
Notations for Exponentiation

Arnold Beckmann 1

Mathematical Institute, University of Oxford, 24-29 St. Giles’, Oxford OX1 3LB,

UK.

Institut für Mathematische Logik und Grundlagenforschung, Westfälische

Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany.

Abstract

We define a coding of natural numbers – which we will call exponential notations –
and interpretations of the less-than-relation, the successor, addition and exponenti-
ation function on exponential notations. We prove that all these interpretations are
polynomial time computable. As a corollary we obtain that feasible arithmetic can
prove the consistency of the canonical equational theory for the language containing
the successor, addition and exponentiation function.2

Key words: exponentiation, polynomial time computable, course of value
recursion, exponential notations, weak arithmetic, consistency
1991 MSC: 03D15, 68Q19, 03F25

Introduction

A necessary condition for a function f to be feasibly computable is that it grows
at most polynomially (cf. [2] et. al.) which means that there is a polynomial

qf such that (∀x)
[
log f(x) ≤ qf (log x)

]
. This condition is satisfied, e.g., by all

functions from the polynomial hierarchy, in particular by the polynomial time
computable functions. Therefore, exponentiation is not directly available in
weak theories of arithmetic which are related to low-complexity computability,
like the bounded arithmetic theories Si

2, T i
2, etc. (cf. [2] or [6] for a definition

of these theories).

Email address: Arnold.Beckmann@math.uni-muenster.de (Arnold Beckmann).
1 Supported by the Deutschen Akademie der Naturforscher Leopoldina grant
#BMBF-LPD 9801-7 with funds from the Bundesministerium für Bildung, Wis-
senschaft, Forschung und Technologie.

Preprint submitted to Theoretical Computer Science August 21, 2000

One possibility of dealing with exponentiation is given for example in [5]. There
it is shown that the graph of exponentiation can be defined by a bounded
formula, i.e. by a formula in which all quantifiers are bounded.

In this article we will follow another path to handle exponentiation. Our idea
is inspired by the proof theoretic analysis of Peano arithmetic which relates
Peano arithmetic to the ordinal

ε0 = limi ω
...
ω

}
i-times.

Ordinals less than ε0 can be represented by terms in the symbols 0, +, ·,
λα.ωα, which induces a canonical arithmetization ε0 of ε0 as a subset of the
natural numbers. In fact, ε0 and the homomorphic translations of the functions
0, +, ·, λα.ωα onto ε0 are primitive recursive, cf. [7] et. al. We are going – more
or less – to replace ω by 2 in this coding obtaining exponential notations
and homomorphic translations on exponential notations of the constant 0,
the unary functions successor S, doubling dbl(n) = 2 · n and exponentiation
exp(n) = 2n, and the binary function addition +. They all will be polynomial
time computable.

One application of exponential notations can be found in [1]. There they are
used for the proof theoretic analysis of weak fragments of arithmetic, called
dynamic ordinal analysis.

In the last section of this article we will outline another application. Buss

has shown in [2] that arithmetization of metamathematics can be done in
bounded arithmetic. But it is difficult to prove consistency even of weak equa-
tional theories without the presence of exponentiation. This is because values
of closed terms often grow exponentially in their Gödel numbers (cf. [3], p.9).
In the present article we are going to show that for a certain restriction of the
language which does not infer the growth-rate of the functions – for example
exponentiation will be in the language – we can feasibly calculate on expo-
nential notations the values of closed terms. Therefore, feasible arithmetic,
i.e. Buss’ system S1

2 of bounded arithmetic, can prove the consistency of the
equational theory for the language {0, S, +, dbl, exp} involving only equations
between closed terms, which is axiomatized by the recursive definitions of the
function symbols.

In the next section we introduce the polynomial time computable (polytime)
functions and repeat a feasible Gödel-numbering from [2]. Furthermore, we
need some more closure properties of polytime functions, i.e. we will prove that
the polytime functions are closed under a limited course-of-values recursion.
In section 2 we define the exponential notations and functions manipulating
them. Using the closure properties from section 1 we show that most of these

2

functions and predicates are polytime. 2 Finally we show that there exists a
polytime function on exponential notations which interprets terms over the
language {0, S, +, dbl, exp}. As a corollary we obtain the above described con-
sistency in Buss’ system S1

2 .

1 Limited course-of-values recursion

We start giving a brief review of the polytime functions and the polytime
sequence coding from [2]. We will end this section proving that the polytime
functions are closed under a certain (feasible) course-of-value recursion.

Let S, +, · be the usual successor, addition and multiplication functions. Let
S0 and S1 denote the binary successor functions given by Si(n) = 2 · n + i

with i ∈ {0, 1}. The binary length function |n|, which computes the number
of bits in the binary representation of n, is given by |n| = ⌈log2(n + 1)⌉. For
real numbers r, ⌈r⌉ is the least integer z which is bigger than or equal to r.
The smash function # is given by m # n = 2|m|·|n|. Let dbl and exp denote the
doubling function dbl(n) = 2 · n = S0(n) and, respectively, the exponentiation
function exp(n) = 2n.

