, . . . , αb}

i∗ := min{i : αi = α∗}

β∗ := m2(β) := βi∗

We call b; ~α; ~β;~γ;α∗;β∗; i∗ the decomposition of β. As β is non-zero and a normal
form we immediately have b > 0, i∗ > 0 and that ~α, ~β, ~γ are all normal forms.

Example: Let β = ϕ2(ϕ10 + 1) + 0. The natural numbers occurring in this
term stand for the normal forms representing that number, e.g. 1 abbreviates
the normal form ϕ00 + 0. Then we decompose:

β0 = ϕ2(ϕ10 + 1) + 0

α1 = 2 β1 = ϕ10 + 1 γ1 = 0

α2 = 1 β2 = 0 γ2 = 1

Hence b = 2, α∗ = 2, i∗ = 1, β∗ = ϕ10 + 1.

In section 4.3, we present an algorithm for computing an order preserving
embedding of ordinals below Γ0 into words over a finite alphabet. The intuitive
idea behind the embedding algorithm is that it first computes the components
α∗ and β∗ of the decomposition of β, and recursively outputs the embedding of
α∗ and β∗. The algorithm then treats ρ = ϕα∗β∗ as a fixed subterm which has
been fully processed, and continues computing the embedding for the rest of
the ordinal β recursively. This recursive computation above the fixed subterm ρ
works with ordinals β which have decomposition containing a βi equal to ρ + γ
for some γ. We call the set of ordinals β satisfying this condition a context. To
formally define contexts, we define classes Γ̃0[ρ] and Γ0[ρ] as follows:

Definition The variables α, β, γ, δ range over normal forms. The class Γ̃0[ρ] is
inductively defined by:

1. Let γ 6= 0. If ϕα(ρ + γ) + δ is in normal form, then it is in Γ̃0[ρ].

2. Let β ∈ Γ̃0[ρ]. If ϕαβ + γ is in normal form, then it is in Γ̃0[ρ].

Γ0[ρ] contains Γ̃0[ρ] plus all normal form ordinals ρ + γ.

Before giving a detailed description of the embedding algorithm we estab-
lish various properties of decompositions and contexts needed to prove the al-
gorithm’s correctness.

16

Lemma 9 (S1
2) Let β ∈ NF \ {0} and α∗, β∗ be as above.

1. ϕα∗0 ¹ β ≺ ϕ(α∗ + 1)0.

2. ϕα∗β∗ ¹ β ≺ ϕα∗(β∗ + 1).

3. β ∈ Γ0[ϕα∗β∗]. In particular, if i∗ > 1, then γi∗ 6= 0.

Proof Since β < βi∗−1 < ϕα∗β∗ < ϕα∗0, we have the first inequalities in 1.
and 2. To prove the second inequality in 1., we show βj ≺ ϕ(α∗ +1)0, for j ≤ b,
by induction on j from b down to 0. In the base case, j = b, and βb = 0 so the
assertion is obvious. For the induction step, let j < b. The induction hypothesis
implies

ϕαj+1βj+1 ≺ ϕαj+1(ϕ(α∗ + 1)0) ≈ ϕ(α∗ + 1)0

since αj+1 4 α∗ by the definition of α∗. Hence βj = ϕαj+1βj+1 + γj+1 ≺
ϕ(α∗ + 1)0.

The second inequality in 2. is proved by a similar use of induction on j.
In the base case, j = i∗ − 1; then βj = ϕα∗β∗ + γi∗ ≺ ϕα∗(β∗ + 1), since
ϕα∗β∗ ≺ ϕα∗(β∗ + 1). For the induction step, let j < i∗ − 1. By the induction
hypothesis we have

ϕαj+1βj+1 ≺ ϕαj+1(ϕα∗(β∗ + 1)) ≈ ϕα∗(β∗ + 1)

since αj+1 ≺ α∗ by the definition of α∗. Therefore βj = ϕαj+1βj+1 + γj+1 ≺
ϕα∗(β∗ + 1).

