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Chapter 1

Introduction

The present work represents the author’s PhD-thesis at the Mathe-

matisch-Naturwissenschaftliche Fakultät of the Westfälische Wilhelms-

Universität Münster, which has been developed under supervision of

Prof. W. Pohlers.

The aim of this work is to investigate proof-theoretically formal

theories of bounded arithmetic. For this purpose the subsystems IΣ0
n of

first order arithmetic and subsystems of bounded predicative arithmetic

will be investigated, too.

1.1 Bounded arithmetic

”Bounded arithmetic theories are subtheories of first order arithmetic.

They attempt to formalize reasoning about finite structures”1. In [6]

S. Buss introduced the theories Sn
2 , Tn

2 , U1
2, V1

2 of bounded arithmetic

which correspond to the computational classes in the polynomial time

hierarchy PH, PSPACE and EXPTIME. The classes P of languages

computable in polynomial time on deterministic Turing-machines and

NP of languages computable in polynomial time on non-deterministic

Turing-machines are levels of PH.

It is a common assumption that the separation problems of bounded

arithmetic theories are essentially the same as the separation problems

of computational classes (including P vs. NP), although the only known

result in this relation is the following result in [16]:

Tn
2 = Sn+1

2 =⇒ Σp
n+2 = Πp

n+2.

1See [9] p. 2.

1



2 CHAPTER 1. INTRODUCTION

Thus, the collapse of S2 implies the collapse of PH.2 Therefore, the sep-

aration problems of bounded arithmetic theories are among the major

unsolved problems of the present time.

In the case of relativized computational classes things are quite

different. It has been shown in [1] that there are oracles A and B such

that PA = NPA and PB 6= NPB. In [25] and also in [13] it has been

shown that there is an oracle A such that PHA (i.e., the polynomial

time hierarchy with an oracle A) does not collapse.

Corresponding results for bounded arithmetic theories are proved by

using these results. The set Σb
∞(X ) of bounded formulas of the language

of bounded arithmetic with set parameters X0, X1, . . . is stratified into

levels Σb
0(X ) ⊂ Σb

1(X ) ⊂ . . . similar as the arithmetical formulas are

stratified into levels Σ0
0(X ) ⊂ Σ0

1(X ) ⊂ . . . . More precisely, Σb
0(X ) is

the set of bounded formulas where all quantifiers are sharply bounded

quantifiers (i.e., they are bounded by a term of the form |t|, where

|n| = ⌈log2(n + 1)⌉). In addition to this Σb
i+1(X ) is the set of bounded

formulas with i alternations of bounded quantifiers, which start with an

existential one and do not count the sharply bounded ones. The prenex

(or strict) versions of Σb
i (X ) (where the closure under sharply bounded

quantifiers is omitted) are denoted by sΣb
i (X ). The sets of bounded

formulas without set variables will be denoted omitting ”(X )”.

Let |y|0 ··= y and |y|m+1
··= |(|y|m)|. The theories Σb

n(X )-LmInd

are axiomatized by a finite set of defining axioms for the non-logical

symbols and by the induction schema which consists of all formulas of

the form

F (0) ∧ ∀x<|t|m (F (x) → F (x + 1)) → F (|t|m)

with F ∈ Σb
n(X ) and t being a term. As exponentiation λn.2n is not

a function which can be proved to be total in bounded arithmetic, this

induction schema seems to become weaker if m increases. The theories

with small numbers m have special names:

sRn
2 (X ) ··= sΣb

n(X )-L2Ind

Rn
2 (X ) ··= Σb

n(X )-L2Ind

Sn
2 (X ) ··= Σb

n(X )-L1Ind

Tn
2 (X ) ··= Σb

n(X )-L0Ind.

2Cf. [24].
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Theories without set variables are denoted by sRn
2 , Sn

2 . . . pΣb
n-LmInd,

pTn
2 . . . .

It holds that:

• Sn
2 (X ) ⊂ Tn

2 (X ) ⊂ Sn+1
2 (X ) ([6]),

• Sn+1
2 (X ) is ∀Σb

n+1(X )-conservative over Tn
2 (X ) ([7]), although

• Sn+1
2 (X ) 6= Tn

2 (X ) ([16]).

• Tn
2 (X ) 6= Sn

2 (X ) ([14]), thus

• Tn
2 (X ) is not ∀Σb

n(X )-conservative over Sn
2 (X ) ([8])

Here ∀Σb
i (X ) is the set of first order universal closures of formulas from

Σb
i (X ).

All these separation results are proved by showing that a certain

principle Φ(X) is not witnessed in polynomial time by a Turing-

machine with an oracle from Σp
i (fixed i for all X). In this thesis we

develop a new concept, which allows us to uniformly prove separation

results for bounded arithmetic theories.

1.2 Towards Dynamic Ordinals

Gentzen’s consistency proof for pure number theory3 was the starting

point of ordinal analysis. Ordinal analysis assigns a characteristic value

to a formal system, its proof-theoretical ordinal. The proof-theoretical

ordinal O(S) of a formal system S with an associated concept of formal

derivability is defined as the supremum of the ordertypes || ≺ || of

primitive recursive definable well-orderings ≺ whose wellfoundedness

can be recognized in S:

O(S) = sup{|| ≺ || : ≺ is a primitive recursive definable

well-ordering and S Fund(≺, X)}.

The formula Fund(≺, X) describes that if ≺ is progressive on X then

X is total:

Fund(≺, X) ···≡ ∀x (∀y (y ≺ x → y ∈ X) → x ∈ X) → ∀x (x ∈ X).

3See [11].
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Thus ∀X Fund(≺, X) expresses the wellfoundedness of ≺.

Different proof-theoretical ordinals imply a separation of the under-

lying systems: if O(S1) 6⊆ O(S2) then there is some well-ordering ≺

such that S1 Fund(≺, X) but S2 / Fund(≺, X).

IΣ0
1 is the theory of first order arithmetic with induction restricted

to Σ0
1(X )-formulas, i.e., formulas of the form: one unbounded existen-

tial quantifier followed by a bounded formula. For arithmetic theories

which are strong enough (i.e., which are extensions of IΣ0
1) the proof-

theoretical ordinal is a good measurement in the sense that the different

theories under consideration receive different proof-theoretical ordinals.

For subsystems of IΣ0
1 the proof-theoretical ordinal does not yield a

good measurement. R. Sommer has shown in [20]:

IΣ0
0 Fund(ω · k, F ) for all k < ω, F ∈ Σ0

0(X )

and

IΣ0
0 + Fund(ω2, Σ0

0(X )) = IΣ0
1.

For bounded arithmetic theories he remarks in [21]:

T1
2(X ) Fund(ω · k, F ) for all k < ω, F ∈ ∆b

0(X )

and

S1
2(X ) + Fund(ω2, ∆b

0(X )) = IΣ0
1.

Therefore we obtain

O(T ) = ω2

for theories T which are stronger than T1
2(X ) but weaker than IΣ0

1.

Let T be a subsystem of first order arithmetic. Let S be a suitable

ordinal notation system for T , and let Φ : S → On be the associ-

ated evaluation function. Ordinal analysis is statically in the sense

that it determines firm natural numbers n ∈ S coding ordinals, such

that T proves the wellfoundedness of Φ(n). As illustrated above this

yields no information for weak theories – we always obtain the same

proof-theoretical ordinal. This deficiency can be overcome by Dynamic

Ordinals. We consider functions F : ω → S enumerating natural num-

bers which code ordinals such that T proves the wellfoundedness of

Φ(F (n)) uniform in n. Now we have the chance that considering the

growth rates of such functions yields a good measurement for weak

theories. Thereby we do not think of the growth of the values of F
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according to the canonical ordering of the natural numbers – F can

have (and, of course, will have in the analysis of bounded arithmetic

theories) polynomial growth rate. Here we mean growth of the values

of F according to the canonical ordering of the coded ordinals.

We define this formally. Let ω(Φ[S]) be the set of all functions

f : ω → Φ[S]. For f, g ∈ ω(Φ[S]) define f ≤ g iff f is majorized by g,

i.e., ∀n (f(n) ≤ g(n)). For F ⊂ ω(Φ[S]) let the ≤-hull of F be

H(F) ··= {f ∈ ω(Φ[S]) : ∃g∈F (f ≤ g)}.

Then we define the Dynamic Ordinal of T , DO(T ), by

DO(T ) ··= H{λn.Φ(F (n)) | F : ω → S is a provable recursive

function of T and T ∀xFund(F (x), X)}.

For theories stronger than or equal to IΣ0
1 Dynamic Ordinals yield

no additional information when compared with proof-theoretical or-

dinals. E.g., let S be the common ordinal notation system for ε0,

then O(IΣ0
n) < O(IΣ0

n+1). Thus all functions in DO(IΣ0
n) can be ma-

jorized by the constant function λn. ”code of O(IΣ0
n) + 1” which is in

DO(IΣ0
n+1).

Different Dynamic Ordinals imply a separation of the assigned the-

ories: if there is an f ∈ DO(T2) \ DO(T1) then by definition there is a

function F : ω → S which is provable recursive in T2 such that

T2 ∀xFund(F (x), X)

and f ≤
(
λn.Φ(F (n))

)
=·· g. Now f 6∈ DO(T1) yields g 6∈ DO(T1),

thus F is not provable recursive in T1 or

T1 / Fund(F (x), X).

We will see that Dynamic Ordinals give us good measurements for

bounded arithmetic theories.

1.3 Extended summary

The methods of ordinal analysis for first order arithmetic and its subsys-

tems IΣ0
n form a basis for the investigations of the bounded arithmetic

theories Sn
2 (X ), Tn

2 (X ), etc. These methods are composed of
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• carrying through the well-ordering proof in the formal system.

This yields a lower bound for the (dynamic) proof-theoretical or-

dinal.

• formulating a semi-formal system and proving

– cut-elimination

– that formal derivations can be embedded into the semi-

formal system

– a so called Boundedness Principle for the semi-formal sys-

tem: a (almost) cut-free semi-formal derivation of the well-

foundedness of a well-ordering needs at least α steps, where

α is the ordertype of the well-ordering.

This yields an upper bound for the (dynamic) proof-theoretical

ordinal.

In the first part, from Chapter 3 to Chapter 5, we work out these

methods for the systems IΣ0
n and obtain the well-known results

O(IΣ0
0) = ω2

O(IΣ0
n+1) = ωn+3(0),

where ω0(α) = α and ωi+1(α) = ωωi(α). In this part two main results

are new. The first one is an Lω-cut-elimination which shows that a

cut with a propositional formula can be substituted by as many cuts of

atomic formulas as the formula contains atoms. This avoids exponential

growth of derivation lengths, a consequence of the usual cut-elimination

procedure. The second result is a sharpened version of the Boundedness

Theorem which goes back to Gentzen. The original version, of which

a proof can be found in [17], states

α

1
Fund(≺, X) =⇒ O(≺) ≤ 2α.

We use a new idea to prove

α

1
Fund(≺, X) =⇒ O(≺) ≤ α.

Again this avoids additional exponential growth.

Ordinal analysis always uses cut-elimination which involves expo-

nential growth of derivation lengths. Therefore, if we try to transfer
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methods from ordinal analysis to bounded arithmetic we have to find

a way of dealing with the exponential function even in bounded arith-

metic theories, although these theories cannot prove the totality of the

usual exponential function.

In the ordinal analysis of IΣ0
n similar problems occur when we try

to speak about ordinals and the function λα.ωα. The solution there is

to code ordinals by natural numbers. Replacing ω by 2 transfers this

idea to the situation of bounded arithmetic. Therefore, we obtain the

following correspondences:

first order arithmetic bounded arithmetic

”λα.ωα” ”λn.2n”

For α = ωα1 + . . . + ωαn < ε0 For α = 2α1 + . . . + 2αn < ω

with αn ≤ . . . ≤ α1 let

α̂ ··= 〈α̂1, . . . , α̂n〉 ∈ D ⊂ ω.

Thus, we obtain λα.ωα as a prov-

ably recursive function on the no-

tations D:

λα.ω̂α ··= 〈α〉

with αn < . . . < α1 let

α̂ ··= 〈α̂1, . . . , α̂n〉 ∈ E ⊂ ω.

Thus, we obtain λα.2α as a prov-

ably recursive function on the no-

tations E :

λα. 2̂
α

··= 〈α〉

The coding-functions 〈. . .〉 are the familiar Gödel numbers for sequen-

ces4, which are polynomial time computable. In Chapter 6 we will show

that the exponential notations and several basic operations on them are

polynomial time computable functions.

In the last part, from Chapter 7 to Chapter 12, we apply the meth-

ods described above to bounded arithmetic theories in order to obtain a

good measurement of those theories. To this end we have to find, beside

other things, a bounded formula which describes the wellfoundedness

of the ordering ≺ on the exponential notations up to some exponential

notation α. ≺ is given according to the ordering of the coded values,

i.e., ≺ satisfies m̂ ≺ n̂ ⇐⇒ m < n. It would suffice to find a value a

which bounds all exponential notations below α:

∀β ≺ α (β ≤ a).

4Cf. [6] p. 7.
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Then all unbounded quantifiers in Fund(α,X) can be bounded by a.

This yields the desired formula Fund(a, α,X).

Let ΦE be defined by ΦE(α(x)) = n ⇐⇒ n̂ = α(x). A function

f(x) is polynomially bounded if there is a polynomial p(x) such that

|f(x)| ≤ p(|x|). If α is given by a function α(x) of x and the value

ΦE(α(x)) denoted by α(x) is close enough to x, i.e., it is polynomi-

ally bounded, then we obtain the desired value a as a function of x in

bounded arithmetic, i.e., we discover it as a term in x of the language

of bounded arithmetic. Therefore, the methods described above can be

applied to some bounded arithmetic theories and they produce a good

measurement of them.

On the other hand if ΦE(α(x)) is not close enough to x, which means

that eventually ΦE(α(x)) ≥ 2x, the only expedient is to assume the ex-

istence of such a value a. This value is not allowed to bound the length

of an induction – otherwise this would influence the Dynamic Ordinal

in a way that a in general cannot bound all exponential notations below

this Dynamic Ordinal. Thus, from the point of view of induction, a has

to be impredicative. The linguistic frame in which this takes place will

be called bounded predicative arithmetic. It leads to conservative exten-

sions of bounded arithmetic theories pΣb
n(X )-LmInd, pRn

2 (X ), pSn
2 (X )

and pTn
2 (X ).

Models of bounded predicative arithmetic theories distinguish be-

tween two kinds of individuals, the predicative ones (from Ip) and the

impredicative ones (from I). It holds:

• Ip is a subset of I.

• Ip is closed under some polynomial time computable functions,

e.g. +, · and the ”smash”-function x # y ··= 2|x|·|y|, and it admits

weak induction principles depending on the underlying theory.

• On I only graphs of some polynomial time computable functions

are given.

All this will be introduced in Chapter 7. In Chapter 8 we summa-

rize the relationships between previously defined bounded arithmetic

theories, transfer them to bounded predicative arithmetic theories and

finally show that the latter theories are conservative extensions of the

corresponding former ones.
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A specific bounded formula Big(a, b, α) solves the previously ex-

plained difficulties which lead to bounded predicative arithmetic. This

formula expresses that all exponential notations below α are bounded

by a

∀β ≺ α (β ≤ a),

and that the graphs Gf which are under consideration in the language

of bounded predicative arithmetic define total functions with values

below b applied to arguments below a

∀~c≤a∃d≤bGf (~c, d).

This leads to the formula

Big(a, b, α) → Fund(a, α,X).

Following a suggestion of Jan Kraj́ıček in Prague in August 1996 we will

abbreviate this formula by BigFun(a, b, α,X). Why not, as it yields

so many exciting separation results.

For bounded (predicative) arithmetic theories T we define the Dy-

namic Ordinal of T , DO(T ), by

DO(T ) ··= H
(
{λn.ΦE(t(n)) | t(x) is a term

defining a function t(.) : ω → E

with T ∀xBigFun(a, b, t(x), X)}
)
.

In Chapters 9 to 11 we transfer the techniques developed in Chapters

3 to 5 for the theories IΣ0
n to bounded predicative arithmetic. Further-

more, we show that nearly the same works if we replace the set variable

X with the set X(d) = {i : Bit(i, d)} coded by the impredicative value

d in BigFun, where Bit(i, d) is true iff the i-th bit in the binary expan-

sion of d is 1. This replacement requires the existence of indiscernibles:

to a given (finite) set Π of formulas and l ∈ ω there exists a set I ⊂ ω

of indiscernibles such that

∀M ⊂ {0, . . . , l} ∃m∈I (m codes M below l),

at which a number m codes a set M below l iff ∀i≤l (i∈M ↔ Bit(i,m)),

and

∃m∈I (N ² Ad[m]) ⇐⇒ ∀m∈I (N ² Ad[m])
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for all atomic formulas A ∈ Π other than Bit(·, d) or Bitc(·, d), where

Bitc(·, d) is the complement of Bit(·, d). The indiscernibles are essential

for the monotonicity of formulas F ∈ Π in which Bitc(·, d) does not

occur (and again this kind of monotonicity is essential for the proof of

the Predicative Boundedness Theorem):

m,n ∈ I, m ⊂ n & N ² Fd[m] =⇒ N ² Fd[n],

at which ∀i (Bit(i,m) → Bit(i, n)).

Results: Let n + 1 ≥ m ≥ 1, then

DO(pΣb
n+1-L

mInd) = DO(pΣb
n+1(X )-LmInd)

= H({λi.2n(p(|i|m)) : p a polynomial})

DO(pSn+1
2 ) = DO(pSn+1

2 (X ))

= H({λi.2n(p(|i|)) : p a polynomial})

DO(pRn+2
2 ) = DO(pRn+2

2 (X ))

= H({λi.2n+1(p(||i||)) : p a polynomial})

DO(pTn+1
2 ) = DO(pTn+1

2 (X ))

= H({λi.2n+1(p(|i|)) : p a polynomial}).

Furthermore, for n ≥ 0 the results are

DO(sΣb
n+1(X )-Ln+1Ind) = H({λi.2n(p(|i|n+1)) : p a polynomial})

DO(S1
2(X )) = H({λi.p(|i|) : p a polynomial})

DO(sR2
2(X )) = H({λi.2p(||i||) : p a polynomial})

DO(T1
2(X )) = H({λi.2p(|i|) : p a polynomial})

= DO(S2
2(X )).

For theories T1, T2 let T1 ⊆ T2 iff T1 is included in T2, which means

that for all formulas F if T1 F then T2 F . Let T1 ( T2 iff T2 is a

proper extension of T1, i.e., T1 ⊆ T2 and T1 6⊇ T2. Let n ≥ 0 and m ≥ 1.

The results imply the following relations between bounded predicative

theories:

pΣb
n+m(X )-LmInd

pTn+1
2 (X )

pΣb
n+m+1(X )-Lm+1Ind.

Hence
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pSn+1
2 (X ) pTn+1

2 (X )

pRn+2
2 (X ) pSn+2

2 (X ).

For bounded predicative arithmetic theories without set variables we

also show:

pΣb
n+m-LmInd

pTn+1
2

pΣb
n+m+1-L

m+1Ind.

Hence

pSn+1
2

pTn+1
2

pRn+2
2

pSn+2
2 .

For small bounded arithmetic theories we obtain:

sΣb
m(X )-LmInd

T1
2(X )

sΣb
m+1(X )-Lm+1Ind.

Hence

S1
2(X ) T1

2(X )

sR2
2(X ) S2

2(X ).
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Chapter 2

Basic Definitions

We fix:

• The set of the natural numbers is always identified with the or-

dinal ω = {0, 1, 2, . . . }. Let P(ω) be the power set of ω, i.e.,

P(ω) ··= {S : S ⊂ ω}.

• We denote the first uncountable ordinal by Ω.

• Let ω0(α) ··= α and ωn+1(α) ··= ωωn(α). Let 20(α) ··= α and

2n+1(α) ··= 22n(α).

• Sometimes we will use a dyadic notation of the natural numbers:

let ij ∈ {0, 1} for j ≤ k, then we define

(ik . . . i0)2 ··=
k∑

j=0

ij · 2
j.

We shortly write (sik . . . i0)2 for s · 2k+1 + (ik . . . i0)2 if s > 1.

• Let Sϕ(t) be the expression obtained from the string S by replac-

ing all occurrences of ϕ by t.

• Let A(·) ···≡ {ϕ : A(ϕ)}.

In the following we introduce some basic polynomial time com-

putable functions which will be of interest in the further development of

this thesis. From now on we abbreviate ”polynomial time computable”

by ”polytime”.

• S, +, · are the usual successor, addition and multiplication func-

tions.

13
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• S0 and S1 are the binary successor functions given by λn. Si(n) =

2 · n + i with i ∈ {0, 1}.

• The binary length function is given by λn.|n| = ⌈log2(n + 1)⌉,

where we set ⌈r⌉ for real numbers r as the least integer z which

is bigger than or equal to r. For sequences n1, . . . , nk we shortly

write |n1, . . . , nk| instead of |n1|, . . . , |nk|.

• The shift right function λn.⌊1
2
n⌋ assigns to each natural number

n the biggest natural number which is less than or equal to n
2
.

• The smash function is given by λmn.m # n = 2|m|·|n|.

• The arithmetical subtraction function is defined by

λmn.m −· n =





m − n if m − n ≥ 0

0 otherwise.

• The functions λmn. MSP(m,n) and λmn. LSP(m,n) compute the

more significant part and the less significant part of a natural

number m. They are uniquely defined by the conditions

m = MSP(m,n) · 2n + LSP(m,n) and LSP(m,n) < 2n.

• < and ≤ are the usual ”less than” and ”less than or equal” rela-

tions.

• The predicate Bit(m,n) is true iff the m-th bit in the binary

expansion of n is 1.

All polytime functions are generated from the basic functions defined

above using composition and the following rules of limited recursion on

notations1 or of limited recursion2.

The function f is defined from functions g, h0, h1 and k by

limited recursion on notation if

f(~x, 0) = g(~x)

f(~x, Si(y)) = hi(~x, y, f(~x, y)) (i = 0, 1; i 6= 0 if y = 0)

provided that f(~x, y) ≤ k(~x, y) for all ~x, y.

1Cf. [10] p. 28.
2Cf. [6] p. 8.
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See Rose [18] for a proof that this rule again defines polytime functions.

The function f is defined from functions g, h and polynomials

p and q by limited recursion if the following holds:

Let the function τ be defined as

τ(~x, 0) = g(~x)

τ(~x, S(y)) = h(~x, y, τ(~x, y)).

Then let

f(~x) = τ(~x, p(|~x|))

provided that |τ(~x, y)| ≤ q(|~x|) for all ~x and y ≤ p(|~x|)).

See Buss [6] for a proof that this rule again defines polytime functions.

A monotone polynomial is a polynomial containing only positive

coefficients. All polytime functions have polynomial growth rate, that

means: given a polytime function f there is some monotone polynomial

qf such that

|f(~n)| ≤ qf (|~n|)

for all ~n ∈ ω. It is well-known that for each monotone polynomial q

there exists a polytime function fq such that

q(|~n|) ≤ |fq(~n)|

for all ~n ∈ ω. This function fq can be defined as a term from 0, ~n and

#.
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Chapter 3

Pure Number Theory

In the following three chapters we do the ordinal analysis for the sub-

systems IΣ0
n of pure number theory Z1. I.e., we compute the proof-

theoretical ordinal O(IΣ0
n) which is the supremum of the ordertypes of

all primitive recursive definable order relations whose wellfoundedness

is provable in IΣ0
n. Pure number theory Z1 is an extension of Peano

arithmetic by definitions. In Z1 there are symbols for all primitive

recursive functions and set variables.

3.1 Preliminaries

Let us fix a first order language LZ1
with equality in which the frag-

ments of Z1 which are under consideration can be axiomatized. We

adopt the definition from Pohlers [17] with the change that we use a

language in Tait-style, i.e., without a negation symbol – negation will

be defined syntactically.

The logical symbols of LZ1
are: countably many number variables

x0, x1, . . . , countably many set variables X0, X1, . . . , the sentential con-

nectives ∧,∨, the quantifiers ∀,∃, the equality symbols =, /= and the

membership relation symbols ∈, /∈.

The nonlogical symbols of LZ1
are: a constant n for each natural

number n, an n-ary function symbol f for each n-ary primitive recursive

function f and brackets as auxiliary symbols. We consider <, 6<,≤ and

6≤ as defined symbols. There is no negation symbol in LZ1
but we can

define a syntactic operation ¬ : LZ1
→ LZ1

which has the meaning

of negation according to the de Morgan laws, see [17] p. 23. We

abbreviate ¬F ∨ G by F → G and (F → G) ∧ (G → F ) by F ↔ G.

17
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The set of terms of LZ1
is the smallest set which contains the num-

ber variables and constants and is closed under the function symbols

of LZ1
. LZ1

-terms which contain no free number variables are called

ground terms. Let tN be the evaluation of a ground term t according to

the standard interpretation of the constants and the function symbols.

Prime formulas or atomic formulas are of the form s = t, s /= t, s ∈ X

or s /∈ X where s, t are terms and X is a set variable of LZ1
. We

obtain all first order LZ1
-formulas from atomic formulas by closing un-

der ∨,∧,∃,∀. We abbreviate ∀x (x ≤ t → A) and ∃x (x ≤ t ∧ A)

by ∀x≤t A resp. ∃x≤t A. These quantifiers are called bounded quan-

tifiers, quantifiers not of this form are called unbounded quantifiers.

LZ1
-formulas which do not contain free set variables are called arith-

metical. LZ1
-formulas which do not contain free number variables are

called Π1
1-sentences of LZ1

. Arithmetical LZ1
-formulas which do not

contain free number variables are called sentences of LZ1
.

Let F be a Π1
1-sentences containing no variable not occuring in

Y1, . . . , Yk. Let M1, . . . ,Mk ∈ P(ω), then N ² FY1,... ,Yk
[M1, . . . ,Mk]

is defined as usual1. Let N ² F iff N ² FY1,... ,Yk
[M1, . . . ,Mk] for all

M1, . . . ,Mk ∈ P(ω).

In order to axiomatize the fragments of Z1 in question we first define

some special sets of LZ1
-formulas: Σ0

0 = Π0
0 = ∆0

0 is the smallest set

of LZ1
-formulas which contains all atomic formulas and is closed under

sentential connectives and bounded quantification. Σ0
n+1 is the set of

LZ1
-formulas of the form ∃xA with A ∈ Π0

n. Π0
n+1 is the set of LZ1

-

formulas of the form ∀xA with A ∈ Σ0
n.

Let BASICZ1 be some convenient set of LZ1
-sentences which ax-

iomatizes the nonlogical symbols of LZ1

2, i.e., BASICZ1 consists of the

defining equations for the constants and the recursion equations for

the function symbols. We define induction axioms depending on sets

of LZ1
-formulas Φ: let (Φ-IND) be the set consisting of the universal

closure of formulas

A(0) ∧ ∀x (A(x) → A(S x)) → ∀xA(x)

1See [17] pp. 14 for a definition.
2In [17] pp. 18 we can find a suitable axiomatization.
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with A(x) ∈ Φ. We consider the axiom systems

Z1 = BASICZ1 ∪ (LZ1
-IND)

IΣ0
n = BASICZ1 ∪ (Σ0

n-IND).

We write T F to indicate that the LZ1
-formula F is a logical conse-

quence of T where T is one of the fragments defined above. We write

F to indicate that F follows from BASICZ1 without any additional

induction axiom.

3.2 The well-ordering proof in IΣ0
n

Let ≺ be a binary relation on ω definable by an LZ1
-formula. Let

field(≺) ··= {n ∈ ω : ∃m ∈ ω(n ≺ m or m ≺ n)}.

For well-founded ≺ let

|n|≺ ··= sup{|m|≺ + 1 : m ≺ n} ∈ Ω.

The order-type of ≺ is defined by

|| ≺ || ··= {|n|≺ : n ∈ ω} ∈ Ω.

Observe that |n|≺ = 0 for all n /∈ field(≺).

We formalize the notion of wellfoundedness. Let

Prog(≺, X) ···≡ ∀x (∀y (y ≺ x → y ∈ X) → x ∈ X),

Fund(≺, X) ···≡ Prog(≺, X) → ∀x (x ∈ X).

