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Abstract. The Cobham Recursive Set Functions (CRSF) provide an amalofgpolynomial time computation which applies to
arbitrary sets. We give three new equivalent charactéoizatof CRSF. The first is algebraic, using subset-boundedrsen
and a form of Mostowski collapse. The second is our main tethé CRSF functions are shown to be precisely the functions
computed by a class of uniform, infinitary, Boolean circuiie third is in terms of a simple extension of the rudimentar
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1. Introduction

Computability over the natural numbers has over the yeaes Iseccessfully extended to robust notions of
computability on ordinals, on objects of finite type and otssa general (see for example Sacks’ book [10]).
Our goal is to develop an analogous, robust extension of otatipnal complexity to arbitrary sets. This is the
third of a series of papers exploring the model for polyndftiree computation on arbitrary sets given by the
Cobham recursive set functiofGRSF) [4, 5]. A broader and promising future programme isauoy this out for
other notions from complexity theory. This paper is largeyf-contained. In particular, as it relies on a different
definition of CRSF, it can be read independently of [4] and [5]

The class CRSF was introduced in [4] to capture the notioaadible, polynomial time computation on arbitrary
sets. In particular, it coincides with the usual polynontile functions on finite binary strings, if strings {0, 1}
are identified with the corresponding set-theoretic fuomiin*2.

The definition of CRSF in [4] is as a function algebra, basedaageneralization of Cobham recursion on
notation to arbitrary sets. A proof-theoretic charactgion of CRSF, in terms of a version of Kripke-Platek set
theory, is given in [5]. Furthermore, as shown in [4], the EREnctions are closely connected to the Predicatively
Computable Set Functions (PCSF) defined by Arai [2], whicte @i different characterization of polynomial time
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functions on sets. The PCSF functions are defined using safgsion on notation, which was earlier used in [3]
to define the larger class of Safe Recursive Set FunctionSKERR related notion of polynomial time on certain
infinite sets was defined by Schindler [12]; see [3] for cotioas between this and SRSF. Sazonov [11] introduced
a class of polynomial time functions on hereditarily finiggss which we compare to CRSF in [4].

In [4] we take e-recursion as the basic model for computation on sets. Thevation is that the power of
e-recursion is restricted by allowing new functions to beadticed only if their output is no more complex than
the output of a function already known to be in CRSF, in théesty Cobham'’s definition of polynomial time [6].
Here a setiis no more complex than a detf ais embeddable ib in a certain sense (which we describe later). To
allow a limited, “polynomial” increase in complexity [4] agts the smash functio# of bounded arithmetic into
an operation on sets, namely a kind of cartesian product astdaki graphs, and includes this as one of the initial
functions.

We introduce here three alternative characterizationsRBE These all take-recursion as fundamental, but
they restrict its strength in different ways, and one of thaaas not use the smash function. That they all give rise
to the same class of functions gives more evidence that CRB&tural.

The first characterization is similar to [4]. The class CRS& formed by taking some basic initial functions,
including the smash function, and closing under compasitindsubset-bounded recursioifi g andh are in the
class, then so is the functidndefined by the recursion

f(d,b) = g(@ b, {f(ac): c € b}) N h(d b).

We call this “subset-bounded" because it allows definingrection f by recursion only if we have in hand a
functionh such thatf (4, b) C h(&a b). The main difference between this and the definition in [4his use of this
simpler kind of recursion instead of the rather complicdtbedding-bounded" recursion of [4], of which it is
a special case. The disadvantage is that GR&ictions are limited in what they can output, because anguiu
value must look more or less like a subset of (some basicifumof) the input.

To deal with this we use a system for coding sets as subsettanlard way to represent a finite graph in
computer science is as a subsehof n (coded as a binary string of length) giving the edge relation, whereis a
size parameter. Similarly we can take a set, represent aafafsyMostowski graph as a subdebf a x a, wherea
is some suitable set, and then recover the original set Earsing Mostowski collapse. It turns out that we still get
a robust system of coding if we restrict the kinds of sulistitat can appear (by only allowing edges consistent with
the ordering induced by), and that then we do not need the full strength of MostowsKkapse but can make do
with a limited, “feasible" version of it.

We define CRSE by adding this limited Mostowski collapse function to CRSRVe show that CRSFand the
original CRSF are the same, and in particular that for eveR§E functionf (X) there is a CRSF function which
computes a code fof(X). It follows that we can computé(X) in CRSFE with only a single use of Mostowski
collapse, and also that CRSRnd CRSF contain the same relations, that is, the same Q/@d/ainctions.

Our second characterization takes a very different apprdacdescribing a Boolean circuit model of computa-
tion on sets. We define (possibly infinite) circuits, which@e Boolean (0/1) values and have the usual conjunction,
disjunction and negation gates. To allow these to input anplud sets, we use the method of coding outlined above.
For example, if we want to take as input sets which can be cadedsubse of a x a, we include an input node
for each membeu of a x a, and assign it the valukif u € E and0 otherwise — and as is usual in circuit complexity,
we will need a different circuit for each size parametewe show that CRSF can be precisely characterized as the
functions which can be computed by strongly uniform farsile small Boolean circuits, where “small” is defined
in terms of the smash function. This is our main result, arhvsthat a basic property of polynomial time functions
carries across smoothly to arbitrary sets.

There are several advantages to the Boolean circuit clesization. First, it is quite different from the earlier
characterizations, thus providing more evidence of thesbiess of CRSF. Second, it makes clear that CRSF is, in
part, a model of parallel computation. This fact is obsciumete earlier developmentin [4], as that work focused on
the equivalence with polynomial time computation. Thitdallows tools from the usual theory of Boolean circuit
complexity to be applied to CRSF. As an example, using theddeswitching lemma about the inexpressibility of
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parity in AC° [8], we can show a version ofFNP for CSRF. We hasten to mention that this does not say amgythi
about whether the usual classes of P and NP are distinct.

Our third characterization is again as a function algebiatime defined by extending the rudimentary functions
in an elementary way. We take the class RS to be the rudimefutiactions plus the transitive closure function, all
closed under subset-bounded recursion. We do not add thehdimnaction, and it is easy to see that smash is not
in RS, which hence is different from CRSF. However we adaptsystem of coding to RS and show that CRSF
functions can be defined in RS via their codes, and thus tleatlfsses are essentially the same except for issues
of decoding. The key is to show thatrecursion in the presence of smash can be simulated byolgnédphice-
recursion without smash.

There are several potential routes for future work. Thisgpaipgether with related work [2—4, 12], shows that
we have established a robust understanding of polynonmied th set theory. Obvious next steps are to find set
theoretic analogues for other time, space or circuit corifylelasses which are well-known and well-studied in the
context of finite binary strings.

The outline is as follows. Section 2 discusses preliminapjds, and introduces our version of the Mostowski
collapse and smash functions. Section 3 introduces siloseteed recursion, defines our version of CRSF, and
proves some basic properties of these definitions. Sectintrgduces a simple model of infinite-time Turing ma-
chine computation and shows that on finite and infinite birsaiiyngs, CRSF functions are the same as those com-
puted by corresponding notions of polynomial time Turingciriaes. Section 5 introduces some technical material,
in particular bisimilarity, which we will use to detect whemo encodings of Mostowski graphs represent the same
set. Section 6 defines infinite Boolean circuits, and alsontitéon of A7 -uniform families of Boolean circuits.
Section 7 proves a series of strong technical results abeytdwer ofA#-uniform circuits. Section 8 completes
the proof that the CRSF functions are precisely the funstmymputable Witm#—uniform circuits. It also gives a
P£ANP style result for CRSF functions acting on hereditariljtéitHF) sets. Section 9 proves the equivalence of our
version of CRSF and CRSF as defined in [4]. Section 10 shovtsatiting transitive closure and subset-bounded
recursion to Jensen’s rudimentary functions gives anatharacterization of CRSF.

2. Preliminaries

2.1. Notational conventions

The partial ordering induced on sets &ywill play a fundamental role for us, analogous to the ordgon natural
numbers. We therefore use the notatiofior the transitive closure of the relation, and the notatiog for the
reflexive transitive closure. Writing tb) for the transitive closure olf, this means thaa < b anda < b are
equivalent taa € tc(b) anda € tc({b}), respectively. To further strengthen the analogy to therirl notation and
because it will be convenient for the generalized notionkoféry string” defined below, we writg] for tc({a})
(this was denoted to(a) in [4]). This notation is meant to suggest the “intervi@’a] = {x: ) < x < a}.

We often code one set inside another set in a way that genesalie usual notion of binary strings. We will stick
as much as possible to the following convention. We treatessets as “raw materials”, inside whose Mostowski
graphs we will construct other objects. We write these “raaterial” sets using small lettegb, .. .; they are
analogous to unary strings in complexity theory. We usetablgittersi, F, ... orU, V... for objects we construct
as subsets of the Mostowski graphs of sets of the first kireealare analogous to binary strings. For ordinary binary
strings, the analogy is precise: an ordinary unary strirflgredthn is identified with the von Neumann integee n,
and an ordinary binary string of lengthis then the subse of a having as members the positions where albit
appears in the string.

In a directed graph, if there is an edge from a node a nodev we say thau is apredecessoof v. If there is
a path (possibly of length) from u to v we say thau is anancestorof v. We will usually be dealing with acyclic
(in fact well-founded) directed graphs, and when we descdibected graphs we think of the edges as pointing
upwards.

We define the ordered pair &a, b) = {{a}, {a, b}} and extend this in the usual way to ordeketliples, with
(a,b,c) = (a, (b,c)) etc. and(d) = aif &is al-tuple. We will write [a]* for thek-th cartesian power dé], since we
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will need to refer to this often. But we do not use this notafior sets not written in the forrfa] to avoid confusion
with ordinal exponentiation.

We identify the natural numbers with the finite von Neumardirmals(), {(}}, ... For the sake of consistency we
will always write0 instead ofp.

2.2. Embedded Mostowski collapse

Recall that a directed graph with nodé¢snd edgeg is well-foundedf, for every non-empty subs&of U, there is
a nodey in S with no predecessors B. It is extensionaif no two distinct nodes have the same set of predecessors.
We say that it isaccessible pointedith sink a if there is a path from every node &*
The Mostowski graphof a seta is the directed grapl(a) := ([a], E) with nodes[a] and with edges
E = {{xYy) € [@? : x € y}. ClearlyG(a) is well-founded, extensional and accessible pointed, wiith a. By
well-foundedness and extensionality it also has exacty source node, the empty set. On the other ha@&lig
any well-founded, extensional, accessible pointed graph there is a unique sat the Mostowski collapsef G,
such thaG is isomorphic toG (a). We denote this setby M(G).

Definition 2.1. A diagramis a pair (a, E) of sets such thatx,y) € E only if x<y.

The diagram(a, E) represents the graph with nodgs and edges N [a]2. We think of (a, E) as a graph
“embedded” in the Mostowski grapfi(a) of a, with edges that are forced to respect the orderingj(a). An
example of a diagram is the pda, €[[a]?), representing/(a) itself.

A diagram is automatically well-founded, by the condition B. In general it is not accessible pointed or
extensional; for example any nodes|aj outside the range dE will have the same, empty set of predecessors.
However, if we restrict the graph to the set of nodes thaEaaecestors o, then it is accessible pointed, with siak
Furthermore, we can make it extensional by recursivelyapsing together nodes with the same set of predecessors.
We can then take the Mostowski collapse of the resultinglyrapis procedure, which we cambedded Mostowski
collapse has a simple recursive definition:

Definition 2.2. The embedded Mostowski collapse functiofaME) is defined by
M(a,E) = {M(b,E) :b<an (b,a) € E}.