The condition 3. is nearly obvious. The only thing to check is that γi∗ is
non-zero if β does not have the form ϕα∗β∗ + γi∗ . But in this case i∗ > 1,
hence we have βi∗−2 = ϕαi∗−1(ϕα∗β∗ + γi∗) + γi∗−1. By definition of α∗ we
have αi∗−1 ≺ α∗. If γi∗ were zero, then we would have ϕαi∗−1(ϕα∗β∗ + γi∗) ≈
ϕα∗β∗ + γi∗ contradicting βi∗−2 being a normal form. 2

We next generalize the notion of decomposition to decomposition of ordi-
nals β in Γ̃0[ρ]. This is called decomposition above ρ and the main difference in
the process of forming the decomposition of β above ρ is that the process stops
when the subterm ρ is reached. That is to say, the decomposition of β above ρ
will be an expression of the form

β = ϕα1(ϕα2(. . . (ϕαb(ρ + γb+1) + γb) . . .) + γ2) + γ1. (6)

We will then define α∗,ρ to equal the ≺-maximal element of α1, . . . , αb and this
will satisfy

ϕα∗,ρ(ρ + 1) 4 β ≺ ϕ(α∗,ρ + 1)(ρ + 1);

that is to say, α∗,ρ is the most important subterm of β above ρ (see Lemmas 10
and 13).

Definition (Decomposition of β above ρ) Let ρ be a ϕ-term. Each β ∈ Γ̃0[ρ]
can uniquely be decomposed in the following way. Let β0 := β. Inductively

17

define αi+1, βi+1 and γi+1 by βi = ϕαi+1βi+1 + γi+1. Let b be the index such
that βb is of the form ρ + γb+1. This expresses β in the form of equation (6).

Then we define

α∗,ρ := mρ
1(β) := max≺{α1, . . . , αb}

i∗,ρ := min{i : αi = α∗,ρ}

β∗,ρ := mρ
2(β) := βi∗,ρ

We say that b; ~α; ~β;~γ;α∗,ρ;β∗,ρ; i∗,ρ is the decomposition of β above ρ. As β is
a normal form in Γ̃0[ρ] we immediately have b > 0, i∗ > 0, γb+1 6= 0 and that

all ~α, ~β, ~γ are normal forms.

Example: Let β = ϕ2(ϕ1(ρ + 2) + 1) + 0. Then we decompose:

β0 = ϕ2(ϕ1(ρ + 2) + 1) + 0

α1 = 2 β1 = ϕ1(ρ + 2) + 1 γ1 = 0

α2 = 1 β2 = ρ + 2 γ2 = 1

γ3 = 2

Hence b = 2, α∗,ρ = 2, i∗,ρ = 1, β∗,ρ = ϕ1(ρ + 2) + 1.

At first glance, one might think that the earlier defined decomposition is the
same as a decomposition above 0. However, this is not true, because β ∈ Γ̃0[ρ]
includes the important information that the additive component next to ρ is
not zero. Therefore we wouldn’t get βb = 0 if we allowed ρ = 0.

The next lemma gives some properties of the components α∗,ρ and β∗,ρ of
β ∈ Γ̃0[ρ] which are needed for proving that our embedding algorithm produces
an order-preserving embedding.

Lemma 10 (S1
2) Let β ∈ Γ̃0[ρ] for some ϕ-term ρ, and α∗,ρ, β∗,ρ be as above.

1. ϕα∗,ρ(ρ + 1) ¹ β ≺ ϕ(α∗,ρ + 1)(ρ + 1)

2. ϕα∗,ρβ∗,ρ ¹ β ≺ ϕα∗,ρ(β∗,ρ + 1)

3. β∗,ρ ∈ Γ0[ρ] \ {ρ + 0} and β ∈ Γ0[ϕα∗,ρβ∗,ρ]

Proof By β < βi∗,ρ−1 < ϕα∗,ρβ∗,ρ < ϕα∗,ρ(ρ + γb+1) < ϕα∗,ρ(ρ + 1), we have
the first inequalities in 1., respectively, 2. To prove the second inequality in 1.,
we show βj ≺ ϕ(α∗,ρ + 1)(ρ + 1) for j ≤ b by induction on j = b, . . . , 0. In the
base case, j = b, and we have βb = ρ+γb+1 ≺ ϕ(α∗,ρ +1)(ρ+1). The induction
step, j < b, is similar to the analogous case in the proof of Lemma 9.