Then ≺ is well-founded if and only if N ² Fund(≺, X) (observe that

N ² Prog(≺, X) always implies ω \ field(≺) ⊂ X). Therefore, we say

that T proves the wellfoundedness of ≺ iff T Fund(≺, X). Finally

we define the proof-theoretical ordinal O(T ) of T by

O(T ) ···≡ sup{|| ≺ || : ≺ is a primitive recursive definable

binary relation and T Fund(≺, X)}.

To compute O(IΣ0
n) we first give an upper estimation by adapting

the well-ordering proof of Z1 from [17]. We arithmetize the ordinals less

than ε0 = supn<ω ωn(0) so that we can talk about them in LZ1
. Each
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ordinal α < ε0, α 6= 0, can be written uniquely as α = ωα1 + . . . + ωαn

with α > α1 ≥ . . . ≥ αn, n > 0. This is called the Cantor normal

form of α and will be denoted by α =CNF ωα1 + . . . + ωαn . The follow-

ing function p·q : ε0 → ω defined by transfinite recursion yields an

arithmetization of ε0. Let

pαq ··=





0 : α = 0

〈pα1q, . . . , pαnq〉 : α =CNF ωα1 + . . . + ωαn ,

where 〈. . .〉 is a suitable primitive recursive coding function for finite

sequences, e.g., the Gödel-numbers as defined in Chapter 6. Let D

be the range of p·q, then p·q : ε0 → D is bijective. On D we define the

relation ≺ and the functions +̂, ·̂, ω̂· by

pαq ≺ pβq :⇐⇒ α < β

pαq +̂ pβq ··= pα + βq

pαq ·̂ pβq ··= pα · βq

ω̂pαq ··= pωαq

D, ≺, +̂, ·̂, ω̂· are primitive recursive. For the rest of this chapter and

the following two chapters let small Greek letters indicate ordinals resp.

codes of ordinals.

On D the basic properties of ordinal arithmetic are provable in IΣ0
0.

In particular we obtain:

3.2.1 Lemma IΣ0
0 proves:

∀α, β, µ < ε0(µ 6= 0 ∧ α < β + ωµ → ∃δ < µ∃n < ω(α < β + ωδ · n))

Proof: We argue informally in IΣ0
0. Fix α, β, µ < ε0 with µ 6= 0 and

α < β + ωµ. If α ≤ β the assertion is trivial, e.g., let δ = 0, n = 1.

So we may assume β < α. We write α and β in their Cantor normal

forms – the Cantor normal form of 0 is defined to be the empty sum.

α =CNF ωα1 + . . . + ωαk (k > 0)

β =CNF ωβ1 + . . . + ωβl (l ≥ 0)

We distinguish the following cases according to the computation of

β < α:
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1. If l < k and α1 = β1, . . . , αl = βl, let δ ··= αl+1 and n ··=

k + 1, hence

β + ωδ · n > ωα1 + . . . + ωαl + ωαl+1 + . . . + ωαl+1

︸ ︷︷ ︸
k − l times

≥ α.

2. There is an i ≥ 0 with i < k and α1 = β1, . . . ,αi = βi,

αi+1 > βi+1. Assume µ ≤ αi+1, hence

β + ωµ ≤ β + ωαi+1 = ωα1 + . . . + ωαi+1 ≤ α

contradicting α < β + ωµ. Hence δ ··= αi+1 < µ. Let n ··=

k + 1, then

β + ωδ · n > ωα1 + . . . + ωαi + ωαi+1 + . . . + ωαi+1

︸ ︷︷ ︸
k − i times

≥ α.

⊓⊔

According to the previously defined canonical well-ordering of ε0 we

slightly modify the definition of Prog and Fund. Let

∀α A(α) ···≡ ∀x (x ∈ D → A(x)),

∃α A(α) ···≡ ∃x (x ∈ D ∧ A(x)),

∀β≤α A(β) ···≡ ∀β (β ¹ α → A(β)),

∃β≤α A(β) ···≡ ∃β (β ¹ α ∧ A(β)),

∀β<α A(β) ···≡ ∀β (β ≺ α → A(β)),

∃β<α A(β) ···≡ ∃β (β ≺ α ∧ A(β)),

α ⊂ X ···≡ ∀β<α (β ∈ X)

where β ¹ α is an abbreviation for β ≺ α ∨ β = α. We define

Prog(α,X) ···≡ ∀β<α (β ⊂ X → β ∈ X),

Fund(α,X) ···≡ Prog(α,X) → (α ⊂ X).

If A(x) and F (X) are LZ1
-formulas, we write F (A(·)) for substituting

t ∈ X by A(t) and t /∈ X by ¬A(t) in F .

In a first step we compute a lower bound of O(IΣ0
0).
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3.2.2 Lemma Let A(x) ∈ Π0
0 and l < ω. Then IΣ0

0 Fund(ω ·l, A(·)).

Proof: We use induction on l. Let X ··= A(·).

If l = 0 then there is nothing to do because ω · 0 = 0 and 0 ⊂ X.

In the induction step l ; l + 1 the induction hypothesis yields

IΣ0
0 Fund(ω · l, X). (3.1)

Now we argue in IΣ0
0. Assume

Prog(ω · (l + 1), X) ≡ ∀α<ω · (l + 1) [α ⊂ X → α ∈ X].

Hence Prog(ω · l, X), which together with (3.1) yields

ω · l ⊂ X. (3.2)

Now we show

∀m<n (ω · l + m ∈ X),

which is a Σ0
0-formula, for all n < ω by induction on n. Then we

conclude ∀n (ω · l + n ∈ X) and obtain ω · (l + 1) ⊂ X using (3.2).

Hence Fund(ω · (l + 1), X).

For n = 0 there is nothing to do. In the induction step n ; n + 1

we use the induction hypothesis ∀m<n (ω · l + m ∈ X) and (3.2) to

obtain ω · l + n ⊂ X. Then Prog(ω · (l + 1), X) yields ω · l + n ∈ X,

hence ∀m<(n + 1) (ω · l + m ∈ X). ⊓⊔

This lemma implies

ω2 = sup{ω · l : l < ω} ≤ O(IΣ0
0). (3.3)

To compute a lower bound of O(IΣ0
n+1) we have slightly more to

do. We define the jump of the set X by

Jp(α,X) ··= {β ≤ α : ∀γ (γ + ωβ ≤ ωα ∧ γ ⊂ X → γ + ωβ ⊂ X}

and show the following lemma.
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3.2.3 Lemma Let A(x) ∈ Π0
n+1. Then

IΣ0
n+1 Prog(ωα, A(·)) → Prog(α + 1, Jp(α,A(·))).

Proof: Let A(x) ∈ Π0
n+1. We argue in IΣ0

n+1 and assume

Prog(ωα, A(·)), (3.4)

β < α + 1 (3.5)

and

β ⊂ Jp(α,A(·)), (3.6)

then we have to show that β ∈ Jp(α,A(·)). So assuming that γ satisfies

γ + ωβ ≤ ωα (3.7)

and

γ ⊂ A(·) (3.8)

we have to conclude γ + ωβ ⊂ A(·). If β = 0 we obtain γ < ωα using

(3.7). Thus, (3.8) and (3.4) imply A(γ), hence γ + ω0 ⊂ A(·). If β > 0

then Lemma 3.2.1 shows that for ξ < γ +ωβ there are δ < β and k < ω

satisfying ξ < γ + ωδ · k. Thus, it suffices to prove

γ + ωδ · k ⊂ A(·) (3.9)

for any δ < β and k < ω. To prove (3.9) we use induction on k. This

is allowed in IΣ0
n+1 because

γ + ωδ · k ⊂ A(·) ≡ ∀ξ (ξ < γ + ωδ · k → A(ξ))

is equivalent to a Π0
n+1-formula and (Π0

n+1-IND) is provable in IΣ0
n+1.

As γ = γ + ωδ · 0 we obtain γ + ωδ · 0 ⊂ A(·) by (3.8).

For the induction step k ; k + 1 we assume

γ + ωδ · k ⊂ A(·). (3.10)

As δ < β we obtain δ ∈ Jp(α,A(·)) by (3.6). Together with the induc-

tion hypothesis (3.10) this yields

(γ + ωδ · k) + ωδ ⊂ A(·)
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because (γ +ωδ · k)+ωδ = γ +ωδ · (k +1) < γ +ωδ+1 ≤ γ +ωβ
(3.7)

≤ ωα,

hence

γ + ωδ · (k + 1) ⊂ A(·).

⊓⊔

3.2.4 Lemma Let A(x) ∈ Π0
n+1. Then

IΣ0
n+1 Fund(α, Jp(α,A(·))) → Fund(ωα, A(·)).

Proof: Assume

Fund(α, Jp(α,A(·))) (3.11)

and

Prog(ωα, A(·)), (3.12)

then we have to show that ωα ⊂ A(·). Lemma 3.2.3 applied to (3.12)

gives us

Prog(α + 1, Jp(α,A(·))). (3.13)

Then (3.11) together with (3.13) yields α ⊂ Jp(α,A(·)). We obtain

α ∈ Jp(α,A(·)) using (3.13). Hence ωα ⊂ A(·) and we are done. ⊓⊔

Let Jp0(α,X) ··= X, Jpn+1(α,X) ··= Jp(α, Jpn(ωα, X)). We ob-

serve

A(x) ∈ Π0
n+1 =⇒ Jp(α,A(·)) ∈ Π0

n+2.

Hence X, Jp(α1, X), . . . , Jpn(αn, X) ∈ Π0
n+1, and Lemma 3.2.4 shows

IΣ0
n+1 Fund(α, Jpn+1(α,X)) → Fund(ωn+1(α), X).

Applying Prog(l, A(·)) l-times to 0 ⊂ A(·), we obtain Fund(l, A(·))

for any l < ω and any LZ1
-formula A(x).

Altogether this leads to IΣ0
n+1 Fund(ωn+1(l), X) for all l < ω.

Observe ωn+1(ω) = ωn+1(ω
ω0

) = ωn+3(0), hence

ωn+3(0) = sup{ωn+1(l) : l < ω} ≤ O(IΣ0
n+1). (3.14)



Chapter 4

Semi-formal Systems

In this Chapter we introduce an infinitary language and an infinitary

system which are convenient for investigating subsystems of pure num-

ber theory. We prove the familiar cut-elimination for the semi-formal

system. Further we embed formal derivations of subsystems of pure

number theory into this semi-formal system.

4.1 The infinitary language

First we repeat the definition and some basic facts of the infinitary

language L∞ from Pohlers [17].

The basic symbols of L∞ are the logical symbols: countably many

set variables X0, X1, . . . ,
∧

,
∨

, =, /=,∈, /∈, and the same non-logical

symbols as for LZ1
. The terms of L∞ are the ground terms of LZ1

.

Prime formulas or atomic formulas are the atomic Π1
1-sentences of LZ1

.

With these the L∞-formulas are inductively defined using the following

clause:

If I is a non-empty index set and (Ai)i∈I is a sequence of L∞-

formulas, and all Ai contain no variable not in X0, . . . , Xk for

some k < ω, then
∧

(Ai)i∈I and
∨

(Ai)i∈I are L∞-formulas.

In the sequel we will often write
∧

i∈I Ai and
∨

i∈I Ai instead of
∧

(Ai)i∈I

resp.
∨

(Ai)i∈I . Let F be an L∞-formula. Assume that the variables

occurring in F are among Y1, . . . , Yk. Let N1, . . . , Nk ∈ P(ω). Then

N ² FY1,... ,Yk
[N1, . . . , Nk] is defined in the usual way1. Similar to LZ1

we have no negation symbol in L∞, but we can define a syntactic op-

1See [17] p. 24 for a definition.
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eration ¬ : L∞ → L∞ according to the de Morgan laws, see [17] p.

23.

From L∞ we obtain sub-languages LΩ and Lω by restricting the

index sets I in the inductive definition of the formulas to subsets of ω

resp. finite subsets of ω. In the sequel we may assume that I ∈ ω \ {0}

in the definition of Lω.

The canonical translation ∗ of Π1
1-sentences of LZ1

to LΩ is given by

the following inductive definition:

1. F ∗ ···≡ F if F is an atomic formula

2. (F0 ∧ F1)
∗ ···≡

∧
i≤1 F ∗

i ,

3. (F0 ∨ F1)
∗ ···≡

∨
i≤1 F ∗

i ,

4. (∀x≤t F (x))∗ ···≡
∧

n≤tN F (n)∗ if F ∈ ∆0
0,

5. (∃x≤t F (x))∗ ···≡
∨

n≤tN F (n)∗ if F ∈ ∆0
0,

6. (∀xF (x))∗ ···≡
∧

n<ω F (n)∗ if (∀xF (x)) /∈ ∆0
0,

7. (∃xF (x))∗ ···≡
∨

n<ω F (n)∗ if (∃xF (x)) /∈ ∆0
0.

We define the rank rk(F ) of an L∞-formula F such that F ∈ Lω if

and only if rk(F ) < ω:

1. rk(F ) ··= 0 if F is atomic.

2. rk(
∧

i∈I Fi) ··= rk(
∨

i∈I Fi) ··= max{rk(Fi) + 1 : i ∈ I}

if card(I) < ℵ0.

3. rk(
∧

i∈I Fi) ··= rk(
∨

i∈I Fi) ··= sup({rk(Fi) + 1 : i ∈ I} ∪ {ω})

if card(I) ≥ ℵ0.

The definition is extended to LZ1
-formulas F by rk(F ) ··= rk(F ∗). We

observe

F ∈ Lω ⇐⇒ rk(F ) < ω,

F ∈ LΩ =⇒ rk(F ) < Ω,

F ∈ LZ1
=⇒ rk(F ) < ω + ω,

F ∈ Σ0
n =⇒ rk(F ) < ω + n.
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4.2 The infinitary system

4.2.1 Definition We inductively define the infinitary system
α

ρ ∆ for

ordinals α, ρ and ∆ a finite set of L∞-formulas by the following clauses.

(Ax1)
α

ρ ∆, t = t holds.
α

ρ ∆, s /= t holds if sN 6= tN.

(Ax2)
α

ρ ∆, s ∈ X, t /∈ X holds if sN = tN.

(
∧

)
α

ρ ∆,
∧

i∈I Fi holds if for all i ∈ I there is some αi < α with
αi

ρ ∆, Fi.

(
∨

)
α

ρ ∆,
∨

i∈I Fi holds if there is some α0 < α and i0 ∈ I with
α0

ρ ∆, Fi0 .

(Cut)
α

ρ ∆ holds if there is some α0 < α and some L∞-formula F

with rk(F ) < ρ and
α0

ρ ∆, F and
α0

ρ ∆,¬F .

The infinitary system gives us a possibility to measure the complexity of

true Π1
1-sentences in the following sense: Using search-trees it is shown,

e.g. in [17], that

N ² F ⇐⇒ ∃α < Ω
α

0
F ∗

for Π1
1-sentences F . Therefore, the truth complexity of a Π1

1-sentence

F is defined by

tc(F ) ··=





min{α :

α

0
F ∗} : N ² F

Ω : otherwise.

Before we can compute bounds for the truth complexities of Π1
1-

sentences which are provable in IΣ0
n we have to fix a complete formal

system for those theories. Let Φ be a set of LZ1
-formulas.

4.2.2 Definition We inductively define the relation IΦ ∆ for finite

sets of LZ1
-formulas ∆ by the following clauses.

(Ax1) IΦ ∆ holds if ∆ contains a mathematical axiom from the

set BASICZ1 .

(Ax2) IΦ ∆ holds if ∆ contains an equality axiom of the form

∀x (x=x) or ∀x∀y (x=y ∧ A(x) → A(y)) for atomic formulas

A(x).
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(Φ-IND) IΦ ∆ holds if ∆ contains a formula of (Φ-IND).

(∧) IΦ ∆, F0 ∧ F1 holds if IΦ ∆, Fi for all i ∈ {0, 1}.

(∨) IΦ ∆, F0 ∨ F1 holds if IΦ ∆, Fi for some i ∈ {0, 1}.

(∀) IΦ ∆,∀xF (x) holds if IΦ ∆, F (y) for some y which does

not occur in ∆,∀xF (x).

(∃) IΦ ∆,∃xF (x) holds if IΦ ∆, F (t) for some LZ1
-term t.

(Cut) IΦ ∆ holds if there is some LZ1
-formula F with IΦ ∆, F

and IΦ ∆,¬F .

We want to embed the derivable Π1
1-sentences of IΣ0

n into the in-

finitary system. To do that we need an auxiliary infinitary system

INDn
α

ρ ∆ for L∞-formulas which, in addition to the clauses of
α

ρ ∆,

has the following kind of ω-rule:

(INDn) INDn
α

ρ ∆, F (t) holds if rk(F (t)) < ω +n and there is an α0 <

α with INDn
α0

ρ ∆, F (0) and INDn
α0

ρ ∆,¬F (k), F (k + 1) for

all k < tN.

The basic properties of both infinitary systems are easily proved by

induction on α:

Structural Rule
α

ρ ∆ and α ≤ α′, ρ ≤ ρ′, ∆ ⊆ ∆′ =⇒
α′

ρ′
∆′.

INDn
α

ρ ∆ and α ≤ α′, ρ ≤ ρ′, ∆ ⊆ ∆′ =⇒ INDn
α′

ρ′
∆′.

(
∧

)-Inversion
α

ρ ∆,
∧

i∈I Fi =⇒
α

ρ ∆, Fi for all i ∈ I.

INDn
α

ρ ∆,
∧

i∈I Fi and rk(
∧

i∈I Fi) ≥ ω + n =⇒ INDn
α

ρ ∆, Fi

for all i ∈ I.

(
∨

)-Exportation
α

ρ ∆,
∨

i≤k Fi =⇒
α

ρ ∆, F0, . . . , Fk.

INDn
α

ρ ∆,
∨

i≤k Fi and rk(
∨

i≤k Fi) ≥ ω + n

=⇒ INDn
α

ρ ∆, F0, . . . , Fk.

Equality Lemma
α

ρ ∆(s) and sN = tN =⇒
α

ρ ∆(t).

INDn
α

ρ ∆(s) and sN = tN =⇒ INDn
α

ρ ∆(t).

Using Structural Rules we can always assume – and in the sequel we

will do so – that the conclusion of an inference is always included in

the premise.

Some cuts in the infinitary systems can be eliminated. To do so we

prove the following lemma:



4.3. THE EMBEDDING OF IΣ0
N 29

4.2.3 Elimination Lemma Let F ≡
∧

i∈I Fi be an L∞-formula and

rk(F ) = ρ.

α

ρ Γ, F &
β

ρ ∆,¬F & ρ > 0 =⇒
α+β

ρ Γ, ∆

INDn
α

ρ Γ, F & INDn
β

ρ ∆,¬F & ρ ≥ ω + n

=⇒ INDn
α+β

ρ Γ, ∆

Proof: We use induction on β. (We only prove the first assertion,

the second follows by a similar argument.) The interesting case is that

¬F ≡
∨

i∈I ¬Fi is the main formula of the last inference. Then the

last inference has to be an application of (
∨

) (it cannot be (INDn) in

the second assertion as rk(F ) ≥ ω + n). Thus, there are some β0 < β

and i0 ∈ I with
β0

ρ ∆,¬F,¬Fi0 . The induction hypothesis yields

α+β0

ρ Γ, ∆,¬Fi0 (4.1)

Applying (
∧

)-Inversion to
α

ρ Γ, F we obtain
α

ρ Γ, Fi0 , hence

α+β0

ρ Γ, ∆, Fi0 (4.2)

by a Structural Rule. An application of (Cut) to (4.1) and (4.2) yields
α+β

ρ Γ, ∆ as rk(Fi0) < rk(F ) = ρ and α + β0 < α + β. ⊓⊔

Using the Elimination Lemma we obtain the Elimination Theorem.

4.2.4 Elimination Theorem

α

ρ+1
∆ & ρ > 0 =⇒

2α

ρ ∆

INDn
α

ρ+1
∆ & ρ ≥ ω + n =⇒ INDn

2α

ρ ∆

Proof: The proof is by induction on α. ⊓⊔

4.3 The Embedding of IΣ0
n

4.3.1 Theorem Let F (x1, . . . , xk) be an LZ1
-formula containing no

variable not indicated. Assume IΣ0
n F , then there is an m < ω such

that for all u1, . . . , uk ∈ ω
ω·m

ω+n
[F (u1, . . . , uk)]

∗.
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Proof: The proof is subdivided into three steps. First we embed the

formal derivation into the auxiliary infinitary system INDn. Assuming

IΣ0
n ∆ we show that there are some m, r < ω satisfying

∀u1, . . . , uk ∈ ω INDn
m

ω+r
[∆(u1, . . . , uk)]

∗

by induction on the definition of IΣ0
n ∆. The most interesting case

is that ∆ contains a (Σ0
n-IND)-axiom, i.e., the universal closure of a

formula

F (0) ∧ ∀x (F (x) → F (S x)) → ∀xF (x)

with F (x) ∈ Σ0
n. By induction on the generation of F we can easily

show that there is some m < ω such that

INDn
m

0
¬F (l)∗, F (l)∗

for all l < ω. Using the Equality Lemma, (
∧

) and two times (
∨

) we

derive from this

INDn
m+3

0
G,¬F (l)∗, F (l + 1)∗

where G ···≡ [¬F (0) ∨ ∃x (F (x) ∧ ¬F (S x))]∗. We also obtain

INDn
m+3

0
G,F (0)∗.

Hence

INDn
m+4

0
[¬F (0) ∨ ∃x (F (x) ∧ ¬F (S x))]∗, F (l)∗

for all l < ω using (INDn). An inference (
∧

) and two inferences (
∨

)

yield the assertion.

By cut-elimination 4.2.4 we then obtain:

∀u1, . . . , uk ∈ ω INDn
2r(m)

ω+n
[F (u1, . . . , uk)]

∗.

Embedding INDn into the infinitary system yields

∀u1, . . . , uk ∈ ω
ω·2r(m)

ω+n
[F (u1, . . . , uk)]

∗

and we are done. For the last step we show the slightly more general

assertion

INDn
α

ω+n
Γ =⇒

ω·α

ω+n
Γ

by induction on α. The only interesting case is that the last inference

was an application of (INDn). The induction hypothesis applied to the
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premises of the inference leads to some F (t) with rk(F (t)) < ω +n and

some α0 < α satisfying
ω·α0

ω+n
Γ, F (0) and

ω·α0

ω+n
Γ,¬F (k), F (k + 1) for

all k < tN. Then we can show
ω·α0+l

ω+n
Γ, F (l) for l ≤ tN by inductively

applying (Cut). Thus, as ω · α0 + tN < ω · (α0 + 1) ≤ ω · α, we obtain
ω·α

ω+n
Γ, F (t) using the Equality Lemma. ⊓⊔

The Elimination Theorem applied to the last result yields

4.3.2 Corollary Let F be a Π1
1-sentence, n > 0 and IΣ0

n F , then

there is an m < ω such that
ωn(m)

ω F ∗.

Proof: The Embedding IΣ0
n-Theorem together with the Elimination

Theorem leads to
2n(ω·m)

ω F ∗ for some m < ω. We compute 2ω·α = ωα

and 2(ω1+α) = ω(ωα). This yields 21(ω ·α) = ω1(α) and 2n(ω · (1+α)) =

ωn(α) for n > 1 and α > 0, thus the assertion follows. ⊓⊔
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Chapter 5

Upper Bounds for O(IΣ0
n)

In the previous chapter we bounded the lengths of the infinitary deriva-

tions of Fund(≺, X). These derivations use cuts of translated ∆0
0-

formulas, which are Lω-formulas. In this Chapter we connect the

lengths of such derivations with the order-type of a well-founded

arithmetical-definable binary and transitive relation ≺. We do this in

two steps. First we prove the following cut-elimination for Lω-formulas

α

ω ∆ =⇒
ω·α

1
∆.

Then we show the following Boundedness Theorem:

α

1
Fund(≺, X) =⇒ || ≺ || ≤ α.

Both results together yield

α

ω Fund(≺, X) =⇒ || ≺ || ≤ ω · α

and that is all we need to compute the missing estimations for O(IΣ0
n).

5.1 Lω-cut-elimination

An Lω-formula can be viewed as a finite tree whose leafs are labeled

with atomic formulas and whose nodes are labeled with
∧

and
∨

. A

heriditary inversion of such a formula is obtained by replacing each

subtree above a node labeled with
∧

by the subtree above one of its

child-nodes. Any selection of this kind will be represented in form of a

sequence.

33
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5.1.1 Definition For an Lω-formula F we define a set of possible se-

lection sequences S(F ) and inversions F f for f ∈ S(F ). If F is atomic

then let S(F ) ··= {〈〉} and F 〈〉 ···≡ F .

In the case that F ≡
∧

i≤l Fi we define

S(F ) ··= {〈j, g〉 : j ≤ l & g ∈ S(Fj)}

and we set F f ···≡ (Fj)
g for f = 〈j, g〉 ∈ S(F ).

In the remaining case that F ≡
∨

i≤l Fi we define

S(F ) ··= {〈g0, . . . , gl〉 : g0 ∈ S(F0), . . . , gl ∈ S(Fl)}

and we set F f ···≡
∨

i≤l(Fi)
gi for f = 〈g0, . . . , gl〉 ∈ S(F ).

We give an example. Let Pi j, j ≤ li, i ≤ l, be atomic formulas. Let

F ···≡
∨

i≤l

∧
j≤li

Pi j. We compute

S(F ) = {〈g0, . . . , gl〉 : gi ∈ S
( ∧

j≤li

Pi j

)
for i ≤ l}

= {〈〈j0, 〈〉〉, . . . , 〈jl, 〈〉〉〉 : ji ≤ li for i ≤ l}.

Let ji ≤ li for i ≤ l, then

F 〈〈j0,〈〉〉,... ,〈jl,〈〉〉〉 ≡
∨

i≤l

( ∧

j≤li

Pi j

)〈ji,〈〉〉

≡
∨

i≤l

Pi ji

Let F be an Lω-formula. Let Y1, . . . , Yk be the variables occurring

in F and N1, . . . , Nk ∈ P(ω). An easy induction on the generation of

F shows
(
∀f ∈ S(F ) N ² F f

Y1,... ,Yk
[N1, . . . , Nk]

)
⇐⇒ N ² FY1,... ,Yk

[N1, . . . , Nk].

Furthermore, we can show

5.1.2 Theorem (Heriditary Inversion) If F is an Lω-formula, then

α

ρ ∆, F =⇒ ∀f ∈ S(F )
α

ρ ∆, F f .

Proof: We use induction on α. If the main-formula of the last inference

is not F , then an inference of the same kind (together with the induction

hypothesis if α > 0) yields the assertion. Otherwise, we distinguish the

following cases:
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Fix some f ∈ S(F ). If F is atomic then F f ≡ F . So there is

nothing to do.

If F ≡
∨

i≤l Fi then the premise of the last inference is of the form
α′

ρ ∆, F, Fj for some j ≤ l and α′ < α. Furthermore, f = 〈g0, . . . , gl〉

with gi ∈ S(Fi) for i ≤ l. Applying the induction hypothesis twice we

obtain
α′

ρ ∆, F f , F
gj

j , thus one (
∨

)-inference yields
α

ρ ∆, F f .

In the remaining case we have F ≡
∧

i≤l Fi, some αi < α and
αi

ρ ∆, F, Fi for i ≤ l. Then f = 〈j, g〉 with j ≤ l and g ∈ S(Fj). We

apply the induction hypothesis twice and obtain
αj

ρ ∆, F f , F g
j . Thus,

a Structural Rule yields
α

ρ ∆, F f observing F f ≡ F g
j . ⊓⊔

All these observations obviously extend to arbitrary L∞-formulas.

Of course the definition of the inversion then uses arbitrary selection

trees which can be infinitary. The next result strongly depends on

the finite structure of Lω-formulas. It is the main observation in this

section.

We define the length, lh(F ), of an Lω-formula F inductively by

lh(A) ··= 1 for an atomic formula A and

lh(
∧

i≤l

Fi) ··= lh(
∨

i≤l

Fi) ··=
∑

i≤l

lh(Fi).

Obviously 0 < lh(F ) < ω and lh(F ) = lh(¬F ). lh(F ) counts the

occurrences of atomic formulas in F .

5.1.3 Lω-Cut-Elimination Lemma Assume F ∈ Lω, ρ > 0,
α

ρ ∆, F and
α

ρ ∆,¬F . Then
α+lh(F )

ρ ∆

Proof: With Lω-inversion we obtain

∀f ∈ S(F )
α

ρ ∆, F f (5.1)

∀g ∈ S(¬F )
α

ρ ∆, (¬F )g. (5.2)

From this we prove
α+lh(F )

ρ ∆ by induction on the generation of F .

