
Propositional Logic for Circuit Classes

Klaus Aehlig1? and Arnold Beckmann2

1 Department of Computer Science
University of Toronto

10 King’s College Road, Toronto, ON M5S 3G4, Canada
2 Department of Computer Science

University of Wales Swansea
Singleton Park, Swansea, SA2 8PP, United Kingdom

Abstract. By introducing a parallel extension rule that is aware of inde-
pendence of the introduced extension variables, a calculus for quantified
propositional logic is obtained where heights of derivations correspond
to heights of appropriate circuits. Adding an uninterpreted predicate on
bit-strings (analog to an oracle in relativised complexity classes) this
statement can be made precise in the sense that the height of the most
shallow proof that a circuit can be evaluated is, up to an additive con-
stant, the height of that circuit.
The main tool for showing lower bounds on proof heights is a variant of
an iteration principle studied by Takeuti. This reformulation might be
of independent interest, as it allows for polynomial size formulae in the
relativised language that require proofs of exponential height.

1 Introduction and Related Work

In systems like “extended Frege” there is a rule that allows one to introduce a
new variable by a defining clause p ↔ A. If several variables are to be introduced,
several instances of this rule have to be used. This holds regardless of the presence
or absence of dependencies between these variables.

However, such dependencies are known to make a big difference in the world
of computation. Both, uniform AC0 and polynomial time can be described by
families of polynomial size circuits. Nevertheless, AC0 has much smaller compu-
tational power. The reason is that the nodes in AC0 circuits are constrained to
be arranged in a finite number of layers.

Even though various propositional calculi are known for small complexity
classes, none reflects correctly the height of circuits. We suggest a calculus that
has this property and can serve as a framework for investigating the “circuit
strength” of various propositional calculi and small complexity classes; the lat-
ter come in via propositional translations of appropriate theories of Bounded
Arithmetic [4, 6].

? Supported by DFG grant Ae 102/1-1. Part of the work was carried out while affiliated
with University of Wales Swansea and supported by EPSRC grant EP/D03809X/1.
Corresponding author, email klausa@cs.toronto.edu

We consider relativised circuit classes [15]. That is, our circuits will not only
contain logical gates but also gates that query an oracle. There are several mo-
tivations for doing so. Hardly any separations of unrelativised small complexity
classes are known, but separating relativised circuit classes is straightforward.
So, in order to precisely state that the calculus adequately reflects the differences
between different circuit classes, we need to consider the relativised forms; an
absolute separation of the levels of the ACk hierarchy seems out of reach at the
moment. Moreover, this calculus is intended as a target for propositional trans-
lations of theories of Bounded Arithmetic. Following standard proof theoretical
practise [11], a better classification of theories can be obtained for the variants
relativised to an uninterpreted predicate.

Quantified propositional logic in relation to complexity classes and bounded
arithmetic has been studied by Kraj́ıček and Pudlák [9]. They introduced vari-
ous dag-like (G1, G2,. . . , G) and tree-like systems (G∗

1, G∗
2,. . . , G∗). Cook and

Morioka (in a slightly modified setting) identified [5] G0 and G∗
0 which relate to

NC1. One motivation for the study of restricted propositional proof systems is
the relation to (weak) theories of bounded arithmetic [4, 6]. For various complex-
ity classes, corresponding proof systems [10, 12] have been identified. However,
a unifying framework for the propositional systems still seems to be missing.
We suggest a calculus which is flexible enough to allow for embedding of vari-
ous theories, but is still strict enough that the height of proofs is a meaningful
measure.

Studying the height of proofs is a standard approach in ordinal informative
proof theory [11] and has been adopted to the Bounded Arithmetic setting by
Beckmann [1]. It was also implicitly used by Kraj́ıček [8].

Our research presented here investigates a particular form of the iteration
principle. An important source for this has been Takeuti’s investigations [14]
where he obtained separations of some versions of bounded arithmetic theories [3]
related to circuit complexity classes. A different form of the iteration principle
has been introduced and studied by Buss and Kraj́ıček [2] to obtain separations
between bounded arithmetic theories related to (relativised) polynomial time
and polynomial local search (PLS).

This article is organized as follows. In Section 2 we define our calculus AC0-
Tait. In Section 3 we consider the formula expressing that a circuit of height h
can be evaluated. We note that this formula can be proven by a proof of height
h+O(1). For the other direction we need a few preparations, that are interesting
results in their own right. First we study in Section 4 a formula expressing that
a function can be iterated ` times; we show that a proof of this formula requires
height at least `. As the iteration formula is a polynomial size Σq

1(α)-formula
and can express exponentially long iterations, this establishes an exponential
lower bound for the calculus with cuts on arbitrary quantifier-free formulae. In
Section 5 we study a version of the calculus, extended with cuts, and prove cut-
elimination. The cut-lemma will allow us to transform a proof that a particular
circuit can be evaluated into a proof of the iteration principle without increasing
the height by more than a constant. Putting things together in Section 6 shows

that there are circuits of height h where a proof that they can be evaluated
requires height at least h−O(1).

2 Quantified Propositional Logic and Definition of the
Calculus

In this section we will introduce our calculus. It will be in the style of Tait [13],
that is, roughly, one-sided sequent calculus. Following standard simplifications,
a sequent is a set of formulae, and negation is an operation on formulae, not a
logical symbol.