Notice that this is definable by-recursion. We will almost always use Mostowski collapsthia form, so will
often omit the word “embedded”.
We use rankx) to denote the von Neumann rank of the seind|x| to denote its cardinality.

Lemma 2.3. |[M(a E)]| < |[a]| andrank M(a, E)) < rank(a).
Definition 2.4. We say his embeddable ia if b = M(a, E) for some E.

We interpret the embeddability bfin aas meaning thdiis no more complex thaa in the sense that, for exam-
ple, recursion ovel is no more powerful than recursion overLemma 9.4 shows that our notion of embeddability
is the same as the onein [4].

1 Aczel [1] defines amccessible pointed grapis one with a distinguished node from which every other nedesdchable. Note that our paths
run in the opposite direction.
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2.3. The smash function
We repeat some definitions from [4].

Definition 2.5. Theset composition functioa ® b is defined as follows. Given sets a and b, construct a graph H
by drawing the graplg(a) above the graplti(b) and then identifying the source Gfa) with the sink ofG(b).
Thenao b= M(H).

An equivalent recursive definition for set composition is:

acb— b ifa=0
|\ {xeb:xea} ifa#0.

Definition 2.6. The set smash functioa#b is defined as follows. Given sets a and b, construct a graptyH b
drawing a disjoint copy G of G(b) for every point x¢ G(a), and then adding an edge from the sink gft@ the
source of G for every edgéx,y) of G(a). Then gtb = M(H).

An equivalent recursive definition for set smash#sb = b ® {x#b: x € a}.

The smash function is a kind of cartesian product on Mostogigiphs. We introduce a corresponding “pairing
function” o (X, y), which we think of as taking nodese G(a) andy € G(b) and outputting the node correspond-
ing toy in the x-th copyGy of G(b) in H. Note that although we writa as a subscript i, we do not actually
usea in the definition.

Definition 2.7. We definerap(x,y) =y © {z#b: z€ x}.

Lemma 2.8. The functionx,y) — oap(X,y) is an order isomorphism betweéaj x [b], ordered lexicographically,
and[a#b].

Definition 2.9. We letry ap : [a#b] — [a@] andraap : [@#b] — [b] be projection functions inverting,p, so that
Tap(m1.ap(2), m2.a0(2)) = z for z€ [a#b].

Lemma 2.10. For sets a and b,
(1) ranKa® b) = rankb) + rank(a)
(2) [te(a® b)| = |te(a)| + |tc(b)]
(3) ranka#b) + 1 = (rankb) + 1)(rank(a) + 1)
(4) [te(a#b)[ + 1 = (Jte(b)[ + 1)(Jtc(a)| + 1), equivalently|[a#+b]| = |[a]| - |[b]|.

Definition 2.11. A smash-ternis a term built from variables, the constamtand the functions pairing, cartesian
product, transitive closurey and #.

Smash-terms will play the role usually played by polynomiialcomputational complexity, providing bounds
for various complexity measures. Notice that the rank, asgectively the size of the transitive closure, of a smash-
term is at most polynomially larger than those of its arguteefThe corresponding definition gf-term in [4] is
stricter, only allowing variables, the constdnto and#.)

3. Subset-bounded recursion and CRSF

This section is modelled on the similar development of CRSE].

Definition 3.1. Let g(@ b, x) and W&, b) be functions from sets to sets. The functiqd, b) is obtained from
g(&, b, x) by subset-bounded recursiaith bound ({&, b) if

f(@b) = g@b, {f(&0): ceb})nh(@b).



6 A. Beckmann et al. / Feasible set functions have small ¢#rcui

Definition 3.2. We take as initial functions

(1) the constan®

(2) projection: a,...,an+—ajforl < j<n
(3) pairing: a,b — {a,b}

(4) union:a— Ja

(5) conditional:cond:(a,b,c,d) = {

(6) transitive closure: a— tc(a)
(7) cartesian product: db— axb
(8) set composition:d—a®b
(9) set smash: @ +— a#b
(10) embedded Mostowski collapseEa— M(a, E).

a ifced
b otherwise

The above initial functions are roughly the same as the fiiensymbols in the definition of Cobham recursive set
functions given in [5], but with the addition of the embeddiédstowski collapse function.

Definition 3.3. CRSk: is defined as the closure of initial functiofig to (9) under composition and subset-bounded
recursion.CRSF is defined as the closure of all of the initial functions ahdneluding embedded Mostowski
collapse, under composition and subset-bounded recursion

Definition 3.4. A CRSk- relationis a relationy(&d) given by an expression of the forniay # 0 where g is a
CRSF- function. TheCRSFg* relations are defined similarly.

Lemma 3.5. We derive some basic properties@RSk-. These also hold witﬁRS% in place of CRSk-.
(1) CRSk- contains the functionga}, au b and

a ifc=d
cond-(a,b,¢,d) = {b otherwise
(2) TheCRSF- relations are closed under Boolean operations.
(3) CRSK is closed undeseparationThat is, ify(d, c) is a CRSk- relation then the following function is also
in CRSk-:

f@b)={ceb:y(@c)}

(4) The CRSFk- relations are closed undef\, quantification, in which quantifiers range over members of a
given set.

(5) CRSFk- contains the function@) a, a\ b and an b. By conventiofi)0 = 0.

(6) CRSFk- contains the usual pairing and projection functions fowiptes, for ke N.

(7) CRSk: containso ), and the projection functions; a andmrs ap.

Proof.
(1) We use{a} = {a,a} andauUb = [ J{a, b}. We define cond as cond (a, b, c, {d}).
(2) We define—(g(d) # 0) and (f(&) # 0) Vv (g(b) # 0) respectively by cond(1,0,9(&),0) # 0 and
f(&) U g(b) # 0.
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(3) Using cond, cond- and Boolean operations we can define functions by cases.dk¢éib, ) by recursion

oncas
{c} if c € bandy(& c)
k(@b,c) = < U{k(@hb,d):dec} ifc=b
0 otherwise

Then k(& b,c) C b always, sok is definable by subset-bounded recursion with bobndVe put
f(& b) = k(& b,b).
(4) We can define the relatiatteb ¢ (&, c) by

{ceb:g(@c)}#0

where the set on the left is given by separation.

(5) We takgNa= {xe€ |Ja: Vbeca(x € b)}, using separation. The other two are trivial.

(6) Trivial.

(7) We haverapn(X,y) =y © {z#b : z € x}, where the sefz#b : z € x} can be obtained by separation, since it
is a subset of tgx#b]). Forz € [a#b] we can define, for example, the projection functian, by

m1an(2) = J{x € [a] : Iye[b] can(xy) = 7}
since exactly one satisfies the condition on the right. O
Lemma 3.6. The rank function is irCRSFg.

Proof. Given a se#, definep(a) by first lettingH be the transitive closure ¢f(a) as a graph, that is, we start with
G(a) and add an edgéx, y) whenever there is a path frortto y, and then letting(a) be the Mostowski collapse

of H. Thenp(a) is an ordinal, since it is a transitive set of transitive sEtethermore, we can show by induction
onathat rankp(a)) = rank(@). We havep(a) = {p(x) : x € tc(a)} so

rankip(a)) = sup{rankly) + 1 :y € p(a)}
= sup{rankip(x)) +1: x € tc(a)}
= sup{rankx) + 1 : x € tc(a)}
= rank(a)

It follows thatp(a) = rank(a). This construction can be done in CR@IEy definingp(a) = M(a, H), where
H={(xy) €[a?*: x<y}. o

Note that the grapH above is in general not extensional — for example, considitWwappens to the nodgs}
and2 whena = {{1}, 2}. This situation is similar to the appearance of a multi-edlembedding in the construction
of the rank function in [4].

Lemma 3.7. Ordinal addition and multiplication are ilﬁ:RSFg.
Proof. We know that ranfa © b) = rank(b) + rank(a) and ranka#b) + 1 = (rank(b) + 1)(rank(a) + 1), from

Lemma 2.10. Hence the functi@n+ b = rank(b © a) gives us ordinal addition, and we can define ordinal muttipli
cation by subset-bounded recursion as

a-b=|J{a-c+a:ceb}nrankb#a)
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sincea- b C rankb#a) for ordinals. O

Lemma 3.8. For any CRSF: function f, we haveank(f(d)) < p(rank@)) and |[f(&)]| < p(|[d]|) for some
polynomial p. -

Proof. This is a straightforward induction on the complexityfof O
Corollary 3.9. Ordinal exponentiation is not iﬁ:RSFg*.
Corollary 3.10. There is ncﬁRSFg* function which, on all hereditarily finite sets X, ouputs trdinal |x.

Proof. Let f be such a function. Take € N and leta be its power sefP(n), so f(a) is the ordinal2". Then
ranka) = n+ 1 while rank f (a)) = 2". O

We conclude this section with a digression about the chdiéeitial functions and whether they are all nec-
essary. It turns out that Mostowski collapse plays a moréeirole in CRSE than might be expected. We will
show in Section 8 that for any functidi{d) in CRSF., there is a smash-tert(&) and a functiorg(&) in CRSk-
such thatf (a8) = M(t(d), g(d)). In other words, if we can compute a set in CRSEhen we can already compute
a diagram of it in CRSF. In particular, Mostowski collapse is not needed if we arly amerested in computing
0/1-valued functions.

We expect that we could do without cartesian product, sihee iwant to quantify over pairs ia x b we could
instead quantify over elements [@f#b], using the functiorr,p(Xx, y) where we now use the ordered péiry). This
change would require some formal changes to our definitibdgagrams and Mostowski collapse, to make use of
this new system.

In the full system CRSE we do not need to include set composition as an initial famstsince it is easy to
construct the Mostowski graph af> b as a diagram embedded ins@#b and then recovex® b using Mostowski
collapse.

The smash function would seem to play a central role in inteity polynomial growth rate functions. Nonethe-
less, there is a natural way to extend embedded Mostowdkipsa which removes the need for the smash function.
Fork € N, definek-embedded Mostowski collapse

Mi((d).E) = {Mk((B). E) : (B) < (@ A {(B), (@) < E}

where (&), (5) arek-tuples and< is the lexicographic ordering given by. We can use the order-isomorphism
between[alk under<y and [a# - - - #a] (with k occurrences o&) under< to defineMy in CRSFE. In the other
direction, it is straightforward to define the smash funetising M2, so the class CRSFis unchanged if we
remove smash and set composition and replagith M,. For more onk, andMy, see Section 10.

4. Turing machines

We consider a simple model of infinite-time Turing machinds The usual finite Turing machines are special
cases of the definition below, obtained by considering oniyefiordinals and skipping any text containing the word
“limit”.

We simulate machines operating on strings of symbols fromitefalphabet of numeraly ..., k—1. These
strings may be finite, but more generally will have ordinaldéh. We need to specify how to code such strings as
sets, so that we can manipulate them with Cgfﬂlﬂwctions. We do this in a straightforward way by letting gt
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of lengtha < w be formally a functiom — k and dealing with this directly as a set-theoretic functibat is, as a
set of ordered pairs.

Consider a Turing machink®with a single, one-way tape) states, anét symbols. We will simulate the machine
running on a tape of length < w for time 7, whered andr are ordinals (that is} will be either finite orw). A
configuration of the machine is a trip{&\, i, s) where the stringV is the contents of the tapiis the position of the
head andsis the state.