The second inequality in 2. is proved similarly. For 3., β ∈ Γ0[ϕα∗,ρβ∗,ρ] is
proven in the same way as part 3. of Lemma 9. The other assertion is obvious.
2

We have described contexts Γ̃0[ρ] ⊂ Γ0[ρ]. We will need some properties
which allow us to decide whether an element of Γ0[ρ] is in Γ̃0[ρ] or not. The
next lemma will provide us with this.

18

Lemma 11 (S1
2) Let β, η ∈ Γ0[ρ] for some ϕ-term ρ.

1. β ∈ Γ̃0[ρ] ⇔ β < ϕ0(ρ + 1).

2. β ∈ Γ̃0[ρ], β 4 η ⇒ η ∈ Γ̃0[ρ].

Proof 1.: Assume β ∈ Γ̃0[ρ]. Let b; ~α; ~β;~γ;α∗,ρ;β∗,ρ; i∗,ρ be the ρ-decomposi-
tion of β. Then β < ϕαb(ρ + γb+1) < ϕ0(ρ + 1). To prove the converse, assume
β ∈ Γ0[ρ] \ Γ̃0[ρ]. Then β = ρ + γ1 ≺ ϕ0(ρ + 1).

2.: Assume η 6∈ Γ̃0[ρ] and β ∈ Γ̃0[ρ]. Using 1. twice we obtain η ≺ ϕ0(ρ+1) 4

β. 2

The next lemma states that the main components from decompositions re-
spect the ordering of ordinals.

Lemma 12 (S1
2) Let β, η be normal forms with 0 ≺ β 4 η.

1. m1(β) 4 m1(η)

2. m1(β) = m1(η) ⇒ m2(β) 4 m2(η).

Proof With β, η ∈ NF \ {0} we associate decompositions b; ~α; ~β;~γ;α∗;β∗; i∗

and n; ~ξ; ~η; ~µ; ξ∗; η∗; j∗, respectively. Then the lemma states:

1. α∗ 4 ξ∗

2. α∗ = ξ∗ ⇒ β∗ 4 η∗.

We prove these by induction on b + n. Since β 4 η, we obtain ϕα1β1 4 ϕξ1η1.
If ϕα1β1 ≈ ϕξ1η1, then ϕα1β1 = ϕξ1η1 as β, η ∈ NF, thus the assertions are
obvious. Hence we assume ϕα1β1 ≺ ϕξ1η1. The proofs of 1. and 2. split into
three cases (I)-(III) depending on the reason that ϕα1β1 ≺ ϕξ1η1 holds.

(I) Suppose α1 ≺ ξ1 and β1 ≺ ϕξ1η1.
1.: If i∗ = 1 we have α∗ = α1 ≺ ξ1 4 ξ∗. Otherwise i∗ > 1 and β1 6= 0,

hence

α∗ = m1(β1)
(∗)

4 m1(ϕξ1η1) = ξ∗

using induction hypothesis at (∗).
2.: Suppose α∗ = ξ∗. Then i∗ > 1, since otherwise α∗ = α1 ≺ ξ1 4 ξ∗ = α∗.

Therefore, β1 6= 0, α∗ = m1(β1), β∗ = m2(β1), hence m1(β1) = α∗ = ξ∗ =
m1(ϕξ1η1), thus the induction hypothesis shows

β∗ = m2(β1) 4 m2(ϕξ1η1) = η∗.

(II) Suppose α1 = ξ1 and β1 ≺ η1.
1.: If i∗ = 1 we have α∗ = α1 = ξ1 4 ξ∗. If i∗ > 1, then β1 6= 0 and hence

η1 6= 0. Hence by the induction hypothesis

α∗ = m1(β1)4 m1(η1) 4 ξ∗.

2.: Suppose α∗ = ξ∗. If i∗ = 1 we obtain ξ1 = α1 = α∗ = ξ∗, hence j∗ = 1,
too. Thus

β∗ = β1 ≺ η1 = η∗.