Definition 1. The atoms of propositional logic are variables p, q, r, . . ., their
negations p̄, q̄, r̄, . . ., as well as the constants T and F for truth and falsity.

The set of all propositional atoms is denoted by A and we use ℘ to range
over elements of A.

The set of quantified propositional formulae A,B, C, . . . is built up from
the atoms of propositional logic and parameter αk℘1 . . . ℘k and negated pa-
rameter ᾱk℘1 . . . ℘k where ℘1, . . . , ℘k are propositional atoms, by conjunctions∧

k A1 . . . Ak and disjunctions
∨

k A1 . . . Ak, and universal ∀kp1 . . . pkA and exis-
tential ∃kp1 . . . pkA quantification.

Here k ≥ 1 is a natural number on the meta level. The variables p1, . . . , pk

and their negations p̄1, . . . , p̄k are bound in ∀kp1 . . . pkA and ∃kp1 . . . pkA.

Syntactical equality is denoted by≡. A quantified propositional formula with-
out any quantifications is called a propositional formula. We use the expression
purely propositional formula for a propositional formula, if we want to emphasise
that it is not quantified.

We write ∧ and ∨ for
∧

2 and
∨

2, respectively. We use A ∧B and A ∨B as
abbreviations for ∧AB and ∨AB, respectively, if there is no danger of confusion.
Also, parentheses may be used to facilitate reading or to disambiguate these
abbreviations.

By induction on A a formula ¬A is defined according to the de Morgan
rules in the obvious way, e.g., ¬p ≡ p̄, ¬p̄ ≡ p, ¬(αk℘1 . . . ℘k) ≡ ᾱk℘1 . . . ℘k,
¬(

∧
k A1 . . . Ak) ≡

∨
k(¬A1) . . . (¬Ak), and so on. A simple induction on A shows

that ¬¬A ≡ A.
If A is a quantified propositional formula, ~p are pairwise disjoint propositional

variables, and ~B are quantified propositional formulae, then by A[~B/~p] we denote
the simultaneous capture-free substitution of all pi by Bi and of all p̄i by ¬Bi.

We use the notation A(~p) to distinguish certain variables of A, in order to
be able to use A(~B) as a shorthand for the substitution A[~B/~p]. This notation
does not imply that these variables actually do occur free and the list ~p does not
necessarily exhaust all the free variables of A.

We use Γ,∆, . . . to denote finite sets of formulae.

Definition 2. The propositional rules are the following rules.

Γ, p, p̄ Γ,T Γ, αk(℘1, . . . , ℘k), ᾱk(℘1, . . . , ℘k)

Γ,Ai

Γ,
∨

k A1 . . . Ak

. . .Γ,Ai . . . (1 ≤ i ≤ k)
Γ,

∧
k A1 . . . Ak

Definition 3. The rules of parameter extensionality are the following rules.

Γ, αk(℘1, . . . , ℘k) . . . Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ k)
Γ, αk(℘′1, . . . , ℘

′
k)

Γ, ᾱk(℘1, . . . , ℘k) . . . Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ k)
Γ, ᾱk(℘′1, . . . , ℘

′
k)

Definition 4. The rules of quantification are the following rules.

Γ,A(~a)
Γ,∀k~pA(~p)

Γ,A(~℘)
Γ,∃k~pA(~p)

Here ~a have to be pairwise distinct eigenvariables. The ~℘ may be arbitrary
propositional atoms.

Definition 5. The cut rule is the following rule.

Γ,A Γ,¬A

Γ

The formula A in the cut rule is called the “cut formula”.

One of the problems that can be solved in AC0 is the following:

Given truth values p1, . . . , pn and q1, . . . , qn, output qi if i is the smallest
index such that pi is true.

A similar task in standard calculi of propositional logic would require a sequence
of cuts, thus artificially increasing the height. As our investigations are essentially
based on differences like constant versus logarithmic height, we cannot afford this
increase. We therefore introduce a new rule allowing multiple cuts at once.

The presence of this rule will be essential in Corollary 44 where it is used to
obtain a proof of constant height.

Definition 6. The multi-cut rule is the rule

. . . Γ,∆i . . .
Γ

where the ∆i are sets of purely propositional formulae such that from the col-
lection of the ∆i the empty sequent can be derived by cuts only. The weight of
the multi-cut rule is

∑
i |∆i|, where |∆i| is the cardinality of the set ∆i.

In other words, if from an arbitrary number of sequents, a sequent Γ can be
derived by cuts on only purely propositional formulae, then this derivation of Γ
counts as a single application of the multi-cut rule. For the calculus obtained
to be a proof system in the sense of Cook and Reckhow [7] we require that the
sequence of cuts be annotated in notations for proofs. However, as we are only
interested in the number of rules applied we will never deal with notations for
proofs.

Remark 7. Using the multi-cut rule it is possible to prove purely propositional
induction in constant depth. In fact, from proofs of Γ,¬Ai, Ai+1 for all i, we can
conclude by a single inference Γ,¬A0, Ak.

Next we will define the comprehension rule. It is motivated by the extension
rule of extended Frege calculus. There, a new propositional variable may be
introduced by the axiom p ↔ ϕ, if p is new, that is, does not occur anywhere
earlier in the derivation. The extension rule says that if Γ can be derived from
the assumption ∃p(p ↔ ϕ), then it can also be derived without. Note that
¬(∃p(p ↔ ϕ)) ≡ ∀p¬(p ↔ ϕ). As usual, the universal quantifier is expressed
by the eigenvariable condition. As discussed in the introduction, we allow the
introduction of several extension variables at the same time.

