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Abstract

Free-cut elimination allows cut elimination to be carried out in
the presence of non-logical axioms. Formulas in a proof are anchored
provided they originate in a non-logical axiom or non-logical inference.
This paper corrects and strengthens earlier upper bounds on the size
of free-cut elimination. The correction requires that the notion of a
free-cut be modified so that a cut formula is anchored provided that
all of its introductions are anchored, instead of only requiring that one
of its introductions is anchored. With the correction, the originally
proved size upper bounds remain unchanged. These results also apply
to partial cut elimination. We also apply these bounds to elimination
of cuts in propositional logic.

If the non-logical inferences are closed under cut and infer only
atomic formulas, then all cuts can be eliminated. This extends earlier
results of Takeuti and of Negri and von Plato.

1 Introduction

The notion of free-cut elimination was introduced by G. Takeuti [12] as an
extension of cut elimination that can be used in the presence of induction
inference rules. In short, the free-cut elimination theorem states that any
provable sequent can be proved using only cuts in which at least one of the
cut formulas was introduced as a principal formula of an induction axiom.
Takeuti did not provide a detailed proof of the free-cut elimination, however.

∗Supported in part by EPSRC grant EP/D03809X/1.
†Supported in part by NSF grant DMS-0700533.
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Free-cut elimination has been important for results about computational
complexity or constructivity in proof theory. For instance, the second author
used free-cut elimination for witnessing theorems in bounded arithmetic [3],
and many other researchers have used it for similar purposes.

A different version of free-cut elimination was later used by the second
author in the expository article [5]. In this variant, a set S of non-logical
axioms is allowed, and any formula that occurs in a non-logical axiom is
called anchored. Cuts in which neither cut formula is anchored are called
free, and the modified free-cut elimination theorem states that any provable
sequent is provable by a proof in which no cuts are free.

However, as William Scott [private communication] first pointed out,
there is an error in the proof of the free-cut elimination theorem in [5]. As
a result, although the free-cut elimination theorem is indeed correct, the
upper bounds on the size of free-cut free proofs that are obtained in [5] are
not correct as stated.

Part of goal of the present paper is to correct this. The fix does not
involve changing the upper bounds themselves, rather it involves changing
the definition of anchored and free formulas, as well as the definition of a
depth of a cut formula. In fact, the revised theorem proved in the present
paper is stronger than the result proved in [5], since the new definition of
anchored is stricter than the original definition. The basic difference in the
two notions of anchored is that the original definition specified that a formula
is anchored if at least one of the places it is introduced is an anchor, whereas
the revised definition requires that every place the formula is introduced be
an anchor.

At the same time, we will prove the free-cut elimination theorem in
a somewhat more general setting, by allowing a more general notion of
non-logical initial sequents and non-logical rules. This unifies the two
notions of free-cut elimination from [12] and [5].

For propositional logic, this gives a proof that non-atomic free cuts can
be eliminated with only an exponential blowup in the size of proofs. This
generalizes results of Zhang [14] and Gerhardy [6] by showing that these
bounds apply even in the presence of non-logical axioms when eliminating
free cuts.

Section 6 proves theorems about when cuts can be completely eliminated
even in the presence of non-logical axioms and inferences. This generalizes
work of Takeuti on generalized equality axioms, as well as the non-logical
rules of inference used by Negri and von Plato to simulate arbitrary
quantifier-free (i.e., purely universal) axioms.

It should be stressed that the free-cut elimination theorems stated in
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prior works [12, 5] are correct as stated, with the sole exception of the
upper bounds in [5]. Fortunately, it seems that the applications of anchored
cuts and formulas depth as defined in [5] have been used only in ways that
have not generated further errors. This is because those upper bounds have
been used only for common systems, not for contrived systems. Indeed,
the results and upper bounds as stated in [5] are correct for all commonly
used systems such as IΣk , Sk

2 , T k
2 , etc., because of the special nature of the

induction axioms. Section 5 proves results about partial cut elimination, and
these results seemingly cover all existing applications of free-cut elimination
to-date.

Our proofs will all use “global” transformations of proofs in the style of
the proof of cut elimination in [5]. It would also be possible to prove the
theorems using induction on the height of proofs, by using reductions that
act on the final inferences of proofs as was done by Gentzen in the original
proofs of cut elimination. Indeed, induction on the height of proofs is the
most common way to carry out the proofs and is used by many authors, see
for instance in the proofs by [10, 14, 6, 13] who obtain bounds very similar
to those of the present paper. An advantage to our global proof method is
that it makes more explicit how proofs are transformed for cut elimination.

A rather different approach to cut elimination is given by Baaz and
Leitsch [1, 2], who reduce cut elimination to resolution. In some special
cases they obtain super-elementarily better upper bounds on the size of cut
free proofs than can be obtained by Gentzen reduction methods, but they
do not give the same kind of tight bounds for general cut elimination as the
present paper.

2 The sequent calculus and free-cuts

We presume the reader has basic familiarity with the sequent calculus and
cut elimination, but begin by reviewing the necessary definitions for the
systems used later in the paper. We work with a sequent calculus for
classical logic over the connectives ∀ , ∃ , ∧ , ∨ , ⊃ , and ¬ . Lines in a
sequent calculus proof are called sequents and have the form Γ→∆, where
the cedents Γ and ∆ are finite sequences of formulas. The logical initial
sequents are A→A , with A required to be an atomic formula. The valid
logical inferences are as shown below.
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Γ, A, B,Λ→∆
Exchange:left

Γ, B, A,Λ→∆
Γ→∆, A, B,Λ

Exchange:right
Γ→∆, B, A,Λ

A, A,Γ→∆
Contraction:left

A, Γ→∆
Γ→∆, A, A

Contraction:right
Γ→∆, A

Γ→∆Weakening:left
A, Γ→∆

Γ→∆Weakening:right
Γ→∆, A

Γ→∆, A¬:left ¬A, Γ→∆
A, Γ→∆¬:right

Γ→∆,¬A

A, B,Γ→∆∧:left
A ∧ B,Γ→∆

Γ→∆, A Γ→∆, B∧:right
Γ→∆, A ∧ B

A, Γ→∆ B,Γ→∆∨:left
A ∨ B,Γ→∆

Γ→∆, A, B∨:right
Γ→∆, A ∨ B

Γ→∆, A B,Γ→∆⊃:left
A ⊃ B,Γ→∆

A, Γ→∆, B⊃:right
Γ→∆, A ⊃ B

A(t), Γ→∆∀:left
(∀x)A(x), Γ→∆

Γ→∆, A(b)∀:right
Γ→∆, (∀x)A(x)

A(b), Γ→∆∃:left
(∃x)A(x), Γ→∆

Γ→∆, A(t)∃:right
Γ→∆, (∃x)A(x)

Γ→∆, A A,Γ→∆
Cut Γ→∆

The first six rules (exchange, contraction, and weakening) are weak
inferences. Weak inferences can be viewed as unimportant “bookkeeping”
inferences which are needed since we treat cedents as sequences of formulas,
rather than as sets or multisets of formulas. The size of a proof will be
defined by ignoring the weak inferences. The free variable b of the ∀ :right
and ∃ :left inferences is the eigenvariable of the inference and must not
appear in the lower sequent. A complex formula introduced in the lower
line of an inference I is called the principal formula of I ; the corresponding
formula(s) in the upper sequent are the auxiliary formulas. For example,
in the ∃ :right inference, (∃x)A(x) and A(t) are the principal and auxiliary
formulas, respectively.