At each stefr + 1, machineAreads the symbol that was under the head insté¢pen writes a symbol, changes
state and moves the head, all according to the transitiactibm(as usual).

At limit stepso, we set the symbol in each cglin W to be the highest symbol that occurs cofinally often in
cell j as we range over the earlier configurations. We change theessia a distinguished limit state and move the
head to = 0.

Let Configy(4, I, 7) be the function that takes as inputs ordinals w andr, and a strind of ordinal length< 4,
and outputs the configuration of the machikeith tape lengtm after running forr steps on input.

Lemma 4.1. Config, is in CRSk-.

Proof. Config, can be defined by a straightforward recursion. The only teahissue is to make sure that the
intermediate values in the recursion are all subsets of waseian construct. We assume thadndr are ordinals
and will write < rather thare for membership in an ordinal.

Let F(4,1,7) be the function that, on well-formed inputs, outputs

{t} xWx {i} x{s} = {(rai,s):aecW}
where(W,i, s) is the configuration oM at stepr. Then
F(4,1,7) C{r} x (Axk)xAxm

so we can potentially define directly by subset-bounded recursion. To do so, we must dimwto compute
F(A4,1,7) fromS = {F(4,1,0) : o < 7}. Observe that for- < T we can recoveF (4, |, o) from S as the subset of
|J S consisting of elements with first componentin particular we can recover the tape contahtsat stepo- by
separation as

W, ={a€ Axk: Ji<iIs<m(o,a,i,s) € US}

and can similarly recover the head positigrand the stats, .

If T = 0then we let = 0, let sbe the starting state, and Mt be the input strind, padded out as necessary to
length with pairs(j, 0) (assuming without loss of generality that the synmibstands for “blank”). lfo .= Jr € t
thent is the successor ordinal + 1. UsingW,, i, S, and the transition function d¥i, we computeV using
separation and changands appropriately.

Otherwiser is a limit. We lets be the limit state and lét= 0. The set of symbols occurring cofinally often in
cell jis

Xj={x<k:Vo<rIo'<r (o <o’ A(j,X) € W)}

Hencel J X; is the maximum symbol that occurs cofinally often, and we ed = {a € A x k: a= (j,|J X)}.
This shows thaF is in CRSk-. The lemma follows. O

2 There are other ways of handling this. In particular, overtimary alphabet we could code strings of lengtsimply as subsets of. We
do not use this encoding here, partly to avoid issues of homatk the end of a string, but we will use it beginning in Settiol where we
will be dealing with strings of fixed size. An alternative whave explicitly record the length would be to code binary stringga; ... as pairs
(4,{i < 1:a = 1}). This would be essentially equivalent to the coding usetiércurrent section, since there are C%Sﬁnctions translating
in both directions between them. B
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As usual {0, 1}* denotes the set of finite binary strings.
Theorem 4.2. Every polynomial time function frof0, 1}* to {0, 1}* is in CRSFQF.

Proof. Supposef is computed by a Turing machirewhich halts in timen® on inputs of lengtm > 1. Given a
finite stringw, in CRSF£ we can compute the lengthof was{i € |J|Jw : Ix<k (i, x) € w}. We then compute®
(using Lemma 3.7) and Confign®, w, n°), and the output of can easily be obtained from this. O

The only use of Mostowski collapse in the proof of Theorem i$.20 obtainn® from n. If we instead let
m = n# - - - #n (wheren appears times) themmis order-isomorphic t¢n + 1)¢ — 1, and we can prove a version
of Lemma 4.1 that avoids using Mostowski collapse, by sitmdgluring machine computations of lengthusing
e-recursion ormrather than omC. All that prevents us from carrying out the whole proof of theorem in this way
is that, under our coding of binary strings as sets, we muabb®eto convert the output into a sequence indexed by
an ordinal. This is not a problem for very simple outputs, sohave:

Theorem 4.3. Every polynomial time relation of0, 1}* is in CRSk-.
As a converse of Theorem 4.2 we have the following.
Theorem 4.4. EveryCRSF£ function from{0, 1}* to {0, 1}* is in polynomial time.

Proof. We use the same argument as [4]. The theorem follows from thre meneral observation that for any
CRSF function f(xi, ..., %) there is a polynomial time function which, for any herediggiinite setsa;, ..., a,
given graphgj(a,),...,G(a) outputsG(f(a,...,a;)) (up to graph isomorphism) using the standard encoding of
directed graphs as strings. This is proved by induction ercttmplexity off. The bound on recursion guarantees
that the sizes of the graphs involved do not grow too fast. O

We now move to infinite-time machines. Following [12], a ftino from {0, 1}* to {0, 1}* is polynomial time
if it is computed by an infinite-time Turing machine with tereapes (an input tape, an output tape and a working
tape) which always halts after at mest steps, for some fixed exponaht N.

Theorem 4.5. Every polynomial time function frof0, 1}« to {0,1}* is in CRSk-.

Proof. This is proved in the same way as Theorem 4.3, with minor chsit@gaccommodate simulating three tapes
rather than one. Since the output sequence is a subset @f we can use separation to construct it from the output
of Config,, and do not need Mostowski collapse. O

Theorem 4.6. EveryCRSF£ function from{0, 1} to {0, 1} is polynomial time.

Proof. Itis shown in [3] that every such function frof®, 1} to {0, 1} in the class SRSF is polynomial time. By
results in [4] and in Section 9 below, every function in C%SE in SRSF. O

5. Bisimilarity and coding

This section discusses the generalized notion of binaingstrbisimulation, and how to code collections of sets.
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5.1. a-strings
Definition 5.1. Let a be any set. Anatringis a subset of a.

We will sometimes informally identify am-string with its characteristic functiom— {0, 1}. In this sense, for
finite ordinalsk, the usual binary strings if0, 1}* of complexity theory correspond to tlkestrings. For example,
the binary string)1101 € {0, 1}° corresponds to th&string {0, 2, 3} (writing the most significant bit on the left).

For us, the most important use @ftrings is to encode sets via a Mostowski collapse:

Definition 5.2. We say that a diagrana, E) codesthe set Ma, E). If a is fixed and E is afa)?-string, we say E
codeshe set Ma, E).

This way of coding sets, as a size parametéogether with ar{a)?-string E, is designed to work well with
subset-bounded recursion.

5.2. Bisimilarity

We will frequently need to recognize when two diagrams ch@esime set even in situations where the Mostowski
collapse function is not available. If we are dealing withemsional, accessible pointed diagrams, then two such
diagrams code the same set if and only if they are isomorptaeaever our diagrams are typically neither, so we
will instead use the notion dfisimilarity (see for example [1]). This is very well-behaved on wellfided graphs.

Definition 5.3. A bisimulationbetween directed graphs G and H is a relatiorrelating nodes of G to nodes of H,
such that for all nodes u in G and v in H,~u v holds if and only if both of the following hold:

(1) For every predecessor of u in G, there is a predecessdraf v in H such that U~ v/
(2) For every predecessof of vin H, there is a predecessot of u in G such that i~ V.

Recall that a diagrarte, E) represents the directed graph with noffésnd edge$a)® N E.

Definition 5.4. We say that two diagrams, E) and (b, F) are bisimilarif there is a bisimulation- between(a, E)
and (b, F) such that a~ b.

Lemma 5.5. There is at most one bisimulation between two diagrams.

Proof. Suppose~; and~ are distinct bisimulations between diagrafasg) and (b, F). Chooseu <-minimal
in [a] such that there isac [b] for which ~; and~ differ on the pair(u, v), and fix a<-minimal suchv. Then~;
and~, agree on all predecessorsidindv. Therefore, by the definition of a bisimulation, they mustesgon(u, v),
giving a contradiction. |

Lemma 5.6. Given diagramsa, E), (b, F), there is at least one bisimulation between them, and theyisimilar
if and only if M(a, E) = M(b, F).

Proof. Define a relation- by u ~ vif and only if M(u, E) = M(v, F). It follows directly from the definitions that
this is a bisimulation betweefa, E) and(b, F). We then apply Lemma 5.5. O

Lemma 5.7. There is aCRSFk- function Ba, E,b,F) computing the bisimulation between diagrares E)
and (b, F), by outputting the bisimulation as a set of ordered pairs.

Proof. First observe thaB(a, E,b, F) C [a] x [b], so we can potentially defir directly by a subset-bounded re-
cursion. We will use recursion an Given a se = {~: ¢ € a}, where each-. is the bisimulation betweeft, E)
and (b, F) output byB(c,E, b, F), let ~ = |JS. Then by the uniqueness of bisimulatiors ([c] x [b]) = ~¢
for everyc € a. It follows that~ has all the properties of a bisimulation betwganE) and (b, F) except possi-
bly at a, and we can extend to a by adding a paifa, y) for everyy € [b] which satisfies both conditions from
Definition 5.3. O
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5.3. Coding collections of sets

We use a generalized notion of a 0/1 matrix to allow a singi@\é& encode a collection of sets. The intuition is
that the pairgc, x) in W encode the Mostowski graph of tieeh set encoded bw.

Definition 5.8. For sets W and c, we define thetcrow of W, denoted W, as the se{x: (c, X) € W}.

Note thatw(© C [J{JW, so the functio, ¢ — W(® is in CRSF- by separation. The next lemma allows us to
use such a matrix to code a set of sets.

Lemma 5.9. The function fW a,b) = {M(a,W®) : c € b} is in CRSF.

Proof. Let e = b+#a. Our strategy is to construct froiV a single embedded grapfe E) such that
f(Wa,b) = M(e E). We will write o, 1, 72 for the functionsry a, 711 pa, 72,pa- Define

E' = {(uV) € [g?: m1(u) = 11 (V) # b A (m2(u), ma(v)) € WDy,

For eachc < b this puts the structure aV(® N [a]? onto copyc of the graph ofa inside the graph o€, so that
M(o(c,a),E’) = M(a, W(®). On the other hand (b, a) = eis not connected to anything &, soM(e, E’) = 0.
LetE = E' U {(o(c,a),e) : c € b}. ThenM(e, E) equals{M(co(c,a),E’) : ¢ € b}, which is the required set. O

6. Boolean circuits

This section defines computations with unbounded fan-in&wocircuits encoded by sets. We first introduce
circuits that compute functions mapping strings to stritgfe then extend this to circuits computing set functions,
which operate on sets encoded as diagrams or strings. Ttialgetthat is computed by the circuit will be extracted
from its output using the embedded Mostowski collapse.

Definition 6.1. A circuit is a triple (c, E, 1) where(c, E) is a diagram andl is a function from[c] to the set of
symbols{0, 1, %, A, \/, =} (which we identify with the numbebs. . ., 5) such that each node labelledhas exactly
one E-predecessor. The nodes labellete calledinput nodesWe say that the circuit hasizec.

Conjuctions and disjunctions may have arbitrary fan-ine Tdbels0 and1 represent the constant valuesse
andTrue

Definition 6.2. Let C = (c, E, 1) be a circuit, and let a be its set of input nodes. Given anyiag®, acomputation

of C on A is ac]-string W which, informally, assigr/1 values to the nodes of C in such a way that each input
node gets the same value that it has in A, and all other nodegadges according to the usual interpretations of
their symbols in a circuit. That is, for all & [c],

(1) if A(u) = 0thenug¢ W

(2) if 2A(u) = 1thenue W

(3) if A(u) =«xthenue W<« ue A

(4) if A(u) = Athenue W+ Yv<u((v,u) € E - ve W)
(5) if A(u) =/ thenue W + Jv<u((v,u) e EAVE W)

(6) if A(u) = ~thenue W+ Jv<u({v,u) € EAV ¢ W).