Definition 8. The F-comprehension rule of width k is the rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
Γ

where ϕ1, . . . , ϕk ∈ F and p1, . . . , pk are pairwise distinct eigenvariables, that is,
variables that do not occur (free) in Γ or any of the ϕi’s.

The variables pi are also called “extension variables” and the ϕi “extension
formulae”.

The name “F-Comprehension Rule” is justified by the fact, that it allows
simple proofs of (propositional translations of) the comprehension axiom for
formulae in F . Consider the following derivation (where we omit some side for-
mulae; note that weakening is admissible).

. . . (pi ↔ ϕi),¬(pi ↔ ϕi) . . . ∧
k∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
∃k

∃k~p
∧

k(pi ↔ ϕi),¬(p1 ↔ ϕ1), . . . ,¬(pk ↔ ϕk)
F-comprehension

∃k~p
∧

k(pi ↔ ϕi)

It should be noted that the height of this derivation only depends on the ϕi and
is independent of k. Proposition 13 will provide the needed proofs of the first
sequents and will actually show that the heights depend only on the depths of
ϕi’s.

Note that in all the rules we may always assume without loss of generality
that the conclusion is already contained in the premise (i.e., is an element of the

context Γ already). For example, a typical instance of the or-rule would in fact
be

Γ,A0 ∨A1, Ai

Γ,A0 ∨A1

Definition 9. The AC0-Tait calculus is given by the rules considered so far,
that is, it is given by the propositional rules, the parameter extensionality rule,
the rules of quantification, the cut rule with cut-formulae restricted to purely
propositional formulae, the multi-cut rule, and the comprehension rule for purely
propositional formulae.

We assume all our proofs to be tree-like. This is not a restriction, as we only
look at the height (not the size) of proofs.

Immediately by inspection of the rules, we note that weakening is admissible.
This will be used tacitly in the sequel.

Definition 10. An AC0-Tait proof is called w, c-slim, if all formulae occurring
in the proof have size at most w, each multi-cut rule has weight at most c, and
each comprehension rule has at most c extension variables.

We write `h
w,c Γ to denote that Γ has an AC0-Tait proof of height h that is

w, c-slim.

The calculus AC0-Tait is our analogue to what in usual proof theoretic in-
vestigations corresponds to cut-free proofs. So we also consider a variant with
proper cuts. In Section 5 we will show how they can be eliminated.

Definition 11. If C is a set of formulae that contains all the purely propositional
formulae and is closed under substitution of propositional atoms for propositional
atoms we define the calculus “AC0-Tait with C-cuts” to be AC0-Tait, but with
the cut rule liberalised to formulae in C.

We write d `h
C;w,c Γ to denote that d is an AC0-Tait with C-cuts proof of Γ

of height h that is w, c-slim.

Definition 12. The size sz(A) and depth dp(A) of a formula A are defined to
be the number of occurrences of atoms and connectives in A, and the length
of a longest path in the syntax tree of A, respectively. In particular, dp(T) =
dp(p) = dp(αk ~℘) = 1, dp(

∨
k

~A) = 1 + max{dp(Ai) | 1 ≤ i ≤ k}, sz(T) = sz(p) =
sz(αk ~℘) = 1, sz(

∨
k

~A) = 1 +
∑

1≤i≤k sz(Ai).

By a simple induction on A one shows

Proposition 13. `O(dp(A))
sz(A),0 A,¬A

A reader familiar with theories [4] like V 0 will note that proofs in V 0 translate
into families of AC0-Tait proofs of constant height. In fact, ∆B

0 -comprehension
in V 0 can be translated using the comprehension rule in AC0-Tait as discussed
after Definition 8. The induction implicit in the | · |-function can be handled by
the multi-cut rule, compare Remark 7. “Wide” conjunction and disjunction and
quantifying blocks of propositional variables with their corresponding rules are in
one-to-one correspondence with first and second order quantifiers in two-sorted
Bounded Arithmetic.

3 On Evaluating Circuits

We consider the problem of proving that a circuit, possibly with oracle gates,
can be evaluated.

Definition 14. Let C be a circuit with nodes n1, . . . , nk. Then we define the
evaluation formula associated with C as the formula ΨC(~p) where p1, . . . , pk are
propositional variables associated with nodes n1, . . . , nk, respectively. ΨC is the
conjunction of the conditions for each node. If the node i is an ∧-gate, then the
associated condition is

pi ↔
∧
`

pi1 . . . pi`

where ni1 , . . . , ni`
are the inputs for node i; the condition for an ∨-gate is similar.

In the special cases of an ∧ or ∨-gate without inputs, we use the constants T
and F, respectively.

For an oracle gate, the condition is

pi ↔ α`(pi1 , . . . , pi`
)

where, again, ni1 , . . . , ni`
are, in that order, the inputs to node i. Similarly for

a negated oracle gate.

It should be noted that ΨC is a formula of constant depth, irrespectively of
the shape of the circuit. However, as we shall see, the height of the proof needed
to prove that this circuit can be evaluated depends on the actual structure of
the circuit.

Lemma 15. If C is a circuit of height h, then there is a proof of height h+O(1)
for ∃k~p ΨC(~p).