In addition to the logical inferences listed above, we allow an additional
set S of nonlogical axioms and inferences. The set S is a set of axioms
or inferences whose principal formulas serve to anchor cuts. The intent is
that formulas introduced by S-inferences may be used as cut formulas in
a free-cut free proof. The main criteria for the nonlogical axioms in S are

4



that they admit substitution by terms, and that each inference rule in S

must have a consistent policy about admitting side formulas. To formalize
this, we define the notion of an inference skeleton.

Definition An inference skeleton, I , consists of the following:

(a) A k -hypothesis inference form

{Ψi, Ci →Di, Ξi}k
i=1

Ψ, C→D, Ξ
(1)

where k ≥ 0 and Ψ, Ξ, Ψi, Ξi are cedents, and where C,D, Ci,Di are
meta-variables for cedents. The value k = 0 is allowed, so the inference
form may have no hypotheses; in this case, (1) is an inference form for
non-logical initial sequents. The formulas in Ψ and Ξ are the principal
formulas of the inference, the formulas in the Ψi ’s and Ξi ’s are the
auxiliary formulas, and the C ’s and D ’s contain the side formulas.

(b) A list of side formula indicators, s1, . . . , sk ∈ {0, 1} . These indicate
which of the hypotheses are permitted to have side formulas.

(c) A (possibly empty) list of free variables a1, . . . , a` called eigenvariables,
where each aj must appear in exactly one (sub)sequent Ψi→Ξi and
must not appear in Ψ→Ξ.

The inference skeleton I specifies a set S = Instances(I) of inferences.
The sequents in Instances(I) are obtained as follows: Let Γ and ∆ be any
cedents that do not contain any eigenvariables, and let C = Γ and D = ∆.
Further, for each i such that si = 1, let Ci = Γ and Di = ∆; and for
each i with si = 0, let Ci and Di be empty. The resulting form of (1) is an
inference in Instances(I), and every member of Instances(I) is obtained in
this way.

Let I be an inference skeleton, and suppose σ is a substitution that
maps free variables to terms, such that no eigenvariable of I occurs in either
the domain or range of σ . (As usual, σ acts as the identity on any variable
not in its domain.) Then Iσ is called a substitution instance of I , and is
obtained by applying the substitution σ to every formula in I , that is to
say, by replacing every free variable a in (1) with the term σ(a).∗

∗By convention, inference rules are closed under renaming of variables, and so this
is not stated explicitly as part of the definition. For example, the ∀ :right and ∃ :left
inferences implicitly already use this convention as the eigenvariable b may be any
variable.
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Definition A set S of inferences is called acceptable provided there is a
set I of inference skeletons such that I is closed under substitutions, and S

equals the union of the sets Instances(I) for I ∈ I .

Henceforth, all sets S of inferences are implicitly assumed to be
acceptable.

It is useful to consider a few simple examples of acceptable sets S . First,
consider the situation where S is a set of initial sequents and is closed under
substitution. An initial sequent is a zero hypothesis inference, and thus S

corresponds to a set of non-logical axioms. Since there are zero hypotheses,
there are no eigenvariables. One example of this is the set of equality axioms.

A second example is the induction inferences. Frequently one wishes to
restrict induction by specifying a set X of formulas that admit induction.
For each formula A(x) which admits induction, and each term t , there is an
inference skeleton of the form

A(b), C1→D1, A(S(b))
A(0), C→ D, A(t)

Here, b is the only eigenvariable. The induction inferences are equivalent to
the usual induction axioms for formulas from X provided side formulas are
permitted, and for this we take s1 = 1. It is necessary that the set X of
formulas that admit induction be closed under substitution.

For a third example, consider the Π0
2 -induction rule of Parsons [11]. For

each A(x) ∈ Π0
2 and each term t , let I be the inference skeleton with form

C1→D1, A(0) A(b), C2→D2, A(b + 1)
C→ D, A(t)

where b is the eigenvariable and where s1 = 1 and s2 = 0, so side formulas
are allowed in the left hypothesis but not in the right hypothesis (following
the convention of [11]).

A fourth example is the collection rule of [4]:

C1→D1, (∀x ≤ t)(∃y)A(x, y)
C→ D, (∃z)(∀x ≤ t)(∃y ≤ z)A(x, y)

where s1 = 1 so side formulas are allowed. In [4], the quantifier com-
plexity of A was restricted, and free-cut elimination allowed the quantifier
complexity of formulas in the proof to be similarly restricted.
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A fifth example is the non-logical inference rules used by Negri and von
Plato [8, 9] to simulate quantifier-free axioms. These rules are inferences
with k ≥ 0 hypotheses of the form

Q1, C1→D1 · · · Qk, Ck→Dk

P1, . . . , Pm, C→ D (2)

where the formulas Qi and Pj are all atomic. All hypotheses may have side
formulas so si = 1 for 1 ≤ i ≤ k .† Negri and von Plato proved that these
rules admit elimination of all cuts in the G3ipm sequent calculus, and we
will reprove this for the sequent calculus defined above.

It is also interesting to note that the logical inferences can also be viewed
as a set S of inferences. For example, the ∧ :right inference can be expressed
as the union of the sets Instances(I) where I ranges over inferences skeletons
with the form

C1→D1, A C2→D2, B

C→ D, A ∧ B

with s1 = s2 = 1 so that side formulas are permitted. Although it would
be unusual to include the ∧ :right inferences in S , the effect would be to
allow cuts on formulas with outermost connective ∧ to count as anchored
(non-free) cuts. In Section 5, we use this idea to prove theorems about
partial cut elimination, namely elimination of cut on formulas above a given
logical complexity.

The size, |P | , of a proof P is defined to equal the total number of
non-weak inferences with one or more hypotheses. Note that size does
not count any initial sequents either in S or of the form A→A . The
height, h(P ), of P is equal to the maximum number of non-weak inferences
with one or more hypotheses on any branch in P .