If F is atomic, then S(¬F ) = S(F ) = {〈〉}, (¬F )〈〉 ≡ ¬F and

F 〈〉 ≡ F . As rk(F ) = rk(¬F ) = 0 < ρ and lh(F ) = 1 we obtain the

assertion applying a (Cut).

In the case that F is not atomic we may assume F ≡
∨

i≤l Fi, hence

¬F ≡
∧

i≤l ¬Fi. Now we prove for j ≤ l + 1

∀fj ∈ S(Fj) . . . ∀fl ∈ S(Fl)
α+

P

0≤i<j lh(Fi)

ρ ∆, F
fj

j , . . . , F fl

l

(5.3)
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by induction on j. For j = l + 1 this means an empty sequence of

quantifiers ∀fi ∈ S(Fi) and formulas F fi

i , hence
α+lh(F )

ρ ∆.

For j = 0 we observe
∨

j≤i≤l

F fi

i ≡
∨

i≤l

F fi

i ≡ F 〈f0,... ,fl〉

∀f0 ∈ S(F0) . . . ∀fl ∈ S(Fl)
(
〈f0, . . . , fl〉 ∈ S(F )

)

∑

0≤i<j

lh(Fi) = 0,

therefore, (5.3) follows directly with
∨

-Inversion from hypothesis (5.1).

In the induction step j ; j + 1, j ≤ l, we first fix fi ∈ S(Fi) for

j < i ≤ l. Let L ··=
∑

0≤i<j lh(Fi). The side induction hypothesis

yields

∀f ∈ S(Fj)
α+L

ρ ∆, F
fj+1

j+1 , . . . , F fl

l , F f
j (5.4)

For any g ∈ S(¬Fj) we know 〈j, g〉 ∈ S(¬F ) and (¬F )〈j,g〉 ≡ (¬Fj)
g,

therefore, hypothesis (5.2) yields

α

ρ ∆, (¬Fj)
g

and by a Structural Rule we obtain

∀g ∈ S(¬Fj)
α+L

ρ ∆, F
fj+1

j+1 , . . . , F fl

l , (¬Fj)
g. (5.5)

As Fj is a sub-formula of F we can apply the main induction hypothesis

to (5.4) and (5.5) which yields
α+L+lh(Fj)

ρ ∆, F
fj+1

j+1 , . . . , F fl

l which is the

assertion (5.3) for j + 1 as L + lh(Fj) =
∑

0≤i<j+1 lh(Fi). ⊓⊔

5.1.4 Lω-Cut-Elimination Theorem

α

ω ∆ =⇒
ω·α

1
∆.

Proof by induction on α: The only interesting case, which is not imme-

diate, is that
α

ω ∆ is derived by a (Cut). Then there are some α0 < α

and some L∞-formula F with rk(F ) < ω and
α0

ω ∆, F and
α0

ω ∆,¬F .

The induction hypothesis leads to
ω·α0

1
∆, F and

ω·α0

1
∆,¬F . From

rk(F ) < ω we know F ∈ Lω, hence
ω·α0+lh(F )

1
∆ applying the Lω-

Elimination Lemma. As F ∈ Lω we compute

ω · α0 + lh(F ) < ω · (α0 + 1) ≤ ω · α.

⊓⊔
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5.2 The Boundedness Theorem

We can find a proof of
α

0
Fund(≺, X) =⇒ || ≺ || ≤ 2α in [17] The-

orem 13.10 – a result which goes back to Gentzen. Nearly the same

proof yields
α

1
Fund(≺, X) =⇒ || ≺ || ≤ 2α.

Here we use a new idea to prove

α

1
Fund(≺, X) =⇒ || ≺ || ≤ α.

For this purpose we make some preliminary definitions and observa-

tions.

5.2.1 Definition We define the negative points NX(∆) of a set of L∞-

formulas ∆ relative to a set-variable X:

1. If F is atomic let NX(F ) ··=





{sN} : F ≡ s /∈ X

∅ : otherwise

2. NX

(∨
i∈I Fi

)
··= NX

(∧
i∈I Fi

)
··=

⋃
i∈I NX(Fi)

3. NX (∆) ··=
⋃

F∈∆ NX(F )

5.2.2 Lemma (Monotonicity) Let F be an L∞-formula containing

no variable not in X,Y1, . . . , Yk. Let M1,M2, N1, . . . , Nk ∈ P(ω) with

NX(F ) ⊂ M1 ⊂ M2. Then

N ² FX,Y1,... ,Yk
[M1, N1, . . . , Nk] =⇒ N ² FX,Y1,... ,Yk

[M2, N1, . . . , Nk].

Proof: The proof is by induction on the generation of F . ⊓⊔

Let ≺ be a well-founded arithmetical definable binary and transitive

relation. Its accessible part can be inductively defined by the accessi-

bility operator A≺(S) ··= S ∪ {n ∈ ω : ∀m ≺ n(m ∈ S)} for S ⊂ ω.

The α-th iteration of this operator is recursively defined by Aα
≺(S) ··=

A≺

(
S∪

⋃
β<α Aβ

≺(S)
)
. Thus, we obtain the α-th stage of the inductive

definition by Aα
≺(∅).

In our further considerations we have to compute the effects of ad-

joining one element to S on Aα
≺(S). For this purpose we first give

another, more direct description of Aα
≺(S).
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The enumeration function of a class O ⊂ On is defined by

enO(α) ··= min{ξ ∈ O : (∀β < α)[enO(β) < ξ]}. Let enO ··= enOn \O

be the dual enumeration function which enumerates the complement of

O. For C ⊂ ω let C≺ ··= {|n|≺ : n ∈ C}. Observe

C ⊂ C ′ =⇒ enC≺(α) ≤ enC′≺(α), (5.6)

and

en(C∪{s})≺(α) ≤ enC≺(α + 1). (5.7)

We define

5.2.3 Definition We define the reachability operator by

Rα
≺(C) ··= {n ∈ ω : |n|≺ ≤ enC≺(α)} ∪ C.

Observe for n /∈ field(≺) that n ∈ Rα
≺(C) because |n|≺ = 0. In

the sequel we shortly write enC,s and Rα
≺(C, s) instead of enC∪{s} and

Rα
≺(C ∪ {s}).

For n ∈ ω with |n|≺ = enC≺(α) we have

(∀x ≺ n)(∃β < α) [x ∈ Rβ
≺(C)]

and conversely if (∀x ≺ n)(∃β < α) [x ∈ Rβ
≺(C)] and n /∈ C then

(∃β ≤ α) [|n|≺ = enC≺(β)]. Hence

Rα
≺(C) = C ∪

⋃

β<α

Rβ
≺(C) ∪ {n ∈ ω : |n|≺ = enC≺(α)}

= A≺

(
C ∪

⋃

β<α

Rβ
≺(C)

)

By induction on α this yields

Rα
≺(C) = Aα

≺(C),

hence

(∀x ≺ n) [x ∈ Rα
≺(C)] =⇒ n ∈ Rα+1

≺ (C). (5.8)

The advantage of Rα
≺(C) in contrast to Aα

≺(C) is

Rα
≺(C, s) ⊂ Rα+1

≺ (C) ∪ {s} (5.9)

which is obtained using (5.6) and (5.7).

In the sequel we consider the set variable X to be distinguished.

Therefore, we can write N(F ), N ² (
∨

∆)[M ] etc. instead of NX(F ),

N ² (
∨

∆)X [M ] etc.
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5.2.4 Boundedness Lemma Let X be the only variable occurring in

∆, then

α

1
¬Prog(≺, X), ∆ =⇒ N ² (

∨
∆)

[
Rα

≺(N(∆))
]
.

Proof: We use induction on α and consider several cases according

to the last inference. In the case of an axiom already ∆ itself is an

axiom of the same kind and we are done. If the main formula of the

last inference belongs to ∆ then the assertion follows from the induction

hypothesis, the Monotonicity Lemma and the correctness of the last

inference.

We now turn to the interesting cases. If the main formula of the

last inference is ¬Prog(≺, X), then we can find, using inversion, some

α′ < α and some term s such that

α′

1
¬Prog(≺, X), ∆,∀x ≺ s (x ∈ X) (5.10)

and

α′

1
¬Prog(≺, X), ∆, s /∈ X. (5.11)

If there is some n ≺ s such that n /∈ Rα′

≺ (N(∆)) then the induction

hypothesis applied to (5.10) yields N ² (
∨

∆)
[
Rα′

≺ (N(∆))
]
, and the

assertion follows with the Monotonicity Lemma. Otherwise, (5.8) yields

s ∈ Rα′+1
≺ (N(∆))

which together with (5.9) implies

Rα′

≺ (N(∆), s) ⊂ Rα′+1
≺ (N(∆)) ⊂ Rα

≺(N(∆)). (5.12)

The induction hypothesis applied to (5.11) together with (5.12) entails

N ² (
∨

∆)
[
Rα

≺(N(∆))
]

by the Monotonicity Lemma.

In the case that the last inference is a cut there are α′ < α, an

atomic formula F and premises

α′

1
¬Prog(≺, X), ∆, F (5.13)

and

α′

1
¬Prog(≺, X), ∆,¬F. (5.14)
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We may assume that F contains no other variable than X (otherwise

F includes some variable Y different from X which can be substituted

by X). Assume F ≡ s ∈ X. In the case s 6∈ Rα
≺(N(∆)) the induction

hypothesis applied to (5.13) combined with the Monotonicity Lemma

yields N ²
(
(
∨

∆), s∈X
)[

Rα
≺(N(∆))

]
, hence N ² (

∨
∆)

[
Rα

≺(N(∆))
]
.

Otherwise, s ∈ Rα
≺(N(∆)). The induction hypothesis applied to (5.14)

leads to N ² (
∨

∆)
[
Rα′

≺ (N(∆), s)
]
. With (5.9) we observe

Rα′

≺ (N(∆), s) ⊂ Rα′+1
≺ (N(∆)) ∪ {s} ⊂ Rα

≺(N(∆)),

so using the Monotonicity Lemma we obtain N ² (
∨

∆)
[
Rα

≺(N(∆))
]
.

If F ≡ s /∈ X the situation is quite symmetrical. In the remaining

case F is an atomic sentence not of the form s ∈ X or s /∈ X. Then

the induction hypothesis applied to (5.13) and (5.14) combined with

the Monotonicity Lemma yields N ²
(
(
∨

∆), F
)[

Rα
≺(N(∆))

]
and N ²

(
(
∨

∆),¬F
)[

Rα
≺(N(∆))

]
, hence N ² (

∨
∆)

[
Rα

≺(N(∆))
]
. ⊓⊔

5.2.5 Boundedness Theorem

α

1
Fund(≺, X) =⇒ || ≺ || ≤ α.

Proof: First we observe that there is an α′ < α such that

α′

1
¬Prog(≺, X),∀x (x ∈ X). (5.15)

To obtain this we show by induction on β:

If β > 0 and P1, . . . , Pk are atomic formulas satisfying

β

1
Fund(≺, X), P1, . . . , Pk,

then there is an γ < β such that

γ

1
Prog(≺, X),∀x (x ∈ X), P1, . . . , Pk.

If
β

1
Fund(≺, X), P1, . . . , Pk by an axiom let γ = 0. If the main for-

mula of the last inference is Fund(≺, X) then we are in the situation of

an (
∨

)-inference, and we obtain the assertion by (
∨

)-Exportation. If

the last inference was a cut then there is a prime formula P and some

β0 < β with
β0

1
Fund(≺, X), P1, . . . , Pk, P
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and
β0

1
Fund(≺, X), P1, . . . , Pk,¬P.

If β0 > 0 then the induction hypothesis and a (Cut) yield

β0

1
Prog(≺, X),∀x (x ∈ X), P1, . . . , Pk.

Otherwise, P1, . . . , Pk has to be an axiom and we obtain

0

1
Prog(≺, X),∀x (x ∈ X), P1, . . . , Pk.

We compute NX

(
∀x (x ∈ X)

)
= ∅ and en∅(α

′) = α′. So the previ-

ously proved Boundedness Lemma applied to (5.15) yields

∀x x ∈ Rα′

≺ (∅),

hence ∀x (|x|≺ ≤ α′), hence || ≺ || = {|n|≺ : n ∈ ω} ⊂ α′ + 1 ≤ α. ⊓⊔

5.3 Applications: O(IΣ0
n+1) = ωn+3(0) and

O(IΣ0
0) = ω2

In the last part of this chapter we use the Lω-Cut-Elimination Theorem

and the Boundedness Theorem to compute O(IΣ0
n).

Assume IΣ0
n+1 Fund(≺, X). Using Corollary 4.3.2 there is an m <

ω such that
ωn+1(m)

ω Fund(≺, X)∗. Now the Lω-Elimination Theorem

5.1.4 yields
ω·ωn+1(m)

1
Fund(≺, X)∗. Then the Boundedness Theorem

5.2.5 yields || ≺ || ≤ ω · ωn+1(m) < ωn+1(ω) = ωn+3(0). Thus, we

have shown O(IΣ0
n+1) ≤ ωn+3(0). Together with the result (3.14) from

Chapter 3 this yields

5.3.1 Corollary O(IΣ0
n+1) = ωn+3(0). ⊓⊔

Assume IΣ0
0 Fund(≺, X). With the Compactness Theorem and

the Deduction Theorem for first order logic there are A1, . . . , Ak ∈

(Σ0
0-IND) such that

¬A1, . . . ,¬Ak, Fund(≺, X)
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As A(0) ∧ ∀x (A(x) → A(S x)) → ∀xA(x) is logically equivalent to

∀x IA(x), where IA(x) ···≡ A(0) ∧ ∀y<x (A(y) → A(S y)) → A(x), there

are ∆0
0-formulas F1, . . . , Fk such that

¬∀x IF1(x), . . . ,¬∀x IFk
(x), Fund(≺, X). (5.16)

Actually we have to consider universal closures of formulas IF . But by

coding techniques we may always assume that the length of the block

of universal quantifiers is 1.

We need a slightly modified definition of the rank function (rk(F ) ··=

0 if F is atomic and rk(
∧

i∈I Fi) ··= rk(
∨

i∈I Fi) ··= sup{rk(Fi) + 1 :

i ∈ I}) in order to produce from the above formal derivation a finitary

cut-free semi-formal derivation. We can directly embed derivation 5.16

into a modified infinitary system (which uses the new rank definition)

obtaining some m < ω and r < ω such that

m

r ¬(∀x IF1(x))∗, . . . ,¬(∀x IFk
(x))∗, Fund(≺, X)∗.

Adapting the Elimination Theorem 4.2.4 leads to

2r(m)

0
¬(∀x IF1(x))∗, . . . ,¬(∀x IFk

(x))∗, Fund(≺, X)∗.

To obtain

ω·2r(m)

1
Fund(≺, X)∗ (5.17)

we prove

α

0
¬(∀x IF1(x))∗, . . . ,¬(∀x IFk

(x))∗, ∆ =⇒
ω·α

1
∆

by induction on α. The assertion follows directly (with the induction

hypothesis if α > 0) if the main formula of the last inference was not

¬(∀x IFi
(x))∗ for i ∈ {1, . . . , k}. Otherwise, we can find some α0 < α

and some l ∈ ω such that

α0

0
¬(∀x IF1(x))∗, . . . ,¬(∀x IFk

(x))∗, ∆,¬IFi
(l)∗.

Using the induction hypothesis we obtain

ω·α0

1
∆,¬IFi

(l)∗.

Adapting the embedding of induction from the proof of Theorem 4.3.1

we observe that there are some m′, r′ < ω with
m′

r′
IFi

(l)∗, hence

2r′ (m
′)

0
∆, IFi

(l)∗.
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Obviously IFi
(l) ∈ ∆0

0, hence IFi
(l)∗ ∈ Lω and the Lω-Elimination

Lemma yields
ω·α0+2r′ (m

′)+lh[IFi
(l)∗]

1
∆.

We compute ω · α0 + 2r′(m
′) + lh[IFi

(l)∗] < ω · (α0 + 1) ≤ ω · α.

The Boundedness Theorem applied to (5.17) yields

|| ≺ || < ω · 2r(m) < ω · ω = ω2,

hence O(IΣ0
0) ≤ ω2. Together with the result (3.3) from the middle of

chapter 3 this yields

5.3.2 Corollary O(IΣ0
0) = ω2. ⊓⊔
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Chapter 6

Notations for Exponentiation

A necessary condition for a function f to be feasibly computable is that

it grows at most polynomially, i.e., it has polynomial growth rate1, which

means that there is a polynomial qf such that (∀n )[|f(n)|≤ qf (|n|)] – a

condition which is satisfied, e.g., by all functions from the polynomial

hierarchy PH, in particular by the polytime functions. Therefore, it

is difficult to deal with the exponentiation function directly in the in-

vestigation on bounded arithmetic theories. One possibility of dealing

with exponentiation is shown for example in [12] that the graph of the

exponentiation function can be defined by a ∆0
0-formula.

In this thesis we will follow another idea. In the ordinal analysis of

Z1 we coded ordinals less than ε0 in such a way that basic operations

like +, · and λα.ωα on the ordinal notations became primitive recursive

functions (cf. Chapter 3). Replacing ω by 2 yields a coding of the

natural numbers in such a way that some basic arithmetical operations

like +, λn.2 · n and exponentiation λn.2n on this notations become

polytime operations.

6.1 Exponential codes for natural num-

bers

Let 〈. . .〉 be the Gödel numbers for sequences as defined in [6] p. 8 with

the change that we do not reverse the order of the bits. The following

equations define such a coding. First we define a function s * a for

s, a ∈ ω by limited recursion on the notation of a. This function adds

1cf. [6] p. 9.

45
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the value a to the sequence s.

s * 0 = (s0010)2 = 16 · s + 2

s * 1 = (s0011)2 = 16 · s + 3

s * (ai)2 = ((s * a)1i)2 = 4 · (s * a) + 2 + i, (i = 0, 1 and a 6= 0).

Then the Gödel numbers are given by

〈〉 = 0

〈a1, . . . , ak, ak+1〉 = 〈a1, . . . , ak〉 * ak+1.

Let Seq be the polytime set of all Gödel numbers.

How does Gödel numbering work? The Gödel number for the

sequence a1, . . . , ak is constructed as follows. First write the ai’s in

binary notation so we obtain a string of 0’s, 1’s and commas. Then

we replace each 0 by ”10”, each 1 by ”11” and each comma by ”00”.

The resulting string of zeros and ones is the binary representation of

the Gödel number 〈a1, . . . , ak〉. For example the Gödel number of

3, 4, 5 is (11110011101000111011)2 or 997.947. 〈〉 is defined to be 0.

In the following we introduce some polytime functions which ma-

nipulate Gödel numbers.

〈a1, . . . , ak〉 ** 〈b1, . . . , bl〉 = 〈a1, . . . , ak, b1, . . . , bl〉

β(0, 〈a1, . . . , ak〉) = k

lh(〈a1, . . . , ak〉) = k

β(i + 1, 〈a1, . . . , ak〉) = ai+1, i < k

truncr(〈a1, . . . , ak, ak+1〉) = 〈a1, . . . , ak〉

truncl(〈a1, a2, . . . , ak〉) = 〈a2, . . . , ak〉

first(〈a1, . . . , ak〉) = a1

last(〈a1, . . . , ak〉) = ak

SqBd(k, l) = (k # S1(S1(l)))
2.

SqBd(·, ·) has the property

∀a1, . . . , a|k|≤l
(
〈a1, . . . , a|k|〉 ≤ SqBd(k, l)

)
.

In the sequel we use small Greek letters for natural numbers that

are interpreted as exponential notations. Using this coding function we
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define

0̂ ··= 〈〉

2̌α1+̌ . . . +̌2̌αk ··= 〈α1, . . . , αk〉

1̂ ··= 2̌0̂.

The intended meaning of these codes becomes clear from the evaluation

function which is given by

Φ(0̂) = 0

Φ(2̌α1+̌ . . . +̌2̌αk) = 2Φ(α1) + . . . + 2Φ(αk),

thus Φ(1̂) = 1. Of course Φ is not a polytime function.

Now we define the predicates E , ≺ and the functions ΦE , TE by the

following equations:

α ∈ E ⇐⇒ α = 0 or there are α1, . . . , αk ∈ E with

α = 2̌α1+̌ . . . +̌2̌αk and Φ(αk) < . . . < Φ(α1)

ΦE ··= Φ ↾ E

α ≺ β ⇐⇒ α, β ∈ E & ΦE(α) < ΦE(β)

TE ··= ΦE
−1 .

For α, β ∈ E we give an implicit definition of the functions +̂ and 2̂:

ΦE(α +̂ β) = ΦE(α) + ΦE(β)

ΦE(2̂
α
) = 2ΦE(α).

E is the set of exponential notations. In the rest of this Chapter we

show that the predicates E , ≺ and the functions +̂, 2̂, TE are polytime.

First we observe that the desired exponentiation function on E can be

written simply as λα. 2̂
α

··= 〈α〉. Therefore, 2̂ is a polytime function.

Let

fi(n) ··= 2̂(. . . 2̂︸ ︷︷ ︸
i-times

(TE(n)) . . . )

then we compute

ΦE(fi(n)) = 2
...
2n

}
i-times.

After having seen that TE is polytime this shows that ΦE cannot be

polytime.
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6.2 Limited course-of-values recursion

The verification that the predicates E ,≺ and the functions +̂, TE are

polytime requires a special limited course-of-values recursion.

In the sequel we will use limited recursion (on notation) to define

polytime functions. In doing so we often use lh(s) to bound recursion.

This is allowed since lh(s) ≤ |s|.

The usual course-of-values recursion is equivalent to primitive recur-

sion, thus, in general, polytime functions are not closed under this rule.

Another, more technical, aspect is that λn.〈0, 1, . . . , n − 1〉 growths ex-

ponentially, because for n > 0 we compute |〈0, 1, . . . , n − 1〉| ≥ 2 · n >

n, hence 〈0, 1, . . . , n − 1〉 ≥ 2n. Therefore, one requirement of lim-

ited course-of-values recursion is that the course is given by a polytime

function.

In the following let s ⊏ t mean that s, t are Gödel numbers and s

is a subsequence of t, i.e., if lh(s) = k and t = 〈t0, . . . , tl−1〉 then k ≤ l

and

∃i0, . . . , ik−1

(
i0 < . . . < ik−1 < l & s = 〈ti0 , . . . , tik−1

〉
)
.

6.2.1 Definition A course-function is a function course(·) satisfying

course(s) ⊏ 〈0, . . . , s − 1〉

and

course(s) = 〈s0, . . . , sk−1〉 =⇒ ∀i<k
(

course(si) ⊏ 〈s0, . . . , si−1〉
)
.

The course-of-values of a function f according to course(·) is defined

by

f course(s) ··= 〈f(s0), . . . , f(sk−1)〉

provided that course(s) = 〈s0, . . . , sk−1〉.

If f and course(·) are polytime then also f course is polytime. This

can be seen, using limited recursion, by a similar argument as in the

following theorem.

6.2.2 Theorem (limited course-of-values recursion)

Let course(·) be a course-function. Given a function g there exists a

uniquely defined function f solving

f(s) = g(s, f course(s)).
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If in addition course(·) and g are polytime and there exists another

polytime function h satisfying

f(s) ≤ h(s)

then this f is polytime, too.

Proof: Existence and uniqueness are proved as usual. For the second

part of the theorem we define the function

select(〈a0, . . . , ak−1〉, 〈ai1 , . . . , air〉, 〈b0, . . . , bl−1〉) ··= 〈bi1 , . . . , bir〉

for an increasing sequence 〈a0, . . . , ak−1〉, i1 < . . . < ir < min(k, l).

Using functions

b(x) ··=






〈α, β, γ, δ * c〉 : x = 〈α * a, β * a, γ * c, δ〉

〈α, β * b, γ, δ〉 : x = 〈α * a, β * b, γ * c, δ〉 and a 6= b

x : otherwise

and

r(〈a1, . . . , ak〉) ··= 〈ak, . . . , a1〉

select(α, β, s) ··= β(4, blh(α)(〈r(α), r(β), r(s), 〈〉〉)) ≤ s

we observe that select(·) is polytime by limited recursion. Here bx(a)

is the x-fold iteration of b(·) applied to a.

In order to prove the assertion it suffices to show that f course is

polytime. Let t = course(s) = 〈b0, . . . , bl−1〉, then we define a poly-

time function φ(t) = 〈f(b0), . . . , f(bl−1)〉 with the use of φ̃(t, i) =

〈f(b0), . . . , f(bi−1)〉 and the fact that course(bi) is a subsequence of

〈b0, . . . , bi−1〉. Then we can compute for i < l

f(bi) = g(bi, f
course(bi))

= g(bi, select(t, course(bi), φ̃(t, i))).

We define

φ̃(t, 0) ··= 〈〉

φ̃(t, i + 1) ··= φ̃(t, i) * g(β(i + 1, t),

select(t, course(β(i + 1, t)), φ̃(t, i)))

φ(t) ··= φ̃(t, lh(t)) ≤ hcourse(t)

f course(s) ··= φ(course(s)).

By limited recursion f course is polytime. ⊓⊔
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6.3 E, ≺, +̂, TE are polytime

We need some special course functions which compute those subse-

quences such that all values are included which are needed in the defi-

nition of E , ≺, +̂ and TE . We start defining

sort(〈a1, . . . , ak〉) ··= 〈b1, . . . , bl〉

where {a1, . . . , ak} = {b1, . . . , bl} and b1 < . . . < bl. sort(·) can be com-

puted using one of the commonly known sorting algorithms, e.g., one

which runs in time O(n2) sorting n objects. Thus, sort(s) is computable

in time O(|s|2), hence polytime.

Now we define

U(〈〈a1 1, . . . , a1 i1〉, . . . , 〈ak 1, . . . , ak ik〉〉) ··= 〈b1, . . . , bl〉

where b1 < . . . < bl and

{b1, . . . , bl} = {a1 1, . . . , a1 i1 , . . . , ak 1, . . . , ak ik}.

The following equations may be used to observe that U(·) is polytime.

Let s = 〈s0, . . . , sk−1〉.

f(〈s0, . . . , sk−1〉) ··= s0 ** . . . ** sk−1 ≤ SqBd(s, s)

U(s) ··= sort(f(s)).

By limited recursion f is polytime, thus also U(·). We use these func-

tions to see that the transitive closure2 of a sequence can be computed

by a polytime function. To this end, observe that U|s|(s) = 〈〉 and let

g(s) ··= s ** U(s) ** U(U(s)) ** . . . ** U|s|(s) ≤ SqBd(s # s, s)

then g is polytime by limited recursion. Hence

tc(s) ··= sort(g(s))

is polytime and computes the transitive closure of s. By construction

tc(·) is a course function.

We need a similar course-function for pairs of sequences.

Let tc2(〈s, t〉) = 〈c1, . . . , ck〉 with c1 < . . . < ck and

{c1, . . . , ck} = {〈di, ej〉 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

2The transitive closure is generated using the obvious element relation on se-

quences which is given by ai is an element of 〈a1, . . . , ak〉, 0 < i ≤ k.
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where tc(s) = 〈d1, . . . , dm〉 and tc(t) = 〈e1, . . . , en〉. The follow-

ing equations are used to observe that tc2(·) is polytime. Let s =

〈s0, . . . , sk−1〉 and let t = 〈t0, . . . , tl−1〉.

f(〈s0, . . . , sk−1〉, a) ··= 〈〈s0, a〉, . . . , 〈sk−1, a〉〉 ≤ SqBd(s, s * a)

X(s, 〈t0, . . . , tl−1〉) ··= f(s, t0) ** . . . ** f(s, tl−1)

≤ SqBd(s # t, s ** t)

tc2(〈s, t〉) ··= sort(X(tc(s), tc(t))).

By limited recursion both f and X are polytime. Thus, also tc2(·) is

polytime. By construction tc2(·) is a course function.

We use tc2(·) to show that E and ≺ are polytime.

α ∈ E ⇐⇒ α = 2̌α1+̌ . . . +̌2̌αk with α1, . . . , αk ∈ E and

αk ≺ . . . ≺ α1.

α ≺ β ⇐⇒ α, β ∈ E , α = 2̌α1+̌ . . . +̌2̌αk , β = 2̌β1+̌ . . . +̌2̌βl

and ∃i<l (i ≤ k and α1 = β1, . . . , αi = βi and

(i = k or αi+1 ≺ βi+1)).