Proof. For 0 ≤ ` < h let p
(`)
i1

, . . . , p
(`)
ik`

be the variables associated with the nodes

of level `. So a variable p
(`)
i depends only on variables p

(`′)
j for some `′ < `. We

write C
(`)
i for the condition associated with p

(`)
i . Then the derivation

. . . p
(`)
i ↔ C

(`)
i ,¬(p(`)

ij
↔ C

(`)
ij

) . . .
(1 ≤ ` < h)
(0 ≤ j < k`) ∧

ΨC ,¬(~p (h) ↔ ~C (h)), . . . ,¬(~p (2) ↔ ~C(2)),¬(~p (1) ↔ ~C(1))
(∃k)

∃k~p ΨC ,¬(~p (h) ↔ ~C(h)), . . . ,¬(~p (2) ↔ ~C(2)),¬(~p (1) ↔ ~C (1))
(comp)

∃k~p ΨC ,¬(~p (h) ↔ ~C(h)), . . . ,¬(~p (2) ↔ ~C(2))
(comp)

. . .
(comp)

∃k~p ΨC ,¬(~p (h) ↔ ~C(h))
(comp)

∃k~p ΨC

is as desired.

4 Sequential Iteration in Quantified Propositional Logic

For n a natural number we write [n] for the set {0, 1, . . . , n− 1}. That is, in set
theoretic terms, [n] = n. If A and B are sets we denote by f : A ⇀ B that f is a
partial function from A to B. In other words, f is a function, its domain dom(f)
is a subset of A and its range rng(f) is a subset of B.

By abuse of notation we identify a list 〈℘0, . . . , ℘n−1〉 ∈ {T,F}n of n boolean
values with an element of [2n] in the following way, assuming the n is understood
from the context. 〈℘0, . . . , ℘n−1〉 =

∑n−1
i=0 χ℘i

· 2i, where we set χT = 1 and
χF = 0.

For the rest of this section we assume that n is big enough, so that n+log(n)
and 2n are different. Note that this is the case if n ≥ 1. The intended meaning
of αn+log n and α2n is that they fix the values of a function f : [2n] → [2n] in
the following way: αn+log n(i, x) is true iff the i-th bit of f(x) is 1, and α2n(i, x)
is true iff f i(0) = x, where f i(0) is the result of computing the ith iterative of
f on 0. Storing f by its bitgraph αn+log n automatically guarantees that a total
function of [n] is described, a property which would otherwise require adding
more complex quantification to our principle.

Definition 16. We write “f(p1, . . . , pn) = q1, . . . , qn ” for
∧

i<n(qi ↔ αñ(i, ~p))
where ñ = n + log(n). We write “~p = ~q ” for

∧
i<n(pi ↔ qi)

Definition 17. We write “fp1,...,pn(0) = q1, . . . , qn ” for α2n(~p, ~q).

It should be noted that “f(0) = ~q ” and “f1(0) = ~q ” are not only different
formulae, but are not even logically equivalent.

Definition 18. We write “p0, . . . , pn−1 = q0, . . . , qn−1 +1” for the obvious AC0-
formulation of the successor relation, that is, for∨

i

(
∧
j<i

pj ∧ ¬pi ∧
∧
j<i

¬qj ∧ qi ∧
∧
j>i

(pj ↔ qj)) .

Fix ` ≤ n. Our iteration principle will express that α2n stores the graph of
i 7→ f i(0) for i = 0, . . . , `. Using the common idea that ∃x.f i(0) = x expresses
that f i(0) can be computed, we can argue as follows. If f0(0) can be computed
but f `(0) cannot, then there must be some i such that f i(0) can be computed
but f i+1(0) cannot. The crux is now that this can be expressed using existential
quantifiers only, which makes use of the trick that we are storing f by it’s bit-
graph. If f0(0) = 0 and no m exists with f `(0) = m, then there are m,m′, i, i′

with i′ = i + 1 and f i(0) = m and f(m) = m′ and not f i′(0) = m′. Prenexing
this description and identifying the two independent occurrences of m gives us
the following iteration formula and principle.

Definition 19. The n, `-iteration formula Φn,` is the following purely proposi-
tional formula

Φn,`(~p, ~p ′, ~q, ~q ′) ≡
“f `(0) = ~p ” ∨ ¬“f0(0) = 0 ”

∨ (“~q ′ = ~q + 1” ∧ “f~q(0) = ~p ” ∧ “f(~p) = ~p ′ ” ∧ ¬“f~q ′
(0) = ~p ′ ”)

The n, `-iteration principle is the formula

∃4n~p~p ′~q~q ′. Φn,`(~p, ~p ′, ~q, ~q ′) .

Definition 20. A partial propositional assignment is a finite partial mapping
from the propositional variables to {T,F}.

A partial parameter assignment is any partial mapping (not necessarily finite)
from atomic parameters αk(~℘), with ℘i ∈ {T,F}, to {T,F}.

In the context of propositional logic, we use “valuation” as another word
for partial (propositional or parameter) assignment. We use η to range over
valuations. In accordance with set theoretic notions we write the empty valuation
as ∅.

Definition 21. A quantified propositional formula is α-free, if it does not con-
tain any propositional parameter αn, for any n. It is called closed, if it does not
contain any free propositional variables.

Note that any closed, α-free quantified propositional formula has a standard
truth value T of F in the obvious way.

