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Abstract

This paper proves exponential separations between depth d -LK
and depth (d + 1

2 )-LK for every d ∈ 1
2N utilizing the order induction

principle. As a consequence, we obtain an exponential separation
between depth d -LK and depth (d+1)-LK for d ∈ N . We investigate
the relationship between the sequence-size, tree-size and height of
depth d -LK-derivations for d ∈ 1

2N , and describe transformations
between them.

We define a general method to lift principles requiring exponential
tree-size (d + 1

2 )-LK-refutations for d ∈ N to principles requiring
exponential sequence-size d -LK-refutations, which will be described
for the Ramsey principle and d = 0. From this we also deduce width
lower bounds for resolution refutations of the Ramsey principle.

Constant-depth propositional proof systems have been extensively stud-
ied because of their connection with the complexity of constant-depth circuits
and fragments of bounded arithmetic (c.f. [2, 10, 14, 15, 17]). Kraj́ıček [10]
defined an alternative notion of constant-depth proofs: a formula is defined
to have Σ-depth d iff if is depth d+1 and the bottommost level of connectives
have fanin ≤ log S , where S is a size parameter. A proof is defined to have
Σ-depth d provided every formula in the proof has Σ-depth d where S is
the size of the proof.
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It is common to unify the notions of depth and Σ-depth by defining
Σ-depth d to be the same as depth d + 0.5 (c.f. [16]). Formally, we do this
by defining a notion of Θ-depth; letting Θ-depth d formulas be the same as
depth-d formulas, whereas, Θ-depth d + 1

2 will be defined to be the same
as Σ-depth d formulas. This will define the notions of “Θ-depth d” for all
half-integers d , i.e., all d ∈ 1

2N = {0, 1
2 , 1, 11

2 , . . .} . Since “Θ-depth d” and
“depth d” are synonymous for d ∈ N , we generally drop the modifier “Θ-”
and just speak of “depth d” for d ∈ 1

2N .

Θ-depth 0 ⊂ Θ-depth 1
2

⊂ Θ-depth 1 ⊂ Θ-depth 11
2
⊂ · · ·

depth 0 ⊂ Σ-depth 0 ⊂ depth 1 ⊂ Σ-depth 1 ⊂ · · ·

= = = =

We also consider propositional proofs of (Θ-)depth d for all d ∈ 1
2N .

There are many ways to measure the complexity of these proofs. First,
the complexity of proofs can be measured by the number of symbols or
the number of lines appearing in the proof. We will define the “size” of
a proof to be the number of symbols in the proof, and the “cedent-size”
to be the number of lines or cedents in the proof. Furthermore, proofs
can be either sequence-like or tree-like. This paper studies in particular
the relationships between (quasi-)polynomial size sequence-like and tree-like
depth d proofs, and depth d proofs of (poly-)logarithmic height, for d ∈ 1

2N .
(“Height” refers to the length of the longest branch in the proof.) It is
well-known that quasipolynomial size, constant depth proofs arise when
using the Paris-Wilkie translation of bounded arithmetic to propositional
logic, see [11]. Poly-logarithmic height restricted proofs also occur naturally
in this way, c.f. [3, 4].

For sequence-like proofs, Kraj́ıček [10] gives a separation of Σ-
depth (d − 1) proofs from Σ-depth d proofs, for d ∈ N , d > 0, using
a modification of the pigeonhole principle formulated as a set of clauses of
formulas of depth d . But in terms of depth d proofs this only gives us
a separation of depth (d − 1) proofs from depth (d + 1) proofs. Now it
is possible to improve this argument of Kraj́ıček’s to give a separation of
Σ-depth (d−1) proofs from depth d proofs, or in our preferred terminology,
a separation of depth d − 1

2 proofs from depth d proofs, for 2 ≤ d ∈ N .
Here is a sketch of the proof: It only requires strengthening the upper
bound on the size of proofs of the “Sipserised” weak pigeonhole principles.
The (negations of the) weak pigeonhole principles used by Kraj́ıček have
quasipolynomial sequence-size refutations of depth 1

2 . Substituting the
Sipser functions fd,n

i,j , also called Sd,n(pi,j) in the present paper’s notation,
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gives a refutation of the “Sipserized” weak pigeonhole principle, which has
quasipolynomial sequence-size and in which every formula is either depth ≤ d
or has depth d+1 with topmost connective having fanin log nO(1) . Applying
the distributive law to the connectives at the top of the latter formulas,
transforms them into depth d formulas, still of quasipolynomial size. These
transformed cedents can be patched together to form a valid refutation of
depth d .

In this paper, we obtain an exponential separation of Θ-depth d proofs
from Θ-depth (d+ 1

2) proofs for all d ∈ 1
2N . This improves the results in [10]

in several ways: First, our separation gives exponential separations between
depth d and Σ-depth d proofs, and between Σ-depth d and depth (d + 1)
proofs. In particular, this yields an exponential separation between depth d
and depth (d + 1) proofs. Second, our exponential separation is stronger
than that of [10]; instead of an separation of exp(exp(Ω(log1/2 n))), we
obtain a separation of exp(nΩ(1)).

1 The Proof Systems

The propositional proof system LK is a variant of constant-depth Frege
proofs. Since we work in classical logic, not intuitionistic logic, we can
w.l.o.g. formalize LK as a Tait-style calculus. Formulas of LK are formed
from propositional variables p0, p1, p2, . . . , and negation, ¬ , and unbounded
fanin conjunctions and disjunctions,

∧
and

∨
.

Formulas are defined inductively as follows: atoms pi and negated
atoms ¬pi are formulas called literals. If Φ is a non-empty finite set of
formulas, then

∧
Φ and

∨
Φ are formulas. For ϕ a formula, ¬ϕ is an

abbreviation of the formula formed from ϕ by interchanging
∧

and
∨

, and
interchanging atoms and their negations. The depth, dp(ϕ), of a formula ϕ
is the maximal nesting of

∧
and

∨
in ϕ . Thus, literals have depth 0, and

dp(
∧

Φ) = dp(
∨

Φ) = 1 + maxϕ∈Φ dp(ϕ).
Each line in an LK-proof is a finite set of formulas, called a cedent.

We use capital Greek letters Γ, ∆, . . . as names for cedents. The intended
meaning of a cedent Γ is

∨
Γ. Cedents are sometimes also called clauses (in

the case of refutations). We often abuse notation by writing Γ, ϕ or Γ ∨ ϕ
instead of Γ ∪ {ϕ} , or by writing ϕ1, . . . , ϕk instead of {ϕ1, . . . , ϕk} .

Let A be an additional set of axioms, that is, A is a set of cedents.
The intended meaning of A is

∧ {∨
Γ ; Γ ∈ A} . An LK proof from the

hypotheses A has the following axioms and inference rules:

Logical Axiom: ϕ,¬ϕ
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Non-Logical Axiom: andΓ
, for Γ ∈ A∨

Γ

Γ, ϕ∨
, where ϕ ∈ Φ

Γ,
∨

Φ
Γ, ϕ for all ϕ ∈ Φ∧

Γ,
∧

Φ

ΓWeakening: , provided Γ′ ⊇ Γ
Γ′

Γ,¬ϕ Γ, ϕ
Cut: Γ

The formulas
∨

Φ and
∧

Φ in the lower cedents of the
∨

and
∧

rules are
called the principal formulas of those inferences. Note that we allow both
Γ and

∨
Γ as non-logical axioms; this is reasonable enough since they have

the same meaning. In addition, this convention simplifies the statements of
our theorems and avoids some technical problems.

An LK-derivation from A is a tree; each node in the tree is labeled with
a cedent. Cedents at leaf nodes must be logical or non-logical axioms, and
cedents at internal nodes are inferred by one of the rules of inference from
the cedents on the child nodes. We picture the tree with the root at the
bottom; if the root is labeled with the cedent Γ, the derivation is called a
derivation of Γ from A . If the last cedent is the empty cedent, then the
derivation is called an LK-refutation of A .

The complexity of derivations can be measured in five different ways:
the main distinction between the measures is by counting number of cedents
vs. number of symbols. We have three ways of counting cedents of a
derivation: by their sequence-cedent-size (number of distinct cedents), their
tree-cedent-size (number of occurrences of cedents, i.e., no cedent is used
as a hypothesis more than once), and by the height of the derivation tree.
Height is defined to equal the maximum number of cedents along any path in
the refutation. We define the sequence-size of a derivation to be the number
of symbols of the distinct cedents, and the tree-size to be the number of
symbols in all occurrences of cedents.

The constant depth LK proof systems will be defined by restricting the
depth of formulas appearing in refutations. Fix a size parameter S . It is
useful to treat

∧
i<log Sϕi and

∨
i<log Sϕi for literals ϕi as being depth 1/2.

This motivates the following definition:

Definition 1. Let S, d be in N. The classes ΘS
d and ΘS

d+0.5 are inductively
defined by the following:

1. ϕ ∈ ΘS
0 iff ϕ is a literal.

2. ϕ ∈ ΘS
0.5 iff ϕ is a literal or a

∧
or

∨
of at most log S many literals.
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3. ϕ ∈ ΘS
d+1 iff ϕ is in ΘS

d , or it has the form of a
∨

or
∧

of at most S

many formulas from ΘS
d .