We cannot apply Theorem 6.2.2 directly to this simultaneous definition

because if we try to compute 0̂ ≺ 2̌β1+̌2̌β2 =·· β we need β ∈ E and

for this β2 ≺ β1. But 〈β2, β1〉 does not occur in tc2(〈0̂, β〉). Surely

it is possible to change the definition of tc2(·) to overcome this lack,

as 〈β2, β1〉 < 〈0̂, β〉. But there is another possibility to show that E

and ≺ are polytime which uses Theorem 6.2.2 and tc2(·). We define

a more general relation ≺′. We obtain ≺′ by replacing E through Seq

(the set of all Gödel numbers) in the definition of ≺. Let χ≺′ be the

characteristic function of ≺′, i.e.,

χ≺′(α, β) =





1 : α ≺′ β

0 : otherwise,

and let h(〈α, β〉) ··= χ≺′(α, β). Rewriting the definition of ≺′ we obtain

a polytime function g satisfying

h(〈α, β〉) = g
(
〈α, β〉, htc2(〈α, β〉)

)
≤ 1,

therefore, Theorem 6.2.2 yields that h is polytime, thus also χ≺′ and
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hence ≺′ are polytime. Now we define

α ∈ E ⇐⇒ Seq(α) and ∀i < lh(α)
[
β(i + 1, α) ∈ E and

(i > 0 → β(i + 1, α) ≺′ β(i, α))
]

α ≺ β ⇐⇒ α ∈ E and β ∈ E and α ≺′ β.

Using Theorem 6.2.2 with tc(·) yields that E is polytime. Therefore,

also ≺ is polytime.

Before we can define +̂ on the exponential notations we need a suc-

cessor function Ŝ on them. To compute the successor on an exponential

notation we need an auxiliary function F to manage carries. Therefore,

we simultaneously define for α = 2̌α1+̌ . . . +̌2̌αk ∈ E

F (α) ··= µi ≤ k.
(
i > 0 and ∀j<k (j ≥ i → αj = Ŝ(αj+1))

)

Ŝ(α) ··=





2̌α1+̌ . . . +̌2̌αi−1+̌2̌Ŝ αi : αk = 0̂ and i ··= F (α)

2̌α1+̌ . . . +̌2̌αk+̌2̌0̂ : otherwise.

Clearly F (α) ≤ k = lh(α) and after proving | Ŝ(α)| ≤ |α * 0̂| we can

use Theorem 6.2.2 together with tc(·) to see that both functions are

polytime.

6.3.1 Lemma | Ŝ(α)| ≤ |α * 0̂| ≤ |α| + 4.

Proof: Remember the definition

s * 0 = (s0010)2 = 16 · s + 2,

s * 1 = (s0011)2 = 16 · s + 3,

s * (ai)2 = ((s * a)1i)2 = 4 · (s * a) + 2 + i, (i = 0, 1 and a 6= 0)

and

〈a1, . . . , ak, ak+1〉 = 〈a1, . . . , ak〉 * ak+1.

First we compute some constant notations and some binary lengths.

Let a = (a1 . . . ak)2 .

0̂ = (0)2 = 0

1̂ = (10)2 = 2

s 6= 0 → |s * 0| = | (s0010)2 | = |s| + 4

a 6= 0 → |s * a| = | (s001a11a2 . . . 1ak)2 | = | (s00)2 | + 2 · |a|

=





2 · |a| : s = 0

|s| + 2 + 2 · |a| : s 6= 0.
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We start to prove the assertion by induction on α = 2̌α1+̌ . . . +̌2̌αk =

〈α1, . . . , αk〉. If k = 0, then α = 0̂, hence Ŝ(0̂) = 2̌0̂ = 0̂ * 0̂. If k > 0 and

αk 6= 0̂, then Ŝ(α) = 〈α1, . . . , αk, 0̂〉 = α * 0̂. If k > 0 and αk = 0̂, then

let i ··= F (α). We have to distinguish the following cases. Let β ··=

〈α1, . . . , αi−1〉.

If i = k then we observe α = β * 0̂ and

Ŝ(α) = β * 1̂ = β * (10)2 = (β001110)2 .

On the other hand we see

α * 0̂ = (β * 0̂) * 0̂ = (β00100010)2 > Ŝ(α).

If i < k then we find α = β ** 〈αi, . . . , αk〉. Observe that ΦE(αj) = k−j

for j = i, . . . , k. Now the induction hypothesis produces

| Ŝ(αi)| ≤ |αi * 0̂|. (6.1)

This leads to

| Ŝ(α)| = |β * Ŝ(αi)| = | (β00)2 | + 2 · | Ŝ(αi)|
(6.1)

≤ | (β00)2 | + 2 · |αi * 0̂|

= | (β00)2 | + 2 · (|αi| + 4) = | (β00)2 | + 2 · |αi| + 8

and

|α * 0̂| = |(β ** 〈αi, . . . , αk〉) * 0̂|

≥ |β ** 〈αi, 0̂, 0̂〉| = |((β * αi) * 0̂) * 0̂|

= |β * αi| + 8 = | (β00)2 | + 2 · |αi| + 8.

These two estimations together show | Ŝ(α)| ≤ |α * 0̂|. ⊓⊔

We define the preaddition pa(·, ·) which computes α +̂ 2̌β by

pa(α, β) ··=






2̌α1+̌ . . . +̌2̌αk+̌2̌β : k = 0 or β ≺ αk

2̌α1+̌ . . . +̌2̌αi−1+̌2̌Ŝ(αi) : αk = β and i··=F (α)

pa
(
2̌α1+̌ . . . +̌2̌αk−1 , β

)
* αk : αk ≺ β

where α = 2̌α1+̌ . . . +̌2̌αk . In the next lemma we will see that pa(·, ·) is

polynomially bounded. Therefore, we can apply Theorem 6.2.2 together

with the following polytime course function initseq(·) to observe that

pa(·, ·) is polytime.

initseq(〈a1, . . . , ak〉) ··= 〈〈a1, . . . , ak−1〉, . . . , 〈a1〉, 〈〉〉.
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6.3.2 Lemma | pa(α, β)| ≤ |α| + 2 · |β| + 8.

Proof: We use induction on α = 2̌α1+̌ . . . +̌2̌αk . If k = 0 or β ≺ αk,

then

| pa(α, β)| = |α * β| ≤ |α| + 2 + 2 · |β| + 2.

If αk = β then let i ··= F (α) and observe using γ ··= 2̌α1+̌ . . . +̌2̌αi−1

| pa(α, β)| = |γ * Ŝ(αi)| ≤ | (γ00)2 | + 2 · (|αi| + 4)

= | (γ00)2 | + 2 · |αi| + 8 = |γ * αi| + 8

≤ |α| + 2 · |β| + 8.

Otherwise, the induction hypothesis (i.h.) shows

| pa(α, β)| = | pa(2̌α1+̌ . . . +̌2̌αk−1 , β) * αk|

= | pa(2̌α1+̌ . . . +̌2̌αk−1 , β)| + 2 + 2 · max(|αk|, 1)
i.h.

≤ |2̌α1+̌ . . . +̌2̌αk−1| + 2 · |β| + 8 + 2 + 2 · max(|αk|, 1)

= |α| + 2 · |β| + 8.

⊓⊔

Now we are able to define by limited recursion

α +̂(2̌β1+̌ . . . +̌2̌βl) ··= pa(. . . pa(α, β1) . . . , βl)

which is limited because

|α +̂ β| = | pa(. . . pa(α, β1) . . . , βl)|

≤ |α| + 2 · |β1| + 8 + . . . + 2 · |βl| + 8

≤ |α| + |β| + 8 · l ≤ |α| + 9 · |β|.

Therefore, +̂ is polytime.

Finally we want to observe that

TE(n) = ΦE
−1(n) = ”the unique α ∈ E with ΦE(α) = n”

is polytime. By limited recursion on α = 2̌α1+̌ . . . +̌2̌αk we define

f(α) ··= 2̌Ŝ(α1)+̌ . . . +̌2̌Ŝ(αk)

and compute

|f(α)| = 2 · | Ŝ(α1)| + 2 + . . . + 2 + 2 · | Ŝ(αk)|

≤ 2 · (|α1| + 4) + 2 + . . . + 2 + 2 · (|αk| + 4)

= |α| + 8 · k ≤ 9 · |α|.
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f is polytime and it satisfies ΦE(f(α)) = 2 · ΦE(α). Using f we define,

this time by limited recursion on notation,

TE(0) ··= 0̂

TE( (ni)2 ) ··=





f(TE(n)) : i = 0

Ŝ(f(TE(n))) : i = 1.

With the next lemma we obtain that TE is polytime.

6.3.3 Lemma |TE(n)| ≤ 8 · |n|2.

Proof: We use induction on n. If n = 0, then |TE(0)| = |0̂| = 0 =

8 · |0|2. If n = 1, then |TE(1)| = |1̂| = |2| = 2 ≤ 8 · |1|2. For the

induction step we consider (ni)2 with i = 0, 1 and n ≥ 1. We estimate

|TE( (ni)2 )| ≤ | Ŝ(f(TE(n)))| ≤ |f(TE(n))| + 4

≤ |TE(n)| + 8 · lh(TE(n)) + 4

≤ |TE(n)| + 8 · |n| + 4
i.h.

≤ 8 · |n|2 + 8 · |n| + 8 ≤ 8 · (|n| + 1)2 = 8 · | (ni)2 |
2.

⊓⊔

Altogether we have seen that the predicates E ,≺ and the functions

+̂, 2̂ and TE are polytime.

Finally we prove that the predecessor function on the exponential

notations

P̂(α) ··=





0̂ : α = 0̂

β : for that β with β +̂ 1̂ = α

is not a polytime function. We can show

6.3.4 Theorem P̂ is not polynomially bounded.

Proof: Obviously | 2̂
TE(n)

| > 1 for n > 0, hence

| P̂(2̂
TE(n)

)| = |TE(2
n − 1)|

= |TE(2
n−1 + . . . + 20)|

≥ 2 · n ≥ 2|n|.



56 CHAPTER 6. NOTATIONS FOR EXPONENTIATION

On the other hand we compute | 2̂
TE(n)

| = 2 · |TE(n)| ≤ 16 · |n|2. If P̂

would be polynomially bounded then there has to be some monotone

polynomial p(x) with | P̂(x)| ≤ p(|x|). But then

2|n| ≤ | P̂(2̂
TE(n)

)| ≤ p(| 2̂
TE(n)

|) ≤ p(16 · |n|2)

which yields a contradiction for large n. ⊓⊔



Chapter 7

Bounded Predicative

Arithmetic (BPA)

In the introduction we motivated that if the aspired Dynamic Ordi-

nal ΦE(α(x)) of a theory is not close enough to x (i.e., eventually

ΦE(α(x)) ≥ 2x) then we have to assume the existence of a value a

which bounds all exponential notations below α(x). This value is not

allowed to bound the length of an induction – otherwise this would in-

fluence the Dynamic Ordinal in a way that a in general cannot bound

all exponential notations below this Dynamic Ordinal. Thus, from the

point of view of induction, a has to be impredicative.

In [5] Bellantoni and Cook made observations which are related

to this. They presented a new recursion theoretic characterization of

the polytime functions and considered functions with two kinds of ar-

guments:

f(~x;~a)

ր տ

normal safe

The difference between the two sorts of arguments is that a value in the

normal position can be used to do binary recursion up to that value.

In the safe position you are ”safe” to use impredicative values which

come along as the intermediate values of a recursion.

We will capture in the formulation of bounded predicative arith-

metic the idea, that the individuals are divided into a predicative and

an impredicative part at which only the predicative values are allowed

to bound induction.

57
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7.1 The language

The individual universe I of a structure S for bounded predicative arith-

metic contains a sub-universe Ip of predicative values, i.e., ∅ 6= Ip ⊆ I.

Ip is closed under the polytime functions from the finite set Fp which

is given by

{0, S, +, ·, |x|, ⌊1
2
x⌋, x # y, x −· y, MSP, LSP}

and under the polytime functions from the finite set F i which is given

by

{S, S0, S1,

*, **, first, last, truncl, truncr, β, lh,

0̂, 1̂, x+̌2̌y, 2̂
x
, +̂, 2̂· x, TE(x)}.

Furthermore, Ip is closed under some weak form of induction.

Not much structure is assumed for the impredicative part of the

individual universe I. Only some arithmetical connections are given on

the impredicative part between the graphs of the polytime functions

from the set F i.

Notice: We do not assume that any function is total on I.

Keeping this picture in mind we define a formal language LBPA

which is a Tait-style language of first order logic with equality con-

taining

• two sorts of individual variables: predicative ones which are de-

noted by x0, x1, . . . , x, y, z, . . . , and impredicative ones which are

denoted by a0, a1, . . . , a, b, c, . . . . Thus, an assignment Φ for S

of the variables satisfies Φ(x) ∈ Ip and Φ(a) ∈ I. Actually we

think of four sorts of individual variables: two for free and two

for bounded variables - but we will not use a special TEX-Font

(like Gothic or perhaps Klingonic) to distinguish between the free

and bounded ones.

• logical symbols =, /=,∧,∨,∀,∃

• nonlogical symbols:

– a function symbol f with arity ar(f) for every polytime func-

tion f ∈ Fp ∪ F i. We think of f living in the predicative

universe, i.e., fS : I
ar(f)
p → Ip. Formally this will be expressed

in the definition of terms.
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– for each ar(f)-ary f ∈ F i two (ar(f) + 1)-ary predicate

symbols, Gf for the graph of f and Gc
f for its complement.

These predicates speak about the whole universe I, i.e.,

Gf
S ⊆ Iar(f)+1, Gc

f
S = Iar(f)+1 \ Gf

S .

– for each ar(P )-ary P ∈ P i ··= {≤, Bit, Seq, E ,≺} two pred-

icate symbols of arity ar(P ), P for P and Pc for its comple-

ment. Again these predicates speak about the whole uni-

verse I, i.e., PS ⊆ Iar(P ), PcS = Iar(P ) \ PS .

• auxiliary symbols (, ).

Sometimes we want to have an extended language LBPA(X ) contain-

ing additional set variables, denoted by X0, X1, . . . , Y, Z, . . . , and the

binary predicates ∈, /∈ as logical symbols. Then Φ(X) ⊆ I and ∈S is

the usual ”element”-relation.

In the sequel we will write ≤ and /≤ instead of ≤ resp. ≤c. For

the rest of this chapter we fix LBPA resp. LBPA(X ) as the underlying

formal language. It will be clear from the context which of both is

considered.

The predicative variables are often called normal, the impredicative

ones safe. We use ϕ as an individual variable if we do not care about

its sort.

The normal variables range over Ip and the safe variables over I.

We inductively define the predicative or normal terms respecting these

different meanings by:

1. Normal variables are normal terms

2. If f is a sign for a polytime function f ∈ Fp ∪ F i and t1, . . . , tn

are normal terms, then (f t1 . . . tn) is a normal term.

A term is a normal term or a safe variable.

As the predicates are intended to speak about the whole universe

I we can define formulas in the usual way starting from the atomic

formulas using the terms1. The characteristic feature of a Tait-style

language is that negation is not a logical symbol but can be defined

as a syntactic operation ¬ according to the de Morgan-laws2. With

1Cf. Chapter 3.
2Cf. Chapter 3.
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FV (F ) we denote the set of all free variables, with nFV (F ) that of

all normal and with sFV (F ) that of all safe variables that occur in F .

We use <, →, ↔, etc. as defined symbols3. A term or formula which

contains no normal variables is called predicative ground.

Notice: The only predicative ground terms are the ground LBPA-

terms and the impredicative variables.

We can interpret each term t in S under Φ. This yields a value

tS [Φ] ∈ I. Furthermore, if t is a normal term then tS [Φ] ∈ Ip. Thus,

also the LBPA-formulas are interpretable in S under Φ. With N we

mean the standard model of the natural numbers which consists of the

identical predicative and impredicative part ω. The interpretations of

the other non-logical symbols are given in Appendix A. We shortly

write N ² Fϕ[n] instead of N ² F [Φ] for some Φ with Φ(ϕ) = n if

FV (F ) ⊂ {ϕ}.

Bounded quantifiers and bounded formulas play an important role

in bounded arithmetics. We abbreviate

∀ϕ≤uA(ϕ) ···≡ ∀ϕ [ϕ ≤ u → A(ϕ)]

∃ϕ≤uA(ϕ) ···≡ ∃ϕ [ϕ ≤ u ∧ A(ϕ)]

∀ϕ<uA(ϕ) ···≡ ∀ϕ≤u [ϕ < u → A(ϕ)]

∃ϕ<uA(ϕ) ···≡ ∃ϕ≤u [ϕ < u ∧ A(ϕ)]

and call these quantifiers bounded. A formula containing only bounded

quantifiers is called a bounded formula. We call a bounded quantifier

normal if the bounding term u is normal. We call a normal bounded

quantifier sharply bounded if the bounding term u is of the shape |u′|.

We call a bounded formula normal (resp. sharply bounded) if all quan-

tifiers occurring in it are normal (resp. sharply bounded).

7.2 The theories

We define the set of predicative bounded formulas PBF as the set of

all bounded LBPA-formulas whose quantifiers respect the ontological

meaning of normal and safe variables. E.g., a normal variable bounded

by a safe variable yields in some sense an unbounded quantifier over

the predicative part.

3Cf. Chapter 3.
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7.2.1 Definition PBF is inductively defined by the following clauses.

1. All atomic LBPA-formulas are in PBF.

2. PBF is closed under ∧,∨.

3. If A ∈ PBF, x is a normal variable and t is a normal term, then

∃x≤t A and ∀x≤t A are in PBF.

4. If A ∈ PBF, a is a safe variable and s is a term, then ∃a≤s A and

∀a≤s A are in PBF.

Let PBF(X ) be the obvious extension of this definition to LBPA(X )-

formulas.

In PBF we distinguish special sets of formulas pΣb
n, pΠb

n and p∆b
0.

7.2.2 Definition 1. p∆b
0 = pΣb

0 = pΠb
0 is the set consisting of all

sharply bounded PBF-formulas.

2. pΠb
n+1 is the set of PBF-formulas of the form

∀a1≤s1 . . . ∀ap≤sp ∀x≤t A(a1, . . . , ap, x)

for some terms s1, . . . , sp, t and A ∈ pΣb
n.

3. pΣb
n+1 is the set of PBF-formulas of the form

∃a1≤s1 . . . ∃ap≤sp ∃x≤t A(a1, . . . , ap, x)

for some terms s1, . . . , sp, t and A ∈ pΠb
n.

Let pΣb
∞

··=
⋃

n∈ω
pΣb

n and pΠb
∞

··=
⋃

n∈ω
pΠb

n. Again let pΣb
n(X ),

pΠb
n(X ), p∆b

0(X ) be the obvious relativization of this definition to

LBPA(X )-formulas.

Notice: Formulas from pΣb
n etc. are always strict.

In order to develop the relevant theories we first state some axioms.

Let pBASIC be a finite set of defining axioms for the non-logical sym-

bols of LBPA (an axiom will be a propositional combination of atomic

formulas), i.e.

• axioms for the functions in Fp like the set BASIC from [6] plus

some more. These axioms are formulated with normal variables

as the functions live in the predicative universe.
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• axioms for the predicates in P i and for the graphs of functions in

F i (such an axiomatization is given in Appendix B)

• for each f ∈ F i axioms of the form

– Gf (~x, f ~x)

– Gf (~a, b) ∧ Gf (~a, c) → b = c.

Beside this we need several induction axioms. Let

Ind(F, y, x) ···≡ Fy(0) ∧ ∀y<x (F → Fy(S y)) → Fy(x),

P Ind(F, y, x) ···≡ Fy(0) ∧ ∀y≤x (Fy(⌊
1
2
y⌋) → F ) → Fy(x).

Let |x|0 ···≡ x and |x|m+1
···≡ |(|x|m)|. We obtain several axiom schemas

for Ψ ⊂ PBF:

Ψ-Ind ··= {Ind(F, y, x) : F ∈ Ψ}

Ψ-LInd ··= {Ind(F, y, |x|) : F ∈ Ψ}

Ψ-LLInd ··= {Ind(F, y, ||x||) : F ∈ Ψ}

Ψ-LmInd ··= {Ind(F, y, |x|m) : F ∈ Ψ}

Ψ-PInd ··= {PInd(F, y, x) : F ∈ Ψ}

Ψ-PLInd ··= {PInd(F, y, |x|) : F ∈ Ψ}

Ψ-PLmInd ··= {PInd(F, y, |x|m) : F ∈ Ψ}

In particular the following theories will be of interest:

pRn
2

··= pBASIC + pΣb
n-LLInd

pSn
2

··= pBASIC + pΣb
n-LInd

pTn
2

··= pBASIC + pΣb
n-Ind

pRn
2 (X ) ··= pBASIC + pΣb

n(X )-LLInd

pSn
2 (X ) ··= pBASIC + pΣb

n(X )-LInd

pTn
2 (X ) ··= pBASIC + pΣb

n(X )-Ind.

Let T be a theory pBASIC+ some induction schema, then this induc-

tion schema is also written as T -Ind. We will often omit to mention
pBASIC when we speak about theories, e.g., we will say Φ-LmInd in-

stead of pBASIC + Φ-LmInd.

Notice: We have Ind(F, x, t) ∈ pΣb
∞ for F ∈ pΣb

∞ and normal t, and
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Ind(F, x, t) ∈ pΣb
∞(X ) for F ∈ pΣb

∞(X ) and normal t. The same holds

for PInd.

With an instance of a formula F we mean a formula which results

from replacing all variables of F by some terms respecting the sort

(normal, safe) of the variable: normal variables are replaced by normal

terms and safe variables by arbitrary terms.

7.2.3 Definition We inductively define T ∆ for finite sets of formu-

las ∆ in the language of T by the following clauses.

(AxL) T ∆ holds if ∆ contains a logical axiom ¬A,A for some

atomic formula A.

(AxE) T ∆ holds if ∆ contains an equality axiom of the form

(s = s) or (s = t ∧ A(s) → A(t)) for some atomic formula

A(ϕ) and terms s, t.

(AxpB) T ∆ holds if ∆ contains an instance of an axiom from
pBASIC.

(T -IND) T ∆ holds if ∆ contains an instance of a formula from

T -Ind.

(∧) T ∆, F0 ∧ F1 holds if T ∆, Fi for all i ∈ {0, 1}.

(∨) T ∆, F0 ∨ F1 holds if T ∆, Fi for some i ∈ {0, 1}.

(∀) T ∆,∀ϕF holds if there is some ψ not occurring in ∆,∀ϕF

with [ϕ safe =⇒ ψ safe] and T ∆, Fϕ(ψ).

(∃) T ∆,∃ϕF holds if there is some term s with [ϕ normal

=⇒ s normal] and T ∆, Fϕ(s).

(Cut) T ∆ holds if there is some formula F with T ∆, F and

T ∆,¬F .

7.2.4 Remark The introduced formal derivation systems are complete

with respect to the BPA-models of the universal closure of the under-

lying theory. I.e., let T be the set of all nonlogical axioms occuring in

the previous definition,

T = {F : F is an instance of a formula from pBASIC ∪ T -Ind},

then the truth of F in all BPA-models of T implies T F .
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The introduced systems allow partial cut-elimination4, i.e., the cuts

can be reduced to formulas of the complexity of the axioms which are
pΣb

∞(X )-formulas.

Furthermore, we obtain a normal form for derivations. Let T be a

theory formulated in LBPA and ∆ a finite set of LBPA-formulas. Then

we can show that T ∆ iff ∆ is derivable in the restriction of the cal-

culus defined in 7.2.3, in which the cut-formulas are restricted to pΣb
∞-

formulas and only (∀)-inferences eliminate variables. The last–metioned

means if ∆i, i≤k =⇒ Γ is an inference according to (∧), (∨), (∃), (Cut),

then FV (∆i) ⊂ FV (Γ) for i ≤ k, and if Γ, Fϕ(ψ) =⇒ Γ,∀ϕF is an in-

ference according to (∀) then FV (Γ, Fϕ(ψ)) ⊂ FV (Γ,∀ϕF )∪{ψ}. This

eliminated variable has to be the eigenvariable of the inference. We

call such a restricted derivation a normal derivation. In the following

we only consider normal derivations without particularly mentioning it

(i.e., we write T ∆ and we mean that ∆ is derivable with a normal

derivation).

This normal form is somehow part of the normal form which Buss

et al. call ”a bounded proof which has no free cuts, is in free variable

normal form and is restricted by parameter variables” (cf. [6], p. 77,

Theorem 9). In essential the normal form defined here is that part of

the latter normal form which is needed for the forthcoming.

With help of the following lemma we also obtain normal derivations

of LBPA(X )-formulas for a theory formulated in LBPA(X ): no set vari-

able disappears by an application of an inference. Let FX({a : G(a)})

– or shortly FX(G(.)) – be the expression obtained from F by replacing

all occurrences of s∈X by G(s) and all occurrences of s /∈X by ¬G(s).

If F and G are LBPA(X )-formulas so is FX({a : G(a)}).

7.2.5 Lemma Let F be an LBPA(X )-formula and G(a) ∈ p∆b
0(X ).

T (X ) F =⇒ T (X ) FX({a : G(a)}).

Proof by induction on the derivation T (X ) F : For the only critical

case, the T (X )-Ind axioms, we observe

F ∈ pΣb
k(X ) =⇒ FX({a : G(a)}) ∈ pΣb

k(X ).

4Cf. [2].
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⊓⊔

We give two consequences of normal derivability.

7.2.6 Theorem Let F be an LBPA-formula.

T (X ) F =⇒ T F.

Proof: All formulas which occur in a normal derivation of an LBPA-

formula are in LBPA. ⊓⊔

7.2.7 Remark All formulas which occur in a normal derivation T F

of F ∈ PBF (resp. F ∈ PBF(X )) are in PBF (resp. in PBF(X )).
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Chapter 8

Bounded Arithmetic (BA)

and BPA

In this chapter we investigate the relationship between the introduced

theories pΣb
n-LmInd, pRn

2 , pSn
2 , pTn

2 , pΣb
n(X )-LmInd, pRn

2 (X ), pSn
2 (X ),

pTn
2 (X ) and the usual considered theories of Bounded Arithmetic

sΣb
n-LmInd, sRn

2 , Sn
2 , Tn

2 , sΣb
n(X )-LmInd, sRn

2 (X ), Sn
2 (X ), Tn

2 (X ). For

theories T1, T2 formulated in the same language T1 ⊂ T2 will denote

that T2 is an extension of T1 and T1 = T2 will denote T1 ⊂ T2 and

T2 ⊂ T1.

8.1 Fragments of BA

Let LBA (resp. LBA(X )) be the sublanguage of LBPA (resp. LBPA(X ))

consisting of the predicative part of LBPA (resp. LBPA(X )), i.e., the

variables x0, x1, . . . , x, y, z, . . . , =, /=,∧,∨,∀,∃ and the function sym-

bols f for each f ∈ Fp ∪ F i (resp. set variables X0, X1, . . . , Y, Z, . . . ,

and the binary predicates ∈, /∈). We consider Gf ,G
c
f as defined symbols

via Gf (~x, y) ···≡ (f ~x = y) and Gc
f (~x, y) ···≡ (f ~x /= y).

Our definition of LBA (and therefore also of Σb
n, Sn

2 , etc.) differs from

those occuring in the literature (cf. [6, 15]) in so far that we consider an

extension of the original theory S1
2 by definitions. Here LBA contains

finitely many additional function symbols for polytime functions. But,

as Buss has shown in [6], every polytime function is Σb
1-definable in S1

2

and, therefore, can be used in an extension by definitions, and also in

the induction axioms.
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8.1.1 Definition 1. ∆b
0 = Σb

0 = Πb
0 is the set of sharply bounded

LBA-formulas.

2. Πb
n+1 is the smallest set of LBA-formulas which contains Σb

n and

is closed under ∧, ∨, (∀x≤t ) and (∃x≤|t| ).

3. Σb
n+1 is the smallest set of LBA-formulas which contains Πb

n and

is closed under ∧, ∨, (∃x≤t ) and (∀x≤|t| ).

We obtain Σb
n(X ), Πb

n(X ), ∆b
0(X ) by relativizing this definition to

LBA(X ). Next we define prenex or strict versions of the former sets.

8.1.2 Definition 1. s∆b
0 = sΣb

0 = sΠb
0 is the set of sharply bounded

LBA-formulas.

2. sΠb
n+1 is the set of LBA-formulas of the form

∀x≤t A(x)

for some term t and A ∈ sΣb
n.