Definition 22. If A is a quantified propositional formula and η a partial propo-
sitional assignment, we define Aη by induction on A. For p a propositional vari-
able with p ∈ dom(η) we set pη ≡ η(p) and p̄η ≡ ¬η(p). For p 6∈ dom(η) we
set pη ≡ p and p̄η ≡ p̄. The remaining cases are defined homomorphically, e.g.,
(
∧

k
~A)η ≡

∧
k

~Aη. In particular αk(℘1, . . . , ℘k)η ≡ αk(℘1η, . . . , ℘kη).
If A is a closed purely propositional formula and η a partial parameter assign-

ment, we define Aη by induction on A. For αk(~℘) with αk(~℘) ∈ dom(η) we set
(αk ~℘)η ≡ η(αk(~℘)) and (ᾱk ~℘)η ≡ ¬η(αk(~℘)). Otherwise we set (αk ~℘)η ≡ αk(~℘)
and (ᾱk ~℘)η ≡ ᾱk(~℘). The remaining cases are defined homomorphically.

If Γ = {A1, . . . , Ak} is a set of formulae we write Γη for {A1η, . . . , Akη}.

Lemma 23. If η ⊂ η′ are partial propositional assignments and A is a quantified
propositional formula such that Aη is closed, then Aη ≡ Aη′.

If η ⊂ η′ are partial parameter assignments and A is a closed purely propo-
sitional formula such that Aη is α-free, then Aη ≡ Aη′.

Definitions 24 and 26 encode the crucial idea of our proof of the boundedness
theorem (Theorem 32). Eventually we will be working upwards through a single
path of a given proof, and partially define a function f : [2n] ⇀ [2n] in order to
falsify all quantifier free formulae on this path. We want to do this in such a
way, that, at level h, only 0, f(0), . . . , fh−1(0) are defined. But, to assign a truth
value to a quantifier free formula, we not only have to set the parameter bits
that encode the relation “f(x) = y ”, but also those that encode the iterations
of f of the form “fk(0) = y ”.

The idea is to assign them values consistent with what we have so far and
also consistent with our strategy on how we plan to extend f . As we want to
keep fh(0) undefined, all the values in dom(f) are “forbidden” anyway for the
next extension of f . Note that, if f i(0) is defined and f i(0) = f j(0) for some
i < j, then all the values fk(0) are already defined.

Definition 24. A partial function f : [2n] ⇀ [2n] is called `-sequential if for
some k ≤ ` it is the case that 0, f(0), f2(0), . . . , fk(0) are all defined, but fk(0) 6∈
dom(f).

Example 25. The empty function is `-sequential for any ` ∈ N. If f is a partial
function with f(0) = 0 then f is not `-sequential for any `.

Definition 26. If n ∈ N is a natural number and f : [2n] ⇀ [2n] a partial
function, we associate to f , or actually to the pair n, f , a partial parameter
assignment ηf as follows.

For j ∈ [n], x ∈ [2n] with f(x) defined, say f(x) = 〈~r 〉 ∈ [2n], we set
ηf (αn+log(n)(j, x)) = rj . Otherwise ηf (αn+log(n)(j, x)) is undefined.

For x, ` ∈ [2n] we set α2n(`, x) = T if f `(0) is defined and equal to x;
otherwise we set α2n(`, x) = F if x ∈ dom(f); otherwise α2n(`, x) is undefined.

For k 6∈ {2n, n + log(n)} we set ηf (αk(~℘)) arbitrarily, say F. Also, if ~p ∈
{T,F}log n \ [n], we set αn+log n(~p, ~q) arbitrarily, say F.

“Good extensions” of partial functions are those that comply with the above
idea, that is, those that do not assign new values that are already in the domain.

Definition 27. If f, f ′ : [2n] ⇀ [2n] are partial functions, and f ⊂ f ′ then f ′ is
called a good extension of f , if ∀x ∈ dom(f ′)(x ∈ dom(f) ∨ f ′(x) 6∈ dom(f)).

Remark 28. If f ⊂ f ′ and f ′ ⊂ f ′′ are good extensions, then so is f ⊂ f ′′.

Proposition 29. If f ⊂ f ′ is a good extension, then ηf ⊂ ηf ′ .

Lemma 30. Let n ∈ N and f : [2n] ⇀ [2n] be an `-sequential partial function.
Moreover, let M ⊂ [2n] such that |dom(f) ∪M | < 2n. Then there is an (` + 1)-
sequential good extension f ′ of f with dom(f ′) = dom(f) ∪M .

Proof. Let a ∈ [2n] \ (M ∪ dom(f)). Such an a exists by our assumption on the
cardinality of M ∪ dom(f). Let f ′ be f extended by setting f ′(x) = a for all
x ∈ M \ dom(f). This f ′ is as desired.

Indeed, assume that 0, f ′(0), . . . , f ′`+1(0), f ′`+2(0) are all defined. Then, since
a 6∈ dom(f ′), all the 0, f ′(0), . . . , f ′`+1(0) have to be different from a. Hence these
values have already been defined in f . But this contradicts the assumption that
f was `-sequential. ut

Lemma 31. For every closed, purely propositional, formula A of size ` there is
a set M ⊂ [2n] such that |M | ≤ ` and for every function f with M ⊂ dom(f) it
holds that Aηf is α-free.