19

Otherwise i∗, j∗ > 1, and again β1 6= 0 and η1 6= 0. By the induction hypothesis
we first obtain

α∗ = m1(β1) 4 m1(η1) 4 ξ∗ = α∗,

hence m1(β1) = m1(η1), and applying the induction hypothesis again yields

β∗ = m2(β1) 4 m2(η1) 4 η∗.

(III) Suppose α1 ≻ ξ1 and ϕα1β1 ≺ η1. So η1 6= 0.
1.: By induction hypothesis we obtain

α∗ = m1(ϕα1β1) 4 m1(η1) 4 ξ∗.

2.: Suppose α∗ = ξ∗, then j∗ > 1, because otherwise ξ∗ = ξ1 ≺ α1 4 α∗ =
ξ∗. Therefore, ξ∗ = m1(η1), η∗ = m2(η1), hence m1(ϕα1β1) = α∗ = ξ∗ =
m1(η1). Thus the induction hypothesis shows

β∗ = m2(ϕα1β1) 4 m2(η1) = η∗.

2

Similar properties are needed for decompositions above ρ.

Lemma 13 (S1
2) Let β, η ∈ Γ̃0[ρ] with β 4 η.

1. mρ
1(β) 4 mρ

1(η)

2. mρ
1(β) = mρ

1(η) ⇒ mρ
2(β) 4 mρ

2(η).

Proof The proof of these assertions is simply a translation of the proof of
Lemma 12 using the following Translation:

decomposition ; decomposition above ρ
∗

;
∗,ρ

· · · 6= 0 ; · · · ∈ Γ̃0[ρ]

The only additional thing we have to ensure is that the induction hypothesis is
always applicable; that is, that the terms under consideration are in Γ̃0[ρ]. 2

4.3 Algorithms

In this section, we formulate precisely the embedding algorithms and show that
they are in p

1.

Definition The length of a basic form α is denoted lh(α) and is defined by

• lh(0) = 1.

• The length of ϕαβ equals lh(α) + lh(β) + 1.

• The length of α + β equals lh(α) + lh(β) + 1.

20

Algorithms: The algorithms are given by simultaneous recursion.

1. Algorithm dec1(β). Let β be a normal form.

Query β = 0?

Yes: Output a = 0

No: Compute α∗, β∗ from the decomposition of β

b = dec1(α∗)

c = dec1(β∗)

d = dec2(ϕα∗β∗, β)

Output a = (bcd)

2. Algorithm dec2(ρ, β). Let ρ be a ϕ-term and β ∈ Γ0[ρ].

Query Does β have the form ρ + γ?

Yes: b = dec1(γ)

Output a = (*b)

No: Compute α∗,ρ, β∗,ρ from the decomposition of β above ρ

b = dec1(α∗,ρ)

c = dec2(ρ, β∗,ρ)

d = dec2(ϕα∗,ρβ∗,ρ, β)

Output a = (bcd)

Before proving that the algorithms are order-preserving we first show that
they indeed are p

1-algorithms. In order to show that the runtime of these
algorithms is polynomially bounded, we first need to show that the number of
recursive calls is small. The next lemma implies that this number is always
bounded by |β|.

Lemma 14 (S1
2) Let β be in normal form, then the number of recursive calls in

algorithm dec1(β) is lh(β)−1. If ρ is a ϕ-term and β ∈ Γ0[ρ], then the number
of recursive calls in algorithm dec2(ρ, β) is lh(β) − lh(ρ) − 1.

Proof Let nrc be the total number of (nested) recursive calls a routine or a
subroutine needs until it finishes. We show by simultaneous length-induction
on k that for normal forms β

lh(β) ≤ k ⇒ nrc(dec1(β)) = lh(β) − 1, (7)

and that for ϕ-terms ρ and β ∈ Γ0[ρ]

lh(β) − lh(ρ) ≤ k ⇒ nrc(dec2(ρ, β)) = lh(β) − lh(ρ) − 1. (8)

Case dec1(β). We study the behaviour of the algorithm. If the answer to
Query is Yes, then β = 0, hence nrc = 0 and lh(β) = 1. Thus the assertion
follows.