In general, to guarantee that a circuit has a computatieanghough for the graph underlying the circuit to be
well-founded. However we need the extra condition that tta@ly is embedded iofor the next lemma.

Lemma 6.3. There is aCRSk- function which takes a circuit C and an a-string A, as in Deiomi 6.2, and outputs
a computation of C on A.
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Proof. Let f(C, A v) be the function that outputs [&]-string assigning correct values to all nodes< v in the
circuit. Sincef(C, A,v) C [v] it is possible to defind directly by subset-bounded recursion. Suppose we are given
S = {f(C,Au) : u € v}. ThenW = |JS assigns the correct values to all nodesf the circuit withu < v,

and since(c, E) is a diagram, this includes all nodes such that)) € E. Hence we have enough information to
extendW’ to a[v]-stringW which also assigns the correct valuevi@nd clearly this can be done in CRSF O

We extend the definition to handle computations on tupletioigs. Wherc, a;, . . ., ax andp are finite ordinals,
the following is equivalent to the usual definition of a finBeolean circuit.

Definition 6.4. A circuit with input sizesy, .. ., a and output size is a tuple(c, E, 4, & p, u, v) where(c, E, 1) is
a circuit and we are also given

(1) A partial functionu : [c] — ({0} x &) U--- U ({k—1} x a) which maps every input node to a member of
(a disjoint copy of) some, gand

(2) A functionv : p — [c] which maps every element of p to some node]inVe call the range of theoutput
nodes

Definition 6.5. Thecircuit evaluation functiotiakes inputs CA where C= (c,E, 4,8, p,u, v) is a circuit andAis
a tuple of strings, with each;An a-string. It outputs the p-string Qi) computed by C on inpuis.

Lemma 6.6. The circuit evaluation function is IGRSk-.

Proof. We construct a computatio¥ of the circuit as in the proof of Lemma 6.3. We recover the atiy sepa-
rationas{i € p: v(i) € W}. O

Definition 6.7. A family G; of circuits parametrized by a tuplé of sets issmall if there are smash-terms
s t,ug,..., U such that the size of Os @), and G has input sizes {d), ..., uk(d) and output size(&). We
say that a family Gs is smallwith size bounds independentﬁ»ﬁf the parameter5 do not appear in any of these
smash-terms.

Consider a set functiofi(x) which, when its inputs are sets embeddable,ioutputs a set embeddablen
Using diagrams, we can code the inputs and output fspectively asa)?-strings and p]?-strings. We can then
ask whether the corresponding function from strings tmgtiis computed by a small circuit.

Definition 6.8. Let f(x,..., X) be any set function and leta . ., ax be a tuple of sets. Suppose that C is a circuit
with input sizesa; )%, . . ., [a]? and output sizép|? for some p, such that for every tuple,E. ., Ex of strings, with
each E an [;)?-string, we have

M(p,C(El,. . Ek)) = f(M(al, El),. . M(ak, Ek))

where QE;, ..., Ey) is the[p]-string as defined in Lemma 6.6. Then we say theb@putes on sets embeddable

inay,...,a.
We say that thas small circuitsf there is a family G of small circuits such that, for alii, C; computes f on
sets embeddable &

We next describe a class of simple formulas, which we will lbsth for constructing circuits and to define a
notion of uniformity for circuits. Note that the terms in tlemguage below are exactly the smash-terms.

Definition 6.9. AAZ)‘FE formula is a formula in the languagles, 0, pairing, tc, x, ®, #} in which all quantifiers are
bounded, of the formx<t or Vx<t. We say that a family of sets js#—definable (with parameter®) if there is a
A# formulay and a smash-term t such that the sets in the family have thefforc t(2) : ¢(u,2)}.
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Definition 6.10. A family G, of circuits is A -uniform if it is small and the sets EC [c]>, 4 C [d] x 6,
u C g x ({0} xa)U---U({k-1} x a)) andv C p x [c] describing the circuit ¢ are all A#-definable
with parameter<.

Below, to save space we will write e.gas, ..., a-strings A, ..., A" instead of “ana;-string A;, an a,-
stringAy, ..." etc.

The next lemma states that the truth-sets of certain kind@sfofformulas can be computed hy#—uniform
circuits. This is a crucial tool underlying the proof in Seat7 that CRSE has small circuits.

Lemma 6.11. Lety be aA¥ formula

@(X1,. s X, @1, @m, b1, .o b, Uy, Uy

in which all occurrences of variables;ldre immediately to the right of aa symbol in an atomic formula of the
form t € U;, and in which only variables;a&an appear in terms bounding quantifiers. It is not neces@yall the
variables are present ip. Let (&), s, (8), . . ., (&) be smash-terms.

There is aA ¥ -uniform family of circuits Gg With size bounds independentfwith input sizesga), . . ., s(a)
and output size(#), such that for alld andb and all S (d),...,x(8)-strings Uy, ..., Uy we have

C.5(0) = {(X) € t(d) : p(x.d.b,U)}.

Proof. We fix m, nandk and use induction on the complexity @f Circuits will be given with descriptions that can
easily be turned inta\¥ formulas.
Suppose has the fornt, (X, & b) € r,(X, & B) for termsry, ro. We compute thé(&)-string

{{(% €t(d) : r1(%.8,B) € rx(%.4,b)}

using a circuit of sizet(d). Each nodeu < [t(&)] of the circuit is labelledl if u = (X) for some X with
ri(X & 5) € ry(X & 5), and is otherwise labelle@ (there are no input nodes or nodes labelled with connegtives
The setE of edges is empty. The functionmapping elements of the output sif@) to output nodes is just the
identity.

The case where has the fornt(%,d B) € U; is broadly similar. This time each nodec [t(&)] is labelled
with a « (that is, as an input node) if = (X) for somex with r(X, & b) € s(&), and is otherwise labelle@l The
output is arranged as in the previous case. The fungtiorapping input nodes to the disjoint union of input sizes
maps(X) to (i—1,r (X, & b)) (we usd—1 to match the notation in Definition 6.4), with the result ta@bmputatiotw
assignsl to (X) if and only if r(X & b) € U;.

Supposep has the formp; A ¢2. LetCy andCs be circuits for respectively

{(% et(@) : ¢1(x. 8 B,U)} and {(%) € t(&) : p2(x & B,U)}

with sizesc; = ¢, (&) andcy = c,(8). We define a circuiD with sized = t(&) ® {c:} ® {c;}. This means that
the underlying graph ob consists of a copy ofj(c;) at the bottom, with a copy daf(c,) above it, and a copy
of G(t(d)) above that, with the sink node of each component connectérktsource node of the next component.
We will call the component§, C, andO. The labellings, edges and connections to inpu€iare copied fronC,,
and similarly forC andCs. So, for example, i€, has an edgéu, v) thenD has an edgéu ® {¢;},v® {c;}). The
functiony maps every element of the output siz&) to the corresponding node 6f thatis,v : u— u®{c:}©{c;},
and these nodes in the imagerofire labelled with/\. The other nodes dD are labelled witt) and are not used.
Finally, in the original circuits each € t(&) was associated with an output nadéu) in C; and an output node; (u)
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in C,. In D we connect each node»{c,} ®{c, } labelled/\ in O to the nodes ob corresponding te; (u) andvs (u),
that is, tovy (u) in C} andvy(u) ® {c; } in C5.
Suppose has the fornmyx' es(d) y/(x, X, & b, ). Let C be a circuit for

{(X,%) € s(@) x t(&) : (X, % &b,U)}
with sizec = c(&). We construct a circuiD of sizet(&) ® {c}, consisting ofC with a copyO of G(t(a)) above
it, similarly to the previous case. For the output nodeBafe take all nodes ® {c} in O for u € t(d), and label
them with A. If such a node has the forfiX) ® {c}, we connect it by an edge to every output negdg&x’, X)) in C

with X' € s(d), whereyvc is C’s function mapping elements of its output s&&) x t(d) to its output nodes.
Negation is handled similarly. O

We finish this section by giving three concrete examples wiilfas of small uniform circuits, all of which we
will need in the next section. The first example, union, is moveasy consequence of Lemma 6.11. The other two,
circuits for computing bisimilarity and the ancestor redat are more complicated.

Lemma 6.12. The union function haA#—uniform circuits.

Proof. Let (a, E) be a diagram. Let th@]2-stringF be defined from théa]?-string E by

(x,y) € E if y=+a
Jzelal, (x,2 €c E A (za) e Eify=a.

(xy) e F& {
ThenM(a, F) = |JM(a E). The result follows by Lemma 6.11. O

For the next two examples we will need a technical lemma, lp t@nstruct circuits defined using smash.

Lemma 6.13. For x € [a], y € [b] and we [a#b] the relationoap(x, y) = W is definable by a\}* formula which
uses only terms in a and b as bounds on quantifiers.

Proof. We haverap(x,y) = wif and only ifw =y ® {z#b : z € x}, which holds if and only if
dsew], w=y©® s A s= {z#b:zec x}.
This is A¥ -definable, and we can bound all quantifiersas:b] U [a]. O

Lemma 6.14. There is a family Gy, of A¥-uniform circuits, with input sizesa)? and [b]2 and with output
size[a] x [b], which take arfa]?-string E and a[b]?-string F and output a string giving the bisimulation betwee
diagrams(a, E) and (b, F).

Proof. We will imitate the recursion oa used to show that bisimilarity is in CRgRn Lemma 5.7. Fou € [a] we
write ~, for the bisimulation betweefu, E) and(b, F), which we treat as ] x [b]-string.

Let Ry = U{~uw: U € u}. Then for(x,y) € [a] x [b] we have(x,y) €~ if and only if either(x,y) € Ry,
or X = u and the conditions from Definition 5.3 hold, that is,

vxX'ela ((X,x) € E— Iyelb] ((Y.y) € FA(X.Y) €Ry))
AWYEl] ((Y.y) € F — IXela ((X,x) e EA(X,Y) € R))).
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Thus~y is expressed by A# formula to which we can apply Lemma 6.11, givizﬁg’;‘*-uniform circuitsCapy
computing~, from E, F andR,, with size bounds independent of Lett = t(a, b) be the size ofC,,, and
let A, uy andyy be the functions describing respectively its internalpirgind output gates.

Our circuitC which computes bisimulations has se#t and functionst, u andv. It is formed as follows. For
eachu € [a]:

(1) C has an edgéua:(u, X), oat(u,y)) for each edgéx, y) in Cqpu.
(2) Foreactx € [t], the internal gat@ (o a:(u, X)) is the same ag,(x).
(3) Foreactx € [t], if uu(x) = (0,2) for z € [a]? (representing an input frof) or if uy(x) = (1,2) for z € [b]?
(representing an input froM) theno,:(u, X) is an input node o€ andu(oat(u, X)) = uu(X).
In other words via the map — oat(u, X) the u-th copy oft insidea#t, which we will callC,, is given the same
internal structure a8, and accesses inputs frdfandF in the same way. Then:

(4) Foreactx € [t], if uy(x) = (2,2) for z € [a] x [b] (representing an input frol,) thenA(oa(u, X)) = \/ and
for eachu’ € uthere is an edge i@ connectingra;(u, X) with the “output node" o, corresponding ta,
that is, the nodera; (U, v (2)). (If u = 0, this is equivalent to setting(oa(u, X)) = 0.)

(5) Foreacte € [a] x [b] we setv(z) = oai(a, va(2)).