Proof. Let M be the set of all x ∈ [2n] such that an atom of the form αn+log(n)(j, x)
or α2n(k, x) occurs in A.

Note that x ∈ dom(f) forces ηf (α2n(k, x)) to have a definite value (F unless
fk(0) = x, in which case it would be T). ut

Theorem 32. Let k, n, w, c be natural numbers with c · w ≥ 2. Assume `h
w,c Γ

with Γ = ∆,∃4n~rΦn,`(~r), where Φn,` is the n, `-iteration formula. Let η be a
partial propositional assignment and f : [2n] ⇀ [2n] be k-sequential. Assume
|dom(f)| + cwh < 2n. If ∆ηηf is purely propositional, closed, α-free, and false
then ` ≤ k + h.

The special case ∆ = ∅, η = ∅, f = ∅ and k = 0 yields

Corollary 33. If `h
w,c ∃4n~rΦn,`(~r) and cwh < 2n for some c, w with cw ≥ 2

then h ≥ `.

Proof (of the theorem). We argue by induction on h with case distinction ac-
cording to the last rule of the proof.

The last rule cannot be a propositional axiom, as axioms cannot have
∃4n~rΦn,`(~r) as a main formula; however, all the formulae in ∆ηηf are false so
∆ cannot be a tautology, as it would have to be, as the calculus is sound. In
the case of an

∨
k-inference apply the induction hypothesis, in the case of an∧

k-inference, the induction hypothesis is applicable to at least one of the sub-
derivations. The last rule cannot be an ∀j-rule as this would require a quantified
formula in ∆.

If the last rule is a multi-cut rule

. . .Γ,∆i . . .
Γ

we know, since the proof is w, c-slim, that
⋃

i ∆i contains at most c formulae of
size at most w. Let η′ ⊃ η such that all ∆iη

′ are closed. Let M be the union of
the sets asserted by Lemma 31 for the formulae in

⋃
i ∆iη

′. Then |M | ≤ c ·w. We
extend f in a good way to some (k + 1)-sequential f ′ with dom(f ′) = dom(f) ∪
M . Noting that all the ∆iη

′ηf ′ are sets of α-free, closed, purely propositional
formulae we can assign them truth values. Since, by cuts we can derive the
empty sequent from the sets ∆i, and hence also from the sets ∆iη

′ηf ′ , one of
them has to contain only false formulae. Apply the induction hypothesis to this
subderivation.

The case of a cut rule is similar, but easier.
Assume that the last rule was a parameter extensionality rule as follows.

Γ, αk(℘1, . . . , ℘j) . . . Γ, ℘i ↔ ℘′i . . . (1 ≤ i ≤ j)
Γ, (αk(℘′1, . . . , ℘

′
k))

Extend η to some η′ assigning values to all the ~℘. If for some 1 ≤ i ≤ j we
have ℘η′ 6= ℘′η′ we can apply the induction hypothesis to the corresponding
subderivation. Otherwise (αk(~℘))η′ηf ≡ (αk(~℘ ′))η′ηf and we can apply the
induction hypothesis to the first subderivation.

Assume that the last inference rule was an ∃j-rule.

Γ,Φn,`(~℘, ~℘ ′, ~℘ ′′, ~℘ ′′′)
∃4n

Γ

We can extend η to η′ such that there are natural numbers m,m′, i, i′ such that
~℘η′ = m, ~℘ ′η′ = m′, ~℘ ′′η′ = i and ~℘ ′′′η′ = i′. If ` ≤ k there is nothing to show.
Otherwise, we will argue as follows that Φn,`(m,m′, i, i′)ηf ′ can be falsified by
choosing an appropriate (k+1)-sequential good extension f ′ of f . Since ` > k,
for every good (k+1)-sequential extension f ′ of f we have f ′(`+1)(0) undefined.
Hence for any such f ′ with m ∈ dom(f ′) we know that f ′(`) is either undefined
or different from m (for otherwise f ′(`+1)(0) would be defined). In either case
ηf ′(α2n(`,m)) = F. Recall that adding a value m to the domain of f ′ ensures that
ηf ′(α2n(`,m)) has a definite value. The second disjunct ¬“f0(0) = 0 ” is falsified
by ηf ′ for any f ′. For the last disjunct “i′ = i + 1” ∧ “f i(0) = m ” ∧ “f(m) =
m′ ” ∧ ¬“f i′(0) = m′ ”, we may assume that i′ = i + 1, for otherwise it is
falsified anyway. For any f ′ with m,m′ ∈ dom(f ′) we know that ηf ′ assigns
definite truth values to “f i(0) = m ”, “f(m) = m′ ”, and “f i′(0) = m′ ”. If
the first two conjuncts are assigned T, than this can only be if f ′i(0) = m and
f ′(m) = m′. But in this case f ′i+1(0) = m′, so ¬“f i+1(0) = m′ ” is assigned
F. Altogether we can take any (k+1)-sequential good extension f ′ of f with
dom(f ′) = dom(f) ∪ {m,m′}. Then Φn,`(~℘, . . .)η′ηf ′ is α-free, closed, purely
propositional and false and we can apply the induction hypothesis (recalling
that we assumed wc ≥ 2).