The direct ancestor relation on occurrences of formulas in a proof P is
defined in the usual way so as to keep track of the identity of formulas from
line to line. Let C and C ′ be two occurrences of the same formula in P . We
call C ′ an immediate direct ancestor of C provided C ′ appears in an upper
sequent of an inference and C appears in the lower sequent of the same
inference, and provided that either (i) the inference is any logical inference
or S-inference, and C and C ′ occupy the same position in Γ, ∆ or Λ in
their respective sequents, or (ii) the inference is a contraction, and C and C ′

are both formulas denoted by “A”, or (iii) the inference is an exchange, and
†We have slightly simplified Negri and von Plato’s formulation of the inferences to

take advantage of the way our system handles weak inferences.
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C and C ′ are the formulas denoted by “A” or are the formulas denoted
by “B”. Note that some formulas do not have immediate direct ancestors;
namely, the principal formulas of non-weak inferences, formulas introduced
by a weakening rule, and formulas in the cedents Ψ and Ξ of an S-inference.

We next define the notion of an “anchored” cut. First, however, we must
define the notion of S-depth.

Definition Let C be an occurrence of a formula in a proof P . The S-depth
of C , denoted S-depth(C), is defined in terms of how it is inferred.

(1) If C is a principal formula in an S-inference (a formula in Ψ or Ξ),
then C has S-depth 0.

(2) If C is in a logical initial sequent, then C has S-depth 1.

(3) If C is in the lower sequent of an inference I , and if either I is a weak
inference or I is non-weak with C a side formula of I (in a cedent Γ
or ∆), then the S-depth of C is equal to

max
{
S-depth(C ′) : C ′ is an immediate direct ancestor of C

}
.

The maximum of the empty set is taken to equal −∞ .

(4) If C is the principal formula of a non-weak, non-S inference I , then
the S-depth of C is equal to

1 + max
{
S-depth(C ′) : C ′ is an auxiliary formula of I

}
.

By convention, 1 + (−∞) = −∞ .

Definition The S-depth of a cut inference is the minimum of the S-depths
of the two occurrences of its cut formula. The S-depth of a proof is the
maximum S-depth of its cut inferences.

Definition A cut is anchored provided that one of the occurrences of its
cut formula has S-depth zero. A cut is called free if

(i) One of the occurrences of the cut formula has S-depth −∞ , or

(ii) Its cut formula is atomic, and one of the occurrences of the cut formula
has S-depth 1, or

(iii) It is not anchored.

8



A proof is free-cut free provided it has no free cuts.

As an immediate consequence of the definitions, we have:

Proposition 1 A non-free cut has S-depth zero.

Note, however, that it is possible for free cut to have S-depth zero; namely,
a cut on an atomic cut formula with one of the occurrences of the cut formula
having S-depth 0 and the other having S-depth 1.

The next section will state the free-cut elimination theorem, but first we
prove Theorem 3 that allows eliminating cuts on S-depth −∞ formulas.

Definition Then P4SP ′ means that the proofs P and P ′ have the
same endsequent Γ→∆, and that each formula A occurring in Γ→∆ has
S-depth in P less than or equal to its S-depth in P ′ .

Proposition 2 Suppose P1 is a subproof of P , and P24SP1 . Let P ′ be
obtained from P by replacing P1 with P2 . Then P ′4SP .

Proposition 2 is an immediate consequence of the monotonicity of the
definition of S-depth.

Theorem 3 Let P be a proof of Γ→∆. Then there is a proof P ′ of the same
sequent with no S-depth −∞ cuts, such that |P ′| ≤ |P | and h(P ′) ≤ h(P )
and S-depth(P ′) ≤ S-depth(P ). Furthermore, P ′4SP .

As will be evident from the proof of the theorem, P ′ is formed from P by
discarding parts of P and possibly adding weak inferences. The idea of the
proof is quite simple: namely, delete from P , whenever possible, formulas
which have S-depth −∞ , and also remove cuts of S-depth −∞ . The
main complication is that removing formulas of S-depth −∞ may lower
the S-depth of other formulas in the proof and thereby lower the S-depth
of cut inferences. Some of these cuts may become S-depth −∞ and thus
need to be eliminated.

The next lemma is a sharpened form of Theorem 3.

Lemma 4 Let P be a proof ending with the sequent Γ→∆. Let Γ′→∆′ be
obtained from Γ→∆ by removing an arbitrary subset of the formulas that
have S-depth −∞ in the endsequent of P . Then there is a proof P ′ of
Γ′→∆′ such that P ′ has no cuts of S-depth −∞ and such that |P ′| ≤ |P |
and h(P ′) ≤ h(P ) and S-depth(P ′) ≤ S-depth(P ). Furthermore, for each
formula C appearing in Γ′→∆′ , the S-depth of C in P ′ is less than or
equal to the S-depth of the corresponding formula in the endsequent of P .
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Proof The lemma is proved by induction on |P | . The proof splits into
cases depending on the final inference of P . The proof is trivial if the last
inference of P is a weak inference.

Consider the case where the final inference of P is a ∧ :right inference:

P1
. . .

... . .
.

Γ→ ∆, A

P2
. . .

... . .
.

Γ→ ∆, B

Γ→ ∆, A ∧ B

The goal is to find a proof of the sequent Γ′→∆′, (A ∧ B)′ where (A ∧ B)′

indicates that either (i) the formula A ∧ B has S-depth −∞ and that this
formulas is one of the formulas that is to be deleted, or (ii) (A ∧ B)′ is just
A∧B . The latter case must happen if S-depth(A ∧ B) 6= −∞ , but can also
happen with S-depth(A ∧ B) = −∞ if it is not one of the deleted formulas.

In case (i), we must give a proof P ′ of Γ′→∆′ . In this case, both the
occurrence of A in the endsequent of P1 and the occurrence of B in the
endsequent of P2 have S-depth −∞ . Thus the induction hypothesis gives
two proofs P ′

1 and P ′
2 of Γ′→∆′ , and either one can be taken to be P ′ .

In case (ii), we need to give a proof P ′ of Γ′→∆′, A ∧ B . The induction
hypothesis gives us two proofs, P ′

1 and P ′
2 of Γ′→∆′, A and Γ′→∆′, B ,

respectively. Combine these with a single ∧ :right inference to get the desired
proof P ′ . In both cases (i) and (ii), the fact that the S-depth of formulas in
the endsequent has not been increased in P ′ follows immediately from the
definition of S-depth and the induction hypotheses.

The other non-weak logical inferences are handled similarly to the ∧ :right
inference, except for cut inferences. Suppose the final inference of P is

P1
. . .

... . .
.

Γ→ ∆, A

P2
. . .

... . .
.