By item (4) the[a] x [b]-string that the subcircui€, gets as its third “input” is the union of the] x [b]-strings
“output” by the subcircuit€,, for U’ € u. Thus by induction o the “output” ofC, is ~. Finally item (5) reads
off the “output"” of the top subcircui€, as the output of our circut. O

Lemma 6.15. There is a family ¢ of A#-uniform circuits, with input and output siZe]?, which take as input a
string E and output a string giving the relation “x is an E-astor of y in the diagranfa, E)”.

Proof. Let us write<, for the E-ancestor relation ofu, E). LetR, = |J{<y : v € u}. Then forx,y € [u], we
have(x,y) € < if and only if

X=yV{xy) € R,vVIze[a (z<yA(X,2) e RyA{(ZY) € E).
Hence by Lemma 6.11 there is a smaﬂf-uniform circuit Coy computing<i, from E andR,, with sizet(a)
independent ofi.

Our circuit has size#t(a) and is formed by taking (a) and replacing each nodewith a copy ofC,,, adding
edges so that,, gets as inpuE and the union of the outputs 6%, for v € u, exactly as in Lemma 6.14. O

7. Small circuits for CRSE-
Theorem 7.1. EveryCRS% function hasA} -uniform circuits.

To prove this it is enough to show that all our initial funet®have such circuits, and that the class of functions
with such circuits is closed under composition and subsetitied recursion.

Lemma 7.2. The class of set functions witly’ -uniform circuits is closed under composition.

Proof. Letg be anm-ary set function computed by a circuit fami with sized(x). Let f,, ..., f, ben-ary set
functions, withf; computed by a circuit famil;, with sizec; (¥) and output sizés ()]2. Then the circuit to compute

the composition ofj and fon inputs embeddable phas size

dsi(),---»sm(¥) © {em(N)} © - - © {ei(9)}

.....
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7.1. Initial functions

The projection function is trivial, and we dealt with the anifunction in Lemma 6.12. Pairing, conditional, set
composition, set smash, transitive closure, cartesiadymtoand embedded Mostowski collapse remain. In each
case the proof uses Lemma 6.11.

Lemma 7.3. The pairing function haéx#-uniform circuits.

Proof. Given diagramsga, E) and(b, F) letc = {b} ® {a}, so thatG(c) has the structure of, first, a copy Gfa),
then an edge connecting its sink to the source of a cogy(bf, then an edge connecting the sink of that to the
global sinkc. Let (x,y) € G if and only if one of the following holds:

1) (xy) €E

(2) (xy) = (X ®{a},y ©{a}) forsome(x,y’) € F

(3) y=candeithex=aorx=b® {a}.
By items (1) and (2),M(a,G) = M(a,E) and M(b ® {a},G) = M(b,F). Hence by item (3) we have
M(c,G) = {M(a E), M(b, F)} as required. The lemma now follows from Lemma 6.11. O

Lemma 7.4. (The characteristic functions of) membership and equaﬁiyeA#—uniform circuits.

Proof. This follows from Lemma 6.14. For example, to compute mersihigr, given diagramé&, E) and(b, F) we
first construct a subcircuit computing the bisimulatiobetweena, E) and(b, F). ThenM(a, E) € M(b, F) if and
only if there exists1 < b with (u,b) € F anda ~ u. O

Lemma 7.5. Thecond- function hasA7*-uniform circuits.

Proof. Recall that the function corde, f, g, h) takes the valueif g € h and takes the valug otherwise. Suppose
we are given diagram&, E), (b, F), (c,G) and(d, H). We will output a diagranib ® a, ). Our circuit is formed
from four subcircuits, which we will calV, X, Y andZ. These are combined in a similar way to Lemma 7.2.
The subcircuitV computes whethevl(c,G) € M(d,H), as in Lemma 7.4.
The subcircuiX computes db ® aJ? string g with

(xyycEify#a
(xy) € IE(l){<x,a>eEify:b®a

so thatlg has the structure d& but with the sink node moved to® a, givingM(b® &, 1g) = M(a, E).
The subcircuitY computes db ® a)? stringl¢ with

(xy) €lg < (xy) = (X ®ay ©a) forsome(X,y) € F

sothatM(b® a,1g) = M(b, F).
Finally, Z takes the outputs af/, X andY, and outputdg if M(c,G) € M(d, H) andlr otherwise. O

Lemma 7.6. The set composition functian hasA¥ -uniform circuits.

Proof. Suppose we are given diagragasE) and (b, F). We will output a diagranja ® b, G), where(x,y) € G if
one of the following holds:

1) (xy) €F
(2) (xy) = (b,y ©b) forsome(X,y’) € E wherex is a source node df, E)
(3) (xy) = (X ®b,y ®b) for some(x,y) € E wherex' is not a source node @4, E)
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By item (1),M(b,G) = M(b, F). Items (2) and (3) put the structure @ E) onto the copy ofj(a) insideG(a® b),
except that all source nodes @ E) get mapped tb. HenceM(a® b,G) = M(a, E) ® M(b, F). O

Lemma 7.7. The set smash functigh hasA} -uniform circuits.
Proof. Suppose we are given diagraf@sE) and (b, F). We will output a diagrama+#b, G), where(x,y) € G if
either of the following hold:

(1) (x%Y) = (Tap(u,X),oap(u,y)) for someu € [a] and(X,y') € F
(2) (xy) = (oap(u,b), oap(v, X)) for some(u,v) € E and some source nodef (b, F).

Here item (1) puts a copy of the structurefbnto each copy of (b) insideG(a#b), and item (2) connects the
sources and sinks of these copies according to the edgesH¥#nceM (a#b, G) = M(a, E)#M(a, B). O

Lemma 7.8. Transitive closure had? -uniform circuits.

Proof. We are given a diagrania, E) and will output a diagrama, F). We first use Lemma 6.15 to con-
struct a subcircuit computing th&-ancestor relation ona, E) as an [a]?-string R. We then computeF
asEU {(x,a) : (x,a) € R}, sothatM(a, F) = tc(M(a, E)). O

Lemma 7.9. Cartesian product had’ -uniform circuits.

Proof. We are given diagramsg, E) and(b, F). We will output a diagranic, G) wherec = ((axb)#2)®{b}®{a}.
We begin by copying the structures @, E) and (b, F) onto the copies of(a) and G(b) inside G(c), so that
M(a,G) = M(a,E) andM(b ® {a},G) = M(b, F).

Recall that ordered pairs are defined(asf) = {{e},{e f}}. At the top ofG(c), the graphG((a x b)#2)
contains a disjoint copy d¥(2) for each(x,y) € a x b. Let

T2 Taxb2((XY),2) © {b} © {a}

be the mapping frong(2) to this copy ofG(2). If (x,a) € E and(y,b) € F then we add t& the edges

(1) (x,7(0)), so thatM(7(0),G) = {M(x, E)}
(2) (x,7(1)) and(y ® {a}, (1)), so thatM(7(1),G)
(3) (7(0),7(2)), (r(1),7(2)) and(r(2), c), so that{M

We do this for everyx,y) € a x b. HenceM(c,G) = M

Lemma 7.10. Embedded Mostowski collapse ha# -uniform circuits.

Proof. We are given diagram, G,) and(c, Ge). We will output a diagrantb, H) such that if we lea = M(b, G,)
andE = M(c, Gg) thenM(b,H) = M(a, E).
For any sek, definex(x) = M(x, G,), so thatk(b) = a. We put
H={(xy) € b*: x<y A k(x) <&(y) A (k(x).«(y)) € E}.

Before showing how to computé with a circuit, we prove thaw (b, H) = M(a, E). We will show bye-induction
onythatM(y,H) = M(«(y), E) for all y € [b]. Suppose this is true for al < y. Then

M(y,H) = {M(X,H) : x<y A (X, y) € H}
= {M((X),E) : x<y A &(X) <k(y) A (k(X),«(y)) € E}
={M(ZE) : z<k(y) A (z«(y)) € E}
= M(x(y). E).



A. Beckmann et al. / Feasible set functions have small ¢#rcui 19

Here the first and fourth equalities are the definitiorMbfand the second follows from the inductive hypothesis
and the definition oH. One direction of the third equality follows from settiag= «(x). For the other direction,
letz < x(y) and(z «(y)) € E. Sincez < «(y) there is a finite sequenee, ...,z suchthat =z € --- € z € «(y).
By the definition ofk, there is some < y such thatzc = «(X). Similarly we can findx_1 < X« such
thatz,_; = «x(x_1), and so on until we fine; < Xz with z=2z; = k(x;). We putx = x;.

To computeH with a circuit, we first construct subcircuits computing thisimulation~, between(b, G,)
and (b, G,); the bisimulation~, ¢ between(b, G;) and(c, Gg); the bisimulation~g between(c, Gg) and{(c, Gg);
and theGa-ancestor relatior, on (b, G,). Then forx,y € [b],

k(X) <k(y) & M(X,Gy) € tc(M(Y,Ga)) < TJu<y, X~aU A U<y.
On the other handk(x), x(y)) € E if and only if

IX,y'<c, M(x,Ga)=M(X,Gg) A M(Y,Ga)=M(Y,Gg) A (M(X,Gg), M(Y,Gg)) € M(c, Gg)
which is equivalent to

X, y<c, Xmage X A Yr~agy A “C,Ge) F(X,Y)ec.

where the expression in quotation marks means that we netgsp, y') € cin the universéc] with the membership
relation given byGe and equality given by-g. This can be written asAﬁE formula. O

7.2. Closure under recursion
Lemma 7.14 below establishes closure under subset-bouadesion. We will need a few gadgets for the proof.

Lemma 7.11. The function xy — xNy hasA#-uniform circuits. Furthermore we may assume that the d@iiCyp,
computing it on sets embeddable irbautputs arja)?-string E for a diagram(a, E).

Proof. We are given diagram&, X) and(b, Y). We first build a subcircuit to compute the bisimulatierbetween
them, then put

. (i,j) e X ifj#a
<"J>€E‘i’{<i,j> e X ATielb], (i,b) € Y AT ~i'if j = a. -

Lemma 7.12. There is aA} -uniform family G, of circuits with size bounds independent of u which, fot @,
take as input arfaj?-string X and output arfa)2-string E such that Nia, E) = M(u, X).

Proof. If u = a then we outputX. Otherwise we takeX, remove all edgesi, a), then add an edgé, a) for
every(i,u) € X, and output the result. O

Lemma 7.13. There is aA#-uniform family G Of circuits with size bounds independent of u which, fet @,
take as input arfa) x [b]2-string W and ar{a]?-string X, and output afa#b]? string E such that

M(a#b, E) = {M(b,W™) : v<uA (v,u) € X}.

Proof. We repeat the construction from the proof of Lemma 5.9. Wéwiiite o, 71 andn, respectively for the
functionsoap, 1 4p andny 5. Define

E' = {(i.]) € [a#th]* : mi()) = m(j) # @A (m2(i). 72()) € WO},
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For eachv < a this puts the structure V) N [b]? onto copyv of the graph ofb inside the graph of’, so
that M(a(v,b), E') = M(b,W™). On the other hand-(b,a) = a#b is not connected to anything iB’, so
M(a#h, E’) = 0. To rectify this, letE = E' U {(o(v,b),a#b) : v<u A (v,u) € X}. O

We can now prove the main result of this subsection.

Lemma 7.14. The class of functions with #*-uniform circuits is closed under subset-bounded recursio
Proof. Suppose thag andh are set functions Witlzﬁ#-uniform circuits. Letf be the function satisfying

f(x,2) =g{f(y.2:ye x},x,2Nh(x 2

where for simplicity we consider only a single parameteather than a tuple of parameteréhis does not change
anything important). We are given sets and must construct a circuit computifigx, z) on all setsx, zembeddable
in respectivelya, c. Consider arbitrary input string§ Z and letx = M(a, X) andz = M(c, 2).