The polytime functions can be defined as the set of all functions f which can
be computed by a Turing machine Mf such that the runtime is bounded by
a polynomial p in the length of the input, i.e. Mf needs on input n at most
p(|n|) steps to calculate f(n).

There are also algebraic characterizations of the polytime functions. All poly-
time functions are generated from basic functions 0, S, +, ·, λn.|n|, # using
composition and one of the following rules of limited recursion on notations
(cf. [4] p. 28) or limited recursion (cf. [2] p. 8).

The function f is defined from functions g, h0, h1 and k by
limited recursion on notation if

f(~x, 0) = g(~x)

f(~x, Si(y)) = hi(~x, y, f(~x, y)) (i = 0, 1; i 6= 0 if y = 0)

provided that f(~x, y) ≤ k(~x, y) for all ~x, y.

See Rose [8] for a proof that this rule again defines polytime functions.

2 The results described in the first two sections are part of the author’s disserta-
tion [1].

3

The function f is defined from functions g, h and polynomials
p and q by limited recursion if the following holds:
Let the function τ be defined as

τ(~x, 0) = g(~x)

τ(~x, S(y)) = h(~x, y, τ(~x, y)).

Then let
f(~x) = τ(~x, p(|~x|))

provided that |τ(~x, y)| ≤ q(|~x|) for all ~x and y ≤ p(|~x|)).

See Buss [2] for a proof that this rule again defines polytime functions.

We sometimes use a dyadic notation of the natural numbers: let ij ∈ {0, 1}
for j ≤ k, then we define

(ik . . . i0)2
··=

k∑

j=0

ij · 2
j.

We write (s.ik . . . i0)2 for s · 2k+1 + (ik . . . i0)2 .

Let 〈. . .〉 be a feasible Gödel numbering of sequences as defined in [2] p. 8
with the change that we do not reverse the order of the bits. The following
equations define such a coding. First we define a function s * a for s, a ∈ ω by
limited recursion on the notation of a. This function adds the value a to the
sequence s.

s * 0 = (s.0010)2 = 16 · s + 2

s * 1 = (s.0011)2 = 16 · s + 3

s * (a.i)2 = ((s * a).1i)2 = 4 · (s * a) + 2 + i, (i = 0, 1 and a 6= 0).

The Gödel numbers are inductively given by

〈〉 = 0

〈a1, . . . , ak, ak+1〉 = 〈a1, . . . , ak〉 * ak+1.

Let Seq be the polytime set of all Gödel numbers.

How does feasible Gödel numbering work? The Gödel number for the se-
quence a1, . . . , ak is constructed as follows. First we write the ai’s in binary no-
tation so that we obtain a string of 0’s, 1’s and commas. Then we replace each 0
by ”10”, each 1 by ”11” and each comma by ”00”. The resulting string of zeros
and ones is the binary representation of the Gödel number 〈a1, . . . , ak〉. For
example the Gödel number of 3, 4, 5 is (11110011101000111011)2 or 997.947.
〈〉 is defined to be 0.

4

In the following we introduce some polytime functions which manipulate
Gödel numbers (cf. [2]).

〈a1, . . . , ak〉 ** 〈b1, . . . , bl〉 = 〈a1, . . . , ak, b1, . . . , bl〉

β(0, 〈a1, . . . , ak〉) = k

lh(〈a1, . . . , ak〉) = k

β(i, 〈a1, . . . , ak〉) = ai, for 1 ≤ i ≤ k

SqBd(k, l) = (k # S1(S1(l)))
2.

SqBd has the property

∀a1, . . . , ak≤l

(
〈a1, . . . , ak〉 ≤ SqBd(2k, l)

)
.

In the sequel we will use limited recursion (on notation) to define polytime
functions. In doing so we often use lh(s) to bound recursion. This is allowed
since lh(s) ≤ |s|.

In the following sections we need – beside limited recursion (on notation) –
a rule which is similar to course-of-value recursion, and generates polytime
functions. The usual course-of-values recursion is equivalent to primitive re-
cursion. Thus, in general, polytime functions are not closed under this rule.
Another, more technical, aspect is that λn.〈0, 1, . . . , n − 1〉 growths exponen-
tially. Therefore, one requirement of limited course-of-values recursion is that
the course is given by a polytime function.

In the following let s ⊏ t mean that s, t are Gödel numbers and s is a
subsequence of t, i.e., if lh(s) = k and t = 〈t0, . . . , tl−1〉 then k ≤ l and

∃i0, . . . , ik−1

(
i0 < . . . < ik−1 < l and s = 〈ti0 , . . . , tik−1

〉
)
.

Definition 1.1 An unary function course is a course-function if it satisfies

course(s) ⊏ 〈0, . . . , s − 1〉

and

course(s) = 〈s0, . . . , sk−1〉 ⇒ ∀i<k

(
course(si) ⊏ 〈s0, . . . , si−1〉

)
.

The course-of-values of a function f according to course is defined by

f course(s) ··= 〈f(s0), . . . , f(sk−1)〉

provided that course(s) = 〈s0, . . . , sk−1〉.