A, Γ→ ∆
Γ→ ∆

The induction hypotheses give us proofs P ′
1 and P ′

2 of the sequents
Γ′→∆′, A and A, Γ′→∆′ , respectively. If the S-depth of A in the final
sequent of P ′

1 is equal to −∞ , then we apply the induction hypothesis again
to P ′

1 to get a proof P ′ of Γ′→∆′ : this P ′ is immediately seen to satisfy
the desired conditions. Likewise, if the S-depth of A in P ′

2 is −∞ , we can
apply the induction hypothesis to P ′

2 to obtain the desired P ′ . Finally, if
neither case holds, form P ′ by combining P ′

1 and P ′
2 with a cut inference.

By definition, this cut inference has S-depth > −∞ .
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The case where the final inference of P is a S-inference is very simple
to handle with the induction hypothesis since only side formulas can have
S-depth equal to −∞ . 2

3 The free-cut elimination theorems

Theorem 5 and the proof of Lemma 6 contain our basic results on upper
bounds on free-cut elimination in the presence of S-inferences.

Definition For i, k ∈ N , the superexponential function 2i
k is defined

inductively by 2i
0 = i and 2i

k+1 = 22i
k .

Theorem 5 Suppose P is a proof of S-depth ≤ d, where d ≥ 0. Then
there is a proof P ′ of the same endsequent which contains no free cuts and

has height h(P ′) < 2h(P )+1
d+1 . Therefore, P ′ has size |P ′| < c2

h(P )+1
d+1 ≤ c2

|P |+1
d+1 ,

where c is the maximum of 2 and the maximum arity of the S-inferences
that appear in P .

The next lemma is the main tool for the proof of the theorem.

Lemma 6 Suppose P ends with a free cut inference of S-depth d ≥ 0
and all other free cuts in P have S-depth < d. Then there is a proof P ′

of the same endsequent, such that all free cuts in P ′ have S-depth < d,
and h(P ′) ≤ 2 · h(P ) and P ′4SP . If the cut formula is not atomic,
then |P ′| ≤ |P |2 . Otherwise, the cut formula is atomic and d ≤ 1, and
|P ′| ≤ (c − 1)|P |2 , where c is as in Theorem 5.

To prove the lemma, we will let P1 and P2 be the two immediate
subproofs of P as displayed in (3) below, and prove that

(a) If A has outermost connective ¬ , ∨ , ∧ , or ⊃ , then

h(P ′) ≤ h(P ) + 2.

(b) If A has outermost connective ∀ or ∃ , then

h(P ′) ≤ 2 · h(P ).

(c) If A is atomic, then

h(P ′) ≤ h(P1) + h(P2) + 1.
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We conclude in all cases that h(P ′) ≤ 2h(P ).
The bounds (b) and (c) can be compared to the similar results of Orevkov

and others [10, 14, 6, 13] who all give a bound of h(P ′) ≤ h(P1) + h(P2).
Their upper bound is slightly better than ours because their proof systems
are for pure first-order logic and do not admit S-inferences. Our upper
bounds are slightly larger because of the need to add cuts on S-depth zero
formulas.

The bound (a) should similarly be compared to results of [14, 6] that
prove bounds of h(P ′) ≤ h(P ) + 1. Again, our bound is higher by 1 because
of cuts on S-depth zero formulas.‡

We can always assume w.l.o.g. that any proof P is in free variable normal
form: this implies that no variable is used more than once as eigenvariable
in P and furthermore that if a variable c is used as an eigenvariable then
c appears in the proof only above the inference where it is used as an
eigenvariable. In particular, if c appears in the endsequent of P , then c is
not used as an eigenvariable in P . In this case, we write P (t/c) to denote
the result of replacing every occurrence of c in P with the term t . If no
eigenvariable of P occurs in t , then P (t/c) is a valid proof.

Proof (of Lemma 6) The proof is by induction on the size of the proof P .
Suppose P ends with a free cut inference

P1
. . .

... . .
.

Γ→ ∆, A

P2
. . .

... . .
.

A, Γ→ ∆
Γ→ ∆

(3)

with one of the two occurrences of A having S-depth d and the other
having S-depth ≥ d . We begin by assuming that the cut formula A is not
atomic. The proof splits into cases depending on the outermost connective
of A . We’ll consider the cases of ¬ , ∨ , and ∀ ; the remaining cases ∧ , ⊃ ,
and ∃ are essentially the same.

Since A is not atomic and the cut is free, we have d ≥ 1 and the
S-depths of both occurrences of A are ≥ 1. Since A is not atomic, each
subproof Pi contains at least one non-S inference with a direct ancestor
of A as its principal formula. Thus, |Pi| ≥ 1 and h(Pi) ≥ 1 holds for
i = 1, 2.

Suppose the cut formula A is of the form ¬B . (This case is rather
simple, but we cover it in detail since rest of the cases use similar techniques.)

‡For more on this, see the discussion at the end of Section 5.
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Examining the subproof P1 , find all the occurrences of direct ancestors of
¬B which do not have an immediate direct ancestor. These occurrences are
where ¬B originates in P1 . They can be principal formulas of weakenings,
S-inferences, or ¬ :right inferences

B,Π→ Λ ¬ :right
Π→ Λ,¬B

(4)

If the occurrence of ¬B as a cut formula in the endsequent of P1 has
S-depth d , then, in (4), ¬B has S-depth ≤ d and hence S-depth(B) < d .
We modify P1 to construct a proof P ′

1 of Γ, B→∆,¬B , by replacing each
¬ :right inference (4) with

B,Π→ Λ
Weakening and exchanges

Π, B→ Λ,¬B

where the ¬B formula is introduced by weakening, and thus has S-depth
−∞ . We repeat this construction for every ¬ :right inference where ¬B
originates. The new occurrence of the formula B in the antecedent is
propagated down the proof to all descendents of these ¬ :right inferences.
And, by adding weak inferences, a new occurrence of B is added to all side
formulas of inferences whose lower sequents contain a new occurrence of B ;
with the exception that, for S-inferences, only the upper sequents with side
indicators equal to 1 are given a new occurrence of B . Note that ¬B cannot
originate from an inference above any S-inferences hypothesis which has
side indicator 0, as no direct ancestor ¬B can lie above any sequent with
side indicator 0.

This gives a proof P ′
1 of Γ, B→∆,¬B . We have S-depth(¬B) ≤ 0

because the direct ancestors of ¬B can originate only from S-inferences
or weakenings (since only atomic formulas are allowed in logical initial
sequents). If S-depth(A) = d in the endsequent of P1 , then S-depth(B) < d
in P ′

1 . And, it is clear from the construction that any formula in Γ, ∆ has
S-depth in the endsequent of P ′

1 less than or equal to its S-depth in the
endsequent of P1 .