For d ∈ N , it is easy to show, by induction on d , that a ΘS
d -formula has

size O(Sd), and a ΘS
d+ 1

2

-formula has size O(Sd log S). In particular, for all

d ∈ 1
2N we have that a ΘS

d -formula has size O(Sd).
Now, let d ∈ 1

2N . An LK-derivation is called a ΘS
d -LK-derivation if all

formulas in the derivation are in ΘS
d . Often we are interested in formulas

whose sizes grow polynomially or quasi-polynomially. We define Θpoly
d (resp.,

Θqp
d ) to be the set of all sequences of formulas (ϕn)n such that there is some

c ∈ N with ϕn ∈ Θnc

d (resp., ϕn ∈ Θ2logc n

d ) for all but finitely many n .
Given a bound on formula size, we can bound the size of a refutation

in terms of its cedent-size: A ΘS
d -LK-refutation of (sequence- or tree-)

cedent-size S has (sequence- or tree-, resp.) size Sd+O(1) . This is because
at most S distinct formulas can appear in the proof, so each cedent in such
a derivation contains at most S ΘS

d -formulas, each of size O(Sd).
Kraj́ıček [10] defined the Σ-depth of a derivation P of size S . In our

terms, this can be defined as the minimal d ∈ N such that every formula
in P is in ΘS

d+ 1
2

. Let us define the Θ-depth of a derivation P of size S

to be the minimal d ∈ 1
2N such that every formula in P is in ΘS

d . Thus
for d ∈ N , Σ-depth d equals Θ-depth (d + 1

2). An LK-derivation is called
a Θ-d-LK-derivation if its Θ-depth is bounded by d . When there is no
chance of confusion, we drop the “Θ-” and use “depth” or “d-LK” instead
of “Θ-depth” or “Θ-d-LK”.

Usually we are interested in asymptotic growth rates of sizes of refutations
of sequences of sets of clauses. For this, let {An}n be a family of sets of
cedents and let S : N → N . {An}n is said to be in ΘS(n)

d provided each cedent
in the set An contains only ΘS(n)

d -formulas. Further, {An}n is in Θpoly
d

(resp., Θqp
d ) provided {An}n ∈ ΘS(n)

d for some S(n) of polynomial (resp.,
quasipolynomial) growth rate, i.e., S(n) = nO(1) (resp., S(n) = 2(log n)O(1)

).
Let σ : N → N . We are generally interested in asymptotic bounds on proof
size; namely, the question of whether each set of cedents An has a ΘS(n)

d -LK
refutation of size σ(n). Often we are interested in S(n) of (quasi-)polynomial
growth rate; in this case we write: An has a Θpoly

d -LK-refutation (resp.,
Θqp

d -LK-refutation) of size σ(n). As usual, proof size may be measured in
terms of sequence-size, tree-size, or proof height, and cedent-size may be
used instead of size.

These definitions allow us to identify refutation systems, which corre-
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spond in some sense to the set of consequences of a logical theory. By a refu-
tation system we mean a collection of sequences of sets of cedents which all
have a common asymptotic provability complexity. We define {An}n ∈ Qseq

d

iff each An has a d-LK-refutation of quasi-polynomial sequence-size. Most
of the time we sloppily write An ∈ Qseq

d instead of {An}n ∈ Qseq
d . Similarly,

we define An ∈ Qtree
d (resp., An ∈ Qheight

d ) iff each An has a d-LK-refutation
of quasi-polynomial tree-size (resp., simultaneously of quasi-polynomial
tree-size and of poly-logarithmic height). Note that An ∈ Qseq

d iff each
An has a d-LK-refutation of quasi-polynomial sequence-size, and iff each
An has a Θqp

d -LK-refutation of quasi-polynomial sequence-cedent-size. Sim-
ilarly, An ∈ Qtree

d iff each An has a d-LK-refutation of quasi-polynomial
tree-size, and iff each An has a Θqp

d -LK-refutation of quasi-polynomial
tree-cedent-size.

Similar notions can be defined with respect to Θpoly
d , with the exception

of height restricted refutation systems. I.e., An ∈ Pseq
d (resp., An ∈ Ptree

d )
iff each An has a d-LK-refutation of polynomial sequence-size (resp., of
polynomial tree-size). We define An ∈ Pheight

d iff each An has a d-LK-
refutation which simultaneously has polynomial tree-size, logarithmic height
and has O(1) many formulas in each cedent. The remark on size versus
cedent-size remains true also in the polynomial case.

A refutation system R is Θqp
d -equivalent to a refutation system S iff

S ∩ Θqp
d = R ∩ Θqp

d . We denote this by R =Θqp
d

S . Similarly, R (Θqp
d

S
means that R∩ Θqp

d ( S ∩ Θqp
d . The notions Θpoly

d -equivalence and (
Θpoly

d

can be defined similarly. In these terms our main results of this paper are,
for d ∈ 1

2N ,
Qseq

d−1 =Θqp
d−1

Qtree
d =Θqp

d
Qheight

d+1

where the first equality only holds if d − 1 ≥ 0; and

Qtree
d+ 1

2

(Θqp
d

Qtree
d+1 ,

and for polynomial size refutation systems:

Pseq
d−1 =

Θpoly
d−1

Ptree
d =

Θpoly
d

Pheight
d+1

where the first equality only holds if d − 1 ≥ 0; and

Ptree
d+ 1

2

(
Θpoly

d
Ptree

d+1 .
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2 Sequence-size, tree-size and height of proofs

The next theorem summarizes the main results of this section: variants of
this theorem are already known for other versions of constant depth proof
systems. Theorem 2 is stated in terms of quasipolynomial size proofs. At
the end of this section, after Theorem 2 has been proved, we shall formulate
Theorem 10, which will be a refined version of Theorem 2 that applies to
polynomial size proofs.

Theorem 2. Let d ∈ 1
2N, and {An}n ∈ Θqp

d be a family of sets of cedents.
Then the following conditions (1) and (2) are equivalent:

(1) An has a d-LK refutation of sequence-size quasi-polynomial in n, for
all n.

(2) An has a (d + 1)-LK refutation of tree-size quasi-polynomial in n, for
all n.

Furthermore, the following conditions (3) and (4) are equivalent:

(3) An has d-LK refutation of tree-size quasi-polynomial in n, for all n.

(4) An has a (d + 1)-LK refutation which simultaneously has tree-size
quasi-polynomial in n and height poly-logarithmic in n, for all n.

Before beginning the proof of Theorem 2, we present a simple lemma
which states that bounding the height of a derivation also bounds the
tree-size and the size of cedents in the proof. This lemma is proved by
induction on the height.

Lemma 3. Assume A has an LK refutation of height bounded by η , and
the connectives of every formula in the refutation have fanin ≤ S , i.e., every
formula is in ΘS

d for some d. Then, the tree-cedent-size of this refutation
is bounded by Sη , and each cedent in this proof consists of at most η many
formulas.

Theorem 2 is proved in stages as a series of lemmas, beginning with
(1)⇒(2). Fix d ∈ 1

2N . The next lemma is due essentially to Kraj́ıček.

Lemma 4. Assume A has a Θσ
d -LK refutation R of sequence-size ≤ σ .

Then A has a Θσ
d+2 -LK refutation R′ which is simultaneously of height

log σ + O(1) and tree-size O(σ4). Furthermore, each cedent in R′ has O(1)
many formulas.
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A similar statement holds in terms of cedent-size. That is, a Θσ
d -LK

refutation of sequence-cedent-size ≤ σ can be transformed into a Θσ
d+2 -LK

refutation which simultaneously has height log σ+O(1) and tree-cedent-size
O(σ3) and has O(1) many formulas in each cedent.

Proof. We only give a sketch of the proof. A refutation of A of sequence-
size ≤ σ can be written as a sequence of cedents Γ1, . . . ,Γσ = ∅ where
each Γi is a logical axiom, a non-logical axiom Γ or

∨
Γ with Γ ∈ A , or is

formed from previous cedents Γ1, . . . ,Γi−1 by applying one of the rules of
LK. Let γi be

∧
j<i

∨
Γj . We claim that the cedent ¬γi, γi+1 has a cut-free

LK derivation from A of constant height and of size O(σ3). For example, in
the case that Γi is the cedent ∆,

∧
j<J ϕj and is derived by an

∧
-inference

from the cedents Γij = ∆, ϕj , there is a derivation

¬ϕj , ϕj

¬γ, γ
(
∨

) ¬γ,
∨

Γi γ ∈ ∆
(
∧

) ∧¬Γij ,
∨

Γi, ϕj
(
∨

) ¬γi,
∨

Γi, ϕj , j < J
(
∧

) ¬γi,
∨

Γi,
∧

j<J ϕj
(
∨

) ¬γi,
∨

Γi

¬∨
Γj ,

∨
Γj(

∨
) ¬γi,

∨
Γj , j < i

(
∧

) ¬γi, γi+1

Clearly this derivation has height O(1), the number of cedents is O(σ2),
and the total number of symbols O(σ3).

Now, application of σ − 1 many cuts to the cedents ¬γi, γi+1 gives a
Θσ

d+2 -LK refutation of A ; performing the cuts in a balanced pattern makes
the refutation have height log σ + O(1) and size O(σ4). This proves the
lemma.

Lemma 4 combined with the implication (4)⇒(3), which we prove next,
suffices to prove the implication (1)⇒(2).

The next lemma is based on Razborov [19] and Krajicek [12, §12.2].

Lemma 5. Assume
⋃A ⊂ Θσ

d and A has a Θσ
d+1 -LK refutation of tree-

cedent-size ≤ σ , where each cedent in the refutation consists of at most λ
many formulas. Then A has a Θσ

d -LK refutation of tree-cedent-size ≤ σλ+1 .