If f and course are polytime then also f course is polytime. This can be seen,
using limited recursion, by a similar argument as in the following theorem.

5

Theorem 1.2 (limited course-of-values recursion)
Let course be a course-function. Given a function g there exists a uniquely
defined function f solving

f(s) = g(s, f course(s)).

If in addition course and g are polytime and there exists another polytime
function h satisfying

f(s) ≤ h(s)

then this f is polytime, too.

Proof: Existence and uniqueness are proved as usual. For the second part of
the theorem we define the function

select(〈a0, . . . , ak−1〉, 〈ai1 , . . . , air〉, 〈b0, . . . , bl−1〉) ··= 〈bi1 , . . . , bir〉

for an increasing sequence 〈a0, . . . , ak−1〉, i1 < . . . < ir < min(k, l). Using
functions

b(x) ··=

〈α, β, γ, δ * c〉 : x = 〈α * a, β * a, γ * c, δ〉

〈α, β * b, γ, δ〉 : x = 〈α * a, β * b, γ * c, δ〉 and a 6= b

x : otherwise

and

r(〈a1, . . . , ak〉) ··= 〈ak, . . . , a1〉

select(α, β, s) ··= β(4, b(lh(α))(〈r(α), r(β), r(s), 〈〉〉)) ≤ s

we observe that select is polytime by limited recursion. Here b(x)(a) is the
x-fold iteration of λn.b(n) applied to a.

In order to prove the assertion it suffices to show that f course is polytime.
Let t = course(s) = 〈b0, . . . , bl−1〉. We define a polytime function φ̃(t, i) =
〈f(b0), . . . , f(bi−1)〉. To this end we observe for i < l

f(bi) = g(bi, f
course(bi)) = g(bi, select(t, course(bi), φ̃(t, i))).

So we define

φ̃(t, 0) ··= 〈〉

φ̃(t, i + 1) ··= φ̃(t, i) * g(β(i + 1, t), select(t, course(β(i + 1, t)), φ̃(t, i)))

φ(t) ··= φ̃(t, lh(t)) ≤ hcourse(t)

f course(s) ··= φ(course(s)).

By limited recursion f course is polytime. ¤

6

2 Exponential notations for natural numbers

We start this section by coding natural numbers as formal trees over the
alphabet consisting only of the two bracket symbols [,], and predicates and
functions on them. We discuss how these formal predicates and functions can
be seen as “real” predicates and functions, i.e. predicates and functions on the
natural numbers. Finally we apply the closure properties from the previous
section showing that most of the “real” predicates and functions are polytime.

We define

0̂ ··= []

2̌α1+̌ . . . +̌2̌αk ··= [α1, . . . , αk].

The intended meaning of these terms becomes clear from the evaluation func-
tion which is given by

Φ(0̂) = 0

Φ(2̌α1+̌ . . . +̌2̌αk) = 2Φ(α1) + . . . + 2Φ(αk).

Now we define the predicates E , ≺ and the functions ΦE , TE by the following:

α ∈ E ⇔ α = 0̂ or there are α1, . . . , αk ∈ E with
α = 2̌α1+̌ . . . +̌2̌αk and Φ(αk) < . . . < Φ(α1);

α ≺ β ⇔ α, β ∈ E and Φ(α) < Φ(β);

ΦE ··= Φ ↾ E , the restriction of Φ to E ;

TE ··= ΦE
−1 , the inverse function to Φ.

E will be called the set of exponential notations. In the sequel we use small
Greek letters representing exponential notations.

We define the functions +̂, d̂bl and êxp on E by:

α +̂ β ··= TE(ΦE(α) + ΦE(β))

d̂bl(α) ··= TE(2 · ΦE(α))

êxp(α) ··= TE(2
ΦE (α)).

We observe that the desired exponentiation function on E , êxp, can be written
simply as λα.[α].

There are several possibilities of coding syntax. Of course one has to use a
feasible sequence coding in order to obtain E , ≺, +̂, d̂bl, êxp, TE as polytime
predicates and functions. But even if we fix such one, as we did in the last

7

section, we still have the choice between a flat or unflat coding of trees. On
the one hand a flat coding cf would look like

cf([a1, . . . , ak]) ··= 〈[〉 ** cf(a1) ** . . . ** cf(ak) ** 〈]〉,

where brackets [,] on the right side of the equation sign are identified with
suitable Gödel numbers. On the other hand an unflat coding cuf is obtained
by

cuf([a1, . . . , ak]) ··= 〈cuf(a1), . . . , cuf(ak)〉.

The unflat coding usually is less efficient than the flat one, but more feasible,
as for example the depth of the tree t is bounded by ||t|| in case of the unflat
coding. This is not true in case of the flat coding.

Comparing different kinds of codings one gets the impression that one should
consider under all possible feasible codings the most uneffective one which
is still good enough for one’s purpose, e.g. proving Gödel’s incompleteness
results for weak theories of arithmetic. Here in this article we will therefore
restrict ourselves to the unflat coding of syntax. The author conjectures that
the same Gödel’s incompleteness results as in [2] can also be achieved with
this kind of unflat coding.