If S-depth(¬B) equals −∞ in the endsequent of P ′
1 , then Lemma 4

gives a proof P ′′
1 of Γ, B→∆. If the S-depth of ¬B equals 0, we instead

form P ′′
1 as

P ′
1

. . .
... . .

.

Γ, B→ ∆,¬B

P2
. . .

... . .
.

¬B,Γ→ ∆
Weak inferences¬B,Γ, B→ ∆
CutΓ, B→ ∆

13



The ¬B in the endsequent of P2 has S-depth ≥ 1; thus the cut has
S-depth zero and is anchored and not free. A similar construction lets us
form proofs P ′

2 and P ′′
2 , with P ′′

2 a proof of ∆→B,∆. If S-depth(A) = d
in the endsequent of P2 , then S-depth(B) < d in the endsequent of P ′′

2 .
Therefore, P ′′

1 and P ′′
2 can be combined with a cut of S-depth < d on B

to give the desired proof P ′ :

P ′′
2

. . .
... . .

.

Γ→ B,∆

P ′′
1

. . .
... . .

.

Γ, B→ ∆
Weak inferences and Cut

Γ→ ∆

Note that the height, h(P ′) is

h(P ′) = max{h(P ′′
1 ) + 1, h(P ′′

2 ) + 1}
≤ max{h(P ′

1) + 2, h(P2) + 2, h(P ′
2) + 2, h(P1) + 2}

≤ max{h(P1) + 2, h(P2) + 2}
= h(P ) + 1 < 2 · h(P ). (5)

It is also easy to see that

|P ′| ≤ (|P ′
1| + |P2| + 1) + (|P ′

2| + |P1| + 1) + 1
≤ ((|P1| − 1) + |P2| + 1) + ((|P2| − 1) + |P1| + 1) + 1
≤ 2|P1| + 2|P2| + 1 < |P |2,

since |P ′
i | < |Pi| due to the removal of at least one ¬ :right or ¬ :left inference

from Pi . The fact that P ′4SP follows from the construction.
Now consider the case where the cut formula A is B∨C . The inferences

where B ∨ C can originate in P1 as a principal formula are weakenings,
S-inferences, and ∨ :right inferences

Π→ Λ, B, C ∨ :right
Π→ Λ, B ∨ C

(6)

Form a proof P ′
1 of Γ→B, C,∆, B ∨ C by replacing each such ∨ :right

inference (6) in P1 with

Γ→ ∆, B, C
Weakening and exchanges

Γ→ B, C,∆, B ∨ C

14



and adding additional weak inferences to propagate the new occurrences
of B, C down to the endsequent. If S-depth(A) = d in the endsequent
of P1 , then the S-depths of B and C occurring in the endsequent of P ′

1 are
both < d . The S-depth of the B ∨C in the endsequent of P ′ is either −∞
or 0. If the depth is −∞ , use Lemma 4 to form a proof P ′′

1 of Γ→B, C,∆.
If it is zero, form P ′′

1 with an S-depth zero cut as:

P ′
1

. . .
... . .

.

Γ→ B, C,∆, B ∨ C

P2
. . .

... . .
.

B ∨ C, Γ→ ∆
Weak inferences

B ∨ C, Γ→ B, C,∆
CutΓ→ B, C,∆

The inferences in P2 where B ∨ C originates can be weak inferences,
S-inferences, and ∨ :left inferences

B,Γ→ ∆ C, Γ→ ∆ ∨ :left
B ∨ C, Γ→ ∆

(7)

Letting X denote either B or C , form a proof PX
2 of the sequent

B ∨ C, Γ, X→∆, by replacing each inference (7) with

X, Γ→ ∆
Weakening and exchanges

B ∨ C, Γ, X→ ∆

and propagate the new occurrence of X down to the endsequent, adding
weak inferences as necessary to form a valid proof. If the occurrence of B∨C
in the endsequent of PX

2 has S-depth −∞ , we can form a proof P ′X
2 of

Γ, X→∆ using Lemma 4. Otherwise, it has S-depth zero, and we form
P ′X

2 using a cut of S-depth zero against P1 . If S-depth(A) = d in the
endsequent of P2 , then S-depth(X) < d in the endsequent of P ′X

2 .
The desired proof P ′ is formed as

P ′′
1

. . .
... . .

.

Γ→ B, C,∆

P ′B
2

. . .
... . .

.

Γ, B→ ∆
Γ→ C, ∆

P ′C
2

. . .
... . .

.

Γ, C→ ∆
Γ→ ∆

15



using weak inferences and two cuts of S-depth < d .
Note that the height of P ′ can be bounded by

h(P ′) ≤ max{h(P ′
1) + 3, h(P2) + 3, h(PB

2 ) + 3, h(P1) + 3, h(PC
2 ) + 2}

≤ max{h(P1) + 3, h(P2) + 3}
= h(P ) + 2 ≤ 2 · h(P ) (8)

since h(P ) ≥ 2. Also,

|P ′| ≤ |P ′
1| + |P2| + |PB

2 | + |PC
2 | + 2|P1| + 5

≤ (|P1| − 1) + |P2| + 2(|P2| − 1) + 2|P1| + 5
≤ 3|P1| + 3|P2| + 2
< (1 + |P1| + |P2|)2 = |P |2.

since |P1|, |P2| ≥ 1.
Now consider the case where the cut formula A is a universal formula

(∀x)B(x). The inferences where (∀x)B(x) can originate in P1 are weaken-
ings, S-inferences, and ∀ :right inferences

Π→ Λ, B(ci) ∀ :right
Π→ Λ, (∀x)B(x)

(9)

where ci is an eigenvariable. (Of course, Π, Λ, and ci are different for
each inference (9).) Letting c be a new variable, we form a proof P ′

1 of
Π→B(c), Λ, (∀x)B(x), by replacing each inference (9) with

Π→ Λ, B(c)
Weakening and exchanges

Π→ B(c), Λ, (∀x)B(x)

and replacing all occurrences of all eigenvariables ci with c , adding the
formula B(c) to every sequent below each inference (9), and adding weak
inferences as needed to form a valid proof. From P ′

1 , we form a proof P ′′
1

of Γ→B(c), ∆. Namely, if the formula (∀x)B(x) has S-depth −∞ in
the endsequent of P ′

1 , then use Lemma 4, and if it has S-depth zero then
combine P ′

1 and P2 with an S-depth zero cut to form P ′′
1 . If S-depth(A) =

d in the endsequent of P1 , then S-depth(B(c)) < d in the endsequent of P ′′
1 .