3. sΣb
n+1 is the set of LBA-formulas of the form

∃x≤t A(x)

for some term t and A ∈ sΠb
n.

We obtain sΣb
n(X ), sΠb

n(X ), s∆b
0(X ) by relativizing this definition to

LBA(X ).

Notice: sΣb
n = {F ∈ pΣb

n : only normal variables occur in F}.

Similarly for sΣb
n(X ), sΠb

n etc.

Let BASIC be the set pBASIC restricted to LBA (and interpreting

Gf and Gc
f in the way described above). The following theories have

special names:

sRn
2 = BASIC + sΣb

n-LLInd

Rn
2 = BASIC + Σb

n-LLInd

Sn
2 = BASIC + Σb

n-LInd

Tn
2 = BASIC + Σb

n-Ind

sRn
2 (X ) = BASIC + sΣb

n(X )-LLInd

Rn
2 (X ) = BASIC + Σb

n(X )-LLInd

Sn
2 (X ) = BASIC + Σb

n(X )-LInd

Tn
2 (X ) = BASIC + Σb

n(X )-Ind



8.2. COMPARING THEORIES OF BA 69

Speaking about theories we usually omit BASIC, e.g., we say Φ-LmInd

and mean BASIC + Φ-LmInd.

Let the sharply bounded collection axioms be defined by

BB(F, y0, y1, x0, x1) ≡ (∀y0≤|x0| )(∃y1≤x1 )F

→ (∃w≤ SqBd(x1, x0) )(∀y0≤|x0| )Fy1(β(S y0, w)).

The associated schema is denoted by BB Ψ for sets of formulas Ψ.

8.1.3 Lemma 1. BB sΣb
n ”Σb

n = sΣb
n”

2. BB sΣb
n ”Πb

n = sΠb
n” ⊓⊔

8.2 Comparing theories of BA

We summarize the connections between the different axioms.

8.2.1 Lemma BASIC proves

1. Ind(¬Fy(x −· y), y, x) → Ind(F, y, x)

2. PInd(Fy(|y|), y, x) → LInd(F, y, x)

3. LInd(Fy(MSP(x, |x| −· y)), y, x) → PInd(F, y, x)

4. PInd((∀y≤x )(∀u≤x )(u≤z+1 ∧ y+u≤x ∧ F → Fy(y+u)), z, x)

→ Ind(F, y, x)

5. LInd(G, z, x0) → BB(F, y0, y1, x0, x1) for

G ···≡ (∃w≤ SqBd(x1, x0) )(∀y0≤|x0| )(y0 ≤ z → Fy1(β(S y0, w)))

6. PLInd([(∀y2≤|x0| )(∃w≤ SqBd(x1, x0) )(∀y0≤|x0| )

(y2≤y0≤y2 +z → Fy1(β(S y0, w)))], z, x0) → BB(F, y0, y1, x0, x1)

Proof: Proofs of 1.-5. can be found in [6]. For 6. let G(z, x0, x1) be the

formula

(∀y2≤|x0| )(∃w≤ SqBd(x1, x0) )

(∀y0≤|x0| )(y2 ≤ y0 ≤ y2 + z → Fy1(β(S y0, w))).

Assume (∀y0≤|x0| )(∃y1≤x1 )F , then we have

(∀y0≤|x0| )(∃w≤ SqBd(x1, x0) )Fy1(β(S y0, w)),
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hence G(0, x0, x1).

Now assume G(⌊1
2
z⌋, x0, x1) for some z ≤ |x0|. Let y2 ≤ |x0|. Then

there are w1, w2 ≤ SqBd(x1, x0) with

(∀y0≤|x0| )(y2 ≤ y0 ≤ y2 + ⌊1
2
z⌋ → Fy1(β(S y0, w1)))

and

y2 + 1 + ⌊1
2
z⌋ ≤ |x0| → (∀y0≤|x0| )

[y2 + 1 + ⌊1
2
z⌋ ≤ y0 ≤ y2 + 1 + 2 · ⌊1

2
z⌋ → Fy1(β(S y0, w2))].

Let w be

〈w1,0, . . . , w1,y2+⌊ 1
2
z⌋, w2,y2+⌊ 1

2
z⌋+1, . . . , w2,y2+2·⌊ 1

2
z⌋+1〉

where wi,j ··= β(j + 1, wi), then by construction

(∀y0≤|x0| )(y2 ≤ y0 ≤ y2 + z → Fy1(β(S y0, w))),

hence G(z, x0, x1). Therefore, we obtain G(|x0|, x0, x1) by applying

PLInd(G(z, x0, x1), z, x0), thus – choosing y2 ··= 0 –

(∃w≤ SqBd(x1, x0) )(∀y0≤|x0| )Fy1(β(S y0, w)).

⊓⊔

8.2.2 Lemma Let m,n ≥ 0. Let Φ be one of sΣb
n, sΠ

b
n, Σ

b
n, Πb

n and ¬Φ

its dual class.

1. Φ-LmInd ¬Φ-LmInd

2. Φ-PLmInd Φ-Lm+1Ind

3. Φ-Lm+1Ind Φ-PLmInd

4. sΣb
n+1-LInd BB sΣb

n+1

5. Σb
n+1-PLInd BB Σb

n+1

6. sΠb
n+1-PLmInd sΣb

n-LmInd

7. Πb
n+1-PLmInd Σb

n-LmInd

8. ∆b
0-PLm+1Ind ∆b

0-L
m+1Ind
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Proof: All assertions except 4. are direct consequences of Lemma 8.2.1.

To prove 4. let F ∈ sΣb
n+1 and

G ···≡ (∃w≤ SqBd(x1, x0) )(∀y0≤|x0| )(y0 ≤ z → Fy1(β(S y0, w))).

Applying sharply bounded collection yields

BB sΠb
n ”(∀y0≤|x0| )(y0 ≤ z → Fy1(β(S y0, w))) ∈ sΣb

n+1”,

hence

BB sΠb
n ”G ∈ sΣb

n+1”.

Lemma 8.2.1 5. immediately shows

sΣb
n+1-LInd BB sΠb

n

hence

sΣb
n+1-LInd ”G ∈ sΣb

n+1”.

Now Lemma 8.2.1 5. proves

sΣb
n+1-LInd BB(F, y0, y1, x0, x1).

⊓⊔

We use the last two lemmas to compare several theories:

8.2.3 Theorem Let m,n ≥ 0, then

sΠb
n-LmInd = sΣb

n-LmInd
⋂

sΠb
n+1-PLmInd = sΣb

n+1-PLmInd

q

sΠb
n+1-L

m+1Ind = sΣb
n+1-L

m+1Ind .

Furthermore

S0
2 = ∆b

0-L
m+1Ind
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and

sRn
2 = sΠb

n-LLInd = sΠb
n-PLInd = sΣb

n-PLInd
⋂

Rn
2 = Πb

n-LLInd = Πb
n-PLInd = Σb

n-PLInd
n>0
= sRn

2 + BB sΣb
n

⋂

Sn
2 = Πb

n-LInd = Πb
n-PInd = Σb

n-PInd
n>0
= Sn

2 + BB sΣb
n

q

sΠb
n-LInd = sΠb

n-PInd = sΣb
n-LInd = sΣb

n-PInd ⊂ sRn+1
2

⋂

Tn
2 = Πb

n-Ind = sΣb
n-Ind = sΠb

n-Ind ⊂ Sn+1
2

q (n>0)

Tn
2 + BB sΣb

n.

These connections directly relativize to LBA(X ). ⊓⊔

8.3 Comparing theories of BPA

8.3.1 Lemma pBASIC proves

1. Ind(¬Fy(x −· y), y, x) → Ind(F, y, x)

2. PInd(Fy(|y|), y, x) → LInd(F, y, x)

3. LInd(Fy(MSP(x, |x| −· y)), y, x) → PInd(F, y, x)

4. PInd((∀y≤x )(∀u≤x )(u≤z+1 ∧ y+u≤x ∧ F → Fy(y+u)), z, x)

→ Ind(F, y, x)

8.3.2 Lemma Let m,n ≥ 0

1. pΣb
n-LmInd pΠb

n-LmInd and
pΠb

n-LmInd pΣb
n-LmInd

2. pΣb
n-PLmInd pΣb

n-Lm+1Ind and
pΠb

n-PLmInd pΠb
n-Lm+1Ind

3. pΣb
n-Lm+1Ind pΣb

n-PLmInd and
pΠb

n-Lm+1Ind pΠb
n-PLmInd



8.4. COMPARING BA WITH BPA 73

4. pΠb
n+1-PLmInd pΣb

n-LmInd

5. p∆b
0-PLm+1Ind p∆b

0-L
m+1Ind

We use this to compare several theories:

8.3.3 Theorem Let m,n ≥ 0, then

pΠb
n-LmInd = pΣb

n-LmInd
⋂

pΠb
n+1-PLmInd = pΣb

n+1-PLmInd

q

pΠb
n+1-L

m+1Ind = pΣb
n+1-L

m+1Ind .

Furthermore
pS0

2 = p∆b
0-L

m+1Ind

and

pRn
2 = pΠb

n-LLInd = pΠb
n-PLInd = pΣb

n-PLInd
⋂

pSn
2 = pΠb

n-LInd = pΠb
n-PInd = pΣb

n-PInd ⊂ pRn+1
2

⋂

pTn
2 = pΠb

n-Ind ⊂ pSn+1
2 .

These connections directly relativize to LBPA(X ). ⊓⊔

8.4 Comparing BA with BPA

8.4.1 Lemma pΣb
n-LmInd is a conservative extension of sΣb

n-LmInd.

Proof: By definition LBA is a sub-language of LBPA and sΣb
n-LmInd

a subset of pΣb
n-LmInd. Thus, pΣb

n-LmInd is an extension of sΣb
n-LmInd.

To prove that this extension is conservative let v : LBPA → LBA be the

following transformation: xi 7→ x2·i, ai 7→ x2·i+1, v is identical on the

other symbols of LBPA and homeomorphic on terms and formulas. An

easy induction on the derivation shows

pΣb
n-LmInd F =⇒ sΣb

n-LmInd F v.
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For LBA-sentences F we obviously have F v ↔ F . ⊓⊔

The arguments directly relativize to LBPA(X ).

8.4.2 Lemma Let m,n ≥ 0, then pΣb
n(X )-LmInd is a conservative

extension of sΣb
n(X )-LmInd. ⊓⊔

8.4.3 Corollary Let n ≥ 0, then
pRn

2 is a conservative extension of sRn
2

pSn
2 is a conservative extension of Sn

2

pTn
2 is a conservative extension of Tn

2

pRn
2 (X ) is a conservative extension of sRn

2 (X )

pSn
2 (X ) is a conservative extension of Sn

2 (X )

pTn
2 (X ) is a conservative extension of Tn

2 (X ). ⊓⊔



Chapter 9

Well-ordering Proofs in BPA

In this chapter we transfer the well-ordering proofs of IΣ0
n from Chapter

3 to bounded predicative arithmetic theories.

9.1 Formalization of wellfoundedness

In Chapter 6 we defined exponential notations (denoted by α, β, γ

etc), the predicates E , ≺ and the functions ΦE , TE , +̂, 2̂ operating with

exponential notations. Furthermore, we observed that the predicates

E , ≺ and functions +̂, 2̂, TE are polytime.

The language LBPA(X ) contains the predicate symbols E , ≺, G+̂,

G2̂
· , GTE

. To use exponential notations in formulas we abbreviate

∀β A(β) ···≡ ∀β
(
β ∈ E → A(β)

)

∃β A(β) ···≡ ∃β
(
β ∈ E ∧ A(β)

)

∀β ≺ α A(β) ···≡ ∀β
(
β ≺ α → A(β)

)

∃β ≺ α A(β) ···≡ ∃β
(
β ≺ α ∧ A(β)

)

(∀uA)t ···≡ ∀u≤t At

(∃uA)t ···≡ ∃u≤t At.

For α ∈ E the formula Fund(α,X) ···≡ Fund(≺↾α,X) as defined in

Chapter 3 expresses the wellfoundedness of ≺ up to α. But Fund(α,X)

has the disadvantage that is contains unbounded quantifiers. These

quantifiers can be bound because there is some a ∈ ω such that ∀β ≺

α (β ≤ a) as the field(≺↾α) is a finite set. Then

Fund(α,X) ⇐⇒ Fund(α,X)a.

75
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Therefore, we define

α ⊏ X ···≡ ∀β ≺ α
(
β ∈ X

)

Prog(a, α,X) ···≡
(
∀β ≺ α(β ⊏ X → β ∈ X)

)a

Fund(a, α,X) ···≡ Prog(a, α,X) →
(
α ⊏ X

)a
.

Observe that pBASIC proves Fund(a, α,X) ∈ pΣb
2(X ) which means

that there is some G ∈ pΣb
2(X ) such that pBASIC Fund(a, α,X) ↔

G. (≺↾α) ∩ (a × a) is well-founded, hence N ² Fund(a, α,X).

In general N ² Fund(a, α,X) only states the wellfoundedness of

(≺↾ α) ∩ (a × a) and does not express that ≺↾ α is well-founded. To

obtain the latter we need some a with (≺↾ α) ⊂ (a × a). Usually

we cannot take a to be α, because there is some α with (≺↾ α) 6⊂

(α×α), e.g. TE(7)N = 260322 and TE(8)N = 65198 (2̂
TE(x)

is a polytime

function, hence polynomially bounded, thus there are unbounded many

such α!). We formulate (≺↾α) ⊂ (a×a) in a bounded formula of LBPA.

Then, assuming that a and α satisfy that formula, N ² Fund(a, α,X)

expresses the wellfoundedness of ≺↾α. Also we express that the graphs

Gf for f ∈ F i define a total function on a#f . We do this by

Big(a, b, α) ···≡ 1̂ ≤ a ∧ α ≤ a ∧
∧

f∈F i

∀~c≤a∃d≤bGf (~c, d)

∧ ∀β≤a∀γ≤a∀δ≤b
(
[G+̂(β, γ, δ) ∨ G2̂(β, δ)] ∧ δ ¹ α → δ ≤ a

)
.

Observe that pBASIC proves Big(a, b, α) ∈ pΠb
2 . Obviously we have

for α ≤ β and α ¹ β that Big(a, b, β) → Big(a, b, α). The next lemma

shows that Big(a, b, α) has the intended meaning.

9.1.1 Lemma In the standard model N we have

1. ∀α ∃a∃bBig(a, b, α).

2. Big(a, b, α) =⇒ ≺↾α ⊂ a × a.

Proof: Let α be given. Then field(≺↾ α) is finite, thus there is some

a ≥ max{1̂, α} such that ≺↾α ⊂ a × a. Now F i contains only finitely

many functions which on finite domains take only finitely many values.

Thus, there is some b so that ∀f ∈ F i ∀~c ≤ a(f(~c) ≤ b). Obviously a

and b satisfy Big(a, b, α). Thus, we have shown the first assertion.
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To prove the second one we set

Γα(X) ··= X ∪ {0̂} ∪ {δ ¹ α : ∃β, γ ∈ X (δ = 2̂
β

or δ = β +̂ γ)}

I<n
α

··=
⋃

k<n

Ikα

Ikα ··= Γα

(
I<k
α

)

Iα ··= I<ω
α

··=
⋃

k<ω

Ikα.

Then Γα is a monotone operator, hence inductive, and Iα is the smallest

fixed point of Γα. Iα satisfies

Iα = {β : β ¹ α}

because obviously I<n
α ⊂ {β : β ¹ α} for all n by induction on n. On

the other hand we can show

∀β ¹ α ∃nβ ∈ Inα

by induction on ≺↾ (α + 1). Let β ¹ α. For β = 0̂ we know 0̂ ∈

Γα(∅) = I1α. Otherwise, there are some β0 ≺ . . . ≺ βk ≺ β with

β = 2̌βk+̌ . . . +̌2̌β0 . The induction hypothesis yields some n0, . . . , nk

with βi ∈ Ini
α . For n ··= max{ni : i ≤ k} we obtain βi ∈ Inα, hence

2̂
βi
∈ In+1

α , hence β ∈ In+k+1
α . ⊓⊔

In Lemma 6.3.3 we have shown that |TE(x)| ≤ 8 · |x|2 < 8 · |x # x|,

hence TE(x) ≤ (x # x)8. Therefore, we compute for α ¹ TE(x)

α ≤ (ΦE(α) # ΦE(α))8 ≤ (x # x)8.

Let s(x) ···≡ SqBd(x, (|x|# |x|)8). As F i is a finite set of polytime

functions we can find some t(x) for s(x) such that

∀f ∈F i ∀~y≤s(x) (f(~y) ≤ t(x)).

Thus, we have shown

9.1.2 Lemma There are terms s, t with FV (s, t) ⊂ {x} such that

N ² ∀xBig(s, t, TE(x)). ⊓⊔

If, in the following proofs, we assume Big(a, b, α) then we can use

f ∈ F i as a function on the arguments c1, . . . , car(f) ≤ a. But we have
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to pay attention if an informal argument involves induction (because in

this case the argument depends on the complexity of some formulas).

This will be the case only when we come to Theorem 9.3.2.

Sometimes it will be convenient to consider an extended language

LBPA(X ,F i) of LBPA(X ) in which the function symbols f for f ∈ F i

have arbitrary arguments - predicative and impredicative ones. In or-

der to obtain from LBPA(X ,F i)-formulas F an LBPA(X )-formula such

that the universal closure of this formula is equivalent to the universal

closure of F in the standard model we define the transformation elF i .

F el
Fi is the result of applying

G[f(~s)] : − Gf (~s, df(~s)) → G[df(~s)]

for f ∈ F i, ~s ∈ LBPA(X ) which contain only variables which

are not under the scope of a quantifier in G, f(~s) /∈ LBPA(X )

and df(~s) a new impredicative variable for G[f(~s)]

as often as possible to F . (Read ”: −” as ”is replaced by”.) To make

this transformation well-defined we assume the applications to be or-

dered, e.g., we apply the rule always to the leftmost position in the

string.

Notice: If t ∈ LBPA(X ,F i) contains no safe variables then t ∈

LBPA(X ).

To give an example we compute the result of elF i as used in the

assertion of Lemma 9.2.1:

[Big(a, b, α) → Prog(a, α +̂ 1̂, P re(a))]elFi

≡ G+̂(α, 1̂, c) ∧ Big(a, b, α) → Prog(a, c, Pre(a))

9.2 What pBASIC can prove

As we have seen in Chapter 6 the predecessor function P̂ on E does

not have polynomial growth rate. Thus, we do not have a predecessor

for all exponential notations. The set of all exponential notations for

which some predecessor less than a exists is defined by

Pre(a) ···≡ {β : ∃γ≤a (G+̂(γ, 1̂, β) ∨ β = 0̂)}.

Observe that Pre(a) ∈ pΣb
1. Assuming Big(a, b, α) we can show that

this set is progressive. Thus, Big(a, b, α) and Fund(a, α +̂ 1̂, P re(a))
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imply that for all exponential notations β with 0 ≺ β ¹ α some prede-

cessor of β exists.

9.2.1 Theorem

pBASIC [Big(a, b, α) → Prog(a, α +̂ 1̂, P re(a))]elFi .

Proof: We argue in pBASIC. Assuming Big(a, b, α) and

β ≤ a, β ≺ α +̂ 1̂, (9.1)
(
β ⊏ Pre(a)

)a
, (9.2)

β 6= 0̂, we have to conclude ∃γ ≤ a(β = γ +̂ 1̂). First we observe β ¹ α.

Using the axioms we obtain some ξ, η ∈ E with ξ, η < β and β = ξ+̌2̌η.

We keep in mind that ξ ≤ a and ξ ≺ β ¹ α.

If η=0̂ then we are done. Otherwise, η /=0̂, η<β≤a and η ≺ 2̂
η
¹ β,

thus using (9.2) we obtain some ζ ≤ a with η = ζ +̂ 1̂. Then ζ ≺ η,

hence 2̂
ζ
≺ 2̂

η
¹ β ¹ α, thus Big(a, b, α) yields 2̂

ζ
≤a. Applying (9.2)

yields some ν ≤ a with 2̂
ζ
=ν +̂ 1̂. Now we have to compute γ ··=

(ξ +̂ 2̂
ζ
) +̂ ν ≤ a and γ +̂ 1̂ = β.

As ξ, 2̂
ζ
≤a and ξ, 2̂

ζ
¹ α we obtain ξ +̂ 2̂

ζ
≤a using Big(a, b, α). We

compute

(ξ +̂ 2̂
ζ
) +̂ 2̂

ζ
= ξ +̂(2̂

ζ
+̂ 2̂

ζ
) = ξ +̂ 2̂

(ζ +̂ 1̂)
= ξ +̂ 2̂

η
= β

hence ξ +̂ 2̂
ζ
≺ (ξ +̂ 2̂

ζ
) +̂ 2̂

ζ
= β ¹ α. This and ν ≤ a, ν ≺ ν +̂ 1̂ =

2̂
ζ
¹ α together with Big(a, b, α) imply γ = (ξ +̂ 2̂

ζ
) +̂ ν≤a. We finally

compute

γ +̂ 1̂ = (ξ +̂ 2̂
ζ
) +̂(ν +̂ 1̂) = (ξ +̂ 2̂

ζ
) +̂ 2̂

ζ
= β.

⊓⊔

We want to prove Fund(a, 2̂
α
, X) from Fund(a, α, Y ) where Y is

the set of all exponential notations β ¹ α such that we can jump from

γ ⊏ X to γ +̂ 2̂
β

⊏ X. This Y is called the jump of X and is defined

by

Jp(a, α,X) ···≡
{
β : β ¹ α ∧

(
∀γ ∀δ0 ∀δ1 ∀δ2 (G2̂(β, δ0) ∧ G+̂(γ, δ0, δ1)

∧ G2̂(α, δ2) ∧ δ1 ¹ δ2 ∧ γ ⊏ X → δ1 ⊏ X)
)a}

Observe that pBASIC proves for A(b) ∈ pΠb
n+1

Jp(a, α,A(.)) ∈ pΠb
n+2.
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9.2.2 Lemma

pBASIC [Big(a, b, 2̂
α
) ∧ Fund(a, α, Pre(a)) ∧

Fund(a, α, Jp(a, α,X)) → Fund(a, 2̂
α
, X)]elFi .

Proof: We argue in pBASIC.

Assuming Big(a, b, 2̂
α
), Fund(a, α, Pre(a)), Fund(a, α, Jp(a, α,X))

and Prog(a, 2̂
α
, X) we obtain with the following Lemma

Prog(a, α +̂ 1̂, Jp(a, α,X)), (9.3)

thus also Prog(a, α, Jp(a, α,X)). With Fund(a, α, Jp(a, α,X)) we see(
α ⊏ Jp(a, α,X)

)a
, so an application of (9.3) yields

α ∈ Jp(a, α,X) (9.4)

as α ≺ α +̂ 1̂. We observe
(
0̂ ⊏ X

)a
and 0̂ +̂ 2̂

α
= 2̂

α
, so (9.4) produces

2̂
α

⊏ X

and we are done. ⊓⊔

9.2.3 Lemma

pBASIC [Big(a, b, 2̂
α
) ∧ Fund(a, α, Pre(a)) ∧

Prog(a, 2̂
α
, X) → Prog(a, α +̂ 1̂, Jp(a, α,X))]elFi .

Proof: We argue in pBASIC.

First we assume Big(a, b, 2̂
α
) and Fund(a, α, Pre(a)). As α ≺ 2̂

α
and

α< 2̂
α

we obtain Big(a, b, α), hence Prog(a, α +̂ 1̂, P re(a)) by Theorem

9.2.1. By Fund(a, α, Pre(a)) we obtain
(
α ⊏ Pre(a)

)a
, thus using

Prog(a, α +̂ 1̂, P re(a)) again yields

(
∀β ¹ α(0̂ ≺ β → ∃γ(β = γ +̂ 1̂))

)a
. (9.5)

Now we assume

Prog(a, 2̂
α
, X) (9.6)

β ≤ a, β ¹ α (9.7)
(
β ⊏ Jp(a, α,X)

)a
(9.8)
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and have to conclude β ∈ Jp(a, α,X). Therefore, we assume

γ ≤ a, γ +̂ 2̂
β
¹ 2̂

α
,
(
γ ⊏ X

)a
(9.9)

and now have to show that
(
γ +̂ 2̂

β
⊏ X

)a
. To do this we assume

δ ≤ a, δ ≺ γ +̂ 2̂
β

(9.10)

and derive δ ∈ X.

We distinguish several cases:

β = 0̂: δ ≺ γ: With (9.10) δ ≤ a we can use (9.9) to see δ ∈ X.

δ 6≺ γ: Using (9.10) we observe γ ¹ δ ≺ γ +̂ 1̂, hence δ = γ and

we see from (9.9) δ ≤ a, δ ≺ δ +̂ 1̂ ¹ 2̂
α
,
(
δ ⊏ X

)a
. Now we

can apply (9.6) to derive δ ∈ X.

β ≻ 0̂: First we use (9.7) and (9.5) to obtain µ ≤ a with β = µ +̂ 1̂. So

µ ≺ β, µ ≤ a and (9.8) shows

µ ∈ Jp(a, α,X) (9.11)

Rewriting (9.9) γ ≤ a,
(
γ ⊏ X

)a
, γ +̂ 2̂

µ
≺ γ +̂ 2̂

β
¹ 2̂

α
we can

use Big(a, b, 2̂
α
) to obtain γ +̂ 2̂

µ
≤ a and (9.11) to obtain

(
γ +̂ 2̂

µ
⊏ X

)a
. (9.12)

Now we observe

(γ +̂ 2̂
µ
) +̂ 2̂

µ
= γ +̂(2̂

µ
+̂ 2̂

µ
) = γ +̂ 2̂

µ +̂ 1̂
= γ +̂ 2̂

β
¹ 2̂

α
,

thus (9.12) and (9.11) imply

(
γ +̂ 2̂

β
= (γ +̂ 2̂

µ
) +̂ 2̂

µ
⊏ X

)a
,

hence δ ∈ X by (9.10).

⊓⊔

It is surprising that in contrast to the well-ordering proof of IΣ0
n the

previous lemma is provable without any use of induction. The reason

for this difference is that in the well-ordering proof of IΣ0
n we use

γ + ωβ+1 ⊂ X ⇐⇒ ∀k ∈ ω(γ + ωβ · k ⊂ X)
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for ordinals β, γ less than ε0 and then show γ +ωβ ·k ⊂ X by induction

on k. Here, in the view of exponential notations β, γ, we know

γ +̂ 2̂
β +̂ 1̂

⊂ X ⇐⇒ ∀k ≤ 2(γ +̂ 2̂
β
·TE(k) ⊂ X)

thus we can prove γ +̂ 2̂
β +̂ 1̂

⊂ X in two steps from γ ⊂ X.

Next we observe that in the previous lemmas we could have used

arbitrary abstraction terms of LBPA(X ) instead of X.

9.2.4 Lemma Let A(a) be a formula, then

pBASIC Γ =⇒ pBASIC ΓX(A(.)).

Proof: We use induction on the derivation. The only interesting

case is an equality axiom s 6= t, s 6∈ X, t ∈ X ⊂ Γ. But we obtain
pBASIC s 6= t,¬A(s), A(t) by induction on the generation of A. ⊓⊔

We want to define the iterations of the jump operator by

Jp0(a, α,X) ···≡ X

Jpk+1(a, α,X) ···≡ Jp(a, α, Jpk(a, 2̂
α
, X))

but the second equation does not define an LBPA(X )-formula as 2̂
α

is

no LBPA-term. Therefore, we equivalently set

Jpk+1(a, α,X) ···≡
{
β : β ¹ α ∧

(
∀γ ∀δ0 ∀δ1 ∀δ2 (G2̂(β, δ0)

∧ G+̂(γ, δ0, δ1) ∧ G2̂(α, δ2) ∧ δ1 ¹ δ2

∧ γ ⊏ Jpk(a, δ2, X) → δ1 ⊏ Jpk(a, δ2, X))
)a}

Observe that pBASIC proves for A(c) ∈ pΠb
m+1

Jpk(a, α,A(.)) ∈ pΠb
k+m+1.

9.2.5 Lemma

pBASIC [Big(a, b, 2̂
α
) ∧

j+1∧

k=0

Fund(a, α, Jpk(a, α, Pre(a)))

→

j∧

k=0

Fund(a, 2̂
α
, Jpk(a, 2̂

α
, P re(a)))]elFi .