21

Otherwise the answer to Query is No. We compute

nrc = nrc(dec1(α∗)) + nrc(dec1(β∗)) + nrc(dec2(ϕα∗β∗, β)) + 3

= (lh(α∗) − 1) + (lh(β∗) − 1) + (lh(β) − lh(ϕα∗β∗) − 1) + 3

= lh(β) − 1.

Case dec2(ρ, β). If the answer to Query is Yes, then by the induction hy-
pothesis we obtain nrc = nrc(dec1(γ)) + 1 = lh(γ) = lh(β) − lh(ρ) − 1 as
β = ρ + γ.

Otherwise the answer to Query is No. We compute

nrc = nrc(dec1(α∗,ρ)) + nrc(dec2(ρ, β∗,ρ)) + nrc(dec2(ϕα∗,ρβ∗,ρ, β)) + 3

= (lh(α∗,ρ) − 1) + (lh(β∗,ρ) − lh(ρ) − 1) + (lh(β) − lh(ϕα∗,ρβ∗,ρ) − 1) + 3

= lh(β) − lh(ρ) − 1.

As phrased above the induction is on a Πb
2-formula. To formalize the proof

in S1
2 , we fix a particular β0 and prove the lemma holds for β0. For this, it is

enough to prove that (7) and (8) hold for all β and ρ which are subterms of β0.
Quantifying over all subtems requires only a sharply bounded quantifier, so only
Σb

1-PIND is needed.
This finishes the proof of Lemma 14. 2

Using the previous lemma it is easy to obtain a polynomial runtime bound
on the algorithms dec1 and dec2. Thus we have established:

Theorem 15 (S1
2) dec1 and dec2 are p

1-algorithms.

In order to argue that the algorithms are order-preserving we first have to
fix an ordering on the outputs. Let A be the alphabet {0, (,),*}. The set of
finite words over A is denoted by A∗. Let G be the grammar over A defined by

G := 0 | (GGG) | (*G)

It is obvious that the algorithms output words from G. Furthermore, if β is
nonzero then dec1(β) starts with ‘(’, and if ρ is a ϕ-term and β ∈ Γ0[ρ] then
dec2(ρ, β) also starts with ‘(’. Words over A are ordered lexicographically by
fixing an ordering < on the four symbols of A:

* < 0 < (<)

We use <l to denote the induced lexicographical ordering on A∗.

Lemma 16 (S1
2) Let u, v ∈ G, then u <l v implies ux <l vy for all x, y ∈ A∗.

Proof If this is not the case, then u must be a proper initial subword of v. It
is not hard to conclude that then not both u, v ∈ G can hold. To this end let
nlp(u) (nrp(u)) be the number of left (right) parenthesis in u. If u ∈ G then
nlp(u) = nrp(u). If u ∈ G and v is a proper initial subword of u different from
the empty word, then nlp(v) > nrp(v), which can easily be seen by induction
on the number of symbols in u. Hence, if u, v ∈ G then v cannot be a proper
initial subword of u. 2

22

We now show that S1
2 can prove that the algorithms compute order-

preserving maps.

Theorem 17 (S1
2) dec1 and dec2 are order-preserving.

In order to show this we will prove

1. Let β, η ∈ NF, then

β ≺ η ⇔ dec1(β) <l dec1(η).

2. Let ρ be a ϕ-term and β, η ∈ Γ0[ρ], then

β ≺ η ⇔ dec2(ρ, β) <l dec2(ρ, η).

In both cases it is enough to show “⇒”, e.g. because then

β 6≺ η ⇒ η 4 β ⇒ dec1(η) ≤l dec1(β) ⇒ dec1(β) 6<l dec1(η)

We show 1. and 2. simultaneously by induction on lh(β), respectively, lh(β)−
lh(ρ). More exactly, as in the proof of Lemma 14, we show for all β, η, ρ occuring
as subterms of some fixed β0, that if β ∈ NF then

lh(β) ≤ k ∧ β ≺ η ⇒ dec1(β) <l dec1(η),

and if ρ is a ϕ-term and β, η ∈ Γ0[ρ] then

lh(β) − lh(ρ) ≤ k ∧ β ≺ η ⇒ dec2(ρ, β) <l dec2(ρ, η)

by length-induction on k.
For 1., assume β ≺ η. If β = 0 then

dec1(β) = 0 <l (<l dec1(η).