The last remaining case is that the last rule was a comprehension rule

Γ,¬(p1 ↔ ϕ1), . . . ,¬(pj ↔ ϕj)
Γ

where the ϕi are purely propositional, the ~p are eigenvariables, and, since the
proof is w, c-slim, j ≤ c. Let η′′ ⊃ η be such that all ϕiη

′′ are closed. Let
Mi be the set asserted by Lemma 31 for ϕiη

′′. Extend in a good way f to a
(k+1)-sequential f ′ with dom(f ′) = dom(f) ∪

⋃
i Mi. Due to the eigenvariable

condition we can assume without loss of generality that ~p 6∈ dom(η′′). Extend η′′

to η′ by setting pi to the truth value of ϕiη
′′ηf ′ . We then can apply the induction

hypothesis.
This finishes the proof. ut

As a proof complexity consequence of the above theorem we can make the
following observation.

Corollary 34. There is a family of polynomial size Σq
1(α)-formulae, i.e., for-

mulae of the shape of existentially quantified purely propositional formulae, such
that every AC0-Tait proof with polynomially branching rules and polynomial size
formulae requires exponential height.

Any proof of this family requires exponential size.

Proof. As Corollary 33 shows, the family (∃4n~rΦn,2n−1(~r))n∈N is as desired. It
should be noted that these formuale indeed only grow polynomially, as, of course,
the number 2n − 1 can be represented by n bits. ut

5 Cut-Elimination

We now show how cuts on more complicated formulae can be reduced to
quantifier-free cuts. We will obtain the typical increase in height occurring in
proof-theoretic cut-elimination.

Definition 35. A substitution σ is called an atomic substitution, if for every
propositional variable p we have σ(p) ∈ A. In other words, a substitution is
atomic, if the range only contains propositional atoms.

Lemma 36. If `h
C;w,c Γ then `h

C;w,c Γσ for every atomic substitution σ.

Lemma 37. If `h
C;w,c Γ,∀k~pA(~p), then `h

C;w,c Γ,A(~℘) for arbitrary propositional
atoms ~℘.

Proof. Induction on the derivation. We can identically reproduce any rule that
does not have ∀k~pA(~p) as main formula.

In case ∆,∀k~pA(~p) was concluded from ∆,∀k~pA(~p), A(~a) with pairwise dis-
tinct eigenvariables ~a, we may, by Lemma 36, assume without loss of general-
ity that the ~a are disjoint from ~℘. First apply the induction hypothesis to the
premise, obtaining ∆, A(~℘), A(~a) and then apply Lemma 36 to obtain ∆, A(~℘).
Note that the eigenvariable property ensures that ∆ is not affected by this sub-
stitution. ut

Lemma 38. Assume A ∈ C. If `h
C;w,c Γ,∀k~pA(~p) and `h′

C;w,c Γ,∃k~p¬A(~p) then
`h+h′

C;w,c Γ .

Proof. Let ~q be new and pairwise distinct variables. By Lemma 37 we get
`h
C;w,c Γ,A(~q). Now argue by Induction on the second derivation, or, equiva-

lently, by induction on h′. Every rule of the second derivation can be reproduced
identically, except for an ∃k-introduction with conclusion ∃k~p¬A(~p).

So assume that `h′′+1
C;w,c Γ,∃k~p¬A(~p) was concluded from `h′′

C;w,c

Γ,∃k~p¬A(~p),¬A(~℘) with the ~℘ necessarily propositional atoms, by the restric-
tion of the quantification rules (Definition 4). First apply the induction hy-
pothesis to `h′′

C;w,c Γ,∃k~p¬A(~p),¬A(~℘) and obtain `h′′+h
C;w,c Γ,¬A(~℘). Also, apply

Lemma 36 to `h
C;w,c Γ,A(~q) and obtain `h

C;w,c Γ,A(~℘) using that the ~q are fresh,
i.e., in particular not free in Γ . Then conclude `h′′+h+1

C;w,c Γ by a cut on A(~℘)
which is allowed as A ∈ C and C is closed under atomic substitutions. ut

Corollary 39. If `h
∃C;w,c Γ then `2h

C;w,c Γ where ∃C = C∪{∃k~pA(~p) | A(~p) ∈ C}.

6 Circuit Evaluation and Iteration

We now have all the preparations needed to show the following lower bound.
Consider a proof that a circuit can be evaluated. If the circuit has height h, then
the proof has to have height at least h−O(1).

Obviously, a circuit of height h can compute the h’th iterate of the function
given by α. From the fact that this circuit can be evaluated, we can conclude
that the h-iteration principle holds.

In the following let Ch be the circuit canonically iterating the function given
by the oracle. We also assume the size parameter n to be understood; we set
ñ = n + log n. Immediately from the definition we get

Proposition 40. ΨCh
(~w) is the conjunction of the clauses w

(0)
j ↔ F and the

conjuncts “f(~w(`)) = ~w(`+1) ”. The latter is built of the formulae w
(`+1)
j ↔

αñ(j, ~w(`)) of 0 ≤ ` < h− 1 and 0 ≤ j < n.

Proposition 41. sz(ΨCh
) ∈ O(n · h) and dp(ΨCh

) ∈ O(1).

For 1 ≤ ` < n we set ∆` ≡ ¬“f `−1(0) = ~w(`−1) ”, “f `(0) = ~w(`) ”. Recall
that “f~p(0) = ~q ” is a shorthand for α2n(~p, ~q). So, by resolution the ∆` imply
¬“f0(0) = ~w(0) ”, “fh(0) = ~w(h) ”.