Using cuf we can view E , ≺, +̂, d̂bl, êxp, ΦE and TE as predicates and functions
on natural numbers. We are going to show that all of them but ΦE are polytime.
This is easy for êxp, which can be written as λα.〈α〉. The reason why ΦE cannot
be polytime is simply the following: Let

fi(n) ··= êxp(. . . êxp︸ ︷︷ ︸
i-times

(TE(n)) . . .)

then we compute

ΦE(fi(n)) = 2
...
2n

}
i-times.

After having seen that TE is polytime this shows that ΦE cannot be polytime.

We need some special course functions which compute certain subsequences
of exponential notations. They are needed in the definition of E , ≺, +̂, d̂bl,
êxp and TE . We start defining

sort(〈a1, . . . , ak〉) ··= 〈b1, . . . , bl〉

where {a1, . . . , ak} = {b1, . . . , bl} and b1 < . . . < bl. sort can be computed
using one of the commonly known sorting algorithms, e.g., one which runs
in time O(n2) sorting n objects. Thus, sort(s) is computable in time O(|s|2),
hence polytime.

8

Now we define

U(〈〈a1 1, . . . , a1 i1〉, . . . , 〈ak 1, . . . , ak ik〉〉) ··= 〈b1, . . . , bl〉

where b1 < . . . < bl and

{b1, . . . , bl} = {a1 1, . . . , a1 i1 , . . . , ak 1, . . . , ak ik}.

The following equations may be used to observe that U is polytime. Let s =
〈s0, . . . , sk−1〉.

f(〈s0, . . . , sk−1〉) ··= s0 ** . . . ** sk−1 ≤ SqBd(s, s)

U(s) ··= sort(f(s)).

By limited recursion f is polytime, thus also U. We use these functions to
see that the transitive closure 3 of a sequence can be computed by a polytime
function. To this end, we observe that U|s|(s) = 〈〉, and we define

g(s) ··= s ** U(s) ** U(U(s)) ** . . . ** U|s|(s) ≤ SqBd(s # s, s)

then g is polytime by limited recursion. Hence

tc(s) ··= sort(g(s))

is polytime and computes the transitive closure of s. By construction tc is a
course function.

We need a similar course-function for pairs of sequences.
Let tc2(〈s, t〉) = 〈c1, . . . , ck〉 with c1 < . . . < ck and

{c1, . . . , ck} = {〈di, ej〉 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

where tc(s) = 〈d1, . . . , dm〉 and tc(t) = 〈e1, . . . , en〉. The following equations
are used to observe that tc2 is polytime. Let s = 〈s0, . . . , sk−1〉 and let t =
〈t0, . . . , tl−1〉.

f(〈s0, . . . , sk−1〉, a) ··= 〈〈s0, a〉, . . . , 〈sk−1, a〉〉 ≤ SqBd(s, s * a)

X(s, 〈t0, . . . , tl−1〉) ··= f(s, t0) ** . . . ** f(s, tl−1) ≤ SqBd(s # t, s ** t)

tc2(〈s, t〉) ··= sort(X(tc(s), tc(t))).

By limited recursion both f and X are polytime. Thus, also tc2 is polytime.
By construction tc2 is a course function.

3 The transitive closure is generated using the obvious element relation on sequences
which is given by ai is an element of 〈a1, . . . , ak〉, 0 < i ≤ k.

9

We use tc2 to show that E and ≺ are polytime.

α ∈ E ⇔ α = 2̌α1+̌ . . . +̌2̌αk with α1, . . . , αk ∈ E and αk ≺ . . . ≺ α1.

α ≺ β ⇔ α, β ∈ E , α = 2̌α1+̌ . . . +̌2̌αk , β = 2̌β1+̌ . . . +̌2̌βl and

∃i<l (i ≤ k, α1 = β1, . . . , αi = βi and (i = k or αi+1 ≺ βi+1)).

We cannot apply Theorem 1.2 directly to this simultaneous definition because
if we try to compute 0̂ ≺ 2̌β1+̌2̌β2 =·· β we need β ∈ E and for this β2 ≺ β1.
But 〈β2, β1〉 does not occur in tc2(〈0̂, β〉). Surely it is possible to change the
definition of tc2 to overcome this lack, as 〈β2, β1〉 < 〈0̂, β〉. But there is another
possibility to show that E and ≺ are polytime which uses Theorem 1.2 and
tc2. We define a more general relation ≺′. We obtain ≺′ by replacing E by
Seq (the set of all Gödel numbers) in the definition of ≺. Let χ≺′ be the
characteristic function of ≺′, i.e.,

χ≺′(α, β) =

1 : α ≺′ β

0 : otherwise,

and let h(〈α, β〉) ··= χ≺′(α, β). Rewriting the definition of ≺′ we obtain a
polytime function g satisfying

h(〈α, β〉) = g

(
〈α, β〉, htc2(〈α, β〉)

)
≤ 1,

therefore, Theorem 1.2 yields that h is polytime, thus also χ≺′ and hence ≺′

are polytime. Now we define

α ∈ E ⇔ Seq(α) and

∀i < lh(α)
[
β(i + 1, α) ∈ E and (i > 0 → β(i + 1, α) ≺′ β(i, α))

]

α ≺ β ⇔ α ∈ E and β ∈ E and α ≺′ β.