We would like to build a circuit similar to those for Lemmad#.and 6.15, in which we put together many
copies of the circuits fog andh to simulate computind (x, z) by recursion orx. However we are giveix as a
string input, and cannot use it as a parameter when conisiguair circuit. Instead we will model a recursion an

Let [t]? = [t(a, c)]? be the output size of the given circuit computimg, z) on sets embeddable &c. We will
build a circuit which, as it computes, constructs for eactienoc [a] a [t]?-string F,, such that

M(t, Fy) = f(M(u, X), 2) (1)

and hence in particulavl (t, Fa) = (X, 2).

Letd'(s x,2) = 9(s x z)Nh(x, z) and letC = C, be a circuit computing’ on setss, x, zembedded i#t, a, c.
By our assumptions and Lemma 7.11, we may assumé:tlimﬁ#—uniform and furthermore that the output©f
is a[t]2-string. LetD, = D, be the circuit from Lemma 7.12 with the property that

M(a, Du(X)) = M(u. X)
foru < a. LetE, = Eayy be the circuit from Lemma 7.13 with the property that, for gy« [t]2-stringW,
M (a#t, E4(W X)) = {M(t, W) : v < u, (v,u) € X}.

Combining these, leB, be the circuit which takes da] x [t]?-stringW, an[a]?-string X and a[c]?-stringZ, and
outputs thet]?-string

Gu(W. X, Z) = C(Ey(W, X), Dy(X), Z).
Suppose we have fourtg, satisfying (1) for allv < u. If we define
W= {(vij) €@l x 17 :v<u (ij) € Fu)
thenWw) = F, for all v < u, and if we letF, = G,(W. X, Z) we have

M(t, Fy) = M(t, C(Eu(W X), Du(X), 2))
= g (M(a#t, Eu(W X)), M(a, Dy(X)), M(c. Z))
=d({M(t,Fy) :v<u, (v,u) € X}, M(u, X),2)
=g ({f(y.2) 1 y € M(u, X)}, M(u, X).2)
= f(M(u, X), 2).
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We can now describe a circuit computiig. Its overall shape is similar to the circuit for bisimilgritn
Lemma 6.14. We start by taking a copy @f, for eachu € [a], so the size of our circuit ia#tq whereq is the
size of G, (which is independent af). We let eaclG, take its inputsX andZ from the global inputs< andZ. Its
input nodes folW correspond to triplegv, i, j) € [a] x [t]>. For each such node, ¥ ¢ u we relabel it with the
constant). Otherwise we wire it to the output node @f corresponding tdi, j). In this way eaclG, gets as input
exactly the stringV described above. Hence the output of the topmost subcgug F. O

8. Consequences of small circuits

In this section we use our results about small circuits fostttarpen our characterization of CRSRnd then
to prove some lower bounds for it.

Theorem 8.1. TheCRSF; functions are exactly the set functions witf{ -uniform circuits.

Proof. One direction is given by Theorem 7.1. It remains to show évatry function withA#-uniform circuits
is in CRSFg. So suppose that(xi, ..., %) is such a function. This means that there is such a fa@jyof
circuits with the property that, for aty,...,ax, the circuitC4; computesf on sets embeddable i and that
if C; = (c,E, 4,8 p,u,v) thenc and p are given by smash-terms & each input sizes is [a]?, andE, 4, u
andv areA -definable from.

To computef on & in CRSF we first construct the circui€s. This can be done in CRSF since by the
uniformity conditions and the closure properties of CRSRere are CRSF functions computing each component
of C4 from &, and we can construct the usual ordeTedples in CRSE. Then for each we can trivially construct
from a the [a]%-stringE; := €[[a], so thatM(a;, E;) = &. By Lemma 6.6, we can evalua® on these strings
with a CRSK- function; then, with a CRSF function, we can outpu(t, C4(E;, . .., Ex)), wherep = t x t is the
output size ofC;. B O

It follows from the proof above that any function in CRSEan be computed using only a single Mostowski
collapse at the end of the computation. B

Theorem 8.2. Let f € CRSF&_“. Then there is & CRSk- and a smash-term t such thata) = M(t(8), g(8)).

Proof. By Theorem 7.1, the functioh hasA#-uniform circuits. We now repeat the proof of Theorem 8.1pging
the final step, so tha compute<C,(E;, . .., Ex). O

Corollary 8.3. TheCRSF and CRSF- relations are the same. Furthermore for everyefCRSF: the function
g(db) := f(d8 NbisinCRSk-. C

Proof. For the first part, observe that given a diagrdnk) we can easily compute in CRgRvhetherM(t, E) = 0.
For the second part, we first compute a diagkarg) with M(t, E) = (&), and then compute the bisimulatien
between(t, E) and the Mostowski graph d&f. Thenf(d) Nb = {c € b: Ju<t, (u,t) € EAu~c}. O

We can generalize Theorem 8.2 into a useful result about atngpcodes for CRSffunctions in CRSE.

Lemma 8.4. Let f € CRSF&:. Then there is g= CRSk- and a smash-term t such thatb) = M(t(&),g(a. b))
wheneves andb are tuples of sets with k< g for all i.

Proof. As before we repeat the proof of Theorem 8.1, except, ralfzgr thoosingds; such thatM (&, E) = a we
choose it so tha¥l(a;, E;) = b;. This can be done by first constructingog?-string E/ such thatM(b;, E/) = b; and
then using the method of Lemma 7.12. O
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Corollary 8.5. CRSF£ is closed under the replacement and union schemes. Thatriany CRSF£ function g,
there areCRSFgF functions f and u with

f(dc)={g@b):bect and udc)=|Jg(@h).

bec

Proof. By Lemma 8.4 there is a smash tetnand a CRSE function h such thath(& c,b) C [t(&c)]? and
g(d, b) = M(t(&,c),h(d c, b)) for everyb € c. We can now use the method of Section 5.3 for coding collastaf
sets. Let

W = [ J{b} x h(d c.b).

bec

ThenM(t(&, c), W®)) = g(d,b) for everyb € ¢, andW is computable in CRSF from & andc using separation,
sinceW C ¢ x [t(& c¢)]?. Replacement follows by Lemma 5.9, and union follows imragaly from replacement

The course-of-valuesf a functionf(x) on a seta (where f may possibly have other parameters) is defined
in [4] as the se{(b, f(b)) : b € tc(a)}. We will use a slightly different definition, in the spirit &ection 5.3, which
is more convenient to use with subset-bounded recursion.

Definition 8.6. We define (& —) := U, {b} x f(& b), so that for be c we have fa b) = fic(a —)®.
We define theourse-of-values of (&, x) on ¢ (with respect to the argument x) ag.t) (& —), and will write
this as £.(&, —).

Definition 8.7. The function f is obtained from g Bybset-bounded course-of-values recursiih bound h if
f(db) =g(db, f-s(d —)) Nh(&b).

Corollary 8.8. CRSF£ is closed under subset-bounded course-of-values recursio

Proof. Supposef(d b) = g(&b, f,(& —)) N h(&b) with g,h € CRSF:. DefineF (& b) = f;(& —). Then
F(a b) C [b] x Uecp (@ c), since eactf (d, ) C h(& c). By Corollary 8.5 this bound oF is in CRSF. Hence we
may potentially definé by subset-bounded recursion. This is straightforwardjzeng = {F (&, c) : c € b} we
have that JS = f.,(d —), sof(&b) = g(&b,|JS) andF(ab) = [JS U ({b} x f(&b)). HenceF is in CRSF,
and it follows immediately that is as well. O

An interesting consequence of our characterization of C&?Eﬁerms of circuits is that it allows us to use
known circuit lower bounds to prove that certain functiorss@ot in CRSFgf.

Theorem 8.9. There is n(IZRSFgF function f which computes the parity jof for every hereditarily finite set x.

Proof. Supposef is such a function. Then by Theorem 7.1 there is a smashiterroh that for every set there
is a circuitC, of sizet(a) computingf on all sets embeddable | Choose a large € w of the form 22",
Leta = P(P(k)). Thenranka) = k+ 2, |a| = nand|[a]| < 2n. Therefore the underlying graggi(t(a)) of C, has
depth (that is, rank) polynomial ikand size polynomial im. But sinceC, computes the parity of all subsetsayf
it is straightforward to build from it a circuit of depth palgmial ink and size polynomial im which computes the
parity of alln-bit strings, which is impossible by [8]. O
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In contrast, by the simulation of polynomial time in CR'SH Section 4 there is a CRgFunction which can
compute the parity of a hereditarily finite setas long ax is a set of ordinals.

As a corollary of Theorem 8.9 we get a version of£NP for CRSE. We first define a natural notion of NP
for CRSFE.

Definition 8.10. A XS-CRSF' relationis one of the fornmyCt(x) ¢(x, y), wherep(x, y) is aCRSF relation and t
is a smash term. - -

Corollary 8.11. The relationy(x) expressing that x can be partitioned into a collection of ndieced pairs is
Z%—CRSF& but is not equivalent to an§lRSF£ relation, even on hereditarily finite sets x.

ThatE%-CRSFC* is different from CRSE on {0, 1}* already follows from [12]. Say that a setC {0,1}¢ is
in NP if there is a seM C {0,1} in P (that is, decided by a polynomial time infinite-time Tagimachine) such
thatx € L «» Jye{0,1}* x®y € M, wherexdy € {0, 1}¢ alternates bits from with bits fromy. Then [12] shows
that every set in P is Borel, and gives an example of a\siet NP which is not Borel. By Theorems 4.5 and 4.6, P
coincides with CRSE on {0, 1}*. It follows thatA is in X$-CRSF: but not in CRSE .

As was already discussed, since the above separation id basgarity, it has no relevance for whether the
ordinary versions of P and NP are distinct.

9. Embedding-bounded recursion

We will write CRSFK for the class of CRSF functions in the sense of [4]. The go#iisfsection is to show that
CRSF£ and CRSE are the same. We recall some definitions from [4].

Definition 9.1. A functiont is an embedding ofa into b, writtent : a < b, if 7 : tc(a) — P(tc(b)) and for
all x,y € tc(a),

(1) 7(x) #0
(2) if x #£ythentr(x)N7(y) =0
(3) if x € y then for every \& 7(y), there is some & 7(x) with u< v.

Definition 9.2. Let g& b, x), h(& b) andr(x, & b) be functions. The function(&, b) is obtained from ¢g., b, x) by
embedding-bounded recursiaith bound K&, b) and embedding functior(x, & b) if

f(a.b) = g(db. {f(dc):ce b))

and if for all & b we haver(x, & b) : (& b) < h(& b). The last condition means that the functiorxr(x, d,b) is
an embedding (&, b) < h(a,b).

Definition 9.3. CRSK is the closure of the empty set, projections, pairing, undomd: and set smas# functions
under composition and embedding-bounded recursion.

We first show that the two natural notions of embeddabilitiycidle.

Lemma 9.4. The following are equivalent:

(1) Thereis a set E such that-a M(b, E).
(2) There is a functionr such thatr : a < b.
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Proof. First suppose tha = M(b, E). For x < a definer(x) = {u < b: x = M(u,E)}. Itis straightforward to
show thatr has the properties of an embedding function. In particiflare 7(y) andx € y thenx € M(v, E) so,
by the definition of embedded Mostowski collapses M(u, E) for someu < v, givingu € 7(x) as required.