Otherwise β 6= 0, and by Lemma 12, α∗ := m1(β) 4 m1(η) =: ξ∗.

A. If α∗ ≺ ξ∗ then the induction hypothesis shows dec1(α∗) <l dec1(ξ∗),
hence the assertion follows using the previous lemma.

B. Otherwise α∗ = ξ∗, hence β∗ := m2(β) 4 m2(η) =: η∗ by Lemma 12.

(a) If β∗ ≺ η∗ then the induction hypothesis shows dec1(β∗) <l

dec1(η∗), hence the assertion follows again using the previous
Lemma.

(b) Otherwise β∗ = η∗. Let ρ := ϕα∗β∗ = ϕξ∗η∗. Hence β, η ∈ Γ0[ρ]
by Lemma 9. The induction hypothesis now yields dec2(ρ, β) <l

dec2(ρ, η), hence the assertion follows.

For 2., let β, η ∈ Γ0[ρ], ρ some ϕ-term, and assume β ≺ η.

23

A. Assume β has the form ρ + γ.

(a) Assume η has the form ρ+δ. Then γ ≺ δ and by induction hypothesis
dec1(γ) <l dec1(δ), hence the assertion follows.

(b) Otherwise η does not have the form ρ + δ. But then

dec2(ρ, β) = (* . . . <l (0 <l dec2(ρ, η).

B. Otherwise β is not of the form ρ + γ. By Lemma 11.2. it follows that
also η is not of this form. Hence the answers to both Query’s are No.
Furthermore, β, η ∈ Γ̃0[ρ], thus we can apply Lemma 13 to obtain α∗,ρ :=
mρ

1(β) 4 mρ
1(η) =: ξ∗,ρ.

(a) If α∗,ρ ≺ ξ∗,ρ then the induction hypothesis shows dec1(α∗,ρ) <l

dec1(ξ∗,ρ), hence the assertion follows.

(b) Otherwise α∗,ρ = ξ∗,ρ. Then β∗,ρ := mρ
2(β) 4 mρ

2(η) =: η∗,ρ by
Lemma 13.

i. If β∗,ρ ≺ η∗,ρ then the induction hypothesis shows
dec2(ρ, β∗,ρ) <l dec2(ρ, η∗,ρ), hence the assertion follows.

ii. Otherwise β∗,ρ = η∗,ρ. Let ρ̃ := ϕα∗,ρβ∗,ρ = ϕξ∗,ρη∗,ρ. Hence
β, η ∈ Γ0[ρ̃] by Lemma 10. The induction hypothesis now yields
dec2(ρ̃, β) <l dec2(ρ̃, η), hence the assertion follows.

That finishes the proof of Theorem 17.

Theorem 18 Let ≺ be the ordering on normal forms. Then T 1
2 ⊢ WF≺.

Proof The task of finding a ≺-minimal β ≤ t with A(β), A ∈ Σb
1, can now be

reduced to finding a <l-minimal n ≤ t′ such that

A∗(n) ≡ (∃β ≤ t)(dec1(β) = n ∧ A(β)) ∈ Σb
1

holds. The bound t′ must be large enough so that dec1(β) ≤ t′ whenever β ≤ t;
examination of the algorithms and Lemma 14 shows immediately that dec1(β)
has length linearly bounded by lh(β), so t′ = tO(1) suffices. Using the same
technique as in section 3 for coding fixed length words order-preserving into
natural numbers this task can be solved by Σb

1 − Min, which is at hand in T 1
2 .

2

5 Embedding into lexicographic orderings

Let A be a finite, ordered set of cardinality at least 2, and A∗ be the set of words
(finite sequences) over A with the lexicographic ordering. Similarly, N∗ denotes
the set of finite sequences of non-negative integers ordered lexicographically. The
proofs of the Theorems 4 and 18 involved giving order-preserving embeddings
of notations for ordinals less than ǫ0 and Γ0 into N∗ or a set A∗. In this section,

24

we consider the question of how general these order preserving embeddings are,
and whether they always must exist.