Proof. We shall give only a sketch of the idea of the proof. Each cedent Γ
in the LK refutation R is of the form Γ = Γ1 ∪Γ2 ∪Γ3 where Γ1 = Γ∩Θσ

d ,
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Γ2 = {∨j<ni
Ai,j : i < N} and Γ3 = {∧j<mi

Bi,j : i < M} . Each cedent Γ
is then replaced by the collection of cedents

Γ1 ∪ {Ai,j : i < N, j < ni} ∪ {Bi,f(i) : i < M}, (1)

for each function f such that f(i) < mi for all i < M . These cedents
are evidently all in Θσ

d ; furthermore, it is straightforward to modify the
refutation R so as to be a refutation on the cedents of the form (1). In
addition, the modified refutation is still tree-like. This gives the desired
Θσ

d -LK refutation. To bound the tree-size of the new refutation, we claim
that a single cedent Γ becomes at most σλ many cedents. This is because
M ≤ λ and since each mi ≤ σ .

Lemmas 3 and 5 together show (4)⇒(3). The implication (2)⇒(1) is a
consequence of the following lemma:

Lemma 6. Assume
⋃A ⊂ Θσ

d , and A has a Θσ
d+1 -LK refutation of

tree-size σ . Then A has a Θσ
d -LK refutation of sequence-size 3σ2 .

The proof also establishes a similar assertion about cedent-size: A Θσ
d+1 -

LK refutation of tree-cedent-size σ can be transformed into a Θσ
d -LK

refutation of sequence-cedent-size 3σ .

Proof. Kraj́ıček [10] proves this lemma with a bound of σ4 . We can argue
the stronger bound of 3σ2 as follows. As in the previous proof, each cedent Γ
in the Θσ

d+1 -LK refutation can be written in the form Γ = Γ1∪Γ2∪Γ3 with
Γ1 = Γ ∩ Θσ

d , Γ2 = {∨j<ni
Ai,j : i < N} and Γ3 = {∧j<mi

Bi,j : i < M} .
Let ∆ be the cedent ∆ = Γ1 ∪ {Ai,j : i < N, j < ni} . Also, for i < M , let
Πi be the cedent Πi = {¬Bi,j : j < mi} ; note Πi expresses the negation of∧

j<mi
Bi,j .

We claim that if Γ has a Θσ
d+1 -LK proof from the hypotheses A

with tree-cedent-size σ , then ∆ has a Θσ
d -LK proof from the hypotheses

A ∪ {Πi : i < M} with sequence-cedent-size ≤ 3σ . This claim is straight-
forward to prove by induction on σ , with the argument splitting onto
cases depending on the type of inference that derives the endcedent of the
refutation. (We leave the proof of the claim to the reader.)

We observe that each cedent in the constructed derivation has size ≤ σ ,
because each formula in the cedent occurred in the original derivation. Thus,
the sequence-size is ≤ 3σ2 .

The lemma follows from this claim by letting Γ be the empty set.
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To finish the proof of Theorem 2, we still need to establish (3)⇒(4). For
d ≥ 1, we can already deduce this from (2)⇒(1) and Lemma 4, but we also
want it for d = 0 and d = 1

2 . This is accomplished by the next two lemmas.
We temporarily use a modified version LK ′ of the Gentzen-Tait calculus.
LK ′ is the system LK augmented with the following generalized cut rule:

Γ,
∧n

i=0¬ϕi Γ, ϕ0, . . . , ϕn
G-Cut: Γ

(2)

Lemma 7. Suppose Γ,
⋃A ⊂ Θσ

d and that P is a Θσ
d -LK ′ derivation of the

cedent Γ from the hypotheses A. Also suppose the tree-size of P is ≤ σ , and
let τ equal the tree-cedent-size of P . Then there is a Θσ

d+1 -LK ′ derivation
of Γ from A which has height O(log τ) and tree-size O(σ3).

Proof. The proof is a Spira-Brent style divide-and-conquer construction, but
with some complications caused by the fact that the lines in derivations are
cedents instead of formulas. We shall prove that P can be transformed into
a derivation of height ≤ 4 log τ , by induction on τ . (The logarithm is base
two and by convention log 1 = 1.) Since τ < 4 log τ for τ ≤ 15, we may
assume τ ≥ 16.

Assume that the height of P is greater than 4 log τ . To start the divide-
and-conquer reduction of P , choose an inference I with lower cedent ∆
with the following two properties:

(a) The total number of cedents in the subderivation ending with ∆ is
> dτ/2e .

(b) Further, each hypothesis Π of I is derived with a subderivation of
tree-cedent-size ≤ dτ/2e .

We have chosen ∆ so that if the subderivation ending with I is discarded,
leaving ∆ as an initial sequent, then the resulting derivation has tree-cedent-
size ≤ τ/2.

By the induction hypothesis, each hypothesis Π to I has a proof of
height ≤ 4 log dτ/2e < 4 log τ − 3, since τ ≥ 16. By putting these proofs
together with the inference I , and applying an additional weakening with
Γ, the cedent Γ, ∆ has a derivation Q from A of height less than 4 log τ −1.

Now consider the rest of the derivation P . Discarding the subderivation
above ∆, we have a derivation of Γ from the hypotheses B = A ∪ {∆} .
By the induction hypothesis, there is a derivation R of Γ from B of height
≤ 4 log(τ/2) = 4 log τ − 4. Let ∆ be the cedent δ1, . . . , δk . We can
convert R into a derivation R′ of

∧
i¬δi, Γ from (only) the hypotheses A by

10



the following construction: First, replace the cedent ∆, which is a non-logical
axiom in R , with the derivation

δi,¬δi

∆,¬δi , i = 1, . . . , k

∆,
∧

i¬δi

(3)

Second, insert weakening inferences just below every other initial cedent Π
in R to derive

∧
i¬δi, Π, and then further add the formula

∧
i¬δi to every

cedent in R . The resulting derivation R′ has height at most two greater
than the height of R , that is, has height at most 4 log τ − 2.

Finally, combine the derivations Q and R′ with a G-Cut inference to
get the desired derivation, P ′ , of Γ from the hypotheses A . Clearly, the
resulting derivation has height < 4 log σ as desired.

Next we bound the tree-cedent-size of the proof P ′ . For this, let λ
be the maximum number of formulas in any cedent of P . Second, define
csz(P ′) to be the number of cedents in P ′ , but excluding from the count
any cedents δi,¬δi and ∆,¬δi introduced in the subderivations (3). (In
effect, by using csz , we are temporarily allowing initial sequents of the form
∆,

∧
i¬δi .) We claim that csz(P ′) < τ2 and prove this by induction on τ .

Let S be the tree-cedent-size of the derivation obtained by discarding the
subderivation above ∆, and let Si be the tree-cedent-size of the i-th premise
to I . W.l.o.g. we may assume that we have exactly three premises to I ,
because we could group premises appropriately. Then τ = S + S1 + S2 + S3

and S ≤ τ
2 and Si ≤ τ

2 for i = 1, 2, 3 by assumption. By the induction
hypothesis, csz(Q) ≤ ∑3

i=1 S2
i + 2. Also, csz(R′) < 2csz(R) ≤ 2(S2 − 1).

Thus, csz(P ′) = csz(Q) + csz(R′) + 1 ≤ 2S2 +
∑3

i=1 S2
i . In case S ≤ τ

4 we
obtain from this

csz(P ′) ≤ 2
(τ

4

)2
+ 3

(τ

2

)2
< τ2.

In the other case S > τ
4 , hence one of S1, S2, S3 must be < τ

4 , and another
< 3τ

8 , thus

csz(P ′) ≤ 2
(τ

2

)2
+

(τ

4

)2
+

(
3τ

8

)2

+
(τ

2

)2
< τ2.

To bound the actual tree-cedent-size of P ′ , note that at most τ · (2λ)
cedents in P ′ do not count to towards csz(P ′). Thus the tree-cedent-size
of P is bounded by τ2 + 2τλ = O(σ2).

Finally, it is clear from the construction, that every sequent in P ′ has
size ≤ σ . Thus, P ′ has tree-size O(σ3).
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The next lemma lets us eliminate the use of G-Cut inferences.

Lemma 8. Suppose P is a Θσ
d -LK ′ derivation of ∆ from the hypotheses A,

where
⋃A ⊂ Θσ

d−1 . Further suppose P has height η and tree-size σ . Then
there is a Θσ

d -LK derivation of ∆ from the hypotheses A, which has height
at most 2η + 3 and tree-size O(σ2).

Formulating this Lemma in terms of cedent-size would give us a derivation
of height at most 2η + 3 and tree-cedent-size O(σ2).

Proof. We sketch a proof of a strengthened form of the lemma to let the
induction run smoothly. Suppose that P is a proof from the hypotheses A
with endcedent ∆ = Γ, Φ1, . . . ,Φk , where each Φi is a cedent. Also suppose
Φ′

i ⊇ Φi , for 1 ≤ i ≤ k , and let ∆′ be the cedent Γ,
∨

Φ′
1, . . . ,

∨
Φ′

k . Let η be
the height of P and let σ bound both the tree-size of P and the size of the
sequent ∆′ . We claim there is a Θσ

d -LK proof of ∆′ from the hypotheses
A which has height at most 2η + 3 and tree-size O(σ2). The lemma follows
from this claim by letting k = 0.