For the other direction, suppose: a < b. We first extend the domain af from tc(a) to [a] by defining
7(a) = {b}. Itis easy to see that the three properties of an embeddiragifun still hold. Now defind as the set of
pairs(u, V) € [b]? such that

u<vA3Ixyela,xeyAuer(x)Ave(y).

We will prove bye-induction ony that, for everyy € [a] andv € 7(y),y = M(v, E). Sincer(a) = {b} it will follow
thata = M(b, E).

Fix v € 7(y). To showM(v,E) C y, letz e M(v, E). Thenz = M(u, E) for someu < v with (u,v) € E. By the
definition of E and the properties af, there exists € y with u € 7(x). By the inductive hypothesig, = M(u, E).
Thereforex = z, soz € y.

To showy C M(v, E), suppose € y. Sincev € 7(y), by the properties of there is some € 7(x) with u < v.
Then(u,v) € E and also by the inductive hypothesis= M(u, E). Thereforex € M(v, E). O

Theorem 9.5. CRSF! is contained inCRSF.

Proof. Itis shown in [4] that CRSE contains all the initial functions of CR%Fand is closed under subset-bounded
recursion. That is, all CRSFfunctions are in CRSE. So it is enough to show that embedded Mostowki collapse is
in CRSE;. We know from [4] that CRSE is closed undecourse-of-values embedding-bounded recursianich

is a version of embedding-bounded recursion in which we Boeved us to use the sequente, f(c,2)) : ¢ < b}

of all earlier values of when calculating (b, Z). We have

M(a,E) = {M(b,E) : b<an (b,a) € E}.
If S={(b,M(b,E)) : b < a} is the sequence of earlier valuesMfthen

M(a,E) = {ye | J{JS:Tb<a (by) € SA (ba) € E}

which is a CRSE function ofS, E anda.

For this to be a valid instance of course-of-values embeglounded recursion, we also need to provide a
CRSF function embeddindi(a, E) into an existing CRSE function ofa and E. By the proof of Lemma 9.4,
if b = M(a E) and we definer(x) = {u < a: x = M(u,E)} thent : b < a To computer by a CRSEk
function which does not usk!, we first compute the bisimulation between the Mostowski graph gfand(a, E)
(by Lemma 5.7 we can do this in CRSFand hence in CRSH and then take(x) = {u<a: x ~ u}. m

Theorem 9.6. CRSF is contained inCRSF.

Proof. By Theorem 21 of [4], it is enough to show that CRSE closed undek-bounded recursion where the
bounding termh is a#-term. Here a#-termis a stricter version of our smash-term: it is built only freariables,
the constant 1, and the function symbalsand#. So suppose that andr are CRSE functions,h is a #-term
andf is a function such that for a#l, b -

f(d,b) = g(@b,{f(dac):ceb}) and t(xdb): f(db) < h(@b).

We must show that € CRSFE.
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By Lemma 9.7 below we may assume that there is a fundicimCRSFé such that, for alg, b, d with b < d,
7 (x,&b,d): f(&b) < h(dd).

We will uset’ rather thamr because it is convenient to have one fixed bounding set thmuighe recursion. Below
we writeh for h(&, d).

We will showf € CRSFE by defining a functiorr (&, b, d) in CRSFE with the property thak (&, b, d) = {b} xE
for some [h]?-string E such thatM(h,E) = f(&b) wheneverb < d (the {b} is there to help us carry
out a kind of course-of-values recursion). We will constricusing C-bounded recursion obh — note that
F(ab,d) C {b} x [n]>. We then obtairf (4, b) asM(h(&, b), F (& b, b)®).

Consider the point in the recursion where we reach & setd. We are given the set= {F(d,c,d) : ¢ € b}.
LetW = |Js. By Lemma 5.9 we can compuge = {M(h,W©) : ¢ € b}. By the properties oF, eachw© is a
setE with M(h, E) = f(&,c). Therefores = {f(&,c) : c € b}.

We can now computé (&, b) asg(d b, ). Since we have a CRSFembeddingr’ : f(&b) < h, we can
use the construction in the proof of Lemma 9.4 to build aBetC [h]? such thatf(a b) = M(h E). We
putF (& b,d) = {b} x E. O

For the previous theorem we need to reprove, for CR8ctions, some technical results from [4] which
capture the idea that-terms behave like monotone functions with respect to eringd.

Lemma 9.7. Let f,g,h,i be CRSF£ functions with arguments, b, which we treat as parameters. Let, 72 be
CRSF£ functions with arguments &, b.

(1) There is aCRSFE functiont such thatifr; : f < gandr, : g < h, thent: f < h.

(2) There areCRSFé functionsr and 7’ such thatifr; : f x gandry : h g i,thent: fOh < goi
andt’ : f#h < g#i.

(3) If g is a #-term then there is aCRSFE function 7 with arguments )@ b,c such that whenever
71(%,&b) : f(&b) < g(&b) and b< cthenr(x,&,b,c) : f(& b) < g(&c).

Proof. Foritem (1), letr(x) = {z € [h] : 3yer1(X), z € 72(y)}. The proof that this is an embedding function is just
as in Lemma 18 of [4].
For item (2), extend; andr, so thatr; (f) = {g} andra(h) = {i}. Let

72(X) if x € tc(h)
7(X) = {{y@i cyerni(x®~th)}  otherwise

7 (X) ={0gi(y,Z) : Y € ti(m1.0(X)) AN Z € Ta(m2,1n(X))},

wherex ®~! h is the (unique)z such thatx = z® h, or is 0 if no suchz exists. Thenr(x) C tc(g ® i) and
7/(x) C tc(g#i) so both functions can be computed in CRSIsing separation. The proofs that these work are as
in Lemma 19 of [4]. B

For item (3) it is enough, using item (1), to find a functignsuch that”’(x, & b, c) : g(d,b) < g(&, c) when-
everb < c. This is done by induction on the complexity of tetermg, using items (1) and (2). O

10. Rudimentary functions

The class Rud of rudimentary functions was introduced ing8]the smallest class which contains projections,
pairing and set subtraction\ y and is closed under composition and the union operdti@nc) := J,..9(a b).
We will use some properties of Rud shown in [9], namely thebittainsx, is closed under separation, and that the
Rud relations are closed under Boolean operationganguantification.
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Lemma 10.1. EveryRudfunction is inCRSFé.
Proof. The only possible issue is closure under union, but thisksrtaare of by Corollary 8.5. O

Definition 10.2. LetRSbe the class of functions obtained fréitudby adding transitive closure as a basic function,
and closing under subset-bounded recursion.

We will show that RS and CRSFhave essentially the same complexity. A straightforwaddigtion shows that
no function in RS increases the rank of its arguments by ntae & constant, so RS does not contaior # and
the two classes cannot exactly coincide. But by Theorem Bél@w, for any CRSE function f we can compute
in RS a string coding the value dfvia a version of embedded Mostowski collapse. In particitf@ilows that the
relations in RS and CRSFare the same.

The key idea is that constructions in CR'Sfypically use recursion over smash-terms orderee gnd we can
simulate this in RS using recursion over cartesian productsred lexicographically by.

Definition 10.3. For k € N and k-tuplesa, b we write (&) < <5> for the usual lexicographic ordering induced by
the ordering< on components. For any set u we writg (&) for the set{(b) € tc(u) : (B) < (&)}, where(b) ranges
over k-tuples. We writéb) <V (&) instead of(B) e<{! (&).

When doing course-of-values recursion we use the notation

g = U (@ xf@o.
(@©<i(b)
where the dashk- indicates the last k arguments of f.

We introduce the boundabecause the collection of all tuplés) such thatb) < (&) is typically not a set. Note
that<y is well-founded ork-tuples, in the sense that for any formuylan the language of set theory4f g, &) holds

for somek-tuple (&) then there is some, minimalk-tuple (b) such thatp(p, B) holds.
We will use the following strengthening of course-of-valuecursion to simulate CR%Fm RS.

Definition 10.4. For k € N, the function f is obtained from g tsubset-boundektlexicographic recursiomwith
bound h if

f(P.u.d) = g(p.u.& foy (B.u.—)) Nh(p.u, &).
We call u thedomainof the recursion.
Theorem 10.5. For each ke N, the clasRSis closed under subset-bounded k-lexicographic recursion
Proof. We use induction oR. The casé& = 1 is just the usual course-of-values recursion as discussgddation 8.
The proof of Corollary 8.8, that this is available in CRSFelies on the subset-bounded recursion and union
schemes and exactly the same proof goes through for RS.

Suppose > 1. For clarity we will suppress the paramet@d/Ne will assume thag(u, & S) C h(u, &) always,
by replacingg with g N hif necessary, and we will writé, andBQ instead ofay, ..., ax andbs, ..., b.. We have

f(ud) =g(u & fag (U -))
with g,h € RS. Letf’ be defined by thék—1)-lexicographic recursion

f'(u,d5S) :=g(u,d&SUR(,ay, f<’E71<52>(u, a;,—,9)))
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whereR s the function

R(U,a1,Z) == {{(a1.B2).y) : ((B2).y) € Zand(a;,b,) € tc(u)}

whose purpose is to prepend elements of a course-of-valaesr<y_, (d:) with a;, and remove any which could
not then be elements of a course-of-values eyfefd). By the inductive hypothesif' € RS. Define a functiofr by

F(uay) = f_ <al0>(u -)

where0 stands for thék—1)-tuple of empty sets.
We claim that for al andu,

f'(u, & F(ua)) = f(uad).

Y

To see this, fixa anda; and use<i_;-induction ond.. For the inductive step, suppose that for@l) <x_1 (&)
we have

f'(u, ay, by, F(u,a;)) = f(u, al,Bg).
By definition

f'(u,a1,8, F(u,a1)) = g(u,a;, &, 2) )
where

Z=F(ua) URuayfly 4, (ua,— F(ua))

= fu@eW-)URUa, | {(B2)}x f'(ua, B F(ua))
(b2)<_, (d2)

= fuma =) U J {(aB2)}x f'(uar, by, F(ua))

(Ba)<i_, (d2)
(a1 ,B2) etc(u)

= fumau-) v U {(a1,b2)} x f(u,a,by)
(Ba)<i_,(d2)
(a1 ,bs) etc(u)

by the inductive hypothesis. From the definition,

<@ = {(by,by) ete(u) : (by <ar) V(b = ay A (By) <k (@)}
=< (a1, 0) U { (a1, b2) € te(u) = (B) <ii_; (&)}
where we are using théa,, b,) € tc(u) implies (by) € tc(u). It follows thatZ = fu@ (U, —). Therefore the right

hand side of (2) is exactly the recursive definitionf¢f, &), giving us the inductive step.
To finish the proof it is enough to show thats in RS. We have

F(ua) = fup U ) = J{®)} x f(u.b) = J{(B)} x f'(u,B,F(u.by))

<b) ete(u) (b) ete(u)
by <a; by <ay
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henceF is definable by course-of-values recursion an using f’. Furthermore sincef C h we have

F(u,a;) C tc(u) x U<B><E<a1,6> h(u, b), and this bound is in RS. Henéeis in RS. O

We now generalize the notion of diagram from Definition 2.1.

Definition 10.6. For k € N, a k-diagramis a pair ((d), E) where(d) is a k-tuple, and a paif(X), (y)) of k-tuples is
in E only if (X) <k (y). Thedomainof a k-diagram is defined as

dom({(&), E)) = {(&)} U {(X) : there is some pai{(X), (y)) € E}.
A k-diagram represents the graph with nodes (d#), E)) and edges given bi.