Using Theorem 1.2 with tc we obtain that E is polytime. Therefore, also ≺ is
polytime.

Before we can define +̂ on the exponential notations we need a successor
function Ŝ on them. To compute the successor of an exponential notation we
need an auxiliary function F to manage carries. Therefore, we simultaneously
define for α = 2̌α1+̌ . . . +̌2̌αk ∈ E

F (α) ··= µi ≤ k.

(
i > 0 and ∀j<k (j ≥ i → αj = Ŝ(αj+1))

)

Ŝ(α) ··=

2̌α1+̌ . . . +̌2̌αi−1+̌2̌Ŝ αi : αk = 0̂ and i ··= F (α)

2̌α1+̌ . . . +̌2̌αk+̌2̌0̂ : otherwise.

10

Clearly F (α) ≤ k = lh(α) and after proving | Ŝ(α)| ≤ |α * 0̂| we can use
Theorem 1.2 together with tc to see that both functions are polytime.

Lemma 2.1 | Ŝ(α)| ≤ |α * 0̂| ≤ |α| + 4.

Proof: Remember the definition

s * 0 = (s.0010)2 = 16 · s + 2,

s * 1 = (s.0011)2 = 16 · s + 3,

s * (a.i)2 = ((s * a).1i)2 = 4 · (s * a) + 2 + i, (i = 0, 1 and a 6= 0)

and
〈a1, . . . , ak, ak+1〉 = 〈a1, . . . , ak〉 * ak+1.

First we compute some constant notations and some binary lengths. Let a =
(a1 . . . ak)2 .

0̂ = (0)2 = 0

Ŝ(0̂) = (10)2 = 2

s 6= 0 ⇒ |s * 0| = | (s.0010)2 | = |s| + 4

a 6= 0 ⇒ |s * a| = | (s.001a11a2 . . . 1ak)2 | = | (s.00)2 | + 2 · |a|

=

2 · |a| : s = 0

|s| + 2 + 2 · |a| : s 6= 0.

We prove the assertion by induction on α = 2̌α1+̌ . . . +̌2̌αk = 〈α1, . . . , αk〉.

If k = 0, then α = 0̂, hence Ŝ(0̂) = 2̌0̂ = 0̂ * 0̂. If k > 0 and αk 6= 0̂, then
Ŝ(α) = 〈α1, . . . , αk, 0̂〉 = α * 0̂. If k > 0 and αk = 0̂, then let i ··= F (α). We
have to distinguish the following cases. Let β ··= 〈α1, . . . , αi−1〉.
If i = k then we observe α = β * 0̂ and

Ŝ(α) = β * Ŝ(0̂) = β * (10)2 = (β.001110)2 .

On the other hand we see

α * 0̂ = (β * 0̂) * 0̂ = (β.00100010)2 > Ŝ(α).

If i < k then we find α = β ** 〈αi, . . . , αk〉. Observe that ΦE(αj) = k − j for
j = i, . . . , k, hence αi 6= 0. Now the induction hypothesis produces

| Ŝ(αi)| ≤ |αi * 0̂|. (1)

This leads to

| Ŝ(α)| = |β * Ŝ(αi)| = | (β.00)2 | + 2 · | Ŝ(αi)|
(1)

≤ | (β.00)2 | + 2 · |αi * 0̂|

= | (β.00)2 | + 2 · (|αi| + 4) = | (β.00)2 | + 2 · |αi| + 8

11

and

|α * 0̂| = |(β ** 〈αi, . . . , αk〉) * 0̂| ≥ |β ** 〈αi, 0̂, 0̂〉| = |((β * αi) * 0̂) * 0̂|

= |β * αi| + 8 = | (β.00)2 | + 2 · |αi| + 8.

These two estimations together show | Ŝ(α)| ≤ |α * 0̂|. ¤

We define the preaddition pa which computes α +̂ 2̌β by

pa(α, β) ··=

2̌α1+̌ . . . +̌2̌αk+̌2̌β : k = 0 or β ≺ αk

2̌α1+̌ . . . +̌2̌αi−1+̌2̌Ŝ(αi) : αk = β and i ··= F (α)

pa
(
2̌α1+̌ . . . +̌2̌αk−1 , β

)
* αk : αk ≺ β

where α = 2̌α1+̌ . . . +̌2̌αk . In the next lemma we will see that pa is polynomially
bounded. Therefore, we can apply Theorem 1.2 together with the following
polytime course function initseq to observe that pa is polytime.

initseq(〈a1, . . . , ak〉) ··= 〈〈〉, 〈a1〉, . . . , 〈a1, . . . , ak−1〉〉.

Lemma 2.2 | pa(α, β)| ≤ |α| + 2 · |β| + 8.