For a term t not containing any eigenvariable from P1 , we write P ′′
1 (t)

to denote the result of replacing c everywhere in P ′′
1 with t . P ′′

1 (t) is still
a valid proof, and the S-depths of formulas in P ′′

1 (t) are unchanged from
their S-depths in P ′′ .
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The inferences in P2 where direct ancestors of (∀x)B(x) originate can
be weakenings, S-inferences, and ∀ :left inferences

B(tj), Π→ Λ ∀ :left(∀x)B(x), Π→ Λ
(10)

where S-depth(B(tj)) < d if S-depth(A) = d in the endsequent of P2 .
We form a proof P ′

2 with the same endsequent (∀x)B(x), Γ→∆ as P2 ,
but with the S-depth of (∀x)B(x) ≤ 0 in P ′

2 , and additionally with
P ′

24SP2 . To construct P ′
2 , replace each inference (10) with

P ′′
1 (tj)

...
... . .

.

Γ→ B(tj), ∆ B(tj), Π→ Λ
Weak inferences and a cut

Π, Γ→ ∆, Λ
Weakening

(∀x)B(x), Π, Γ→ ∆, Λ

The cut on B(tj) has S-depth < d ; the formula (∀x)B(x) is now introduced
by weakening. The newly appearing formulas Γ and ∆ are propagated down
to the endsequent, adding weak inferences as necessary to make P ′′

2 a valid
proof.

The formula (∀x)B(x) in the endsequent of P ′
2 has S-depth equal to

either −∞ or zero. If it is −∞ , Lemma 4 gives the desired proof P ′ of
Γ→∆. Otherwise, form P ′ by combining P1 and P ′

2 with a cut of S-depth
zero. The height of P ′ is

h(P ′) ≤ max{h(P ′′
1 ) + h(P2) + 1, h(P1) + 1}

≤ max{max{h(P1)+1, h(P2)+1} + h(P2) + 1, h(P1) + 1}
≤ max{h(P1) + h(P2) + 2, 2h(P2) + 2)}
≤ 2 · h(P ).

The size of P ′ is

|P ′| ≤ |P ′′
1 | · |P2| + |P2| + |P1| + 1

≤ (|P1| + |P2|) · |P2| + |P2| + |P1| + 1
< (|P1| + |P2| + 1)2 = |P |2.

Finally, suppose the cut formula A is atomic so d = 0 or 1. The
inferences in P1 and P2 where direct ancestors of the cut formula originate
can be weakenings, S-inferences, and initial sequents A→A . We form a
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proof P ′
1 of Γ→∆, A as follows. Each logical initial sequent A→A in P1

which contains a direct ancestor of the cut formula is replaced by a copy
of P2 plus a weakening:

P2
. . .

... . .
.

A, Γ→ ∆
A, Γ→ ∆, A

so that the A in the succedent has S-depth −∞ . The new occurrences of Γ
and ∆ are propagated to the endsequent, using weak inferences as necessary
to keep it a valid proof. In the end, we have a proof P ′

1 of Γ→∆, A ,
with the S-depth of A equal to either −∞ or zero, and with P ′

14SP1 . A
proof P ′

2 of A, Γ→∆ is formed similarly, again with S-depth(A) ≤ 0 and
P ′

24SP2 .
If S-depth(A) = −∞ in the endsequent of either P ′

1 or P ′
2 , then

Lemma 4 gives us the desired proof of Γ→∆. Otherwise, we combine P ′
1

and P ′
2 with a cut on A to form the proof P ′ . Note this cut is not free,

since both cut formulas have S-depth zero.
The height of P ′ is bounded by

h(P ′) ≤ h(P1) + h(P2) + 1 < 2 · h(P ). (11)

The size of P ′ can be bounded by

|P ′| ≤ |P2| · ((c − 1)|P1| + 1) + |P1| · ((c − 1)|P2| + 1) + 1 ≤ (c − 1) · |P |2,
since (c − 1)|Pi| + 1 is an upper bound on the number of initial sequents in
in |Pi| . Q.E.D. Lemma 6

The next lemma uses Lemma 6 iteratively to remove all free cuts of
S-depth d .

Lemma 7 Suppose S-depth(P ) ≤ d, where d ≥ 0. Then there is a proof P ′ ,
of the same endsequent, in which all free cuts have S-depth < d and
h(P ′) < 2h(P )+1 and P ′4SP .

Proof The proof is by induction on the height of P , using the bounds
obtained during the proof of Lemma 6. Let f(i) be the least integer such
that, for all P , if h(P ) ≤ i , then h(P ′) ≤ f(i). We have f(0) = 0 since in
this case there are no cuts in P at all. Next, suppose P has height i = 1. If
P does not contain a free cut, take P ′ = P . Otherwise, P ’s only non-weak,
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non-initial inference is a free cut: the cut formula must be atomic, and, by
(11), Lemma 6 gives P ′ such that h(P ′) < 2. Thus, f(1) = 1.

Now suppose i ≥ 2. W.l.o.g., P ends with a non-weak inference. Apply
the induction hypothesis to the immediate subproof(s) of P to transform
each immediate subproof Pj into a proof P ′

j4SPj of height ≤ f(i − 1) in
which all free cuts have S-depth < d . Form P ′′ from P by replacing each
Pj with P ′

j . If P ′′ does not end with a free cut, take P ′ = P ′′ and this
directly gives P ′ of height ≤ f(i − 1) + 1. Suppose instead that P ′′ ends
with a free cut. By the conditions P ′

j4SPj , the cut must have S-depth
≤ d . If it has S-depth strictly less than d , just set P ′ = P ′′ . Otherwise,
apply Lemma 6 to P ′′ to form the desired proof P ′ ; the proof P ′ has height
≤ 2f(i − 1) + 2.

We have proved that f(0) = 0 and, for all i > 0, f(i) ≤ 2f(i − 1) + 2.
Thus, by induction, f(i) < 2i+1 − 1 for all i . In particular, f(i) < 2i+1 . 2

To prove Theorem 5, Lemma 7 used d + 1 times gives a proof P ′′ of
height < 2h(P )+1

d+1 . Every free cut in P ′′ has S-depth < 0, i.e., S-depth −∞ .
Lemma 4 gives the desired proof P ′ with no free cuts. Q.E.D. Theorem 5

4 Eliminating propositional cuts

The bounds in Theorem 5 apply to first-order logic. The proof, however,
gives somewhat better bounds for cut elimination in propositional logic.
The definition of S being a set of non-logical axioms still makes sense for
propositional logic, but the notion of being closed under term substitution
does not apply and this requirement is dropped. In most applications, S is a
set of 0-ary inferences, namely an arbitrary set of non-logical initial sequents.

Theorem 8 Let P be a proof in propositional logic over a set S of non-logical
inferences. Let d = S-depth(P ) and assume d > 0. Then there is a proof P ′

of the same endsequent as P such that h(P ′) < 3d ·h(P ) and such that every
cut in P ′ either (a) has S-depth zero or (b) has S-depth one and has an
atomic formula as cut formula. Furthermore P ′4SP .