The claim is proved by induction on the height of P , with the proof
splitting into cases depending on the last inference of P . All cases but
axioms and G-Cut follow immediately from the induction hypothesis and
eventually one application of (

∨
) if the derived formula is in one of the Φi ’s.

These cases (
∨

,
∧

and weakening inferences) add at most one cedent to the
height of the proof. The case of G-Cut follows immediately from induction
hypothesis and a cut, with no change to the height of the proof, because we
formulated the strengthened form of our lemma for just this purpose.

In the case of an axiom Φ such that Φ = Γ, Φ1, . . . ,Φk for Φ ∈ A , we
build the following derivations: For ϕ ∈ Γ, a single logical axiom followed
by a weakening inference gives

Γ,
∨

Φ′
1, . . . ,

∨
Φ′

k,¬ϕ.

For ϕ ∈ Φi , we derive, in height 3,
ϕ,¬ϕ∨

+ Weakening
Γ,

∨
Φ′

1, . . . ,
∨

Φ′
k,¬ϕ

Putting the derivations together with a (
∧

) gives us the following derivation
from A : ∨

Φ
Weakening

Γ,
∨

Φ′
1, . . . ,

∨
Φ′

k,
∨

Φ

.. .
... . . .∧

Γ,
∨

Φ′
1, . . . ,

∨
Φ′

k,
∧¬Φ

Cut
Γ,

∨
Φ1, . . . ,

∨
Φk

12



This is a Θσ
d -LK derivation of height 5.

In the case of an axiom ¬ϕ, ϕ , or an axiom
∨

Φ for some Φ ∈ A ,
the assertion follows by the same axiom plus at most two applications of∨

-inferences for formulas in Φi and possibly a weakening inference. This
derivation has height at most 4.

It is clear that the constructed proof has height at most 2η+3. Likewise,
the tree-size bound O(σ2) is evident from the construction.

We combine the last two Lemmas.

Corollary 9. Suppose
⋃A ⊂ Θσ

d and that A has a Θσ
d -LK refutation of

tree-size σ . Then A has a Θσ
d+1 -LK refutation of height O(log σ).

We end this section with a refined version of Theorem 2 that deals with
polynomial size instead of quasi-polynomial size.

Theorem 10. Let d ∈ 1
2N, and {An}n ∈ Θpoly

d be a family of sets of cedents.
Then the following conditions (1) and (2) are equivalent:

(1) An has a d-LK refutation of sequence-size polynomial in n, for all n.

(2) An has a (d + 1)-LK refutation of tree-size polynomial in n, for all n.

Furthermore, the following conditions (3) and (4) are equivalent:

(3) An has a d-LK refutation of tree-size polynomial in n, for all n.

(4) An has a (d + 1)-LK refutation which simultaneously has tree-size
polynomial in n, has height logarithmic in n, and has O(1) many
formulas in each cedent, for all n.

This theorem follows immediately from Lemmas 3 through Corollary 9.

3 The Ordering Principle

This section introduces the ordering principle tautologies, and their gen-
eralizations obtained by substituting Sipser functions for variables. The
ordering principle is a well-known propositional tautology; it is also the
same as the Graph Ordering Principles used by Goerdt [8], Bonet-Galesi [6]
and Segerlind et. al [21] when restricted to complete graphs. The idea of
using Sipser functions to transform hard sets of tautologies into hard sets of
depth d formulas comes from Kraj́ıček [10].

13



Let ≺ be a binary relation. The Ordering Principle OP(≺) states that
if ≺ is a transitive and irreflexive relation on the set [n] = {0, . . . , n − 1} ,
i.e., a partial ordering, then ≺ has a minimal element on [n] :∧

x∈[n]

¬x ≺ x ∧
∧

x,y,z∈[n]

(x ≺ y ∧ y ≺ z → x ≺ z) →
∨

x∈[n]

∧
y∈[n]

¬y ≺ x.

To write OP(≺) as a propositional formula, we use variables px,y to stand
for the condition x ≺ y . The negated formula ¬OP(≺) can be written as
the following set of clauses:

Mx { p0,x, . . . , pn−1,x } Minimal element clause

Ix { px,x } Irreflexive relation clause

Tx,y,z { px,y, py,z, px,z } Transitive relation clause.

Since x, y, z range over [n] , we call this set of clauses ¬OP(n).
When OP(≺) is rewritten in disjunctive normal form as a formula

involving the variables px,y , it has depth 2. Note that this depth comes
essentially from the last part of the formula, which corresponds to the
Mx clauses; furthermore, these clauses have only positive occurrences of
variables. For this reason, if we replace each variable px,y (expressing
the condition x ≺ y ) by a Sipser function of the form

∨
i∈[n] q

i
x,y , then,

after distributing out, we obtain a formula of the same depth and still of
polynomial size. More exactly, replacing px,y by

∨
i∈[n] q

i
x,y in the formula

¬OP(≺) and distributing out, we obtain∧
x∈[n]

∧
i∈[n]

qi
x,x ∧

∧
x,y,z∈[n]

∧
i1∈[n]

∧
i2∈[n]

(
qi1
x,y ∨ qi2

y,z ∨
∨

i3∈[n]

qi3
x,z

)

∧
∧

x∈[n]

∨
y∈[n]

∨
i∈[n]

qi
y,x .

This formula is designated ¬OP0(n).
¬OP0(n) can also be written as a set of clauses: For x, y, z, i, i1, i2 ∈ [n]

we obtain the clauses

Mx
⋃

y∈[n]{ q0
y,x, . . . , qn−1

y,x }
Ii,x { qi

x,x }
Ti1,i2,x,y,z { qi1

x,y, q
i2
y,z, q

0
x,z, . . . , q

n−1
x,z } .

14



The M (resp., I , T ) clauses have size n2 (resp., 1, n + 2), and there are n
(resp., n2 , n5 ) of them. Thus, ¬OP0(n) has size nO(1) .

We now define higher depth propositional principles from ¬OP 0(n) by
replacing variables by Sipser functions. Let d ∈ N . The Sipser functions of
type

∧
are defined by

S∧
d,n(σ) =

∧ ∨
. . . Qd−1 Qd pσ,y1,...,yd

y1<n y2<n yd−1<n yd<n

S∧
d+0.5,n(σ) =

∧ ∨
. . . Qd−1 Qd Qd+1 pσ,y1,...,yd,yd+1

y1<n y2<n yd−1<n yd<n yd+1<(log n)2

where each Qj is
∨

or
∧

, depending on whether d is even or odd,
respectively. The Sipser functions of type

∨
are obtained by exchanging

∧
and

∨
.

For d ∈ 1
2N , we define ¬OPd(n) by replacing the variables qi

x,y in
¬OP0(n) by S∧

d,n(x, y, i). Note that ¬OPd(n) is equivalent to ¬OP(n)
where each px,y is replaced by S∨

d+1,n(x, y). Clearly, ¬OPd(n) is a
polynomial size set of clauses of (Θ-)depth d formulas.

Lemma 11. The sets ¬OP0(n) have polynomial sequence-size 0-LK refu-
tations.

Note that for 0-refutations, there is no distinction between polynomial
size and polynomial cedent-size, since each literal may occur only once in a
given cedent.

Proof. It is already known that the ¬OP(≺) clauses have polynomial
sequence-size refutations (c.f. [21]); and it is possible to generalize these
to form refutations the “Sipser-ized” version ¬OP0(n).

However, we will sketch a different proof of the lemma, based on
Theorem 2. We shall first prove there is a polynomial tree-size log-height
refutation of ¬OP0(n). For u ∈ [n] , define the depth two formula ϕ(u) to
be ∨

x∈[u]

∧
y∈[u]

∧
i∈[n]q

i
y,x.

ϕ(u) states that there is a ≺-minimal element x in the set [u] . We claim
that each cedent ¬ϕ(u), ϕ(u + 1) has a constant-height derivation Pu from
the assumption ¬OP0(n). The derivation Pu can be informally described
as follows: Suppose ϕ(u) is true by virtue of x = x0 ∈ [u] being a minimal
element in [u] . Then, if u ⊀ x0 , x0 is also a minimal element in [u + 1].
Otherwise, if u ≺ x0 , then u is a minimal element in [u + 1], because of the
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transitivity and irreflexivity of ≺ . It is straightforward to check that Pu has
constant height and polynomial tree-size. Therefore, each cedent in Pu has
only constantly many formulas.

We now combine the derivations Pu of ¬ϕ(u), ϕ(u + 1) in a balanced
tree-like fashion with cuts. This gives a proof Q of the cedent containing
the sole formula ϕ(n), since ¬ϕ(0) is the empty (false) disjunction. By
construction, Q has height log n + O(1) and every cedent in Q has a
bounded number of formulas.

Finally, from the initial cedents
∨

y∈[n], i∈[n]q
i
x,y (which are initial cedents

because of the clauses Mx ) we use a single
∧

-inference to derive ¬ϕ(n), and
then perform a cut against the endcedent of Q to derive the empty cedent.
This gives a refutation R of ¬OP0(n). Every cedent in R has a bounded
number of formulas, R has height log n + O(1) and every formula in R is
in Θn

2 .
Applying Lemmas 5 and 6 to R , we get that ¬OP0(n) has a polynomial

tree-size depth one refutation, and a polynomial sequence-size, depth zero
refutation.

Substituting Sipser functions into the refutations shown to exist in (the
proof of) Lemma 11, gives the following bounds on proof size of the Sipser-
ized ordering principles.