Proof: We use induction on α = 2̌α1+̌ . . . +̌2̌αk . If k = 0 or β ≺ αk, then

| pa(α, β)| = |α * β| ≤ |α| + 2 + 2 · |β|.

If αk = β then let i ··= F (α) and observe using γ ··= 2̌α1+̌ . . . +̌2̌αi−1

| pa(α, β)| = |γ * Ŝ(αi)| ≤ | (γ.00)2 | + 2 · (|αi| + 4)

= | (γ.00)2 | + 2 · |αi| + 8 = |γ * αi| + 8 ≤ |α| + 8.

Otherwise, the induction hypothesis (i.h.) shows

| pa(α, β)| = | pa(2̌α1+̌ . . . +̌2̌αk−1 , β) * αk|

= | pa(2̌α1+̌ . . . +̌2̌αk−1 , β)| + 2 + 2 · max(|αk|, 1)
i.h.

≤ |2̌α1+̌ . . . +̌2̌αk−1| + 2 · |β| + 8 + 2 + 2 · max(|αk|, 1)

= |α| + 2 · |β| + 8.

¤

Now we are able to define by limited recursion

α +̂(2̌β1+̌ . . . +̌2̌βl) ··= pa(. . . pa(α, β1) . . . , βl)

12

which is limited because

|α +̂ β| = | pa(. . . pa(α, β1) . . . , βl)| ≤ |α| + 2 · |β1| + 8 + . . . + 2 · |βl| + 8

≤ |α| + |β| + 8 · l ≤ |α| + 9 · |β|.

Therefore, +̂ is polytime.

Now we show that d̂bl is polytime. We define by limited recursion on α =
2̌α1+̌ . . . +̌2̌αk

d̂bl(α) ··= 2̌Ŝ(α1)+̌ . . . +̌2̌Ŝ(αk)

and compute

| d̂bl(α)| = 2 · | Ŝ(α1)| + 2 + . . . + 2 + 2 · | Ŝ(αk)|

≤ 2 · (|α1| + 4) + 2 + . . . + 2 + 2 · (|αk| + 4)

= |α| + 8 · k ≤ 9 · |α|.

Hence d̂bl is polytime.

Finally we want to observe that

TE(n) = ΦE
−1(n) = ”the unique α ∈ E with ΦE(α) = n”

is polytime. Using d̂bl we define, this time by limited recursion on notation,

TE(0) ··= 0̂

TE((n.i)2) ··=

d̂bl(TE(n)) : i = 0

Ŝ(d̂bl(TE(n))) : i = 1.

With the next lemma we obtain that TE is polytime.

Lemma 2.3 |TE(n)| ≤ 8 · |n|2.

Proof: We use induction on n. If n = 0, then |TE(0)| = |0̂| = 0 = 8 · |0|2. If
n = 1, then |TE(1)| = | Ŝ(0̂)| = |2| = 2 ≤ 8 · |1|2. For the induction step we
consider (n.i)2 with i = 0, 1 and n ≥ 1. In general we have lh(α) ≤ |ΦE(α)|,
hence lh(TE(n)) ≤ |n|. Now we estimate

|TE((n.i)2)| ≤ | Ŝ(d̂bl(TE(n)))| ≤ | d̂bl(TE(n))| + 4

≤ |TE(n)| + 8 · lh(TE(n)) + 4 ≤ |TE(n)| + 8 · |n| + 4
i.h.

≤ 8 · |n|2 + 8 · |n| + 4 ≤ 8 · (|n| + 1)2 = 8 · | (n.i)2 |
2
.

¤

Altogether we have seen that the predicates E ,≺ and the functions +̂, d̂bl,
êxp and TE are polytime.

13

We close this section by proving that the predecessor function on the expo-
nential notations

P̂(α) ··=

0̂ : α = 0̂

β : for that β with β +̂ Ŝ(0̂) = α

is not a polytime function.

Proposition 2.4 P̂ is not polynomially bounded.

Proof: Obviously | êxp(TE(n))| > 1 for n > 0, hence

| P̂(êxp(TE(n)))| = |TE(2
n − 1)| = |TE(2

n−1 + . . . + 20)| ≥ 2 · n ≥ 2|n|.

Thus P̂ cannot be polynomially bounded, because êxp and TE are so as poly-
time functions. ¤

3 A polytime valuation function

In the previous section we defined interpretations f̂ for f ∈ {0, S, +, dbl, exp}
as functions on exponential notations. This can be extended inductively in the
obviously way to arbitrary terms in the language {0, S, +, dbl, exp}:

t = ft1 . . . tk ⇒ t̂ = f̂ t̂1 . . . t̂k.

In the following we identify formal terms and their Gödelizations. Thus λt.t̂

can be seen as a function going from Gödel numbers of terms onto exponen-
tial notations. We will show that λt.t̂ is a polytime function. As a corollary
we obtain that feasible arithmetic, i.e. Buss’ system S1

2 of bounded arith-
metic, can prove the consistency of the equational theory for the language
{0, S, +, dbl, exp} involving only equations between closed terms, which is ax-
iomatized by the recursive definitions of the function symbols.