Proposition 42. If i ∈ [n−1] and ~p = i and ~q = i + 1 then `O(1)
O(log n),1 “~q =

~p + 1”.

Lemma 43. `O(1)
O(nh),1 ∆`,∃4n~uΦn,h(~u),∀h·n ~w¬ΨCh

(~w) with Φn,h(~u) the n, h-
iteration Formula, as defined in Definition 19.

Proof. First note, that there are constant height proofs of the following sequents.

– “f(~w(`−1)) = ~w(`) ”,¬ΨCh
(~w)

– “f `−1(0) = ~w(`−1) ”,¬“f `−1(0) = ~w(`−1) ”
– “f `(0) = ~w(`) ”,¬“f `(0) = ~w(`) ”
– “(` + 1) = ` + 1”

Therefore applications of an
∧

4-rule followed by an ∨-rule and an ∃4n-rule gives
us ∃4n~uΦn,h(~u),¬ΨCh

(~w),∆` from where we get the desired derivation by an
∀nh-rule.

Corollary 44. `O(1)
O(nh),O(h) ∃4n~uΦn,h(~u),∀h·n ~w¬ΨCh

Proof. Apply a mutli-cut rule to the derivations of Lemma 43 to obtain ¬“f0(0) =
~w(0) ”, “fh(0) = ~w(h) ”,∃4n~uΦn,h(~u),∀h·n ~w¬ΨCh

(~w). Two ∨-rules and an ∃4n-
rule finish the proof.

Theorem 45. There are natural numbers c, C such that forall sufficiently large
n, h whenever c2 · h2n < 2n and `h′

c·nh,ch ∃nh ~wΨCh
(~w) then h′ ≥ h− C.

Proof. Assume `h′

w̃,c̃ ∃nh ~wΨCh
. By Corollary 44 we have (for sufficiently large

n) a derivation `c2
c1nh,c1h ∃4n~uΦn,h(~u),∀hn ~w¬ΨCh

. Therefore, by Lemma 38, we

get `h′+c2
max{w,c1nh},max{c̃,c1h} ∃4n~uΦn,h(~u). So, by Corollary 33, we get h′+c2 ≥ h,

provided max{w̃, c1nh} ·max{c̃, c1h} < 2n.

An immediate consequence of Theorem 45 is that a proof of ΨCh
requires

height h−O(1), for h growing sub-exponentially with n.

References

1. Arnold Beckmann. Dynamic ordinal analysis. Archive for Mathematical Logic,
42:303–334, 2003.

2. Samuel R. Buss and Jan Kraj́ıček. An application of boolean complexity to sepa-
ration problems in bounded arithmetic. Proceedings of the London Mathematical
Society, 69(3):1–27, 1994.

3. Peter Clote and Gaisi Takeuti. First order bounded arithmetic and small Boolean
circuit complexity classes. In P. Clote and J. Remmel, editors, Feasible Mathemat-
ics II, volume 13 of Progr. Comput. Sci. Appl. Logic, pages 154–218. Birkhäuser,
Boston, MA, 1995.

4. Stephen A. Cook. Theories for complexity classes and their propositional transla-
tions. In Jan Kraj́ıček, editor, Complexity of computations and proofs, Quaderni
die Matematica, pages 175–227. Dipartimento di Matematica, Seconda Universitá
degli Studi di Napoli, 2003.

5. Stephen A. Cook and Tsuyoshi Morioka. Quantified propositional calculus and a
second-order theory for NC1. Arch. Math. Logic, 44(6):711–749, 2005.

6. Stephen A. Cook and Phuong Nguyen. Foundations of proof complexity: Bounded
arithmetic and propositional translations. draft of a book, available at http:

//www.cs.toronto.edu/∼sacook/csc2429h/book/.
7. Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional

proof systems. The Journal of Symbolic Logic, 44(1), March 1979.
8. Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs.

The Journal of Symbolic Logic, 59(1):73–86, 1994.
9. Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi and fragments

of bounded arithmetic. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 36:29–46, 1990.

10. Steven Perron. A propositional proof system for log space. In C.-H. Luke Ong,
editor, Proceedings of the 19th international Workshop on Computer Science Logic
(CSL ’05), volume 3634 of Lecture Notes in Computer Science, pages 509–524.
Springer Verlag, August 2005.

11. Wolfram Pohlers. Proof theory, volume 1407 of Lecture Notes in Mathematics.
Springer Verlag, Berlin, 1989. An introduction.

12. Alan Skelley. Propositional PSPACE reasoning with Boolean programs versus
quantified Boolean formulas. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and
Donald Sannella, editors, Automata, Languages and Programming: 31st Interna-
tional Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings,
volume 3142 of Lecture Notes in Computer Science, pages 1163–1175. Springer
Verlag, 2004.

13. William W. Tait. Normal derivability in classical logic. In J. Barwise, editor, The
Syntax and Semantics of Infinitatry Languages, number 72 in Lecture Notes in
Mathematics, pages 204–236. Springer Verlag, 1968.

14. Gaisi Takeuti. Separations of theories in weak bounded arithmetic. Annals of Pure
and Applied Logic, 71:47–67, 1995.

15. Christopher B. Wilson. A measure of relativized space which is faithful with respect
to depth. Journal of Computer and System Sciences, 36(3):303–312, June 1988.