9.2. WHAT pBASIC CAN PROVE 83

Proof: We argue in pBASIC and assume

Big(a, b, 2̂
α
) (9.13)

Fund(a, α, Pre(a)) (9.14)
∧j

k=0 Fund(a, α, Jp(a, α, Jpk(a, 2̂
α
, P re(a)))) (9.15)

Using Lemma 9.2.2 and 9.2.4 with the assumptions (9.13) and (9.14)

we conclude from (9.15)

j∧

k=0

Fund(a, 2̂
α
, Jpk(a, 2̂

α
, P re(a))).

⊓⊔

9.2.6 Theorem pBASIC proves

Fund(a, TE(x), Jpi(a, TE(x), X))

∧
∧i−1

k=0 Fund(a, TE(x), Jpk(a, TE(x), P re(a)))

∧ Big(a, b, 2̂i(TE(x))) → Fund(a, 2̂i(TE(x)), X).

Proof: We argue in pBASIC and assume

Fund(a, TE(x), Jpi(a, TE(x), X)) (9.16)
∧i−1

k=0 Fund(a, TE(x), Jpk(a, TE(x), P re(a))) (9.17)

and Big(a, b, 2̂i(TE(x))). The last assumption yields

∀j≤i Big(a, b, 2̂j(TE(x))).

Thus, we obtain from (9.17) by successively applying Lemma 9.2.5

Fund(a, 2̂k(TE(x)), P re(a))

for k = 0, . . . , i − 1. Using this, Lemma 9.2.2 and 9.2.4 yield

Fund(a, 2̂k(TE(x)), Jpi−k(a, 2̂k(TE(x)), X)) →

Fund(a, 2̂k+1(TE(x)), Jpi−(k+1)(a, 2̂k+1(TE(x)), X))

for k = 0, . . . , i − 1, hence by (9.16)

Fund(a, 2̂i(TE(x)), X).

⊓⊔
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9.3 Proving foundation by induction

9.3.1 Lemma Let p be a monotone polynomial and B ∈ pΣb
n+1(X ) ∪

pΠb
n+1(X ), then

pΣb
n+1(X )-LmInd Ind(B, y, p(|x|m)).

Proof: The monotone polynomials in |x|m, MP(|x|m), can be defined

inductively by

1. 0 ∈ MP(|x|m)

2. IF p ∈ MP(|x|m) then (p + 1) ∈ MP(|x|m).

3. If p ∈ MP(|x|m) then p · |x|m ∈ MP(|x|m).

We prove by induction on this generation

∀p ∈ MP(|x|m) ∀B ∈ pΣb
n+1(X ) pΣb

n+1(X )-LmInd Ind(B, y, p),

then Lemma 8.3.1 1. yields the assertion. In case 1. the assertion di-

rectly follows. Arguing in pΣb
n+1(X )-LmInd for the second case we as-

sume B ∈ pΣb
n+1(X ), By(0) and

∀y<(p + 1) (B → By(y + 1)). (9.18)

By the induction hypothesis B(p), hence B(p + 1) by 9.18.

In the third case let B ∈ pΣb
n+1(X ). Arguing in pΣb

n+1(X )-LmInd

we assume By(0) and

∀y<p · |x|m (B → By(y + 1)), (9.19)

then we have to show that By(p · |x|m). Let

C ···≡ By(y · |x|m) ∈ pΣb
n+1(X ).

The induction hypothesis yields Ind(C, y, p). Now Cy(0) ↔ By(0) and

Cy(p) ≡ By(p · |x|m), thus it suffices to show that

∀y<p (C → Cy(y + 1)). (9.20)

Let D ···≡ By(y · |x|m +z) ∈ pΣb
n+1(X ). In order to show (9.20) let y<p

and assume C, that is Dz(0). From (9.19) we obtain

∀z<|x|m (D → Dz(z + 1)),
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thus pΣb
n+1(X )-LmInd proves Dz(|x|m), but this is

By(y · |x|m + |x|m) ↔ By((y + 1) · |x|m) ≡ Cy(y + 1).

⊓⊔

9.3.2 Theorem pBASIC proves

Ind
(
[y ≤ x → (TE(y) ⊏ X)a], y, x

)
→ Fund(a, TE(x), X).

Proof: Let B(y) ···≡ y ≤ x → (TE(y) ⊏ X)a. We argue in pBASIC.

Assuming Ind(B(y), y, x) and Prog(a, TE(x), X) we have to show that(
TE(x) ⊏ X

)a
, thus it suffices to show that B(x) holds. We do this by

induction on y in B(y). Because TE(0) = 0̂ and ¬α ≺ 0̂ holds for any

α we obtain B(0).

Now assume B(y). We want to conclude B(y + 1), thus assuming

y+1 ≤ x, α ≤ a, α ≺ TE(y+1) = TE(y) +̂ 1̂ we have to show that α∈X.

If α ≺ TE(y) this is obtained by B(y). Otherwise, α = TE(y) ≺ TE(x).

From B(y) we know
(
TE(y) ⊏ X

)a
, hence Prog(a, TE(x), X) yields

α ∈ X, hence B(y + 1).

Now Ind(B(y), y, x) yields B(x). ⊓⊔

Observe that pBASIC proves for A(b) ∈ pΠb
l+1(X )

[y ≤ x →
(
TE(y) ⊏ A(.)

)a
] ∈ pΠb

l+1(X ).

We abbreviate

BigFun(a, b, α,X) ···≡ Big(a, b, α) → Fund(a, α,X)

and observe that pBASIC proves BigFun(a, b, α,X) ∈ pΣb
2(X ).

9.3.3 Theorem Let p be a monotone polynomial and m,n ≥ 0, then

pΣb
n+1(X )-LmInd BigFun(a, b, 2̂n(TE(p(|x|m))), X).

Proof: We have Jpn(a, TE(p(|x|m)), X) ∈ pΠb
n+1(X ) as remarked be-

fore and

Jpk(a, TE(p(|x|m)), P re(a)) ∈ pΠb
n+1
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for k = 0, . . . , n − 1 as Pre(a) ∈ pΣb
1. By Theorem 9.3.1 we ob-

tain pΣb
n+1(X )-LmInd Ind(B(y), y, p(|x|m)) for all B(y) ∈ pΠb

n+1(X ),

hence by Theorem 9.3.2

pΣb
n+1(X )-LmInd Fund[a, TE(p(|x|m)), Jpk(a, TE(p(|x|m)), P re(a))]

for all k < n, and

pΣb
n+1(X )-LmInd Fund[a, TE(p(|x|m)), Jpn(a, TE(p(|x|m)), X)].

Now Theorem 9.2.6 yields the assertion. ⊓⊔

Let X(d) ···≡ {ϕ : Bit(ϕ, d)}. By Theorem 7.2.6 and the preceding

Theorem we obtain

9.3.4 Theorem Let p be a monotone polynomial and m,n ≥ 0, then

pΣb
n+1-L

mInd BigFun[a, b, 2̂n(TE(p(|x|m))), X(d)].



Chapter 10

A Semi-formal System for

BPA

In the first part of this thesis from Chapter 3 to Chapter 5 we have in-

vestigated the truth complexity tc(F ) of Π1
1-sentences F of LZ1

. With

the Boundedness Theorem 5.2.5 we observed that in some special cases

tc(F ) is connected with the meaning of F : if F states the wellfounded-

ness of some relation ≺ then the order-type of ≺ is bounded by tc(F ).

Thus, the estimation of the truth complexity yielded a characterization

of the sentences provable in the fragments IΣ0
n of Z1.

In the present Chapter we will develop a suitable machinery to ex-

amine similarly fragments of BPA. As the definition of the truth com-

plexity of Π1
1-sentences bases on semi-formal systems we first define a

semi-formal system for BPA and try to find a notion like the truth com-

plexity for BPA which enables us to characterize the sentences provable

in fragments of BPA.

10.1 Lp
ω and the semi-formal system bsfp

We begin with a definition of a predicative version of the infinitary

language L∞. The basic symbols of Lp
ω consists of the logical symbols:

a0, a1, . . . , X0, X1, . . . ,
∧

,
∨

,∀,∃, =, /=,∈, /∈, and the same non-logical

symbols as LBPA. The terms of Lp
ω are the predicative ground terms

of LBPA (i.e., the ground terms of LBPA and a0, a1, . . . ). The atomic

formulas of Lp
ω are the predicative ground atomic formulas of LBPA.

With these all Lp
ω-formulas are generated by:

87
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If 0 < n < ω and (Ai)i≤n is a sequence of Lp
ω-formulas then

∧
i≤n Ai and

∨
i≤n Ai also are Lp

ω-formulas. And if A(a) is

an Lp
ω-formula and s is a predicative ground LBPA-term then

∀a≤s A(a) and ∃a≤s A(a) are Lp
ω-formulas.

Similar to Chapter 4 negation is not a logical symbol but can be defined

as a syntactic operation. We define the canonical translation ∗p of the

predicative ground formulas in PBF(X ) to Lp
ω by:

1. F ∗p ···≡ F if F is an atomic formula

2. (F0 ∧ F1)
∗p ···≡

∧
i≤1 F

∗p

i ,

3. (F0 ∨ F1)
∗p ···≡

∨
i≤1 F

∗p

i ,

4. (∀x≤t F (x))∗p ···≡
∧

n≤tN F (n)∗p ,

5. (∃x≤t F (x))∗p ···≡
∨

n≤tN F (n)∗p ,

6. (∀a≤s F (a))∗p ···≡ ∀a≤s F (a)∗p ,

7. (∃a≤s F (a))∗p ···≡ ∃a≤s F (a)∗p .

For case 4. and 5. in this definition remember that x assigns a normal

variable, thus t has to be a normal term by the definition of PBF(X ).

Therefore, t is predicative ground by the assumption that the translated

formula is predicative ground. But this means that t is ground, thus

we can compute tN.

For Γ ⊂ PBF(X ) we define Γ∗p ··= {F ∗p : F ∈ Γ}.

We define the predicative rank prk(F ) and the predicative length

plh(F ) of a Lp
ω-formula F .

10.1.1 Definition For F ∈ Lp
ω we define

prk(F ) ··= min{n : F ∈ pΣb
n(X )∗p ∪ pΠb

n(X )∗p} ∪ {ω}.

We will often compute upper bounds. These bounds should be

monotone LBPA-terms. To obtain this we can define a meta-function σ

which assigns to each LBPA-term t a monotone LBPA-term σ[t] in the

variables ~x of t satisfying ∀~x (t ≤ σ[t])1. Substituting a monotone term

into another monotone term yields again a monotone term. Therefore,

it suffices to associate some monotone term to each polytime function.

1Cf. [6], p. 77.
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This can easily be done because every polytime function is polynomially

bounded and to each monotone polynomial p(~x) we can find a term

tp which is build up form 0, # and the variables ~x of p and satisfies

p(|~x|) ≤ |tp|.
2

Let the length of F ∈ p∆b
0(X )∗p be defined as in Chapter 5. We

will immediately define the predicative length plh(F ) for F ∈ PBF(X )

which will be a monotone LBPA-term in the normal variables of F . The

binary length of this | plh(F )| will bound the length of all p∆b
0(X )-sub-

formulas of F (i.e., the number of atomic formulas in the ∗p translation

of every p∆b
0(X )-sub-formula of F ).

10.1.2 Definition Let F ∈ PBF(X ). We inductively define plh(F )

by the following clauses:

1. If F is atomic, let plh(F ) ···≡ 1.

2. If F ≡ G ◦ H, ◦ ∈ {∧,∨}, let

plh(F ) ···≡ 2 · plh(G) · plh(H).

3. Assume F ≡ Qx≤t A(x) with Q ∈ {∀,∃} and x normal. Let

s ···≡ plh(A)x(σ[t]). If F 6∈ p∆b
0(X ), let plh(F ) ···≡ s. Other-

wise, there is some LBPA-term t′ with t ≡ |t′|. Let plh(F ) ···≡

s # σ[S1(t
′)].

4. If F ≡ Qa≤s A(a), Q ∈ {∀,∃} and a impredicative, let

plh(F ) ···≡ plh(A(a)).

Observe that plh(F ) is a monotone LBPA-term in the normal vari-

ables of the formula F ∈ PBF(X ). Therefore, if F is predicative ground

then plh(F ) is a ground term.

The following lemma shows that plh(·) has the intended meaning.

10.1.3 Lemma Let F ∈ PBF(X ) be predicative ground.

1. If F /∈ p∆b
0(X ) then

F ≡ G0 ◦ G1 =⇒ | plh(F )| ≥ | plh(Gi)| for i ≤ 1

F ≡ Qx≤t A(x) =⇒ | plh(F )| ≥ | plh A(n)| for n ≤ tN

F ≡ Qa≤s A(a) =⇒ | plh(F )| ≥ | plh(A(t))|

for any term t

2Cf. Chapter 2.
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2. If F ∈ p∆b
0(X ) then

F atomic =⇒ | plh(F )| = 1

F ≡ G0 ◦ G1 =⇒ | plh(F )| ≥ | plh(G0)| + | plh(G1)|

F ≡ Qx≤|t|A(x) =⇒ | plh(F )| ≥
∑

n≤|t|N

| plh A(n)|

Notice: | plh(F )| is an upper bound of the length lh(F ∗p) for formulas

F ∈ p∆b
0(X ).

Analogous to Chapter 4 we define a semi-formal system
p m

r,l
Γ which

has the meaning that there is a finitary proof tree (build up by special

rules defined below) with the depth bounded by m, the predicative rank

of each cut-formula strictly bounded by r and the binary length of the

predicative length of each cut-formula bounded by l.

10.1.4 Definition Let m, r, l < ω and Γ be a finite set of Lp
ω-formulas.

We inductively define the predicative version of a bounded semi-formal

system bsfp by the following clauses.

(Ax1)
p m

r,l
Γ holds if Γ contains a ground atomic formula which is

true.

(Ax2)
p m

r,l
Γ holds if Γ contains a logical axiom ¬A,A or an equality

axiom of the form s = s, or of the form s0 /= s1,¬A(t0), A(t1) if

si ≡ ti or sN

i = tN

i , for terms s, s0, s1, t0, t1 and atomic formulas

A.

(AxM)
p m

r,l
Γ holds if Γ contains an instance of a formula from the set

pBASIC.

(
∧

)
p m

r,l
Γ,

∧
i≤n Fi holds if there is some m′ < m with

p m′

r,l
Γ, Fi for

all i ≤ n.

(
∨

)
p m

r,l
Γ,

∨
i≤n Fi holds if there is some m′ < m and i0 ≤ n with

p m′

r,l
Γ, Fi0 .

(∀≤)
p m

r,l
Γ,∀a≤s F (a) holds if there is some m′ < m and some

impredicative variable b not occurring in Γ,∀a≤s F (a) with
p m′

r,l
Γ, b /≤ s, F (b).
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(∃≤)
p m

r,l
Γ, s /≤ t,∃a≤t F (a) holds if there is some m′ < m with

p m′

r,l
Γ, F (s).

(Cut)
p m

r,l
Γ holds if there is some m′ < m and some formula F with

prk(F ) < r, | plh(F )| ≤ l and
p m′

r,l
Γ, F and

p m′

r,l
Γ,¬F .

The basic properties of this system are easily proved by induction

on m:

Structural Rule Let Γ ⊂ Γ′,m ≤ m′, r ≤ r′, l ≤ l′, then
p m

r,l
Γ =⇒

p m′

r′,l′
Γ′.

Equality Lemma Let s, t be ground terms, sN = tN, then
p m

r,l
Γ, F (s) =⇒

p m

r,l
Γ, F (t).

Substitution Rule Let a be safe, s any predicative ground term, then
p m

r,l
Γ =⇒

p m

r,l
Γa(s).

(
∧

)-Inversion
p m

r,l
Γ,

∧
i≤n Fi =⇒

p m

r,l
Γ, Fi for all i ≤ n.

(∀)-Inversion
p m

r,l
Γ,∀a≤t F (a) =⇒

p m

r,l
Γ, s /≤ t, F (s) for all terms s.

(
∨

)-Exportation
p m

r,l
Γ,

∨
i≤n Fi =⇒

p m

r,l
Γ, F0, . . . , Fn.

The semi-formal system gives us the possibility to measure the truth

complexity of formulas in PBF(X ). Using the method of search trees3

we obtain the following completeness result for predicative ground for-

mulas F ∈ PBF(X ):

N ² F ⇐⇒ ∃m<ω
p m

1,1
F ∗p .

We define the predicative truth complexity of a predicative ground for-

mula F ∈ PBF(X ) by

ptc(F ) ··=





min{m :

p m

1,1
F ∗p} : if N ² F

ω : otherwise.

Of course it will be senseless for fragments F ⊂ PBF(X ) of pred-

icative ground formulas to consider the usual ”Π1
1-ordinal” which is

defined by sup{ptc(F ) : F ∈ F}, because if F is non-pathological we

3See, e.g., [17] for an explanation of this method.
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always have sup{ptc(F ) : F ∈ F} = ω. Therefore, we consider the dy-

namic predicative truth complexity dptc(F, x0, . . . , xk−1) : ωk → ω for

true formulas F ∈ PBF containing no normal variable not in the list

x0, . . . , xk−1, which is defined by

dptc(F, x0, . . . , xk−1) ··= λ~n. ptc(F~x(~n)).

10.2 The embedding into bsfp

In order to investigate the dynamic predicative truth complexity we

need some auxiliary semi-formal system. We define mc
p

n

m,k

r,l
Γ which in

addition to the clauses of
p m

r,l
Γ consists of the following multi-cut of

at most k pΣb
n(X )∗p ∪ pΠb

n(X )∗p-formulas:

(MCk
n) mc

p

n

m,k

r,l
Γ,¬F0, Fj holds if 0 < j ≤ k and there are some m′ <

m and some F1, . . . , Fj−1 such that prk(Fi) ≤ n and | plh(Fi)| ≤

l for i ≤ j and mc
p

n

m′,k

r,l
Γ,¬Fi, Fi+1 for i < j.

The following basic properties of the auxiliary semi-formal system

are again easily proved by induction on m:

Structural Rule Let Γ ⊂ Γ′, n ≤ n′,m ≤ m′, k ≤ k′, r ≤ r′, l ≤ l′,

then mc
p

n

m,k

r,l
Γ =⇒ mc

p

n′

m′,k′

r′,l′
Γ′.

Equality Lemma Let s, t be ground terms, sN = tN, then

mc
p

n

m,k

r,l
Γ, F (s) =⇒ mc

p

n

m,k

r,l
Γ, F (t).

Substitution Rule Let a be safe, s any term, then

mc
p

n

m,k

r,l
Γ =⇒ mc

p

n

m,k

r,l
Γa(s).

(
∧

)-Inversion mc
p

n

m,k

r,l
Γ,

∧
i≤n Fi =⇒ mc

p

n

m,k

r,l
Γ, Fi for all i ≤ n.

(∀)-Inversion mc
p

n

m,k

r,l
Γ,∀a≤t F (a) =⇒ mc

p

n

m,k

r,l
Γ, s /≤ t, F (s) for all

terms s.

(
∨

)-Exportation mc
p

n

m,k

r,l
Γ,

∨
i≤n Fi =⇒ mc

p

n

m,k

r,l
Γ, F0, . . . , Fn.

We connect this auxiliary system with the actual semi-formal system

bsfp.
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10.2.1 Theorem k > 0 and mc
p

n

m,k

n+1,l
Γ =⇒

p m·|k|

n+1,l
Γ.

Proof: We use induction on m. If the last inference is not (MCk
n) we

obtain the assertion directly (from the induction hypothesis if m > 0)

by the same inference, because λm.m · |k| is strictly monotone. Oth-

erwise, there are some j,m′ with 0 < j ≤ k and m′ < m, and some

F0, . . . , Fj with prk(Fi) ≤ n, lh(Fi) ≤ l for i ≤ j and ¬F0, Fj ∈ Γ such

that
p m′·|k|

n+1,l
Γ,¬Fi, Fi+1 for i < j

using the induction hypothesis.

Now we proceed using the following strategy, which we picture for

j = 7:

¬F0, F1 ¬F1, F2 ¬F2, F3 ¬F3, F4 ¬F4, F5 ¬F5, F6

¬F0, F2 ¬F2, F4 ¬F4, F6 ¬F6, F7

¬F0, F4 ¬F4, F7

¬F0, F7

Thus, we obtain
p m′·|k|+|j|

n+1,l
Γ,¬F0, Fj, hence

p m·|k|

n+1,l
Γ. ⊓⊔

If FV (t) ⊂ {x0, . . . , xp} and x0, . . . , xp ∈ ω (abbreviated by ~x ∈ ω),

then we define t〈~x〉 ···≡ tx0,... ,xp
(x0, . . . , xp). Analogously we define F 〈~x〉

for formulas F and we set Γ〈~x〉 for sets of formulas Γ in the obvious

way. We write shortly F,G〈~x〉 instead of {F,G}〈~x〉 if this does not

confuse.

In the following we will often identify a ground term t with its

evaluation tN. It will be clear from the context what is meant.

10.2.2 Theorem (Embedding) Let Γ ⊂ PBF(X ) be a finite set with

nFV (Γ) ⊂ {x0, . . . , xp}. Let T be pΣb
n-LmInd or pΣb

n(X )-LmInd. As-

sume T Γ, then

∃d, r<ω ∃LBPA-term t with FV (t) ⊂ {x0, . . . , xp}

∀~x ∈ ω mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ〈~x〉∗p .

Proof: We consider only the case T = pΣb
n(X )-LmInd because

pΣb
n-LmInd ⊂ pΣb

n(X )-LmInd. As remarked at the end of Chapter 7

we obtain a normal derivation T Γ in which all cut-formulas are
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pΣb
∞(X )-formulas and all formulas in the derivation are in PBF(X ).

We prove the assertion by induction along this derivation.

In the following we omit the superscript ∗p. Observe that for every

formula F ∈ PBF(X ) containing no normal variable not in {x0, . . . , xp}

we can find some d < ω with

∀~x ∈ ω
p d

0,0
¬F, F 〈~x〉 (10.1)

We distinguish the following cases concerning the last inference:

(AxL),(AxE),(AxpB) If Γ is a logical axiom, an equality axiom or an

instance of an axiom from pBASIC then (Ax2), resp. (AxM) (and at

most four (
∨

)-inferences) yield
p 4

0,0
Γ〈~x〉 for any ~x ∈ ω.

(T -IND) There is some pΣb
n(X )-formula F and some normal term t′

with Ind(F, x, |t′|m) ∈ Γ. Let t ···≡ |t′|m. If x /∈ FV (F ) then Fx(0) ≡

F ≡ Fx(t), thus using (10.1) we obtain some d < ω with

∀~x ∈ ω
p d

0,0
¬Fx(0), Fx(t)〈~x〉

and three times (
∨

) yields the assertion.

Otherwise, let s′ ···≡ σ[plh(F )]x(t) + t′ and s ···≡ |s′|m, then

FV (s′) = FV (s) ⊂ {x0, . . . , xp}.

Using (10.1) and the Equality Lemma we obtain some d such that for

any ~x ∈ ω and i < t〈~x〉N

p d

0,0
¬Fx(i)〈~x〉, Fx(i)〈~x〉 &

p d

0,0
¬Fx(S i)〈~x〉, Fx(i + 1)〈~x〉

hence

p d+2

0,0
∃x<t (F ∧ ¬Fx(S x))〈~x〉,¬Fx(i)〈~x〉, Fx(i + 1)〈~x〉

by (
∧

) and (
∨

). Observe t′〈~x〉 ≤ s′〈~x〉, hence t〈~x〉 ≤ s〈~x〉, and

for i ≤ t〈~x〉 we have lh(Fx(i)〈~x〉) ≤ | plh(Fx(i)〈~x〉)| ≤ |s′|〈~x〉 and

prk(Fx(i)〈~x〉) ≤ n. Therefore, we can apply (MC
s〈~x〉
n ) to produce (of

course using Equality)

mc
p

n

d+3,s〈~x〉

0,|s′|〈~x〉
¬(∀x<t (F → Fx(S x)))〈~x〉,¬Fx(0)〈~x〉, Fx(t)〈~x〉.

Four times (
∨

) yields

∀~x ∈ ω mc
p

n

d+7,s〈~x〉

0,|s′|〈~x〉
Ind(F, x, t)〈~x〉.
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(∨) The assertion follows directly from the induction hypothesis.

(∧) The assertion follows from the induction hypothesis after replac-

ing the upper bounds by some common bounds (using Structural Rule).

We may always take the sum of the inductively given normal terms.

In the other cases we, therefore, will assume common upper bounds.

(Cut) There is some pΣb
∞(X )-formula F such that nFV (F ) ⊂ {~x},

T Γ, F and T Γ,¬F . Thus, the induction hypothesis yields some

d, r < ω, and some LBPA-term t with

mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, F 〈~x〉 and mc

p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ,¬F 〈~x〉

for all ~x ∈ ω. Without loss of generality we may assume r > prk(F )

and t〈~x〉 ≥ plh(F 〈~x〉). Applying (Cut) produces the assertion.

(∃) There are some term s, some variable ϕ and some formula F with

[ϕ normal =⇒ s normal], (∃ϕF ) ∈ Γ and T Γ, Fϕ(s). By assump-

tion (∃ϕF ) ∈ PBF(X ), thus there has to be some B ∈ PBF(X ) and

some term u such that [ϕ normal =⇒ u normal], ∃ϕF ≡ ∃ϕ≤uB and

Fϕ(s) ≡ s ≤ u ∧ Bϕ(s). The induction hypothesis and (
∧

)-Inversion

produce some d, r < ω, r > 0, some t with FV (t) ⊂ {x0, . . . , xp} and

mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, s ≤ u〈~x〉 (10.2)

and

mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, Bϕ(s)〈~x〉 (10.3)

for all ~x ∈ ω.

Fix ~x ∈ ω. If ϕ is safe, we apply (∃≤) to (10.3) and obtain

mc
p

n

d+1,|t|m〈~x〉

r,|t|〈~x〉
Γ, s /≤ u,∃ϕ≤uB〈~x〉.

Now ∃ϕ≤uB ≡ ∃ϕF ∈ Γ, hence

mc
p

n

d+2,|t|m〈~x〉

r,|t|〈~x〉
Γ〈~x〉

by a cut with (10.2).

If ϕ is normal, then s and u have to be normal, thus s〈~x〉 and u〈~x〉

are ground. If s〈~x〉 /≤ u〈~x〉 then (Ax1) yields mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, s /≤ u〈~x〉,

hence by a (Cut) with (10.2) mc
p

n

d+1,|t|m〈~x〉

r,|t|〈~x〉
Γ〈~x〉.
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Otherwise s〈~x〉 ≤ u〈~x〉. The Equality Lemma applied to (10.3)

shows mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, Bϕ(s〈~x〉N)〈~x〉, hence by (

∨
)

mc
p

n

d+1,|t|m〈~x〉

r,|t|〈~x〉
Γ,

because

∨

n≤u〈~x〉N

Bϕ(n)〈~x〉∗p ≡ (∃ϕ≤uB〈~x〉)∗p ≡ (∃ϕF 〈~x〉)∗p ∈ Γ∗p .

(∀) There are some formula F and some variables ϕ, ψ satisfying

[ϕ safe =⇒ ψ safe], (∀ϕF ) ∈ Γ, ψ /∈ FV (Γ,∀ϕF ) and T Γ, Fϕ(ψ).

Using the assumption ∀ϕF ∈ PBF(X ) there are some G ∈ PBF(X )

and some term u with [ϕ normal =⇒ u normal], ∀ϕF ≡ ∀ϕ≤uG and

Fϕ(ψ) ≡ ψ ≤ u → Gϕ(ψ).

First assume that ϕ is safe, then the induction hypothesis and

(
∨

)-Exportation lead to some d, r < ω and some term t with

FV (t) ⊂ {x0, . . . , xp} and

mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
Γ, ψ /≤ u,Gϕ(ψ)〈~x〉

for all ~x ∈ ω. Hence by (∀≤) mc
p

n

d+1,|t|m〈~x〉

r,|t|〈~x〉
Γ〈~x〉 for all ~x ∈ ω, because

∀ϕ≤uG〈~x〉 ≡ ∀ϕF 〈~x〉 ∈ Γ〈~x〉.