We assume the same kind of unflat coding of syntax as in the definition of
the exponential notations. With tdp(t) we indicate the term depth of t, which
is inductively given for t = ft1 . . . tk by tdp(t) = 0 if k = 0, and tdp(t) =
1 + maxi tdp(ti) otherwise.

Lemma 3.1 tdp(t) ≤ ||t||.

Proof: Let t = ft1 . . . tk. If k = 0 the assertion is obvious. Otherwise |t| =
|〈f, t1, . . . , tk〉| ≥ 2 · maxi |ti| as |〈a1, . . . , ak〉| ≥ 2 · |aj| for all j = 1, . . . , k.

14

Hence ||t|| ≥ 1 + maxi ||ti||
i.h.

≥ 1 + maxi tdp(ti) = tdp(t). ¤

In the previous section we have computed

|0̂| = 0 | Ŝ(α)| ≤ |α| + 4

| d̂bl(α)| ≤ 9 · |α| |α +̂ β| ≤ |α| + 9 · |β|

| êxp(α)| ≤ 2 · |α|

hence |f̂(~α)| ≤ c · max1 |~α| with c = 10 and max1(~a) = max{~a, 1}.

Lemma 3.2 |t̂| ≤ ctdp(t).

Proof: Let t = ft1 . . . tk. If k = 0 the assertion is obvious. Otherwise

|t̂| ≤ c · max
i

1|t̂i|
i.h.

≤ c · max
i

1ctdp(ti) ≤ c1+maxi tdp(ti) = ctdp(t).

¤

Using the last two Lemmas we obtain (for t > 1)

|t̂| ≤ ctdp(t) ≤ c||t|| ≤ |t|2·|c| < |t|2
1+||c||

≤ |T1+||c||(t)|

where T0(x) = x, Tc+1(x) = Tc(x) # Tc(x), thus |Tc(x)| ≥ |x|2
c

. As ||10|| = 3
we have t̂ < T4(t). Thus λt.t̂ is polytime by course-of-value recursion (Theorem
1.2) using the course function tc from the previous section.

The canonical equational theory EqT for {0, S, +, dbl, exp} consists of equa-
tions between closed terms, which are inductively defined by instances of the
recursive definition of +, dbl, exp given by

x + 0 = x x + S y = S(x + y)

dbl(0) = 0 dbl(Sx) = S S dbl(x)

exp(0) = S 0 exp(Sx) = dbl(exp(x))

the definition of equality as an equivalence relation, and the compatibility of
equality with the function symbols.

Given an EqT proof P of some (closed) equation s = t we will show by
induction on the length of the proof P that the interpretation ˆ makes every
equation in P valid, hence ŝ = t̂. Hence EqT is consistent in the sense that
0 = S 0 is not derivable in EqT , as 0̂ 6= Ŝ 0̂.

15

If an arbitrary equational theory EqT ′ for our language for exponentiation is
true in the standard model then all instances of axioms from EqT ′ remain valid
under the interpretation .̂ But we need in addition that this can also be seen
inside S1

2 . We will sketch below that this is indeed the case for our canonical
axiomatization EqT – any non-pathological axiomatization would have this
property, too, but would require a new proof inside S1

2 . From this the induction
step for proving the validity under the interpretation ˆ is obviously as also
the “real” equality on the exponential notations (inside S1

2) is an equivalence
relation and compatible with the function symbols. This proof formalizes in
S1

2 , because t 7→ t̂ is polynomially bounded.

We now sketch how to prove the validity of the axioms of EqT inside S1
2 . We

start by stating some properties. Let n̂ be the exponential notation TE(n) for

the natural number n, hence Ŝ 0̂ = 2̌0̂ = 1̂ is provable in S1
2 .

Proposition 3.3 (S1
2)

(1) ≺ fulfills trichotomy.
(2) γ +̂ 1̂ = Ŝ γ.

(3) (γ +̂ 2̌n̂) +̂ 2̌n̂ = γ +̂ 2̌n̂+1

(4) Ŝ(γ +̂(2̌n̂−1+̌ . . . +̌2̌0̂)) = γ +̂ 2̌n̂ ¤

Now it is easy to show the validity of the addition axioms.

Lemma 3.4 (S1
2) α +̂ 0̂ = α and α +̂ Ŝ β = Ŝ(α +̂ β).

Proof: The first equality is immediately from the definition of +̂ and 0̂. For
the second one let β be of the form 2̌β1+̌ . . . +̌2̌βk .

If k = 0 or βk 6= 0̂ then Ŝ β = 2̌β1+̌ . . . +̌2̌βk+̌2̌0̂ and

α +̂ Ŝ β
(∗)
= (α +̂ β) +̂ 1̂

3.3.2
= Ŝ(α +̂ β)

where (∗) simply uses the definition of +̂.

Otherwise βk = 0̂. Let i := F (β), then β has the form

2̌β1+̌ . . . +̌2̌βi−1+̌2̌n̂+̌ . . . +̌2̌0̂

for n := k − i, and n̂ + 1 = Ŝ n̂ ≺ βi−1 if i > 1. Thus

Ŝ β = 2̌β1+̌ . . . +̌2̌βi−1+̌2̌n̂+1.