Note that P ′ can still contain free cuts as Theorem 8 does not remove all
cuts on atomic formulas. The proof uses the next lemma.

Lemma 9 Let P and d be as above. There is a proof P ′ with the same
endsequent as P such that h(P ′) < 3 · h(P ), and P ′4SP , and every cut
in P ′ either (a) has S-depth < d, or (b) has an atomic formula as its cut
formula.
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Proof Let f(i) be the least value such that if h(P ) ≤ i , then h(P ′) ≤ f(i).
It is immediate that f(1) = 1. For i ≥ 2, we have f(i) ≤ (f(i − 1) + 1) +
2 = f(i − 1) + 3 by the bound (a) discussed after Lemma 6. Thus f(i) < 3i
for all i ≥ 1. Since d > 0, P contains at least one cut and has height ≥ 1,
so this proves the lemma. 2

To prove Theorem 8, use induction on d and Lemma 9 to prove that
there exists a proof P ′′ with the h(P ′′) < 3d · h(P ) and such that every cut
in P ′′ either has S-depth ≤ 0 or satisfies condition (b). Then obtain the
desired P ′ from P ′′ by using Lemma 4.

It is interesting to note that, in first-order logic, the above construction
also allows eliminating cuts on formulas which have outermost connective
a propositional connective (while allowing cuts on formulas that have
outermost connective a quantifier). The bound 3d still applies, where now
d is the maximum nesting of propositional connectives outside of quantifiers.
In the setting of pure first-order logic, with no non-logical axioms, the factor
3d can be replaced by 2d . This is used already by Zhang [14, Corollary
2.16] and Gerhardy [7] to get improved bounds on the size of cut free proofs.
Namely, they show that, for first order logic, if n bounds the nesting depth
of quantifiers in cut formulas, then cuts can be eliminated with an increase in
proof height bounded by 2α·h(P )

n+2 where α is slightly bigger than 1.§ Similar
bounds hold for free-cut elimination, but we omit formalizing this here.

5 Partial cut elimination

Partial cut elimination refers to the property of being able to restrict cut
formulas to lie in a given complexity class. This section shows that Theorem 5
can be used to prove partial cut elimination.

Let Φ be a set of formulas, and assume that Φ is closed under the
operations of taking subformulas and replacing terms with other terms.
Examples of Φ include the sets Σ0

i and Π0
i in Peano arithmetic, or Σb

i

and Πb
i in bounded arithmetic.

Theorem 10 Suppose every S-inference has only Φ formulas as principal
formulas. Let P be a proof. Then there is a proof P ′ of the same endsequent
such that every cut in P ′ has cut formula in Φ.

§This slightly generalizes the bounds of Zhang and Gerhardy, but follows immediately
from their construction as h(P ) bounds the nesting of propositional connectives in any
cut formula.
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Proof Define S′ to be the inferences of S plus all non-weak, non-S logical
inferences which have principal formula in Φ. In addition, for each atomic
formula A in Φ, add the initial sequent A→A to S′ . In P , interpret
every logical inference or initial sequent with principal formula in Φ as an
S′ -inference. Theorem 5 gives the desired proof P ′ over S′ with no free
cuts.

The cuts in P ′ have S′ -depth zero and therefore must have cut formulas
in Φ. 2

Theorem 5 also gives a bound on the height and size of P ′ . Define the
Φ-depth of a formula by letting every formula in Φ have Φ-depth zero and,
for A /∈ Φ, letting the Φ-depth of A equal one plus the maximum Φ-depth
of proper subformulas of A . Clearly, any Φ-depth d formula appearing in P
has S′ -depth equal to either −∞ or d . Let d be the maximum Φ-depth
of any cut formula in P . Using Lemma 6 and arguing by induction as in
the proofs of Lemma 7 and Theorem 5, one can show that the proof P ′ of
Theorem 10 has height bounded by h(P ′) ≤ 2h(P )+1

d .

The proof of Theorem 10 used a special set S′ of non-logical inferences,
based on a set of formulas Φ which is closed under subformulas. For this
set S′ , Lemma 6 can be strengthened by replacing the bounds (a)-(c) after
Lemma 6 with the respective bounds

(a’) h(P ′) ≤ h(P ) + 1.

(b’) h(P ′) ≤ 2 · h(P ) − 2.

(c’) h(P ′) ≤ h(P1) + h(P2).

To prove this recall that, in the proof of Lemma 6, there were various places
where it was sometimes possible to use Lemma 4 to form new proofs instead
of adding a cut of S-depth zero. In particular, this arises when forming the
proofs of P ′′

1 and P ′′
2 in the case ¬ , the proofs of P ′′

1 and P ′X
2 in the case

of ∨ , the proofs of P ′′
1 and P ′ in the case of ∀x , and the proof of P ′ in the

case of atomic formulas. Note that a formula A not in Φ can never have
S′ depth equal to zero. Therefore, in each of the cases listed, Lemma 4 is
used instead of adding an S-depth zero cut.

The bounds (a’)-(c’) for the case of pure first-order logic match results
of Zhang [14] and Gerhardy [6].
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6 Eliminating all cuts

For general sets S of non-logical inferences, one cannot expect to eliminate
all cuts, since it may be unavoidable to have some anchored cuts. There
are, however, some special cases where all cuts can be eliminated. As an
example of this, it is a consequence of Theorem 5 that the inferences (2) of
Negri and von Plato admit elimination of all cuts. In fact, letting S be any
(acceptable) set of inferences of the form (2), we claim that a free-cut free
proof P cannot contain any cuts. This is proved using the fact that every
principal formula of an S-inference is atomic, and is in the antecedent of the
conclusion of the inference. Any cut in P must have S-depth zero and its
cut formula A must be atomic. Since the cut is not free, both occurrences
of the cut formula A must have S-depth zero. But it is impossible for
the occurrence of A in the succedent of the upper left hypothesis to have
S-depth zero, since the S-inferences (2) have no principal formula in the
succedent. Therefore, P cannot contain any cuts.

Negri and von Plato’s methods allowed arbitrary quantifier-free initial
sequents to be transformed into inference rules that admit complete cut
elimination; for example, they used this to formulate a sequent calculus
proof system for first-order logic with equality that admits complete cut
elimination. A different approach was taken by Takeuti [12], who used
generalized equality axioms to form a proof system for first-order logic with
equality that admits complete cut elimination. The generalized equality
axioms are the sequents that can be derived from the (ordinary) equality
axioms, expressed as sequents, using only exchanges, contractions and cuts.
Takeuti showed that when the generalized equality axioms are allowed as
initial sequents, then all cuts can be eliminated. It is also well-known that
this holds for any set of non-logical initial sequents which contain only atomic
formulas provided the set of initial sequents is closed under cuts.