Definition 10.7. For k € N, the kembedded Mostowski collap$éy is defined by the lexicographic recursion

Y

Mi((8). E) = {Mk((B), E) : ((B). (@) € E and(b) <« (&)}.

For convenience we will often tred as a one-argument function, writindx(A) to meanMy((8), E) for a
k-diagramA = ((d), E). We consider &-diagramA as a code for the sélly(A). Working with codes rather than
directly with sets allows us to simulate computations imimy sets of higher rank than we could produce in RS.
Note thatMy itself is not in RS, at least fdt > 2, and that if we addVl; to RS it becomes possible to constriet
and thus every function in CRSF

We state our main result.

Theorem 10.8.1f f € CRSF£ then there is a function Fe RS and k € N such that Kd) is a k-diagram
and f(& = My(F(d)). It follows that theCRSF£ and RS relations are the same, and furthermore that for
f € CRSF. the function ¢&,b) := f(d) NbisinRS

This will follow from Theorem 10.10 below, together with tlwbservation that RS contains the function
a~ (a, €[[a?) which mapsa to al-diagram codingy. For the last sentence we repeat the proof of Corollary 8.3,
using Lemma 10.11 to compute bisimulations in RS.

Definition 10.9. We say that a function (ki,...,Xn) is RS-definable on diagrami§ for all ky,...,kn € N
there is anRS function Ry (xy,...,%m) and ¢ € N such that, for allA,, ..., Ay where each); is a k-diagram,
Fe(A1,...,An) is an¢-diagram and

Me(Fp(Ar,.... Am) = F(Mk, (A1), ..., M, (Am)).

Arrelation r(xi, ..., Xm) is RS-definable on diagranifsfor all k1, . .., kn € N there is anRSrelation Ry(x1, ..., Xm)
such that for all kdiagramsA;

RI‘(’(AI» Cee Am) = r'('\/lk1 (Al), ey Mkm(Am))»
We show that RS can simulate CR§Rmctions in this sense.

Theorem 10.10.EveryCRSF£ function isRS-definable on diagrams.

The proof of this takes up the rest of this section. The coetins used are similar to those in Section 7.

Y

Lemma 10.11.For k, ¢ € N, there is a function B,((8), E, (b), F) in RSwhich computes the bisimulation between
the k-diagram((&), E) and the¢-diagram((b), F).
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Proof. First observe that the desired bisimulation is a subset of(¢&), E) x dom((b), F). We will defineB, by
k-lexicographic recursion ofg) with domainE. Suppose we are give® = (By¢) e (— E, (b), F), that is, the
course-of-values 0By, below (&). Expanding the definition,

U {(©} x Bue((©). E. (b). F).
(<@

(c)ete(E)
Let (C) be anyE- predecessorqﬁ> Then(C) <k (&) and(C) € tc(E). Hence we can extract froBithe bisimulation
between((¢), E) and((B), F) using an RS function, as

Bic((€),E. (B),F) = {ze | J{JS: ((8).2 € S}.
We then carry on as in the proof of Lemma 5.7. O
Corollary 10.12. The relations= and € are RS-definable on diagrams.
Lemma 10.13. The constan® and the functions pairing;ond: x, ® and+# are RS-definable on diagrams.

Proof. A 1-diagram for0 is simply (0, 0). For the other functions, suppose we are givérdiagraml’ = ((&), E)
and anv-diagramA = ((b), F).

For the pairing function we take = 1 + k + ¢ and construct am-diagram, whose nodes we will write in the
form (i, X, ¥) wherei is al-tuple,Xis ak-tuple andyis an¢-tuple. We define an edge relati@) using infix notation
for G, by

-, -,

(1) (0,%0) G (0,X,0) if and only if (X) E (X’)
(2) (1,0,%) G (1,0,y’) if and only if (y) F (y")
(3) (0, a6> G (2,0,0)
(4) (1,0,6) G (2,0,0).

Note thatG respects the orderingy,. By (1) and (2),Mm((0,&,0),G) = Mc(I") andMn((1,0,B),G) = My(A).
Thus by (3) and (4)Mm((2,0,0),G) = {Mk(T'), Ms(A)}. The set composition and condunctions are similar (see
Lemmas 7.5 and 7.6).

For the smash functio# we takem = k + ¢. Using similar notation for tuples as the previous case, gfand

an edge relatiofs on m-tuples by

(1) (Xy) G (Xy’)ifand only if (X) € domT") and(y) F (y’)
(2) (%.B) G (x,¥) if and only if (X) E (X') and(y) is a source node d¥.

We output((&, b), G).

For the cartesian product we take = 3 + k + ¢. We define an edge relatioB by first, for each
pair p € dom(I") x dom(A), putting

(1) (0, p,0, 26> (0, p,0, %', 0) if and only if (X) E (X')
(2) (0,p,1,0,%) G (0, p, 1,0,y if and only if (y) F ().
(

For each suclp, if p has the form((X), ()) where(x) E (&) and(y) F (b), meaning thag ) := Mk((X), E) € Mk(T")
andfy, := M¢((), F) € M,(A), then we add six more edges:

(3) (0,p.0,%0) G (0, p.2,0,0)

-, -,

(4) <0’ p’ 0’ X 6> <0 p 3 6’ 0> and<0’ p7 1’ G’W G <0’ p’ 39 67 0>



30 A. Beckmann et al. / Feasible set functions have small ¢#rcui

(5) (0,p,2.,0,0) G (0, p,4,0,0) and(0, p,3,0,0) G (0, p, 4,0, 0)
(6) (0,p,4,0,0) G (1,0,0,0,0

From (1) and (3), we havé((0, p, 2, 0,0), G) = {e/ }. From (1), (2) and (4), we hawdn((0, p, 3,0, 0), G) = {er. fiy }-
From (5), Mm({0, p,4,0,0),G) = (e, fry). We output((1,0,0,0,0),G), which thus by (6) codes the whole

setMy(T") x Mg(A). O
Below we will use small Greek letters to denote tuples of.SEte arity will be clear from the context.
Lemma 10.14. The transitive closure function RS-definable on diagrams.

Proof. Given ak-diagramA = (a, E), we first claim that there is an RS function computing the atarerelation
on the nodes oA\,

To see this, fop < « let R; be the ancestor relation on the graph whose nodes are théoé'é‘ﬁ) S and whose
edges are those induced on this seEbfhenR; C dom(A) x dom(A) and can be computed by subset-bounkied
lexicographic recursion, where the form of the recursiasirisilar to the proof of Lemma 10.11, and we compije
from earlier value®, with (y,8) € E as in Lemma 6.15.

We output{a, E U G) whereG consists of every paifs, @) such thap is anE-ancestor ofr. O

Lemma 10.15. Embedded Mostowski collapseR$-definable on diagrams.
Proof. We are given &-diagram(a, G,) and an/-diagram(g, Gg). We will construct a seil such that
Mi((a. H)) = M(a.E)

wherea = My((a, Ga)) andE = M,({8,Gg)). As in Lemma 7.10, we defingp) = My({p, Ga)) for k-tuplesp.
We put

H = {{p,0) € dom({a,Gy)) xdom({@,G3)) : p <k o A k(p) < k(o) A {k(p),k(c)) € E}.

The proof that this works is the same as for Lemma 7.10.

To constructH in RS, we first observe that(p) < (o) if and only if M({p,Ga)) € tc(Mk({c,Ga))).
Since membership and transitive closure are RS-definableliagrams, this relation is as well. To decide
whether(k(p), k(o)) € E, we first construct a subcircuit computing the bisimulatiobetweene, G,) and(g, Gg).
Then(My({p, Ga)), Mk({0, Ga))) is in E if and only if there exist-tuplesp’, o in dom({8, Gg)) such that

p~p ANo~d AN (M({,Gg)), M({c’,Gg))) € Mc({B,Cg))

and this condition is decidable in RS, since membership hadptiring function relation are RS-definable on
diagrams. O

Lemma 10.16. For k € N there is anRSfunctionColleck such that, for any set S of k-diagran@olleck(S) is a
(k+1)-diagram with

Mis 1 (Colleci(S)) = {M(A) : A € S}.

Proof. We write ak-diagramA as((8a), EA), and can recover thietuple 8 and the seEx from A using RS
functions. Define

F=[J{{(A XA %)) : (0. (%)) € Ea}.

AE€S
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That is, for each pair ifEA we prepend\ to bothk-tuples in the pair, turning them intd + 1)-tuples, and then
take the union over al\ € S. The result is thaMy,1 (((A,8a), F)) = Mk(A) for eachA € S. Then we define

G=FU{{(A,&r),(S,0):AecS}

Whereﬁjs ak-tuple of empty sets. Note that the extra edges respect sim@graphic ordering. Finally we out-
put((S,0),G). O

Lemma 10.17.Suppose g and h aieS-definable on diagrams. Then the function f defined by suimetded
recursion from g with bound h RS-definable on diagrams.

Proof. For simplicity of presentation we will only consider a resion without parameters — this changes nothing
important. So we have

f(x) =9({f(y) : y € x},x) " h(x).

Suppose that our inpw is given as &-diagram. By assumption there afem € N and a functionrH € RS
simulatingh, which takes as input R-diagram and outputs afidiagram, and a functio® € RS simulatingg,
which takes as input aff+1)-diagram (for the previous values) an#-diagram (forx) and outputs am-diagram.

Let us name the parts of a diagram, so that (sink(A), EdgesA)). We claim that there is an RS functi@i
such that for alk-diagramsA and(¢+1)-diagramd’, we have tha&’'(T", A) C EdgesH(A)) and

Me((sink(H(A)),G'(T', A))) = g(Me+1(I'). Mk(A)) N h(My(A)). ®3)

To computes’, we first comput&(T', A), H(A) and the bisimulation- between them. To deal with the intersection,
we then take the set EdgésA)) and delete from it every eddev), sink(H(A))) for which there is nqw) ~ (V)
with the edgg (W), sink(G(T", A))) in Edges$G(T", A)). We output the result.

We can now define a function simulatifidyy recursively applying’. Below,a, 8,y stand foik-tuples. Suppose
our input is(a, E). Define a functiorF (8, E), by k-lexicographic recursion of with domainE as

F(8.E) = G'(Collec(Sy), (.E)) where Sy = {(s(y).F(r.E)) : ¥ < B.(r.8) € E}

and we introduce the notatiosty) for sink(H((y, E))). Recall that the course-of-values Bf—, E) belowg on
domainE is

Fe(—E) == | {»} xF(r.E),
y<EB

from which we can constru@g in RS. Furthermore this is a subset-bounded recursiore inthe definition o6&’
we have thaf (8, E) C Edge$H((8,E))). HenceF is in RS.
We claim thatM,({s(8), F(8,E))) = f(Mk((B, E))). It follows that we can definé on diagrams by settingto
bea. We will usek-lexicographic induction og. Letting A = (8, E) andb = My(A), we have
Me((s(B), F (B, E))) = Mc((sink(H(A)), G'(Collect(Sp), A)))
M1 (Collect(Sg)), b) N h(b)
Mc((s(). F(y.E))) : ¥ < B. (.8) € E}.b) N h(b)

Mk((7,E))) : ¥ <k B, (v.B) € E},b) nh(b)
¢): ce bl,b)nh(b)

{
{
{

A/_\

o(
o(
o({f
g({f(c
f(b)
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using, in order, the definition &f, equation (3), the definition of Colle¢the inductive hypothesis, and the recursive
definitions ofMy and f. O
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