Now we are in the case that ϕ is normal, then the induction hypo-

thesis and (
∨

)-Exportation yield some d, r < ω, r > 0 and some term

t with FV (t) ⊂ {x0, . . . , xp, ψ} and

mc
p

n

d,|t|m〈~x,y〉

r,|t|〈~x,y〉
Γ, ψ /≤ u,Gϕ(ψ)〈~x, y〉 (10.4)

for all ~x, y ∈ ω. Fix ~x ∈ ω.

u is normal and nFV (u) ⊂ nFV (∀ϕ≤uG) ⊂ {x0, . . . , xp}. Let t′ ···≡

σ[t]ψ(u). Then FV (t′) ⊂ {x0, . . . , xp} and t〈~x, y〉 ≤ t′〈~x〉 for y ≤ u〈~x〉.

Let y ≤ u〈~x〉. With the Equality Lemma (and the Substitution

Lemma if ψ is safe) (10.4) leads to mc
p

n

d,|t′|m〈~x〉

r,|t′|〈~x〉
Γ, Gϕ(y), y /≤ u〈~x〉. By

(Ax1) we obtain

mc
p

n

d,|t′|m〈~x〉

r,|t′|〈~x〉
Γ, Gϕ(y), y ≤ u〈~x〉,

hence by a (Cut) mc
p

n

d+1,|t′|m〈~x〉

r,|t′|〈~x〉
Γ, Gϕ(y)〈~x〉. Applying (

∧
) produces

mc
p

n

d+2,|t′|m〈~x〉

r,|t′|〈~x〉
Γ〈~x〉, because
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∧

y≤u〈~x〉N

Gϕ(y)〈~x〉∗p ≡ (∀ϕ≤uG〈~x〉)∗p ≡ (∀ϕF 〈~x〉)∗p ∈ Γ〈~x〉∗p .

⊓⊔

10.3 Extended cut-elimination I

In our examinations of fragments of BPA we need a cut-elimination

procedure for the semi-formal systems. Of course we need a proce-

dure which carefully reduces cuts, because otherwise the length of the

reduced derivations would grow too fast (i.e., it would grow exponen-

tially).

Therefore, we extend the usual elimination procedure. Let card(Γ)

be the number of formulas in Γ.

10.3.1 Extended Elimination Lemma Let Γ1 be a finite set of
pΣb

r+1(X )-formulas and let A be a pΠb
r (X )-formula and assume

| plh(G∗p)| ≤ l for all G ∈ Γ1. Let ∆, Γ be finite sets of Lp
ω-formulas.

Let s1, . . . , sp, t be terms, let

∃a1≤s1 . . . ∃ap≤sp ∃x≤t A(a1, . . . , ap, x) ∈ Γ1

and assume that for each G ∈ Γ1 there are terms u1, . . . , uj with

G ≡ ∃aj+1≤sj+1 . . . ∃ap≤sp ∃x≤t A(u1, . . . , uj, aj+1, . . . , ap, x)

[for j = p this means G ≡ ∃x≤t A(u1, . . . , up, x)]. Let c ··= card(Γ1).

Then

p m0

r+1,l
Γ, Γ

∗p

1 & ∀G ∈ Γ1

p m1

r+1,l
∆,¬G∗p =⇒

p m0+m1+c−1

r+1,l
Γ, ∆

and

mc
p

n

m0,k

r+1,l
Γ, Γ

∗p

1 & ∀G ∈ Γ1 mc
p

n

m1,k

r+1,l
∆,¬G∗p

=⇒ mc
p

n

m0+m1+c−1,k

r+1,l
Γ, ∆

Proof: We use induction on m0. (We only consider the first assertion,

the second one follows in a similar way.) For the rest of the proof we

drop the superscript ∗p. The only interesting case is that the main

formula F of the last inference is in Γ1. Then there are j ≤ p and some

u1, . . . , uj with

F ≡ ∃aj+1≤sj+1 . . . ∃ap≤sp ∃x≤t A(u1, . . . , uj, aj+1, . . . , ap, x).
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First assume j = p. Then F ≡ ∃x≤t A(u1, . . . , up, x) and the last

inference was (
∨

), thus there is some n ≤ tN and m′ < m0 with
p m′

r+1,l
Γ, Γ1, A(u1, . . . , up, n). The induction hypothesis yields

p m′+m1+c−1

r+1,l
Γ, ∆, A(u1, . . . , up, n).

As F ∈ Γ1 the second assumption yields

p m1

r+1,l
∆,∀x≤t¬A(u1, . . . , up, x),

hence
p m1

r+1,l
∆,¬A(u1, . . . , up, n) by (

∧
)-Inversion. As A ∈ pΠb

r (X ) we

can apply (Cut) to derive the assertion, because m1 ≤ m′+m1+c−1 <

m0 + m1 + c − 1.

Now we assume j < p. Let

G(b) ···≡ ∃aj+2≤sj+2 . . . ∃ap≤sp ∃x≤t A(u1, . . . , uj, b, aj+2, . . . , ap, x),

then F ≡ ∃aj+1≤sj+1 G(aj+1). The last inference has to be (∃≤), thus

there is some term v and m′ < m0 with

p m′

r+1,l
Γ, Γ1, G(v)

and (v /≤ sj+1) ∈ Γ. Let Γ2 ··= Γ1 ∪ {G(v)}. Using the second as-

sumption and F ∈ Γ1 we know
p m1

r+1,l
∆,∀aj+1≤sj+1 ¬G(aj+1), hence

p m1

r+1,l
∆,¬G(v), v /≤ sj+1 by (∀≤)-Inversion. Let ∆′ ··= ∆∪ {v /≤ sj+1}.

We obtain ∀H ∈ Γ2

p m1

r+1,l
∆′,¬H, thus

p m′+m1+card(Γ2)−1

r+1,l
∆′, Γ

by the induction hypothesis. Now ∆′, Γ = ∆, Γ because (v /≤ sj+1) ∈ Γ,

hence m′ +m1 +card(Γ2)−1 ≤ m′ +m1 +(c+1)−1 ≤ m0 +m1 + c−1

yields the assertion. ⊓⊔

10.3.2 Extended Elimination Theorem

p m

r+1,l
Γ =⇒

p 2r(m)

1,l
Γ

mc
p

n

m,k

r+n+1,l
Γ =⇒ mc

p

n

2r(m),k

n+1,l
Γ

Proof: The proof is by induction on m. ⊓⊔
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10.4 Extended cut-elimination II

In p∆b
0(X )∗p-formulas the impredicative variables serve merely as pa-

rameters, thus the p∆b
0(X )∗p-formulas can be viewed as Lω-formulas

in an extended language with additional parameters; the additional

graphs Gf(~a, b) for f ∈ F i can be taken as f(~a) = b, and as f is primi-

tive recursive all predicative ground instances of this can be viewed as

Lω-formulas.

From this point of view we can adapt the main parts of the Lω-

cut-reduction procedure from Chapter 5 to p∆b
0(X )∗p-cut-reduction.

The definition of the choice sequences S(F ) and the inversions F f for

f ∈ S(F ) and F ∈ p∆b
0(X )∗p directly carries over from that for Lω in

Chapter 5. We can transfer the proof of the Lω-Inversion word by word

and obtain:

10.4.1 Theorem (p∆b
0(X )∗p-Inversion) Let F ∈ p∆b

0(X )∗p ,

f ∈ S(F ) and
p m

r,l
∆, F , then

p m

r,l
∆, F f . ⊓⊔

The Lω-Cut Elimination Lemma from Chapter 5 can be rewritten

in the form

10.4.2 p∆b
0(X )∗p-Cut-Elimination Lemma Let F ∈ p∆b

0(X )∗p ,

r, l > 0,
p m

r,l
∆, F and

p m

r,l
∆,¬F , then

p m+lh(F )

r,l
∆. ⊓⊔

Now we can prove

10.4.3 p∆b
0(X )∗p-Cut-Elimination Theorem

l > 0 &
p m

1,l
∆ =⇒

p m·l

1,1
∆

Proof: We use induction on m. The only interesting case, which does

not follow immediately (from the induction hypothesis if m > 0), is

that
p m

1,l
∆ is given by a (Cut). In this case there are m′ < m and some

Lp
ω-formula F with prk(F ) = 0, hence F ∈ p∆b

0(X )∗p , lh(F ) ≤ l and
p m′

1,l
∆, F and

p m′

1,l
∆,¬F . The induction hypothesis leads to

p m′·l

1,1
∆, F

and
p m′·l

1,1
∆,¬F , thus we obtain by the p∆b

0(X )∗p-Cut-Elimination

Lemma
p m′·l+lh(F )

1,1
∆. We compute m′ · l + lh(F ) ≤ m′ · l + l ≤ m · l.

⊓⊔

The results of this chapter provide:
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10.4.4 Theorem Let F ∈ PBF(X ), nFV (F ) ⊂ {x1, . . . , xp}, and

n ≥ m ≥ 0. Assume pΣb
n(X )-LmInd F , then there is some LBPA-

term t with FV (t) ⊂ {x0, . . . , xp} and some c ∈ ω such that

∀~x ∈ ω dptc(F, ~x)(~x) ≤ 2n(c · |t〈~x〉|m+1).

Proof: The Embedding Theorem 10.2.2 gives us some LBPA-term t

and some d, r < ω with

∀~x ∈ ω mc
p

n

d,|t|m〈~x〉

r,|t|〈~x〉
F 〈~x〉∗p .

Fix ~x ∈ ω. The Extended Elimination Theorem shows

mc
p

n

2r(d),|t|m〈~x〉

n+1,|t|〈~x〉
F 〈~x〉∗p ,

thus Theorem 10.2.1 and the observation |t + 1|m > 0 yield

p 2r(d)·|t+1|m+1〈~x〉

n+1,|t|〈~x〉
F 〈~x〉∗p .

Now the Extended Elimination Theorem yields

p 2n[2r(d)·|t+1|m+1〈~x〉]

1,|t|〈~x〉
F 〈~x〉∗p ,

hence
p 2n[2r(d)·|t+1|m+1〈~x〉]·|t|〈~x〉

1,1
F 〈~x〉∗p

by the p∆b
0(X )∗p-Cut-Elimination Theorem. Let s ···≡ t〈~x〉+ ”some

constant” so that |s|m+1 ≥ 2 for all ~x ∈ ω. Let c ··= 2r(d). In our

following estimations we use 2x · y ≤ 2x·y and x + y ≤ x · y for x, y ≥ 2,

and x < 2|x|. Let n′ ··= n − m ≥ 0. If m > 0 we compute

dptc(F, ~x)(~x) ≤ 2n′+m(c · |s|m+1) · |s|

≤ 2n′(2m(c · |s|m+1) · |s|)

≤ 2n((c + 1) · |s|m+1).

In the case m = 0 we have

dptc(F, ~x)(~x) ≤ 2n(c · |s|) · |s|

≤ 2n(c · |s| · |s|)

≤ 2n(c · |s#s|).

⊓⊔



Chapter 11

Predicative Boundedness

Theorems (PBT)

11.1 Preliminaries

One of the main tools in the proof-theoretical investigation of IΣ0
n is

the boundedness theorem 5.2.5. Here we need predicative versions of

it:

11.1.1 Predicative Boundedness Theorem

p m

1,1
BigFun(a, b, α,X) =⇒ ΦE(α) ≤ m

and

11.1.2 Predicative Boundedness Theorem

p m

1,1
BigFun(a, b, α,X(d)) =⇒ ΦE(α) ≤ m.

Remember that X(d) ···≡ {ϕ : Bit(ϕ, d)}. Of course the first theorem

follows from the second one because we can show

p m

1,1
∆ =⇒

p m

1,1
∆X({a : A(a)})

for any atomic formula A(a). The first Predicative Boundedness Theo-

rem 11.1.1 can also be obtained by adapting the Boundedness Theorem

5.2.5 to bsfp:

Let ∗̄ : (ground Lp
ω-formulas) → Lω be homeomorphic

up to (∀a≤s F (a))∗̄ ···≡
∧

k≤sN F (k)∗̄ and (∃a≤s F (a))∗̄ ···≡∨
k≤sN F (k)∗̄ and defined to be the identity on the atomic Lp

ω-

formulas.

101
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Then we obtain for any finite set ∆ of ground Lp
ω-formulas

p m

1,1
∆ =⇒

m

1
∆∗̄.

Thus, we can apply, in essential, the Boundedness Theorem 5.2.5.

The proof of the second Predicative Boundedness Theorem 11.1.2

is a nontrivial modification of the Boundedness Theorem 5.2.5. The

proof of the latter essentially uses the monotonicity of formulas F in

which X occurs only positively, i.e., not in the form s /∈ X:

M ⊂ N & N ² FX [M ] =⇒ N ² FX [N ].

If we replace X with the set X(d) coded by d then we want to obtain

something like

m ⊂ n , i.e., ∀i (Bit(i,m) → Bit(i, n)), & N ² Fd[m] =⇒ N ² Fd[n]

for formulas F in which Bitc(·, d) does not occur. But then we have the

problem that d can also occur in terms and atomic formulas other than

Bit. Therefore, we first have to find a notion of sets of indiscernibles

I ⊂ ω to a given set Π of formulas and l ∈ ω, which provides

∀M ⊂ {0, . . . , l} ∃m∈I (m codes M below l),

at which a number m codes a set M below l iff ∀i≤l (i∈M ↔ Bit(i,m)),

and

∃m ∈ I (N ² Ad[m]) ⇐⇒ ∀m ∈ I (N ² Ad[m])

for any atomic formula A ∈ Π other than Bit(·, d) or Bitc(·, d).

11.2 Indiscernibles

We first characterize the sets of formulas for which we want to find

indiscernibles.

11.2.1 Definition Let gb(l) be the set of all predicative ground terms

t and Lp
ω-formulas F such that every ground term s which occurs in t

resp. F satisfies sN ≤ l. A predicative ground formula F ∈ PBF(X ) is

in gb(l) iff F ∗p ∈ gb(l).
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11.2.2 Lemma Let F ∈ gb(l).

1. l ≤ m =⇒ F ∈ gb(m).

2. k ≤ l =⇒ Fa(k) ∈ gb(l).

Proof: The proof of 1. is obvious. 2. follows easily by induction on the

generation of F from the following observation for terms s:

s ∈ gb(l)

=⇒ s is a ground term with sN ≤ l or s is a safe variable

=⇒ sa(k) ∈ gb(l). ⊓⊔

Now we define indiscernibles for formulas in gb(l). Remember that

Bit(k, n) holds iff the k-th bit in the binary expansion of n is 1. We de-

fine the set of l-indiscernibles Iscl and related things where we identify

(l + 1) with its usual set theoretical representation {0, . . . , l}.

h(l) ··= max
(
{ΦE(α) : α ∈ E ∩ (l + 1)} ∪ {l}

)

Iscl ··= {n ∈ ω : ∀k>l [Bit(k, n) ↔ k = 2h(l) or k = 2h(l) + 3]},

Ml(n) ··= {k ≤ l : Bit(k, n)},

Zl(X) ··= 22h(l)+3 + 22h(l)
+

∑
i∈X∩(l+1) 2i

d0 ⊑
l d1 :⇐⇒ d0, d1 ∈ Iscl and Ml(d0) ⊂ Ml(d1).

l-Indiscernibles and the relation ⊑l
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Observe that

Ml(Zl(X)) = X ∩ (l + 1),

Zl(Ml(n)) = n for n ∈ Iscl,

Zl[P(l + 1)] = Iscl,

Ml[Iscl] = P(l + 1).

The crucial point is to observe that Iscl is a set of indiscernibles for

the set of atomic formulas in gb(l) without Bit and Bitc. In essential,

this is true because of three reasons:

1. all functions in F i are polytime functions and thus have polyno-

mial growth rate,

2. the l-indiscernibles are ”very much” bigger than the values of the

ground terms t that could occur in a formula in gb(l), i.e., tN ≤ l

and ∀x ∈ Iscl(2
2l

< x),

3. no l-indiscernibles is a sequence-number, because the highest bits

of an indiscernible are always of the form 10010 . . . which cannot

be the highest bits of a sequence-number: sequence-numbers are

build up from 00, 10, 11, thus 1001 and 010010 are impossible

beginnings.

11.2.3 Main Lemma Let F ∈ gb(l) be an atomic formula other than

Bit(·, d) or Bitc(·, d) with FV (F ) ⊂ {d}, then

∀d ∈ Iscl N ² F or ∀d ∈ Iscl N 2 F.

Proof: We postpone this to the Appendix C. ⊓⊔

11.3 Negative points and monotonicity

11.3.1 Definition Let qb(~a) be the set of all Lp
ω-formulas F such that

every quantifier which occurs in F is bounded by a variable from the

list ~a or by some ground LBPA-term.

We define the negative points of a formula as in Chapter 5.
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11.3.2 Definition The negative points Nd(F ) ⊂ ω of a formula F ∈

qb(∅) with FV (F ) ⊂ {d} relative to the safe variable d are defined by

the following clauses:

1. If F is atomic let

Nd(F ) ··=





{sN} : if F ≡ Bitc(s, d) and s 6≡ d

∅ : otherwise

2. Nd

(∨
i≤n Fi

)
··= Nd

(∧
i≤n Fi

)
··=

⋃
i≤n Nd(Fi)

3. Nd (∀a≤s F (a)) ··= Nd (∃a≤s F (a)) ··=
⋃

l≤sN Nd(F (l))

For sets of Lp
ω-formulas ∆ we define Nd(∆) ··=

⋃
F∈∆ Nd(F ).

Case 1. of this definition is well-defined because if s 6≡ d then s has to

be a ground term. Case 3. is well-defined because Qa≤s F (a) ∈ qb(∅),

thus s has to be a ground term.

11.3.3 Lemma (Monotonicity) Let F ∈ gb(l) and F ∈ qb(∅) with

FV (F ) ⊂ {d}. Assume d0 ⊑
l d1 with Nd(F ) ⊂ Ml(d0), then

N ² Fd[d0] =⇒ N ² Fd[d1].

Proof: The proof is by induction on the generation of F . First we

observe that

ud[e]
N ≤ e

for u ∈ gb(l) with FV (u) ⊂ {d} and e ∈ Iscl. For if u 6≡ d then u is

ground, thus u ≤ l as u ∈ gb(l), and l < e by definition of Iscl.

If F is atomic we distinguish the following cases:

1. F 6≡ Bit(u, v) and F 6≡ Bitc(u, v). F ∈ gb(l) and d0, d1 ∈ Iscl,

thus d0, d1 are indiscernibles for F , i.e., Lemma 11.2.3 implies

N ² Fd[d0] ⇐⇒ N ² Fd[d1].

2. F ≡ Bit(u, v). If d does not occur in F the assertion is obvious.

Otherwise, assume N ² Bit(u, v)d[d0]. Then

ud[d0]
N < |vd[d0]|

N ≤ |d0|
N,

hence u 6≡ d. But then u has to be a ground term and v ≡ d.

Now N ² Fd[d0] together with the assumptions yields

uN ∈ Ml(d0) ⊂ Ml(d1),

hence N ² Bit(u, v)d[d1].
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3. F ≡ Bitc(u, v). If d does not occur in F the assertion is obvious.

If u ≡ d then N ² Bitc(u, v)d[d1] for |vd[d1]|
N ≤ |d1|

N < d1. Oth-

erwise, u has to be a ground term and v ≡ d. By assumptions

we have Nd(F ) = {uN} ⊂ Ml(d0), hence N ² Bit(u, d0) which

shows N 2 Fd[d0].

If F ≡
∧

i≤n Fi and N ² Fd[d0], then we have N ² (Fi)d[d0], thus

N ² (Fi)d[d1] for any i ≤ n by the induction hypothesis. Hence N ²

Fd[d1].

If F ≡
∨

i≤n Fi and N ² Fd[d0], then we have N ² (Fi)d[d0]. There-

fore we obtain N ² (Fi)d[d1] for some i ≤ n by the induction hypothesis.

Hence N ² Fd[d1].

If F ≡ ∀a≤s G, then s has to be a ground term, for F ∈ qb(∅).

Thus F ∈ gb(l) implies sN ≤ l. Lemma 11.2.2 yields that Ga(k) ∈

gb(l), obviously also Ga(k) ∈ qb(∅), for any k ≤ sN. Assume N ²

Fd[d0], then we have N ² (Ga(k))d[d0], hence N ² (Ga(k))d[d1] by the

induction hypothesis, for any k ≤ sN. Hence N ² Fd[d1].

If F ≡ ∃a≤s G, then s has to be a ground term, because F ∈ qb(∅).

Now F ∈ gb(l) implies sN ≤ l. Using Lemma 11.2.2 we obtain that

Ga(k) ∈ gb(l), obviously also Ga(k) ∈ qb(∅), for any k ≤ sN. Assume

N ² Fd[d0], then we have N ² (Ga(k))d[d0], hence N ² (Ga(k))d[d1] by

the induction hypothesis, for some k ≤ sN. Hence N ² Fd[d1]. ⊓⊔

11.4 Proving PBT

We adapt the definition of the reachability operator for orderings from

Chapter 5 to ≺, the fixed ordering of the exponential codes E . For

N ⊂ ω let

Rm(N) ··= {e ∈ ω : e /∈ E or ΦE(e) ≤ enN(m)} ∪ N

and

Rm
l (N) ··= Zl(R

m(N)) = 22h(l)+3 + 22h(l)

+
∑

i∈Rm(N)∩(l+1)

2i

Remember that enN is the dual enumeration function enOn \N from

Chapter 5 which in this context (where we consider only finite ordinals)
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can be written as enω\N . Analogously to Chapter 5 we observe

N ⊂ N ′ =⇒ enN(m) ≤ enN ′(m) (11.1)

enN∪{e}(m) ≤ enN(m + 1) (11.2)

Rm(N ∪ {e}) ⊂ Rm+1(N) ∪ {e} (11.3)

m ≤ m′ & N ⊂ N ′ =⇒ Rm
l (N) ⊑l Rm′

l (N ′) (11.4)

If A(N) denotes the accessibility operator, i.e.,

A(N) ··= N ∪ {k ∈ ω : ∀l ≺ k(l ∈ N)},

and Am(N) its iterations, i.e., Am(N) ··= A(N ∪
⋃

n<m An(N)), then

Rm(N) = Am(N) (11.5)

for all m ∈ ω.

Let p
l

m

1,1
∆ be the restriction of

p m

1,1
to derivations where all oc-

curring terms are in gb(l). We obtain

p m

1,1
∆ =⇒ ∃l < ω p

l

m

1,1
∆ (11.6)

because the derivation trees are finite. Let X(d) ···≡ {ϕ : Bit(ϕ, d)}.

11.4.1 Predicative Boundedness Lemma Suppose

N ² Big(a, l, α) with a, l ∈ ω and α a ground term, and

p
l

m

1,1
¬Prog(a, α,X(d)), ∆

with FV (∆) ⊂ {~c, d} and ∆ ∈ qb(∅). Then

∀~c ≤ l N ² ∆~c,d[~c,R
m
l (Nd(∆~c(~c)))]. (11.7)

Proof: We use induction on m. In the sequel we use validity in the

standard model N sloppily, e.g. we write sd[n] ≺ α instead of N ² (s ≺

α)d[n] etc.

We distinguish several cases concerning the last inference. If this is

an axiom then ∆ has to be the same axiom and (11.7) follows by the

validity of the axioms. The cases of a (
∧

) or (
∨

)-inference follow di-

rectly from the induction hypothesis, the Monotonicity Lemma 11.3.3,

observation (11.4) and the correctness of the inferences (
∧

) resp. (
∨

).
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In the case that the last inference is (∀≤) there are m′ < m, some

safe variables e, f and some term s ∈ gb(l) such that (∀e≤s F ) ∈ ∆,

f /∈ FV (∆) ∪ {d} and

p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, Fe(f), f /≤ s.

By assumption (∀e≤s F ) ∈ qb(∅), thus Fe(f) ∈ qb(∅) and s is a ground

term with sN ≤ l. Applying the induction hypothesis and the Mono-

tonicity Lemma 11.3.3 we obtain, as Nd(F~c,e(~c, k)) ⊂ Nd(∆~c(~c)) for

k ≤ sN,

∀~c≤l ∀k≤sN N ² ∆~c,d[~c,R
m
l (Nd(∆~c(~c)))], F~c,e,d[~c, k,Rm

l (Nd(∆~c(~c)))],

hence

∀~c≤l N ² ∆~c,d[~c,R
m
l (Nd(∆~c(~c)))].

If the last inference is (∃≤) and ¬Prog(a, α,X(d)) is not its main

formula then a similar argument as for (∀≤) yields the assertion (11.7).

If ¬Prog(a, α,X(d)) is the main formula then there are a term s ∈

gb(l) and m′ < m such that

p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, s ≺ α ∧ (s ⊏ X(d))a ∧ s /∈ X(d)

and (s /≤ a) ∈ ∆. Applying (
∧

)-Inversion yields

p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, s ≺ α (11.8)

p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, (s ⊏ X(d))a (11.9)

p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, Bitc(s, d). (11.10)

We may assume that FV (s) ⊂ {~c, d}. Fix some ~c ≤ l and let s′ ···≡

s~c(~c) and ∆′ ··= ∆~c(~c). Observe that the formulas in (11.8) to (11.10)

are in qb(∅). We compute Nd(s ≺ α) = Nd((s ⊏ X(d))a) = ∅.

If s′d[R
m′

l (Nd(∆
′))] ⊀ α then the induction hypothesis applied to

(11.8) yields N ² ∆′
d[R

m′

l (Nd(∆
′))]. The Monotonicity Lemma 11.3.3

and (11.4) imply the assertion (11.7).

Otherwise, s′d[R
m′

l (Nd(∆
′))] ≺ α, thus s 6≡ d, and s′ has to be

a ground term. Then s′ ≤ l, because s ∈ gb(l) is a ground term,

or s is some ci and ~c ≤ l otherwise. If there is some k ≺ s′ with

k /∈ Rm′

(Nd(∆
′)), then the induction hypothesis applied to (11.9) yields

N ² ∆′
d[R

m′

l (Nd(∆
′))] for k ≺ s′ ≺ α, and Big(a, l, α) implies k < a.
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Again the Monotonicity Lemma 11.3.3 and (11.4) yield the assertion

(11.7).

If k ∈ Rm′

(Nd(∆
′)) for all k ≺ s′, then (11.5) yields

s′
N
∈ Rm′+1(Nd(∆

′)). (11.11)

We compute Nd(Bitc(s′, d)) = {s′N}, hence

N ² ∆′
d[R

m′

l (Nd(∆
′) ∪ {s′

N
})]

by the induction hypothesis applied to (11.10). With (11.3) and (11.11)

we compute

Rm′

(Nd(∆
′) ∪ {s′

N
}) ⊂ Rm′+1(Nd(∆

′)) ∪ {s′
N
}

⊂ Rm(Nd(∆
′)),

hence

Rm′

l (Nd(∆
′) ∪ {s′

N
}) ⊑l Rm

l (Nd(∆
′)),

and the claim follows with the Monotonicity Lemma 11.3.3.

In the case that the last inference is a (Cut) there are some m′ < m

and some atomic formula F such that p
l

m′

1,1
¬Prog(a, α,X(d)), ∆, F

and p
l

m′

1,1
¬Prog(a, α,X(d)), ∆,¬F . We may assume FV (F ) ⊂ {~c, d}.

Fix some ~c ≤ l and let F ′ ···≡ F~c(~c) and ∆′ ··= ∆~c(~c). As F is atomic

it trivially is in qb(∅), hence

N ² (∆′, F ′)d[R
m′

l (Nd(∆
′, F ′))] (11.12)

N ² (∆′,¬F ′)d[R
m′

l (Nd(∆
′,¬F ′))] (11.13)

by the induction hypothesis. If F 6≡ Bit(s, d) and F 6≡ Bitc(s, d) for

all terms s, then Nd(F
′) = Nd(¬F ′) = ∅ and the assertion (11.7) follows

by the Monotonicity Lemma 11.3.3 and the law of the excluded middle.

Otherwise, we may assume without loss of generality F ≡ Bit(s, d)

for some term s. Then Nd(F
′) = ∅ and Nd(¬F ′) = {s′N} resp.