We generalize Takeuti’s construction by considering arbitrary sets S of
inferences which are closed under cut, and have only atomic formulas as
principal formulas. For technical reasons, it is slightly easier to deal with
being closed under “mixes” rather than cuts.

Definition A Mix inference is an inference of the form

Γ→ ∆ Π→ Λ
Γ, Π′→ ∆′, Λ

such that there is a mix formula A so that Π′ , respectively ∆′ , is obtained
from Π, respectively ∆, by removing one or more occurrences of the
formula A .
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Note that a cut inference is a special case of a mix. Conversely, a mix
inference can be simulated using weak inferences and cut.

Definition A set S of inferences is closed under mix, provided that the
following two properties hold. First, if I is an S-inference skeleton and
σ is a term substitution that respects the eigenvariable conditions of I , then
Iσ is also an S-inference skeleton. Second, suppose that I and I ′ are
S-inference skeletons, which are k -ary and k′ -ary, respectively, and they
have conclusions

Ψ, C→D, Ξ and Ψ′, C→D, Ξ′,

respectively. Let Ψ′′→Ξ′′ be obtained by a mix from Ψ→Ξ and Ψ′→Ξ′ .
Then there is an inference skeleton in S of arity ≤ k+k′ which has as
hypotheses a subset of the hypotheses of I and I ′ , and which has the
conclusion Ψ′′, C→D, Ξ′′ .

Theorem 11 Suppose S is closed under mix, and all principal formulas of
S-inferences are atomic. If there is a proof P of Γ→∆ of S-depth d, then
there is a cut free proof P ′ of the same endsequent with h(P ′) < 2h(P )+1

d+1 .

Theorem 11 will be proved by a construction similar to Lemma 7. The
construction is however more complicated in the present setting due to the
symmetric nature of S-inferences with atomic principal formulas.

Lemma 12 Let S satisfy the hypotheses of Theorem 11. Suppose P contains
a single cut, as its final inference, and that the cut formula is atomic. Then
there is a proof P ′ of the same endsequent containing no cuts, with |P ′| < |P |2
and h(P ′) ≤ h(P1)+h(P2), where P1 and P2 are the two immediate subproofs
of P .

Proof We use the conventions and notations of the proof of Lemma 6.
In P1 , locate all inferences where a direct ancestor of the cut formula A
originates, and let Isrc be the set containing their lower sequents. Thus, a
sequent in Isrc is either an initial sequent A→A or the lower sequent of an
S-inference

{Ψ`, Π →Λ, Ξ`}k
`=1

Ψ, Π→Λ, Ξ
(12)

where at least one direct ancestor of the cut formula A is present in Ξ. The
cedents Π and Λ contain the side formulas of the S-inference and may not
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be present in all upper sequents. Let S0 be the endsequent of P1 , namely
Γ→∆, A .

Similarly define Jsrc to be the set of sequents where the cut formula A
originates in P2 . These sequents are initial sequents A→A or are inferred
by S-inferences (12), but now with the direct ancestor of the cut formula
present in Ψ. Likewise, let T0 be the endsequent, A, Γ→∆, of P2 .

For S a sequent in P , let PS be the subproof of P with endsequent S .
If S and T are sequents in P1 and P2 , respectively, define the sequent
mixA(S, T ) as follows. Suppose

S is ΠS→ΛS and T is ΠT →ΛT .

Then mixA(S, T ) is
ΠS , ΠT∗→ΛS∗, ΛT ,

where ΠT∗ and ΛS∗ are ΠT and ΛS , respectively, with all direct ancestors
(if any) of the cut formula A removed.

The idea for proving Lemma 12 is that, for each sequent S from P1 and
sequent T from P2 , we construct a cut free proof PS,T of mixA(S, T ), of
height ≤ h(PS)+h(PT ). Then PS0,T0 will be the desired proof P ′ . The size
and height bounds of Lemma 12 will be immediate from the construction.

We do not actually need to form PS,T for all pairs of sequents S and T ;
instead, we only define PS,T when at least one of S and T contain a direct
ancestor of the cut formula A . (In fact, not even all of these are needed.)
If S does not contain a direct ancestor of A , then ΛS∗ is the same as ΛS

and we can define PS,T to be the proof obtained by adding weak inferences
to the end of PS to introduce the formulas in ΠT∗ and ΛT . PS,T is defined
similarly from PT if T does not contain a direct ancestor of A .

Now suppose both S and T contain a direct ancestor of A . If S ,
respectively T , is an initial sequent A→A , then PS,T is defined to be just
PT , respectively PS (plus weak inferences to reorder the formulas in the
sequent).

If S /∈ Isrc , then S is inferred in P1 by a logical inference:

S1

S
or S1 S2

S

where the principal formula of the inference is not a direct ancestor of the cut
formula A . In this case, PS,T is formed by using the same kind of inference
to infer mixA(S, T ) from the proof(s) PSi,T :

mixA(S1, T )

mixA(S, T )
or

mixA(S1, T ) mixA(S2, T )

mixA(S, T )
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where the double line means that weak inferences may be needed to reorder
the formulas in the sequents.

PS,T is formed dually if T /∈ Jsrc . If neither S ∈ Isrc nor T ∈ Jsrc , there
are two possible ways to form PS,T : either way may be used.

Finally, consider the case where both S and T are inferred by S-
inferences:

S1 S2 · · · Sk

S
and T1 T2 · · · Tk′

T

where k, k′ ≥ 0, and S and T both contain a direct ancestor of the cut
formula. Let s1, . . . , sk and t1, . . . , tk′ be the side formula indicators for the
two S-inferences. Let the notation msi

A(Si, T ) denote mixA(Si, T ) if si = 1
and denote just Si if si = 0. Define the notation m

tj
A(S, Tj) similarly. Then,

by the closure of S under mix, we can form a proof of mixA(S, T ) by using
a single S-inference and weak inferences:

ms1
A (S1, T ) · · · msk

A (Sk, T ) mt1
A (S, T1) · · · m

tk′
A (S, Tk′)

mixA(S, T )

where possibly some of the upper sequents are omitted.
That completes the proof of Lemma 12. 2

We can now prove Theorem 11. By applying Lemma 7 d times, there is
a proof P ′′ with the same endsequent as P such that all cuts in P ′ are on
atomic formulas and such that h(P ′′) < 2h(P )+1

d . Now using Lemma 12, and
using induction on the height of P ′′ as in the proof of Lemma 7, we obtain
the desired cut free proof P ′ with h(P ′) < 2h(P ′′)+1 ≤ 2h(P )+1

d+1 .
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