Corollary 12. Let d ∈ 1
2N. The sets ¬OPd(n) have polynomial sequence-

size d-LK refutations, i.e., ΘS(n)
d -refutations of sequence-size ≤ S(n) for

some polynomial S(n).

Corollary 13. Let d ∈ 1
2N. The sets ¬OPd(n) have polynomial tree-size

(d + 1)-LK refutations, i.e., ΘS(n)
d+1 -refutations of tree-size ≤ S(n) for some

polynomial S(n).

4 Exponential lower bounds and separations

The main goal for this section will be the following

Theorem 14. Let d ∈ 1
2N and 0 < ε < 1

2 . For n sufficiently large, any
(d + 1

2)-LK refutation of ¬OPd(n) must have tree-size ≥ 2nε
.

This lower bound combined with Corollary 13 gives the desired exponen-
tial separation.
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Corollary 15. Fix d ∈ 1
2N. For all sufficiently large S , there are sets of

clauses of depth d formulas (expressing the negations of tautologies of depth
(d + 2) related to the ordering principle) which have (d + 1)-LK refutations
of tree-size ≤ S , but every (d + 1

2)-LK refutation of them requires tree-size
≥ 2SΩ(1)

.

Before we can prove Theorem 14 we need a technical Lemma which
allows us to reduce the complexity of formulas in a refutation. We study
this in the next subsection.

4.1 Cut-reduction by switching

Cut-elimination procedures are a classic way of reducing the complexity
of formulas in proofs. The usual Gentzen- or Tait-style cut elimination
methods work by eliminating the outermost connectives of cut formulas
first. In general, these traditional cut-elimination procedures have the cost
of an exponential increase (or worse) in the size of proofs. We shall instead
use a cut-reduction method based on propositional restrictions and the
H̊astad switching lemma to reduce the complexity of formulas in the proof.
The idea is to find a restriction (i.e., a partial substitution of propositional
variables by truth values) and simplify a proof by applying the restriction
to all formulas in the proof. This has the advantage that proof size is not
increased and the structure of the proof can only be simplified. However,
the disadvantage is that all formulas in the proof are reduced. That is, not
only is the complexity of cut formulas reduced, but also the complexity of
the derived formula. Fortunately, careful use of Sipser functions allows us to
control the amount of reduction of complexity of formulas.

Our cut-reduction with switching lemmas will be based closely on
techniques used by [7] to reduce the complexity of oracle computations
related to definable functions of bounded arithmetic. This same approach
has been used by [10] to reduce the complexity of d-LK proofs where
d ∈ N + 1

2 , and by [5] to separate height restricted derivation systems using
the order induction principle for the natural ordering < on N .

Before stating the switching theorems, we need some notation. The
reader may wish to consult [7] for more details.

Fix k, `, m ∈ N with m, k ≥ 1, ` ≥ 0. As before let [m] denote the
set {0, . . . , m − 1} . For x1, . . . , xk, y1, . . . , y` ∈ N let px1,...,xk,y1,...,y`

be a
Boolean variable, and let

Bk,`(m) = {px1,...,xk,y1,...,y`
: x1, . . . , xk, y1, . . . , y` < m}.
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The cardinality of Bk,l(m) is mk+` . We shall henceforth use ~x as an
abbreviation of x1, . . . , xk , and ~y as an abbreviation of y1, . . . , y` or
y1, . . . , y`−1 , depending on the context. Note that Bk,0(m) is the set of
variables p~x with ~x ∈ [m]k .

A propositional formula is sΣt
1 iff it is a disjunction of conjunctions of at

most t literals. The sΠt
1 -formulas are the negations of sΣt

1 -formulas. (Other
authors use the terms “t-DNF” and “t-CNF” for sΣt

1 - and sΠt
1 -formulas.)

A formula is ∆t
1 iff it is equivalent to both a sΣt

1 -formula and a sΠt
1 -formula.

We call a formula Σt
1 iff is a disjunction of ∆t

1 -formulas. The Πt
1 -formulas

are negations of Σt
1 -formulas. Observe that a Σt

1 formula is equivalent to
some sΣt

1 formula. Also observe that if all proper subformulas of a formula
ϕ are in ∆t

1 , then ϕ is in Σt
1 ∪ Πt

1 .
Let ` ∈ N and d ∈ 1

2N . For ~x ∈ [m]k , let Sd,m(~x) denote one of the
previously defined Sipser functions, i.e., either S∧

d,m(~x) or S∨
d,m(~x). Note that

S`,m(~x) involves the mk+l variables from Bk,`(m), and S`+0.5,m(x1, . . . , xk)
involves mk+` · (log m)2 variables from Bk,`+1(m).

We are now ready to formulate cut-reduction by switching. The notation
A[p~x ← ϕ~x : ~x ∈ M ] denotes the result of simultaneously replacing the
variable p~x by the formula ϕ~x , for all ~x ∈ M .

Theorem 16 (Cut-Reduction by Switching). Let d ∈ 1
2N and ε ∈ R

with 0 < ε < 1
2 . Let M ⊆ N be some infinite set. For m ∈ M let ηm

be in N with ηm ≤ mε , and let Am be a set of formulas with variables in
Bk,0(m). Furthermore, assume that A′

m := Am

[
p~x ← Sd+1,m(~x) : ~x ∈ [m]k

]
has Θ2ηm

d+1.5 -LK refutations of height ηm .
Then, for all m ∈ M which are sufficiently large, Am has LK refutations

of height ≤ ηm in which every occurring proper subformula is in ∆ηm
1 , and

hence, in which every occurring formula is in Σηm
1 ∪ Πηm

1 .

Theorem 16 can be viewed as being weaker than the corresponding Main
Theorem in [7]. Here we start with a principle, where a depth-(d+1) Sipser-
function is plugged in, but we switch only d times, which in the end allows
us to recover the original principle by applying a further transformation.
In [7], principles with depth-d Sipser-function plugged in are switched d
times, so in the end only a modified principle is left (the last switching
modifies the principle too). As we will see, for certain principles like the
ordering principle, our weaker theorem even produces stronger separation
results than previously known.

The proof of Theorem 16 will take up the rest of this section. For d ∈ N ,
the proof is based primarily on the computations in [7]. For d ∈ N + 1

2 it

18



needs some additional observations. To make these differences clear we have
to repeat some technical definitions and statements from [9, 7].

Let ` ≥ 1. The sets Bk,`(m) are partitioned into blocks of variables

(Bk,`(m))(x1,...,xk,y1,...,y`−1) := {px1,...,xk,y1,...,y`−1,z : z < m},
for (x1, . . . , xk, y1, . . . , y`−1) ∈ [m]k+`−1 . Each block contains m variables.

A restriction ρ on Bk,`(m) is a map going from Bk,l(m) to {0, 1, ∗} :

ρ : Bk,`(m) → {0, 1, ∗} .

We think of ρ(p) = 0 or ρ(p) = 1 as p is replaced by 0 or 1 respectively,
and of ρ(p) = ∗ as p is left untouched. Alternatively, we can think of ρ as a
partial map going from Bk,`(m) to {0, 1} .

The probability space R+
k,`,m(q) of restrictions ρ for 0 < q < 1 is given

as follows. Let ~x ∈ [m]k , ~y ∈ [m]`−1 and y` < m .

ρ ∈ R+
k,`,m(q) : p = p~x,~y,y`

1

s~x,~y(ρ)

0

∗

1−q

q

1−q

q

Meaning: first choose s~x,~y such that s~x,~y = ∗ with probability q and
s~x,~y = 0 with probability 1− q ; then choose ρ(p) such that ρ(p) = s~x,~y with
probability q and ρ(p) = 1 with probability 1 − q .

Define R−
k,`,m(q) by interchanging 0 and 1:

ρ ∈ R−
k,`,m(q) : p = p~x,~y,y`

0

s~x,~y(ρ)

1

∗

1−q

q

1−q

q

Let ρ ∈ R+
k,`,m(q). We define g(ρ) by further restricting variables so

there is at most one ∗ in each block of variables, and sending that variable
to a variable in Bk,`−1(m). Formally, the transformation ¹g(ρ) maps formulas
with variables in Bk,`(m) to formulas with variables in Bk,`−1(m) by the
following procedure:
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1. Apply ρ .

2. Assign 1 to every p~x,~y,z with ρ(p~x,~y,z) = ∗ such that there is some
z′ < z with ρ(p~x,~y,z′) = ∗ . I.e., at most one variable in a block remains
untouched.

3. Rename each untouched p~x,~y,z to p~x,~y .

For ρ ∈ R−
k,`,m(q), define ¹g(ρ) similarly, replacing 1 by 0. See [9] for a proof

of the next theorem:

Theorem 17 (H̊astad’s Switching Lemma [9]). Let ν ∈ {+,−}. Let
ϕ be a Σt

1 -formula with variables from Bk,`(m) and 0 < q < 1. Then, the
probability of a randomly chosen ρ from Rν

k,`,m(q) that the formula ϕ¹g(ρ) is
not equivalent to some Πs

1 -formula is at most (6qt)s .