First, we prove a simple fact showing that N∗ can always be replaced by A∗.

Proposition 19 There is an order-preserving embedding of N∗ into A∗. Fur-
thermore, this embedding is polynomial time computable.

Proof Without loss of generality, A has the symbols 0 < 1 as members. If
n ≥ 0, let bn ∈ {0, 1}∗ be the binary representation of n. Let 1k be the
word which consists of k 1’s. The desired embedding σ is defined by letting
σ(〈n1, n2, . . . , nk〉) equal 1|n1|0bn1

1|n2|0bn2
· · · 1|nk|0bnk

. It is easy to verify that
σ has the necessary properties. 2

Next we characterize which orderings can be embedded into A∗ in an order-
preserving fashion. Note that A∗ is countable, so only countable orderings can
be embedded into A∗.

Theorem 20 Any countable ordering can be embedded into A∗.

Proof Obviously any finite ordering can be embedded into A∗. So it suffices
to assume that the ordering, denoted ≺, has domain the set N. Let A = {0, 1}.
We shall define an ordering preserving embedding σ : N 7→ A∗. The values σ(n)
will be defined so that they always end with the symbol 1, i.e., σ(n) is in the
regular set (0 ∪ 1)∗1. Define pred(α1) = α01 and succ(α1) = α11. We let |α|
denote the number of symbols in the word α.

Inductively define σ(n) as follows. First, σ(0) = 1. To define σ(n + 1),
let i be the ≺-greatest element from {0, . . . , n} such that i ≺ (n + 1), if any
such i exists, and dually let j be the ≺-least element from {0, . . . n} such that
j ≻ (n + 1). In case i does not exist or σ(i) is a proper subsequence of σ(j),
let σ(n + 1) = pred(σ(j)). Otherwise, j does not exist or σ(i) is not a proper
subsequence of σ(j), and in this case σ(n + 1) = succ(σ(i)).

We leave to the reader the straightforward proofs that σ is one-to-one and
order-preserving. 2

The above proof immediately implies that if ≺ is recursive (respectively,
polynomial time), then σ is recursive (respectively, exponential time). Because
of the exponential time complexity, this general result is not good enough to
imply anything about provability of well-orderings over bounded domains in
bounded arithmetic.

6 Ordinal cost functions for PLS

The class PLS of polynomial local search functions was originally defined by
Johnson, Papadimitriou and Yannakakis [10] and contains functions which
search for a minimal cost (equivalently, maximal cost) feasible solution. Buss
and Kraj́ıček [6] used this class to characterize the provably total functions

25

of T 1
2 as being the set of functions which can be defined as the composition of

a projection function and a PLS function.
We give a quick sketch of the definition of the class PLS and the reader can

refer to above references for more detailed definitions.

Definition A PLS problem consists of a cost function c, a neighborhood func-
tion N , and a polynomially bounded set of feasible solutions, defined by a
predicate F . For an input x, the set {s : F (x, s)} is the set of feasible solutions,
the mapping s 7→ c(x, s) assigns a cost to each feasible solution, and the map-
ping s 7→ N(x, s) maps feasible solutions to feasible solutions. The functions c
and N and the predicate F must be polynomial time computable. The function
defined by the PLS problem is the (multivalued) function f defined by f(x) = y
iff F (x, y) and c(x,N(x, y)) 6< c(x, y).

We can generalize PLS to allow the cost function to take on ordinal values
instead of integer values. (It is for this reason that we defined PLS problems
as a minimization problems rather than maximization problems.) Let α denote
an ordinal, such as ǫ0 or Γ0, with a system of ordinal notations so that the
set of valid ordinal notations is polynomial time recognizable and so that the
induced ordering, 4, on ordinal notations is polynomial time. The class of
(α,4)-PLS problems is defined identically to the class PLS except that the
condition c(x,N(x, y)) 6< c(x, y) is replaced by c(x,N(x, y)) 6≺ c(x, y).

We shall see below that PLS and (ǫ0,4)-PLS and (Γ0,4)-PLS are identical
in that they contain exactly the same functions. To establish this result in its
strongest form we need the following proposition.