On the other hand we compute

16

Ŝ(α +̂ β)
(∗)
= Ŝ

(
(α +̂(2̌β1+̌ . . . +̌2̌βi−1)) +̂(2̌n̂+̌ . . . +̌2̌0̂)

)

3.3.4
= (α +̂(2̌β1+̌ . . . +̌2̌βi−1)) +̂ 2̌n̂+1

(∗)
= α +̂(2̌β1+̌ . . . +̌2̌βi−1+̌2̌n̂+1) = α +̂ Ŝ β.

where (∗) again uses the definition of +̂. ¤

The validity of dbl and exp under the interpretation ˆ is more or less straight-
forward.

Lemma 3.5 (S1
2) d̂bl(0̂) = 0̂ and d̂bl(Ŝ α) = Ŝ Ŝ d̂bl(α).

Proof: The first equation is again immediately from the definitions. For the
second one let α be of the form 2̌α1+̌ . . . +̌2̌αk .

If k = 0 or αk 6= 0̂ then Ŝ α = 2̌α1+̌ . . . +̌2̌αk+̌2̌0̂, hence

d̂bl(Ŝ α) = 2̌Ŝ α1+̌ . . . +̌2̌Ŝ αk+̌2̌1̂.

On the other hand d̂bl(α) = 2̌Ŝ α1+̌ . . . +̌2̌Ŝ αk with 1̂ ≺ Ŝ αk if k > 0, hence

Ŝ Ŝ d̂bl(α) = Ŝ(2̌Ŝ α1+̌ . . . +̌2̌Ŝ αk+̌2̌0̂) = d̂bl(Ŝ α).

Otherwise αk = 0̂. Let i be F (α), hence Ŝ α = 2̌α1+̌ . . . +̌2̌αi−1+̌2̌Ŝ αi . Now we

compute d̂bl(Ŝ α) = 2̌Ŝ α1+̌ . . . +̌2̌Ŝ αi−1+̌2̌Ŝ Ŝ αi . On the other hand dbl(α) =

2̌Ŝ α1+̌ . . . +̌2̌Ŝ αi−1+̌ . . . +̌2̌Ŝ 0̂, hence

Ŝ d̂bl(α) = 2̌Ŝ α1+̌ . . . +̌2̌Ŝ αi−1+̌2̌Ŝ αi+̌ . . . +̌2̌Ŝ 0̂+̌2̌0̂

and F (Ŝ d̂bl(α)) = i. Thus Ŝ Ŝ d̂bl(α) = 2̌Ŝ α1+̌ . . . +̌2̌Ŝ αi−1+̌2̌Ŝ Ŝ αi = d̂bl(Ŝ α).
¤

Lemma 3.6 (S1
2) êxp(0̂) = 1̂ and êxp(Ŝ α) = d̂bl(êxp(α)).

Proof: Let us remind êxp(α) = 〈α〉 = 2̌α. We compute êxp(0̂) = 2̌0̂ = 1̂ and

êxp(Ŝ α) = 2̌Ŝ α = d̂bl(2̌α) = d̂bl(êxp(α)). ¤

Altogether we have shown the following

Corollary 3.7 S1
2 proves the consistency of the canonical equational theory

EqT for the language {0, S, +, dbl, exp}. ¤

17

References

[1] Arnold Beckmann, Separating fragments of bounded arithmetic, PhD thesis,
WWU Münster, 1996.

[2] Sam Buss, Bounded arithmetic, volume 3 of Studies in Proof Theory, Lecture

Notes, Bibliopolis, 1986.

[3] Peter Clote and Jan Kraj́ıček, Open problems. In: Peter Clote and Jan
Kraj́ıček, editors, Arithmetic, proof theory, and computational complexity, pages
1–9, Papers from the conference held in Prague, July 2–5, 1991, Oxford Logic
Guides 23, New York, 1993.

[4] A. Cobham, The intrinsic computational difficulty of functions. In: Yehoshua
Bar-Hillel, editor, Logic, Methodology and Philosophy of Science, pages 24–30,
Amsterdam, North-Holland Publishing Company, 1965.

[5] Petr Hajek and Pavel Pudlák, Metamathematics of First-Order Arithmetic.
Perspectives in Mathematical Logic, Springer-Verlag, 1993.

[6] Jan Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity

Theory. Cambridge University Press, Heidelberg/New York, 1995.

[7] Wolfram Pohlers, Proof Theory. An Introduction. Number 1407 in Lecture
Notes in Mathematics. Springer-Verlag, Berlin/Heidelberg/New York, 1989.

[8] Harvey E. Rose, Subrecursion. Functions and hierarchies, Oxford Logic Guides,
Oxford, 1984.

[9] Gaisi Takeuti, Sharply bounded arithmetic and the function a − 1. In:
Wilfried Sieg, editor, Logic and Computation, pages 281–288, number 106
in Contemporary Mathematics, Providence, American Mathematical Society,
1990.

18