For the rest of this subsection we assume w.l.o.g. that S`,m(~x) denotes
S∧

`,m(~x). For the following inductive proof, the previously defined Sipser
functions S`,m(~x) have to be modified. We define S`,m(~x) for every ~x ∈ [m]k

with variables from Bk,`(m). They compute modified Sipser functions
(cf. [9, 7]) and are defined by

S`,m(~x) =
∧ ∨

. . . Q`−1 Q` p~x,~y

y1<m y2<m y`−1<m y`<
√

1
2

(k+`+1) m log m

where either Q`−1 or Q` is
∧

, depending on whether ` is even or odd,
respectively, and the other is

∨
. Note that for distinct ~x , the formulas

S`,m(~x) contain distinct propositional variables.
The first part of the next theorem is also due to H̊astad [9], who used it to

control the collapse of Sipser functions. Part 1 of the theorem is essentially
the same as in Buss and Kraj́ıček [7]. Part 2 is a slight modification useful for
Sipser-functions with small bottom fanin. The proofs of both parts follows
the same pattern as in [7], so we omit the proofs.

We say that a formula ϕ contains formula ψ , written as ψ ⊆ ϕ , if we
can transform ϕ into ψ by renaming some variables, by removing some 1’s
from conjunctions and some 0’s from disjunctions, and by deleting some

∨
or some

∧
in front of singleton sets, i.e. sets which consist of exactly one

element.

Theorem 18. Let m be sufficiently large, ` ∈ N with ` ≥ 1. Let v(`) = +
or v(`) = − if ` is odd or even respectively.
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1. Let q1 :=
√

2 (k+`+1) log m
m and assume q1 ≤ 1

5 . Then, the probability for

a randomly chosen ρ from Rν(`+1)
k,`+1,m(q1) that the formula S`+1,m(~x)¹g(ρ)

does not contain S`,m(~x) is at most m−(k+1) .

2. Let q2 := k+`+1
log m . Then, the probability for a randomly chosen ρ from

Rν(`+1)
k,`+1,m(q2) that the formula S`+0.5,m(~x)¹g(ρ) does not contain S`,m(~x)

is at most m−(k+1) .

With the last two theorems, we are ready to start the proof Theorem 16.
We start by proving a lemma about how formulas appearing in (d+1.5)-LK
refutation can be reduced by restrictions.

Lemma 19. Let d ∈ 1
2N, and further let ε, M , ηm ≤ mε , Am , A′

m satisfy
the hypotheses of Theorem 16. For m ∈ M , fix a Θ2ηm

d+1.5 -LK refutation of
A′

m and let Γm be the smallest set of formulas which includes all formulas
occurring in that refutation, and which is closed under subformulas.

Then for each r = bdc, . . . , 2, 1, 0, letting j = d − r , there exist
transformations κj such that

(a) For every ϕ ∈ Γm of depth (j + 1
2), ϕ¹κj is in ∆ηm

1 ; and

(b) For all ~x ∈ [m]k , Sd+1,m(~x)¹κj includes Sd+1−j,m(~x).

Observe that the cardinality of Γm is bounded by 2(d+O(1))·ηm , because
all formulas in the refutation are in Θ2ηm

d+1.5 .

Proof. The lemma will be proved separately for d ∈ N and for d ∈ N + 1
2 .

First, assume d ∈ N . In this case, the relevant values for j are j =
0, 1, 2, . . . , d , and we will prove the existence of κj satisfying conditions (a)
and (b) by induction on j . The induction basis of j = 0 is trivial: let κ0 be
the identity transformation.

For the induction step j Ã j + 1 we first observe that we have at most
2c·ηm many formulas of depth at most (j + 1.5) in Γm , with c = d + O(1).
Let ϕ be such a formula. W.l.o.g. it has the form ϕ =

∧
i<2ηm ϕi . By the

induction hypothesis, each ϕi ¹κj is in ∆ηm
1 , hence ϕ ¹κj is in Πηm

1 . Let q

be
√

2(k+d+1−j) log m
m . By Theorem 17, the probability that ϕ¹κj ¹g(ρ) is not

equivalent to some Σηm
1 -formula (and hence is not in ∆ηm

1 ) for a randomly
chosen ρ ∈ Rν

k,d+1−j,m(q) is at most (6qηm)ηm . Hence, the probability that
some ϕ ∈ Γm of depth at most (j + 1.5) does not have ϕ¹κj ¹g(ρ) in ∆ηm

1 is
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bounded by

2c·ηm ·
(

6

√
2(k + d + 1 − j) log m

m
· mε

)ηm

= 2O(log log m)·ηm · 2(−0.5+ε)·(log m)·ηm

which will be arbitrarily small for big m .
On the other hand, for all ~x ∈ [m]k , Sd+1−j,m(~x) ⊆ Sd+1,m(~x) ¹κj

by induction hypothesis, and the probability for a randomly chosen
ρ ∈ Rν(d+1−j)

k,d+1−j,m(q) that Sd−j,m(~x) * Sd+1−j,m(~x)¹g(ρ) is at most m−(k+1) .

Therefore, the probability for a randomly chosen ρ ∈ Rν(d+1−j)
k,d+1−j,m(q) that all

depth at most (j + 1.5) formulas ϕ in Γm are in ∆ηm
1 after transforming

them according to ¹κj ¹g(ρ) , and that for all ~x ∈ [m]k , Sd−j,m(~x) is included
in Sd+1,m(~x) ¹κj ¹g(ρ) , is bigger than 0. Let ρ be such a restriction, and
define κj+1 as κj¹g(ρ) . That completes the proof of the lemma for d ∈ N .

Now consider the case where d = d′ + 1
2 ∈ N + 1

2 ; the relevant values of j
are j = 1

2 , 3
2 , . . . , d .

This time the induction basis of j = 1
2 needs some proof. First, we

observe that we have at most 2c·ηm many formulas of depth 1 in Γm , with
c = d+O(1). Let ϕ be such a formula. W.l.o.g. it has the form ϕ =

∧
i<2ηm `i

with `i being literals, i.e., ϕ is in Π1
1 . Let q be k+d+1.5

log m . By Theorem 17, the
probability that ϕ¹g(ρ) is not equivalent to some Σηm

1 -formula (and hence is
not in ∆ηm

1 ) for a randomly chosen ρ ∈ Rν
k,d+0.5−j,m(q) is at most (6q1)ηm .

Hence, the probability that there is some ϕ ∈ Γm of depth 1 such that
ϕ¹g(ρ) is not in ∆ηm

1 is bounded by

2c·ηm ·
(

6 · k + d + 1.5
log m

)ηm

= 2O(ηm) · 2−(log log m)·ηm

which will be arbitrarily small for big m .
On the other hand, for all ~x ∈ [m]k , part 2 of Theorem 18 implies

that the probability that a randomly chosen ρ ∈ Rν(d)
k,d+1.5,m(q) satisfies

Sd+0.5,m(~x) * Sd+1,m(~x)¹g(ρ) is at most m−(k+1) . Therefore, the probability

for a randomly chosen ρ ∈ Rν(d)
k,d+1.5,m(q) that all depth 1 formulas ϕ in

Γm are in ∆ηm
1 after transforming them according to ¹g(ρ) , and that for all

~x ∈ [m]k , Sd+0.5,m(~x) is included in Sd+1,m(~x)¹g(ρ) , is bigger than 0. Let ρ
be such a restriction, and define κ0 as g(ρ). That completes the proof of
the base case with j = 1

2 . The induction step is proved by the same method
used for the case d ∈ N .
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We now can finish the proof of Theorem 16. Given a refutation R of A′
m ,

apply Lemma 19 with r = 0 and thus j = d ; this gives a κd such that, for
every depth d + 1

2 (sub)formula ϕ in R , the formula ϕ¹κd
is in ∆ηm

1 . Now,
every formula ϕ in R either has depth ≤ d + 1

2 , and or is a conjunction or
disjunction of formulas of depth ≤ d + 1

2 . It follows that each ϕ¹κd
is either

∆ηm
1 or is a conjunction or disjunction of ∆ηm

1 formulas.
Theorem 16 is almost done, but we still need to argue that the 0’s and

1’s can be eliminated from the refutation as restricted by ¹κj to get a valid
LK refutation. For this, after κj is applied, we transform formulas in R
repeatedly by the following operations:

(1) Any “1” (resp., “0”) in a conjunction (resp., disjunction) is removed.

(2) If any conjunction (resp, disjunction) contains a “0” (resp., a “1”),
then replace that conjunction (resp., disjunction) by “0” (resp., “1”).

(3) Replace any empty conjunction (resp., disjunction) by “1” (resp., “0”).

This transformation of formulas clearly preserves the property of a formula
being in Σηm

1 , in Πηm
1 , or in ∆ηm

1 .
Cedents in the refutation P are then transformed by (i) any “0”

appearing in a cedent is removed, and (ii) any cedent containing a “1”
is eliminated.

It is straightforward to prove that the refutation R is transformed by
this process into a new refutation R′ on the transformed cedents. Every
inference in R′ corresponds to some inference in R . Thus, the size and
height of P ′ are at most the size and height of P .

Now consider the formula A′
m . By condition (b) of the lemma, its

subformulas Sd+1(~x) have the property that Sd+1(~x) ¹κd
includes S1,m(~x).

By further restricting and renaming variables, and further transformations
to eliminate 0’s and 1’s and

∨
and

∧
in front of singleton sets, the formulas

S1,m(~x) are replaced by just the variable p~x . This transforms the refutation
into a refutation of Am and Theorem 16 is proved.