Proposition 21 Let h(x) be a (multivalued) function such that h = g ◦f where
g is a polynomial time function and f is a PLS function. Further suppose that
the graph of h, {(x, y) : h(x) = y} is polynomial time. Then h is a PLS function.

Proof Let f be the PLS function defined by c, N and F . We must define c′,
N ′ and F ′ that define the function h. These are defined as follows:

c′(x, s) =

{

0 if h(x) = s
c(x, s) + 1 otherwise

N ′(x, s) =

s if h(x) = s
g(s) if h(x) = g(s) and h(x) 6= s
N(x, s) otherwise

F ′(x, s) ⇔ F (x, s) ∨ h(x) = s

It is clear by inspection that c′, N ′ and F ′ define h as a PLS problem. 2

Theorem 22 The classes (ǫ0,4)-PLS and (Γ0,4)-PLS are both equal to PLS.

To prove this theorem, first note that any PLS function is clearly in (ǫ0,4)-
PLS and in (Γ0,4)-PLS by using the construction from the proof of Theorem 3
to transform integer values of a cost function into ordinal notations. For the

26

other direction, suppose that f is a function in (ǫ0,4)-PLS or (Γ0,4)-PLS. By
Theorem 4 or 18, T 1

2 can prove that for all inputs x, there is a feasible solution s
of minimum cost, and hence of minimal cost. Therefore, by Buss-Kraj́ıček [6],
f can be expressed as the composition of a projection function and a PLS
function. Since the graph of f is polynomial time, Proposition 21 implies that
f is also a PLS function.

References

[1] A. Beckmann, Separating Fragments of Bounded Arithmetic, PhD thesis,
Univ. of Münster, 1996.

[2] , Notations for exponentiation. Submitted for publication, 1999.

[3] S. R. Buss, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985
Princeton University Ph.D. thesis.

[4] , Axiomatizations and conservation results for fragments of bounded
arithmetic, in Logic and Computation, proceedings of a Workshop held
Carnegie-Mellon University, 1987, vol. 106 of Contemporary Mathematics,
American Mathematical Society, 1990, pp. 57–84.

[5] , Relating the bounded arithmetic and polynomial-time hierarchies,
Annals of Pure and Applied Logic, 75 (1995), pp. 67–77.

[6] S. R. Buss and J. Kraj́ıček, An application of Boolean complexity to
separation problems in bounded arithmetic, Proc. London Math. Society, 69
(1994), pp. 1–21.

[7] S. Feferman, Systems of predicative analysis I, Journal of Symbolic Logic,
(1964), pp. 1–30.

[8] , Systems of predicative analysis II: Representations of ordinals, Jour-
nal of Symbolic Logic, (1968), pp. 193–220.

[9] P. Hájek and P. Pudlák, Metamathematics of First-order Arithmetic,
Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.

[10] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy
is local search?, J. Comput. System Sci., 37 (1988), pp. 79–100.

[11] J. Kraj́ıček, Bounded Arithmetic, Propositional Calculus and Complexity
Theory, Cambridge University Press, 1995.

[12] J. Kraj́ıček, P. Pudlák, and G. Takeuti, Bounded arithmetic and
the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991),
pp. 143–153.

[13] W. Pohlers, Proof Theory: An Introduction, Lecture Notes in Mathe-
matics, #1409, Springer-Verlag, Berlin, 1989.

27

[14] K. Schütte, Proof Theory, Grundlehren der mathematischen Wissen-
schaften #225, Springer-Verlag, Berlin, 1977.

[15] R. Sommer, Transfinite Induction and Hierarchies Generated by Transfi-
nite Recursion within Peano Arithmetic, PhD thesis, U.C. Berkeley, 1990.

[16] , Ordinal arithmetic in I∆0, in Arithmetic, Proof Theory and Com-
putational Complexity, P. Clote and J. Kraj́ıček, eds., Oxford University
(Clarendon) Press, 1993, pp. 320–363.

[17] D. Zambella, Notes on polynomially bounded arithmetic, Journal of Sym-
bolic Logic, 61 (1996), pp. 942–966.

28