Nd(¬F ′) = ∅ if s ≡ d. If N ² ¬F ′
d[R

m′

l (Nd(∆
′))] then (11.12) and

the Monotonicity Lemma 11.3.3 yields the assertion (11.7). Other-

wise, N ² Bit(s′, d)d[R
m′

l (Nd(∆
′))], hence s 6≡ d and s′N ≤ l, because

F ∈ gb(l), hence s′N ∈ Rm′

l (Nd(∆
′)). This and (11.3) lead to

Rm′

(Nd(∆
′) ∪ {s′

N
}) ⊂ Rm′+1(Nd(∆

′)) ∪ {s′
N
}

⊂ Rm(Nd(∆
′)),
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hence

Rm′

l (Nd(∆
′) ∪ {s′

N
}) ⊑l Rm

l (Nd(∆
′)). (11.14)

Now (11.13) yields N ² ∆′
d[R

m′

l (Nd(∆
′) ∪ {s′N})], thus (11.14) and the

Monotonicity Lemma 11.3.3 produce the assertion (11.7). ⊓⊔

Proof of the Predicative Boundedness Theorem 11.1.2:

Assume
p m

1,1
BigFun(a, b, α,X(d)). Lemma 9.1.1 shows that there are

some b ≥ a such that N ² Big(a, b, α). Thus, there are m′ < m and by

(11.6) l < ω, l ≥ b, such that

p
l

m′

1,1
¬Prog(a, α,X(d)),¬Big(a, b, α), (α ⊏ X(d))a.

An inspection of the formulas ¬Big(a, b, α) and (α ⊏ X(d))a shows

that they are in qb(∅) and that Nd(¬Big(a, b, α), (α ⊏ X(d))a) = ∅.

Thus the Predicative Boundedness Lemma 11.4.1 produces

N ² ¬Big(a, b, α), [(α ⊏ X(d))a]d(R
m′

l (∅)).

Now Big(a, b, α) yields ∀β ≺ α(β ≤ a), hence

∀β ≺ α(β ∈ Rm′

(∅)) =⇒ ∀β ≺ α ΦE(β) ≤ en∅(m
′) = m′

=⇒ ΦE(α) ≤ m.

⊓⊔



Chapter 12

Dynamic Ordinal Analysis

(DOA)

With the ordinal analysis of an arithmetical theory T we associate the

computation of the proof-theoretical ordinal O(T ) of T , i.e., the supre-

mum of the order-types of the provable well-orderings of T .1 Usually

this yields a good measurement of T in the sense that the different the-

ories under consideration receive different proof-theoretical ordinals.

For weak theories, i.e., sub-theories of IΣ0
1, R. Sommer showed in his

PhD-thesis [20] that

I∆0
0 + Fund(ω2, ∆0

0) = IΣ0
1

and

I∆0
0 Fund(ω · k, ∆0

0) for all k ∈ ω.

Furthermore, he remarked in [21]

S1
2(X ) + Fund(ω2, ∆0

0) = IΣ0
1

and

T1
2(X ) Fund(ω · k, ∆0

0) for all k ∈ ω.

Therefore we obtain

O(T ) = ω2

for theories T which are stronger than T1
2(X ) but weaker than IΣ0

1.

Thus, the usual ordinal analysis does not yield a good measurement of

subsystems of IΣ0
1. In the following we introduce the Dynamic Ordinal

1Cf. Chapter 1.
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analysis for the theories pRn
2 , pSn

2 , pTn
2 , pΣb

n-LmInd, pRn
2 (X ), pSn

2 (X ),
pTn

2 (X ), pΣb
n(X )-LmInd. With the Dynamic Ordinal analysis we will

overcome the deficiency described above.

12.1 Dynamic Ordinals and separation

For f, g ∈ ωω we define f ≤ g iff f is majorized by g, i.e.,

∀n (f(n) ≤ g(n)).

For F ⊂ ωω let H(F ) be the ≤-hull of F :

H(F ) ··= {f ∈ ωω : ∃g∈F (f ≤ g)}.

12.1.1 Definition Let T be a theory formulated in LBPA(X ). We

define the Dynamic Ordinal of T by

DO(T ) ··= H
(
{λn.ΦE(t(n)) | t(x) is an LBPA-term with

FV (t) ⊂ {x} such that N ² ∀x (t(x) ∈ E)

and T ∀xBigFun(a, b, t,X)}
)
.

12.1.2 Definition Let T be a theory formulated in LBPA. We define

the Dynamic Ordinal of T by

DO(T ) ··= H
(
{λn.ΦE(t(n)) | t(x) is an LBPA-term with

FV (t) ⊂ {x} such that N ² ∀x (t(x) ∈ E)

and T ∀xBigFun(a, b, t,X(d))}
)
.

With the Dynamic Ordinal analysis of a theory T we associate the

computation of the Dynamic Ordinal of T . If the Dynamic Ordinal

analysis of theories T1, T2 yields an inequality between the Dynamic

Ordinals of T1 resp. T2 then we obtain a separation of T1 and T2: As-

sume that there is an f ∈ DO(T2) \ DO(T1). Then by definition there

is an LBPA-term t(x) such that

T2 BigFun(a, b, t(x), X)

and f ≤
(
λn. ΦE(t(n))

)
=·· g. Now f 6∈ DO(T1) yields g 6∈ DO(T1),

hence

T1 / BigFun(a, b, t(x), X).
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12.2 Computing Dynamic Ordinals

As shown in [3] the truth complexity of the sentences Fund(≺, X) is

essentially the same as O(≺). Here the predicative truth complexity

of BigFun(a, b, α,X) is closely related to ΦE(α): The Boundedness

Theorem 11.1.2 yields

ΦE(α) ≤ ptc(BigFun(a, b, α,X(d))) (12.1)

In Chapter 10 we gave upper bounds for ptc(BigFun(a, b, α,X(d))).

The well-ordering proofs from Chapter 9 yield lower bounds for the Dy-

namic Ordinals of pRn
2 , pSn

2 , pTn
2 , pΣb

n-LmInd, pRn
2 (X ), pSn

2 (X ), pTn
2 (X ),

pΣb
n(X )-LmInd. Altogether this yields a sharp characterization of the

Dynamic Ordinals.

12.2.1 Theorem Let n + 1 ≥ m ≥ 1, then

DO(pΣb
n+1-L

mInd)= DO(pΣb
n+1(X )-LmInd)

= H({λi.2n(p(|i|m)) : p a polynomial}).

Proof: By Lemma 7.2.5 and Theorem 7.2.6 we know

pΣb
n+1(X )-LmInd BigFun(a, b, t,X)

=⇒ pΣb
n+1-L

mInd BigFun(a, b, t,X(d)).

Therefore we obtain

DO(pΣb
n+1(X )-LmInd) ⊂ DO(pΣb

n+1-L
mInd).

Let F ··= {λi.2n(p(|i|m)) : p a polynomial}. By Theorem 9.3.3 we

know

pΣb
n+1(X )-LmInd BigFun(a, b, 2̂n(TE(p(|x|m))), X).

As ΦE(2̂n(TE(p(|i|m)))) = 2n(p(|i|m)) for all i ∈ ω this yields

(
λi.2n(p(|i|m))

)
∈ DO(pΣb

n+1(X )-LmInd)

hence H(F) ⊂ DO(pΣb
n+1(X )-LmInd).

On the other hand let t be an LBPA-term containing no other vari-

able than x such that pΣb
n+1-L

mInd BigFun(a, b, t,X(d)). We are
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going to convince ourself that λn. ΦE(t(n)) ∈ H(F). Using (12.1) it

suffices to show that

f ··= dptc
(
BigFun(a, b, t,X(d)), x

)
∈ H(F)

with dptc(F, x0, . . . , xk−1) ··= λ~n. ptc(F~x(~n)).

As pΣb
n+1-L

mInd ⊂ pΣb
n+1(X )-LmInd we obtain by Theorem 10.4.4

some term s(x) containing no other variable than x and some constant

c ∈ ω such that

∀i f(i) ≤ 2n+1(c · |s(i)|m+1).

Now there is some polynomial p such that |s(i)|m ≤ p(|i|m) for any

i ∈ ω, hence

∀i 2n+1(c · |s(i)|m+1) ≤ 2n

((
2|p(|i|m)|

)c
)
≤ 2n((2 · p(|i|m) + 1)c),

hence f ∈ H(F). This shows DO(pΣb
n+1-L

mInd) ⊂ H(F). ⊓⊔

12.2.2 Corollary

DO(pSi+1
2 ) = DO(pSi+1

2 (X )) = H({λn.2i(p(|n|)) : p a polynomial}).

12.2.3 Corollary

DO(pRi+2
2 )= DO(pRi+2

2 (X ))

= H({λn.2i+1(p(||n||)) : p a polynomial}).

For pTn
2 we can prove a sharper result:

12.2.4 Theorem

DO(pTn+1
2 )= DO(pTn+1

2 (X ))

= H({λi.2n+1(p(|i|)) : p a polynomial}).

Proof: The same argument as in the proof of Theorem 12.2.1 shows

DO(pTn+1
2 (X )) ⊂ DO(pTn+1

2 ).

Let F ··= {λi.2n+1(p(|i|)) : p a polynomial}. For each polynomial

p(x) containing no variable not indicated there is an LBPA-term t′(x)

containing no variable not indicated such that p(|i|) ≤ |t′(i)| for all

i ∈ ω as remarked in Chapter 2. Hence

2n+1(p(|i|)) ≤ 2n(2|t
′(i)|) ≤ 2n(t(i))
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for t ···≡ S1 t′. By Theorem 9.3.3 we know

pTn+1
2 (X ) BigFun(a, b, 2̂n(TE(t(x))), X).

As ΦE(2̂n(TE(t(i)))) = 2n(t(i)) ≥ 2n+1(p(|i|)) for all i ∈ ω this yields

(
λi.2n+1(p(|i|))

)
∈ DO(pTn+1

2 (X ))

hence H(F) ⊂ DO(pTn+1
2 (X )).

On the other hand let t be an LBPA-term containing no other vari-

able than x such that pTn+1
2 BigFun(a, b, t,X(d)). In order to prove

λn. ΦE(t(n)) ∈ H(F) it suffices to show by (12.1) that

f ··= dptc
(
BigFun(a, b, t,X(d)), x

)
∈ H(F).

As pTn+1
2 ⊂ pTn+1

2 (X ) we obtain by Theorem 10.4.4 some term s(x)

containing no other variable than x and some constant c ∈ ω such that

∀i f(i) ≤ 2n+1(c · |s(i)|).

Now there is some polynomial p such that |s(i)| ≤ p(|i|) for any i ∈ ω,

hence

∀i 2n+1(c · |s(i)|) ≤ 2n+1(c · p(|i|)),

hence f ∈ H(F). This shows DO(pTn+1
2 ) ⊂ H(F). ⊓⊔

We introduce the notion ”for almost all i” by ”∃j ∀i≥j ”.

12.2.5 Theorem Let n ≥ 0 and m ≥ 1, then

DO(pΣb
n+m-LmInd) ( DO(pΣb

n+m+1-L
m+1Ind) ( DO(pTn+1

2 ).

Proof: By Theorems 12.2.1 and 12.2.4 we obtain ”⊂” because for

monotone polynomials p we have p(|i|m) ≤ 2|p(|i|m)| ≤ 2p(|i|m+1) and

2m(p(|i|m)) < 2i for almost all i. (12.2)

In order to prove DO(pΣb
n+m-LmInd) 6= DO(pΣb

n+m+1-L
m+1Ind) we

show that

f ··= (λi.2n+m((|i|m+1)
2)) /∈ DO(pΣb

n+m-LmInd)
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where f ∈ DO(pΣb
n+m+1-L

m+1Ind) is obvious by definition. We prove

this indirectly assuming f ∈ DO(pΣb
n+m-LmInd). By Theorem 12.2.1

there is some polynomial p such that

∀i 2n+m((|i|m+1)
2) ≤ 2n+m−1(p(|i|m)).

There is some k such that p(i) ≤ ik for almost all i, hence for almost

all i

2(|i|m+1)2 ≤ p(|i|m) ≤ (|i|m)k ≤
(
2|i|m+1

)k
= 2k·|i|m+1

as |i|m < 2|i|m+1 , hence

i2 ≤ k · i

for almost all i because λi.|i|m+1 is surjective. A contradiction.

For DO(pΣb
n+m+1-L

m+1Ind) 6= DO(pTn+1
2 ) we show that

f ··= (λi.2n+1(|i|)) /∈ DO(pΣb
n+m+1-L

m+1Ind)

where f ∈ DO(pTn+1
2 ) is obvious by definition. Towards a contradiction

assume that f ∈ DO(pΣb
n+m+1-L

m+1Ind). By Theorem 12.2.1 there is

some polynomial p such that

∀i 2n+1(|i|) ≤ 2n+m(p(|i|m+1)).

As λi.|i| is surjective we obtain

∀i 2i ≤ 2m(p(|i|m),

but this contradicts (12.2). ⊓⊔

The same proof also yields:

12.2.6 Theorem Let n ≥ 0 and m ≥ 1, then

DO(pΣb
n+m(X )-LmInd)( DO(pΣb

n+m+1(X )-Lm+1Ind)

( DO(pTn+1
2 (X )).

12.2.7 Corollary

DO(pSn+1
2 ) ( DO(pRn+2

2 ) ( DO(pSn+2
2 ) = DO(pTn+1

2 ).

12.2.8 Corollary

DO(pSn+1
2 (X )) ( DO(pRn+2

2 (X )) ( DO(pSn+2
2 (X )) = DO(pTn+1

2 (X )).
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For theories T1, T2 let T1 ⊆ T2 iff T1 is included in T2, which means

that for all formulas F if T1 F then T2 F . Let T1 ( T2 iff T2 is a

proper extension of T1, i.e., T1 ⊆ T2 and T1 6⊇ T2. As remarked at the

end of the first section different Dynamic Ordinals yield a separation

of the corresponding theories.

12.2.9 Corollary Let n ≥ 0 and m ≥ 1, then

pΣb
n+m(X )-LmInd

pTn+1
2 (X )

pΣb
n+m+1(X )-Lm+1Ind.

12.2.10 Corollary

pSn+1
2 (X ) pTn+1

2 (X )

pRn+2
2 (X ) pSn+2

2 (X ).

12.2.11 Corollary Let n ≥ 0 and m ≥ 1, then

pΣb
n+m-LmInd

pTn+1
2

pΣb
n+m+1-L

m+1Ind.

12.2.12 Corollary

pSn+1
2

pTn+1
2

pRn+2
2

pSn+2
2 .

12.3 DOA in theories of BA

As LBA does not contain impredicative variables we have to modify the

definition of the Dynamic Ordinals for theories of bounded arithmetic.
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12.3.1 Definition Let T be a theory formulated in LBA(X ). We de-

fine the Dynamic Ordinal of T by

DO(T ) ··= H
(
{λn.ΦE(t(n))|t(x) is an LBA-term with FV (t) ⊂ {x}

and there are LBA-terms s1(x), s2(x) with

FV (s1, s2) ⊂ {x} such that N ² ∀xBig(s1, s2, t)

and T ∀xBigFun(s1, s2, t, X)}
)
.

In Section 2 of this chapter we have seen that the functions

2n(p(|x|n+1)) resp. 2p(|x|) yield a good measurement of the theories
pΣb

n+1(X )-Ln+1Ind resp. pT1
2(X ) and pS2

2(X ) in the sense described at

the beginning of this chapter. All these functions can be majorized by

an LBA-term t with FV (t) ⊂ {x}. By Lemma 9.1.2 there are LBA-

terms s1, s2 with FV (s1, s2) ⊂ {x} such that N ² ∀xBig(s1, s2, TE(t)).

Replacing s1 and s2 for a resp. b in the well-ordering proof Theorem

9.3.3 and using the conservativity results from Theorem 8.4.3 we obtain

DO(pΣb
n+1(X )-Ln+1Ind) ⊂DO(sΣb

n+1(X )-Ln+1Ind)

DO(pT1
2(X )) ⊂DO(T1

2(X ))

DO(pS2
2(X )) ⊂DO(S2

2(X )). (12.3)

For the other inclusions assume T BigFun(s1, s2, t, X) where T is

one of sΣb
n+1(X )-Ln+1Ind, T1

2(X ), S2
2(X ) and s1, s2, t are LBA-terms

with FV (s1, s2, t) ⊂ {x} such that N ² ∀xBig(s1, s2, t). An inspection

of the proof of the Predicative Boundedness Theorem 11.1.1 yields

p m

1,1
BigFun(a, b, α,X) =⇒ ΦE(α) ≤ m

for numerals a, b, α satisfying N ² Big(a, b, α). Thus, in order to ma-

jorize λn. ΦE(tx(n)) it suffices to dominate

dptc(BigFun(s1, s2, t, X), x).

But as the predicative version of T is an extension of T the same esti-

mations from the proofs in Section 2 yield the other inclusions of (12.3).

Thus, we have shown
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12.3.2 Theorem

DO(sΣb
n+1(X )-Ln+1Ind) = DO(pΣb

n+1(X )-Ln+1Ind)

= H({λi.2n(p(|i|n+1)) : p a polynomial})

DO(S1
2(X )) = DO(pS1

2(X )) = H({λi.p(|i|) : p a polynomial})

DO(sR2
2(X )) = DO(pR2

2(X )) = H({λi.2p(||i||) : p a polynomial})

DO(T1
2(X )) = DO(pT1

2(X )) = H({λi.2p(|i|) : p a polynomial})

DO(S2
2(X )) = DO(pS2

2(X )) = H({λi.2p(|i|) : p a polynomial}).

12.3.3 Corollary Let m ≥ 1, then

sΣb
m(X )-LmInd

T1
2(X )

sΣb
m+1(X )-Lm+1Ind.

12.3.4 Corollary

S1
2(X ) T1

2(X )

sR2
2(X ) S2

2(X ).

12.3.5 Remark Observe that the usually considered minimization ax-

ioms

Min(F, y, x) ≡ ∃y≤xF → ∃y≤x [F ∧ ∀z<y (¬Fy(z))]

can also serve as a separation formula because Min((y ∈ X), y, x) is

similar to Fund(x,X). An inspection of the proofs yields

T1
2(X ) Min((y ∈ X), y, x)

but

sΣb
n+1(X )-Ln+1Ind / Min((y ∈ X), y, x),

hence

S1
2(X ) / Min((y ∈ X), y, x)

and

sR2
2(X ) / Min((y ∈ X), y, x).
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Appendix A

Standard interpretations

Before we give an axiomatization of the predicates from P i and func-

tions from F i we will fix the standard interpretation PN ⊂ ωar(P) for

P ∈ P i and Gf
N ⊂ ωar(f)+1 for f ∈ F i which we have in mind. Remem-

ber that by definition PcN = ωar(P) \ PN and Gc
f

N = ωar(f)+1 \ Gf
N. For

graphs S ⊂ ωk+1 which potentially define a partial function we define

the totalization by

Tot0(S) ··= S ∪ {(~x, 0) ∈ ωk+1 : ¬(∃y∈ω )((~x, y) ∈ S)}.

• ≤N =≤, BitN = Bit, SeqN = Seq, EN = E , ≺N =≺ ∩(E × E),

• for f ∈ {S, S0, S1} we set Gf
N = {(x, y) : f(x) = y}.

• G*
N = Tot0({(s, x, u) : s ∈ Seq & s * x = u}).

• G**
N = Tot0({(s, t, u) : s, t ∈ Seq & s ** t = u}).

• for f ∈ {first, last, truncl, truncr, lh} we set

Gf
N = Tot0({(s, u) : s ∈ Seq & f(s) = u}).

• Gβ
N = Tot0({(i, s, u) : s ∈ Seq & β(i, s) = u}).

• G0̂
N = {0̂}, G1̂

N = {1̂},

• for f ∈ {2̂
.
, 2̂· .} we set

Gf
N = Tot0({(α, u) : α ∈ E & f(α) = u}).

• for f ∈ {.+̌2̌., +̂} we set

Gf
N = Tot0({(α, β, u) : α, β ∈ E & f(α, β) = u}).

• GTE

N = {(x, u) : TE(x) = u}.
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Appendix B

pBASIC

We obtain the axiom needed to define pBASIC by applying the trans-

formation elF i described in Chapter 9 to the axioms listed below. E.g.

the axiom Less.5 is transformed in the following way:

(a < S1 a)el
Fi : − Gc

S1
(a, b) ∨ a < b.

Axioms for <

Less.1 a < b < c → a < c

Less.2 a < b ∨ a = b ∨ b < a

Less.3 a /< a

Less.4 a /= 0 → a < S0 a

Less.5 a < S1 a

Successor axioms

Suc.1 S 0 = S1 0

Suc.2 a /= 0 → S(S0 a) = S1 a

Suc.3 S(S1 a) = S0(S a)

Bit.1 Bit(n, 0) = 0

Bit.2 Bit(0, Si a) = i for i ∈ {0, 1}

Bit.3 Bit(S n, Si a) = Bit(n, a) for i ∈ {0, 1}

123
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Sequence axioms

Seq.1 〈〉 = 0

Seq.2 0 ∈ Seq

Seq.3 s ∈ Seq ↔ Si(S1(s)) ∈ Seq for i ∈ {0, 1}

Seq.4 s ∈ Seq ↔ Si(S1(S0(S0(s)))) ∈ Seq for i ∈ {0, 1}

Seq.5 s ∈ Seq ↔ Si(S1(S1(S0(s)))) /∈ Seq for i ∈ {0, 1}

Seq.6 s ∈ Seq → s * 0 = S0(S1(S0(S0(s))))

Seq.7 s ∈ Seq → s *(Si a) = Si(S1(s * a)) for i ∈ {0, 1}

Seq.8 〈a〉 = 〈〉 * a

Seq.9 s ∈ Seq → a < s * a ∧ s < s * a

Seq.10 s ∈ Seq → s ** 〈〉 = s

Seq.11 s, t ∈ Seq → s **(t * a) = (s ** t) * a

Seq.12 first(〈a〉) = a

Seq.13 s ∈ Seq ∧ s 6= 0 → first(s * a) = first(s)

Seq.14 s ∈ Seq → last(s * a) = a

Seq.15 truncl(〈a〉) = 〈〉

Seq.16 s ∈ Seq ∧ s 6= 0 → truncl(s * a) = truncl(s) * a

Seq.17 s ∈ Seq → truncr(s * a) = s

Seq.18 β(i, 〈〉) = 0

Seq.19 s ∈ Seq → β(0, s * a) = S(β(0, s))

Seq.20 s ∈ Seq → β(S 0, s) = first(s)

Seq.21 s ∈ Seq ∧ i > 0 → β(S i, s) = β(i, truncl(s))

Seq.22 s ∈ Seq → lh(s) = β(0, s)
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Axioms for exponential notations

Exp.1 α, β, γ ∈ E ∧ α ≺ β ≺ γ → α ≺ γ

Exp.2 α, β ∈ E → α ≺ β ∨ α = β ∨ β ≺ α

Exp.3 α ∈ E → ¬α ≺ α

Exp.4 0̂ = 〈〉

Exp.5 2̂
a

= 〈a〉

Exp.6 s ∈ Seq → s+̌2̌b = s * b

Exp.7 1̂ = 2̂
0̂

Exp.8 α ∈ E → α ∈ Seq

Exp.9 0̂ ∈ E

Exp.10 α ∈ E → 2̂
α
∈ E

Exp.11 α, β ∈ E ∧ β ≺ last(α) → α+̌2̌β ∈ E

Exp.12 α ∈ E ∧ α /= 0̂ → α = truncr(α)+̌2̌last(α) ∧

truncr(α), last(α) ∈ E ∧

[truncr(α) = 0̂ ∨ last(α) ≺ last(truncr(α))]

Exp.13 α ≺ β ↔ α, β ∈ E ∧

[(α = 0̂ ∧ β /= 0̂) ∨ (first(α) ≺ first(β)) ∨

(first(α) = first(β) ∧ truncl(α) ≺ truncl(β))]

Exp.14 α, β ∈ E → α +̂ β = β +̂ α

Exp.15 α, β, γ ∈ E → (α +̂ β) +̂ γ = α +̂(β +̂ γ)

Exp.16 γ ∈ E → 2̂
γ
+̂ 2̂

γ
= 2̂

γ +̂ 1̂

Exp.17 α+̌2̌γ ∈ E → α+̌2̌γ = α +̂ 2̂
γ

Exp.18 α, β ∈ E ∧ α ≺ β → 2̂
α
≺ 2̂

β

Exp.19 α, β, γ, δ ∈ E ∧ α ≺ β ∧ γ ¹ δ → α +̂ γ ≺ β +̂ δ

Exp.20 α ∈ E → α ≺ 2̂
α
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Exp.21 α, β ∈ E → (α ≺ β ↔ α +̂ 1̂ ¹ β)

Exp.22 2̂· 0̂ = 0̂

Exp.23 (α+̌2̌β) ∈ E → 2̂·(α+̌2̌β) = (2̂·α)+̌2̌(β +̂ 1̂)

Exp.24 TE(0) = 0̂

Exp.25 TE(S0 a) = 2̂·(TE(a))

Exp.26 TE(S1 a) = 2̂·(TE(a)) +̂ 1̂

Exp.27 TE(S a) = TE(a) +̂ 1̂

Exp.28 a < b ↔ TE(a) ≺ TE(b)



Appendix C

Proving indiscernibility

We give a detailed proof of the Main Lemma 11.2.3. For atomic Lp
ω-

formulas F other than Bit(·, d) or Bitc(·, d), satisfying FV (F ) ⊂ {d}

and F ∈ gb(l), we show

∀d ∈ Iscl N ² F or ∀d ∈ Iscl N 2 F. (C.1)

Clearly the assertion (C.1) only has to be proved either for a relation

P or its complement P . Let u, v be some ground terms with u, v ≤ l,

v > 0 and let s, t be some gb(l)-terms with FV (s, t) ⊂ {d}. If, in the

sequel, we speak of ”always” we mean ”for all l-indiscernibles”. Let

d ∈ Iscl and observe

u, v ≤ l < 22l

< d and s, t ≤ d.

• d≤u is always false and s≤ d is always true.

• Bit(d, u) is always false, for |u| ≤ u < d, thus the d-th bit in the

binary expansion of u is always 0.

Now we check the cases for Gf for f ∈ {S, S0, S1}:

• Gf (u, d) is always false, because f(u) ≤ 2·u+1 ≤ 2·l+1 < 22l

< d.

• Gf (d, s) is always false, because f(d) > d ≥ s.

For the next cases we repeat the essential observation, that no l-indis-

cernible is a sequence-number, because the highest bits of an indis-

cernible always have the form 10010 . . . which cannot be the highest bits

of a sequence-number: sequence-numbers are build up from 00, 10, 11,

hence 1001 and 010010 are impossible beginnings.
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• d ∈ Seq is always false, see above.

• G*(d, s, 0), G**(d, s, 0), G**(s, d, 0) are always true, because d/∈Seq.

• G*(s, t, d), G*(d, s, v) are always false, because d/∈Seq and v, d > 0.

• G*(u, d, v) is always false, because if u ∈ Seq then u * d > d > v

and if u /∈ Seq then v > 0.

• G**(s, t, d),G**(s, d, v),G**(d, u, v) are always false, because d/∈Seq

and v, d > 0.

We check the cases for f ∈ {first, last, truncl, truncr, lh}:

• Gf (d, 0) is always true, because d /∈ Seq.

• Gf (d, d), Gf (d, v) is always false, because d /∈ Seq and v, d > 0.

• Gf (u, d) is always false, because if u∈ Seq then f(u) ≤ u < d and

if u /∈ Seq then d > 0.

• Gβ(s, d, 0) is always true, because d /∈ Seq.

• Gβ(s, d, d), Gβ(s, d, v) is always false, because d /∈Seq and v, d > 0.

• Gβ(s, u, d) is always false, because if u∈ Seq then β(s, u) ≤ u < d

and if u /∈ Seq then d > 0.

• Gβ(d, u, v) is always false, because v > 0 and if u ∈ Seq then

d > lh(u).

• d ∈ E is always false, because d /∈ Seq and E ⊂ Seq.

• s¹ d, d¹u are always false, because d /∈ Seq.

For f ∈ {.+̌2̌., +̂} we observe

• Gf (d, s, 0), Gf (s, d, 0) are always true, because d /∈ Seq.

• Gf (s, t, d), Gf (s, d, v), Gf (d, u, v) are always false, because d /∈ Seq

and v, d > 0.

For f ∈ {2̂, 2̂·} we observe

• Gf (d, 0) is always true, because d /∈ Seq.

• Gf (s, d),Gf (d, v) are always false, because d /∈ Seq and v, d > 0.
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• GTE
(s, d) is always false, because d /∈ Seq.

• GTE
(d, u) is always false, because: if u 6∈ E this is clear, and if

u ∈ E , then d > h(l) ≥ max{ΦE(α) : α ∈ E ∩ (l + 1)} ≥ ΦE(u),

hence TE(d) 6= u.
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