4.2 The proof of Theorem 14

Fix d ∈ 1
2N and ε < 1

2 , and let n be sufficiently large. We shall prove there
is no (d + 1

2)-LK refutation of ¬OPd(n) of tree-size S < 2nε
. Suppose, for

sake of contradiction, that such a refutation exists. Corollary 9 then implies
that ¬OPd(n) has (d + 1.5)-LK refutation of height < η where η = c · nε

for some constant c > 0. The clauses ¬OPd(n) are equivalent to

¬OP(n)
[
px,y ← S∨

d+1,n(x, y) : x, y ∈ [n]
]
.
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By applying Theorem 16, it follows that ¬OP(n) has an LK refutation of
height < η in which every proper subformula is in ∆η

1 , and hence every
formula is in Ση

1 ∪ Πη
1 . We shall prove below that in this case n ≤ 2η2 ;

this is a contradiction since η = O(nε) and thus will complete the proof of
Theorem 14.

In the following let ϕ always be an LK-formula with variables px,y in
B2,0(n). The intent is that the variables px,y define a binary relation on [n] ,
in particular, a total order. Fix a subset D of [n] , and let ≺ be a total
order on D . Note ≺ determines D if |D| ≥ 2, since D = domain(≺). A
truth assignment is said to extend ≺ provided that whenever x, y ∈ D , then
τ(px,y) = True iff x ≺ y . A truth assignment is called a total order if it
extends (or, is) some total order on all of [n] . We say that ≺ fixes ϕ to false
if every truth assignment which is a total order and extends ≺ assigns the
value False to ϕ .

A basic property of Πt
1 formulas is that if there is a total ordering truth

assignment that assigns a Πt
1 formula ϕ the value False, then there is some

small domain ordering ≺ that fixes ϕ to false.

Lemma 20. Suppose that ϕ is a Πt
1 formula, and ≺1 is a total ordering

on D1 . Further suppose there is a truth assignment τ which is a total order
and extends ≺1 , and which gives ϕ the value False. Then there is a total
order ≺2 on domain D2 such that (a) ≺2⊇≺1 , and (b) |D2 \ D1| ≤ 2t, and
(c) ≺2 fixes ϕ to false.

Proof. Let ϕ be equivalent to
∧

i<s

∨
j<t zi,j for some s and literals zi,j . If

τ makes ϕ false, then it makes
∨

j<t zi0,j false, for some i0 . Set D2 to be
D1 plus all values x ∈ [n] such that px,y , px,y , py,x or py,x occurs among
the literals zi0,j . Define ≺2 to be the ordering defined by τ restricted to the
domain D2 . It is clear that ≺2 satisfies the conditions of the lemma.

Theorem 14 now follows from the following boundedness theorem.

Theorem 21 (Boundedness). Suppose ¬OP(n) has an LK-refutation R
of height η in which every occurring formula is in Σt

1 ∪ Πt
1 and every proper

subformula in the proof is in ∆t
1 . Then n ≤ 2 · η · t.

Proof. We shall find cedents ∆i in R for i = 0, 1, 2, . . . , k , and total
orders ≺i with domains Di ⊂ [n] . The first cedent ∆0 will be the end
cedent of R , i.e., the empty cedent. Likewise, D0 is the empty set, so ≺0

is the total ordering of the empty set. Each cedent ∆i+1 will be one of the
hypotheses to the inference that derives ∆i . Each Di will have cardinality

24



≤ 2 · i · t . Furthermore, each ≺i will fix the cedent ∆i to be false. The
process stops when i = k where ∆k is an initial cedent of R , i.e, ∆k is a
clause from ¬OP(n).

By examination, the only way an initial cedent ∆k from ¬OP(n) can
be fixed to false by a total ordering ≺k is for the clause to be one of the
Mx clauses and for the domain Dk of ≺k to equal all of [n] , from whence,
n ≤ 2 · k · t . Thus, if the clauses ∆k can be constructed, then n must be
less than 2t times the maximum number of cedents along any path in the
refutation.

To complete the proof, it remains to show how to define ∆i+1 from ∆i .
The proof splits into cases depending on the type of inference used to derive
∆i . If the inference that derives ∆i is a cut inference,

∆i,¬ϕ ∆i, ϕ

∆i

with a Σt
1 -formula ϕ , then we consider the following two subcases: First

assume that all total orderings ≺ on [n] which extend ≺i do not satisfy ϕ .
In this case, let ≺i+1 be the same as ≺i , and let ∆i+1 be the right upper
cedent ∆i, ϕ . Otherwise, by Lemma 20, there exists a total ordering ≺i+1

which extends ≺i , has domain Di+1 with |Di+1 \Di| ≤ 2t , and fixes ¬ϕ to
false. In this case, let ∆i+1 be the cedent ∆i,¬ϕ .

If the inference that derives ∆i is a
∨

inference,

∆′
i, ϕ

∆′
i,

∨
Φ

where ϕ ∈ Φ, then let ∆i+1 be the upper cedent, and let ≺i+1 be ≺i . This
works since any truth assignment that falsifies the lower cedent also falsifies
the upper cedent.

Assume now that the inference that derives ∆i is a
∧

inference,

∆′
i, ϕ for all ϕ ∈ Φ

∆′
i,

∧
Φ

By assumption, all formulas in Φ are in ∆t
1 . Take any truth assignment τ

which corresponds to a total order on [n] extending ≺i . By the induction
hypothesis, it does not satisfy the lower cedent, so there must be some ϕ ∈ Φ
which is not satisfied by τ . By Lemma 20 again, there is a ≺i+1 such that
≺i⊆≺i+1 and such that the domain Di+1 has at most 2t new elements and
such that ≺i+1 fixes ϕ to false. Then let ∆i+1 be ∆′

i, ϕ and this case is
finished.

The case of weakening is even easier and we omit its proof.
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Careful examination of the proof shows we actually proved a strengthened
form of Theorem 14. Since we used only total orderings ≺i , we could also
allow as initial clauses {px,y, py,x} for distinct x, y ∈ [n] without affecting
the validity of the theorem. These clauses make the ordering total rather
than just partial. Thus, the lower bounds we have obtained on constant
depth proofs of the ordering principles also apply to the constant depth
proofs of the “total ordering principle.”

5 Exponential lower bound for a Ramsey principle

This section describes a method which lifts principles requiring exponential
tree-size (d + 1

2)-LK-refutations for d ∈ N to principles requiring exponen-
tial sequence-size d-LK-refutations. The basic proof technique is to replace
variables in the principle by small Sipser functions of depth two and then
distributing to reduce formula depth. Rather than explore this method in
full generality, we will describe this lifting for the Ramsey principle and
d = 0.

The Ramsey principle has been shown by Pudlák [18] to have polynomial
size Frege proofs, and Kraj́ıček [13] has shown that it requires exponential
tree-size depth 1

2 LK-proofs. In addition, Kraj́ıček showed that if the weak
pigeonhole principle WPHPn4

n requires exponential sequence-size Res(2)
proofs, then the Ramsey principle requires exponential sequence-size for
depth 0 LK proof (i.e., requires exponential sequence-size resolution proofs).
The system Res(2) is resolution extended to have clauses containing terms of
two literals. Although several sets of researchers have found lower bounds on
the sequence-size of proofs Res(f(n)) of weak pigeonhole principles for f(n)
as large as ε log n/ log log n , none of them apply to the WPHPn4

n principle
(see [1], [21], and especially [20]). Thus, it is still open whether the Ramsey
principle has depth 0 LK proofs of subexponential sequence-size.

Theorem 22 below establishes exponential sequence-size lower bounds on
depth 0 LK proofs of a Sipser-ized version of the Ramsey principle. A yet
stronger lower bound is obtained in Theorem 23.

We start by defining the Ramsey tautologies. Let X be a finite
set. [X]2 denotes the set of all possible edges of a graph on X ;
[X]2 = { e ⊆ X ; |e| = 2 } . We write [n]2 instead of [[n]]2 , so that for
this section, [n]2 denotes the set of edges on the vertices [n] rather than
[n] × [n] . For e ∈ [n]2 let pe be an edge variable. The Ramsey principle
states that every undirected graph on n vertices contains a homogeneous set
of size d log n

2 e , where a homogeneous set is either a clique or an independent
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set. The negation of the Ramsey principle can be written as follows:∧
X⊆[n],|X|=d log n

2
e

( ∨
e∈[X]2

pe ∧
∨

e∈[X]2

pe
)
.

This is equivalently expressed by the following clauses, for every X ⊆ [n]
with |X| = d log n

2 e :

CX {pe : e ∈ [X]2} Clique clause

IX {pe : e ∈ [X]2} Independent set clause.

Let n be (log n)2 . A modified Ramsey principle, ¬Ram(n), is defined
by replacing each pe by the “small” depth 2 Sipser function S∧

2,n(e) =∧
i<n

∨
j<n pe

i,j and then distributing the connectives out:

∧
X⊆[n],|X|=d log n

2
e

( ∧
f : [X]2×[n]→[n]

∨
e∈[X]2

∨
i∈[n]

pe
i,f(e,i)

∧
∧

g : [X]2→[n]

∨
e∈[X]2

∨
j∈[n]

pe
g(e),j

)
.

This can be equivalently expressed by the following set of clauses, where
X ⊆ [n] with |X| = d log n

2 e and f : [X]2 × [n] → [n] and g : [X]2 → [n] :

CX,f {pe
0,f(e,0), . . . , p

e
n−1,f(e,n−1) : e ∈ [X]2}

IX,g {pe
g(e),0, . . . , p

e
g(e),n−1 : e ∈ [X]2}

These clauses constitute the set ¬Ram(n). The size of each C - or I -clause
is bounded by (log n)4 , and there are 2O((log n)5) many C clauses and
2O((log n)3) many I clauses.

Theorem 22. For n sufficiently large, if ¬Ram(n) has a resolution
refutation of sequence-size S , then S must be bigger than 2nε

for any ε
with 0 < ε < 1

4 .

Proof. The proof will use a variant of LK where all rules have at most
two premises. This variant is called binary LK and is denoted LK2 . The
binary LK system is defined like LK, but with the

∧
inference rule replaced

by

Γ,
∧

Φ1 Γ,
∧

Φ2
(
∧2 )

Γ,
∧

(Φ1 ∪ Φ2)
,
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where, for the purposes of this rule, we identify ϕ and
∧{ϕ} . The following

simulation is straightforward.

If Γ has a Θσ
d -LK-derivation from A of cedent-size σ , then Γ

has a Θσ
d -LK2 -derivation from A of cedent-size σ2 .

This simulation holds since any
∧

inference

Γ, ϕ for all ϕ ∈ Φ
(
∧

)
Γ,

∧
Φ

in a Θσ
d -LK-derivation has |Φ| ≤ σ and therefore can be replaced by a

binary tree of
∧2 -inferences of height log σ .

To begin the proof of Theorem 22, assume, for the sake of a contradiction,
that there is some 0 < ε < 1

4 and some large n ∈ N such that ¬Ram(n)
has a resolution refutation of sequence-size ≤ 2nε

. Using Lemma 4 and
Lemma 5 to transform to a tree-size proof and converting the resulting
LK refutation into an LK2 refutation, we obtain that ¬Ram(n) has a
Θ2η

1 -LK2 -refutation R of tree-cedent-size ≤ 2η , where η = O(nε).
We want to reduce the complexity of formulas in R by applying the

switching lemma. Let q = 4
log n and recall that n = (log n)2 . We consider

the restrictions ρ ∈ R−(q) := R−
2,2,n(q) and how they affect Ση

1 -formulas and
the Sipser-functions S2,n(e) := S∧

2,n(e) for e ∈ [n]2 . The transformation ¹g(ρ)

is defined to act as follows:

1. Apply the restriction ρ .

2. Assign 0 to every pe
y,z with ρ(pe

y,z) = ∗ such that there is some
z′ < z with ρ(pe

y,z′) = ∗ . This leaves at most one variable in a block
untouched.

3. Rename each untouched pe
y,z to pe .

We claim that, for all e ∈ [n]2 ,

Prρ∈R−(q)

[
S2,n(e)¹g(ρ) is not equivalent to pe

]
≤ n−3 (4)

for n sufficient large. To prove this, first note that each
∨

of S2,n(e) is
assigned the value 0 or the value se,y(ρ) ∈ {∗, 1} by a restriction ρ ∈ R−(q).
It receives the value 0 with probability at most

(1 − q)n < e−qn = e−4 log n <
1
2
n−4.

Since there are n many
∨

’s in S2,n(e), the probability that one or more are
assigned the value 0 is less than 1

2n−4n < 1
2n−3 for sufficiently large n .
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If none of the
∨

’s take value 0, then they all take value se,y(ρ). Each
se,y(ρ) takes value 1 or ∗ under R−(q). The probability that they all receive
value 1 is at most (1 − q)n < 1

2n−3 . It follows that the overall probability
that S2,n(e) is not transformed by ¹g(ρ) into pe is bounded above by n−3 .

Now we consider how a ρ ∈ R−(q) reduces formula complexity in R .
Consider any formula ϕ in R of depth 1. It is, of course, either an
sΣ1

1 -formula or an sΠ1
1 -formula. Taking t = 1 and s = η , and applying the

H̊astad switching lemma, shows that ϕ¹g(ρ) is equivalent to some Πs
1 -formula

or to some Σs
1 -formula (respectively) with probability greater than 1−(6q)η .

Actually, since t = 1, the proof of the H̊astad switching lemma [9] shows even
more; namely, ϕ¹g(ρ) is either a disjunction (or, a conjunction, respectively)
of at most η literals with probability ≥ 1− (6q)η . (Remark: it is also simple
to prove this fact from the statement of the switching lemma, and thus it
is not really necessary to refer back to the proof of the switching lemma.)
Since every formula in the refutation is in Θ2η

1 and since there are at most
2η different depth 1 formulas in the proof, the event that there is a formula
of depth 1 which is not switched to a conjunction or disjunction of size ≤ η
occurs with probability less than

2η(6q)η = 2η

(
24

log n

)η

= o(1).

Thus, with probability approaching 1, applying the transformation g(ρ)
turns R into a refutation R′ of the original Ramsey principle, ¬Ram(n),
such that every depth 1 formula in R′ is a conjunction or disjunction of
at most η literals. Therefore, every formula in R′ is either a literal or a
conjunction or disjunction of at most η literals. This proof is essentially an
R∗(log ) proof in the sense of Kraj́ıček, and by Kraj́ıček [13, Thm 5.2], this
is possible only if η ≥ c · n1/4 for some constant c , i.e., only if ε ≥ 1

4 .

Theorem 22 can be strengthened as follows.

Theorem 23. Fix ε < 1
4 and δ < 1

48 . Let n be sufficiently large. Let
t = δ log n. Then there is no LK refutation of ¬Ram(n) of sequence-size
2nε

in which every formula is a disjunction or conjunction of at most t
literals.

Proof. (Sketch.) Theorem 23 is proved by almost the same proof as
Theorem 22. Assume, for sake of a contradiction, that there is such
a refutation. By Lemma 4 and Lemma 5 and the conversion of LK
refutations into LK2 refutations, there is an LK2 refutation R of ¬Ram(n)
of tree-cedent-size 2η with η = O(nε) in which every formula has depth two
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or less. The connectives (conjunctions or disjunctions) at the top level have
fanin at most 2nε

, and the connectives at the second level have fanin at
most t .

Let q = 4/ log n as before and choose the restriction ρ ∈ R−(q) at
random. Again take s = η , but now use t = δ log n . Then, with high
probability, we obtain a refutation R′ of ¬Ram(n) such that every formula
in R′ is in ∆η

1 . The rest of the proof is as before, based on a strengthened
version of Theorem 5.2 of [13].

6 Width lower bounds

In this section we prove that lower bounds on the size of tautologies with
Sipser functions substituted in for variables can imply lower bounds on the
width of resolution refutations of the tautologies. Rather than prove this
in full generality, we illustrate the technique by proving a lower bound on
the width of resolution proofs of the Ramsey principle. This lower bound
has already been obtained by Kraj́ıček [13]: the novel part is that it follows
directly from Theorem 22. Together with the result from the last section
this gives a general method to deduce width lower bounds for resolution
refutations from size lower bounds of 1

2 -LK-refutations.
Let ¬Ram(n) be the set of clauses expressing the negation of the Ramsey

principle. Let n = (log n)2 , and let ¬Ram(n) be as defined earlier.
The width of a resolution refutation is the maximum number of literals in

any clause in the refutation. In order to obtain optimal results with respect
to the width of a resolution refutation, for this section we replace LK’s cut
rule by the more common resolution rule:

Γ1,¬p Γ2, pRes: Γ1, Γ2

Resolution based on the resolution rule versus resolution based on the cut
rule (plus weakening) are polynomially equivalent in terms of size, but the
widths may differ strongly.

Lemma 24. Suppose ¬Ram(n) has a resolution refutation of sequence-
size S and width w . Then ¬Ram(n) has a resolution refutation of sequence-
size ≤ S · 2O(w(log n)2 log log n) .

Proof. (Sketch) A resolution refutation R of ¬Ram(n) can be converted
into a resolution refutation of ¬Ram(n) by the following procedure: Replace
each pe by S∧

2,n(e) in all the clauses in the refutation. Each clause C
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now contains at most w formulas of depth ≤ 2, and the conjunctions
and disjunctions in these formulas have fanin n . Viewing the clause as a
formula FC which is a disjunction of depth 2 formulas, apply the distributive
law to the top disjunctions and conjunctions in FC . This converts the clause
into a conjunction of disjunctions (a CNF formula). The conjunction has
fanin at most nwn (since there are at most wn conjunctions in FC and since
each conjunction has fanin n . Then convert this CNF into a set of clauses.
This process converted a clause C of R into at most nwn = (log n)2w(log n)2

clauses.
We leave it to the reader to verify that it is possible to build a

valid resolution refutation of Ram(n) from these converted clauses, adding
additional clauses to fill the gaps. This increases the number of clauses by
a factor of at most n2n = (log n)4(log n)2 (this factor is a not-quite-optimal
upper bound).

Lemma 25. If ¬Ram(n) has a resolution refutation of width w , then that
refutation has sequence-size < n2w .

Proof. This is a simple consequence of the fact that there are < n2 many
literals for the ¬Ram(n) principle, and thus less than n2w distinct clauses
that can appear in a resolution refutation.

Theorem 26. For any ε < 1
4 , the ¬Ram(n) principles do not have

resolution refutations of width < nε for sufficiently large n.

Proof. This is an immediate consequence of Lemmas 24 and 25 and Theo-
rem 22.

Using Theorem 23 instead of Theorem 22 we obtain a strengthening of
the last Theorem.

Theorem 27. Fix ε < 1
4 and δ < 1

48 . Let n be sufficiently large. Let
t = δ log n. Then there is no LK refutation of ¬Ram(n) of width < nε in
which every formula is a disjunction or conjunction of at most t literals.
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