
Computability 0 (0) 1 1
IOS Press

Feasible set functions have small circuits

Arnold Beckmann
Department of Computer Science, Swansea University, UK
a.beckmann@swansea.ac.uk

Sam Buss∗

Department of Mathematics, University of California, San Diego, USA
sbuss@ucsd.edu

Sy-David Friedman∗∗

Kurt Gödel Research Center, University of Vienna, Austria
sdf@logic.univie.ac.at

Moritz Müller ∗∗∗

Kurt Gödel Research Center, University of Vienna, Austria
moritz.mueller@univie.ac.at

Neil Thapen∗∗∗∗

Institute of Mathematics, Czech Academy of Sciences, CzechRepublic
thapen@math.cas.cz

Abstract. The Cobham Recursive Set Functions (CRSF) provide an analogue of polynomial time computation which applies to
arbitrary sets. We give three new equivalent characterizations of CRSF. The first is algebraic, using subset-bounded recursion
and a form of Mostowski collapse. The second is our main result: the CRSF functions are shown to be precisely the functions
computed by a class of uniform, infinitary, Boolean circuits. The third is in terms of a simple extension of the rudimentary
functions by transitive closure and subset-bounded recursion.

Keywords: computational complexity, primitive recursive set functions, circuit complexity, Cobham recursive set functions

1. Introduction
Computability over the natural numbers has over the years been successfully extended to robust notions of

computability on ordinals, on objects of finite type and on sets in general (see for example Sacks’ book [10]).
Our goal is to develop an analogous, robust extension of computational complexity to arbitrary sets. This is the
third of a series of papers exploring the model for polynomial-time computation on arbitrary sets given by the
Cobham recursive set functions(CRSF) [4, 5]. A broader and promising future programme is tocarry this out for
other notions from complexity theory. This paper is largelyself-contained. In particular, as it relies on a different
definition of CRSF, it can be read independently of [4] and [5].

The class CRSF was introduced in [4] to capture the notion of feasible, polynomial time computation on arbitrary
sets. In particular, it coincides with the usual polynomialtime functions on finite binary strings, if strings in{0, 1}k

are identified with the corresponding set-theoretic functions ink2.
The definition of CRSF in [4] is as a function algebra, based ona generalization of Cobham recursion on

notation to arbitrary sets. A proof-theoretic characterization of CRSF, in terms of a version of Kripke-Platek set
theory, is given in [5]. Furthermore, as shown in [4], the CRSF functions are closely connected to the Predicatively
Computable Set Functions (PCSF) defined by Arai [2], which give a different characterization of polynomial time

* Supported in part by NSF grants DMS-1101228 and CCR-1213151, by the Simons Foundation, award 306202, and by the SkolkovoInstitute
for Science and Technology.

** Supported by the Austrian Science Fund (FWF) under project number P24654.
*** Supported by the Austrian Science Fund (FWF) under project number P28699.
**** Supported in part by the European Research Council under theEuropean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC

grant agreement 339691. The Institute of Mathematics of theCzech Academy of Sciences is supported by RVO:67985840.

2211-3568/0-1900/$35.00c© 0 – IOS Press and the authors. All rights reserved

mailto:a.beckmann@swansea.ac.uk
mailto:sbuss@ucsd.edu
mailto:sdf@logic.univie.ac.at
mailto:moritz.mueller@univie.ac.at
mailto:thapen@math.cas.cz

2 A. Beckmann et al. / Feasible set functions have small circuits

functions on sets. The PCSF functions are defined using safe recursion on notation, which was earlier used in [3]
to define the larger class of Safe Recursive Set Functions (SRSF). A related notion of polynomial time on certain
infinite sets was defined by Schindler [12]; see [3] for connections between this and SRSF. Sazonov [11] introduced
a class of polynomial time functions on hereditarily finite sets, which we compare to CRSF in [4].

In [4] we take∈-recursion as the basic model for computation on sets. The innovation is that the power of
∈-recursion is restricted by allowing new functions to be introduced only if their output is no more complex than
the output of a function already known to be in CRSF, in the style of Cobham’s definition of polynomial time [6].
Here a seta is no more complex than a setb if a is embeddable inb in a certain sense (which we describe later). To
allow a limited, “polynomial” increase in complexity [4] adapts the smash function# of bounded arithmetic into
an operation on sets, namely a kind of cartesian product on Mostowski graphs, and includes this as one of the initial
functions.

We introduce here three alternative characterizations of CRSF. These all take∈-recursion as fundamental, but
they restrict its strength in different ways, and one of themdoes not use the smash function. That they all give rise
to the same class of functions gives more evidence that CRSF is natural.

The first characterization is similar to [4]. The class CRSF⊆ is formed by taking some basic initial functions,
including the smash function, and closing under composition andsubset-bounded recursion: if g andh are in the
class, then so is the functionf defined by the recursion

f (~a, b) = g(~a, b, { f (~a, c) : c ∈ b}) ∩ h(~a, b).

We call this “subset-bounded" because it allows defining a function f by recursion only if we have in hand a
functionh such thatf (~a, b) ⊆ h(~a, b). The main difference between this and the definition in [4] isthe use of this
simpler kind of recursion instead of the rather complicated“embedding-bounded" recursion of [4], of which it is
a special case. The disadvantage is that CRSF⊆ functions are limited in what they can output, because any output
value must look more or less like a subset of (some basic function of) the input.

To deal with this we use a system for coding sets as subsets. A standard way to represent a finite graph in
computer science is as a subset ofn× n (coded as a binary string of lengthn2) giving the edge relation, wheren is a
size parameter. Similarly we can take a set, represent a copyof its Mostowski graph as a subsetE of a× a, wherea
is some suitable set, and then recover the original set fromE using Mostowski collapse. It turns out that we still get
a robust system of coding if we restrict the kinds of subsetE that can appear (by only allowing edges consistent with
the ordering induced by∈), and that then we do not need the full strength of Mostowski collapse but can make do
with a limited, “feasible" version of it.

We define CRSF+⊆ by adding this limited Mostowski collapse function to CRSF⊆. We show that CRSF+⊆ and the
original CRSF are the same, and in particular that for every CRSF functionf (~x) there is a CRSF⊆ function which
computes a code forf (~x). It follows that we can computef (~x) in CRSF+⊆ with only a single use of Mostowski
collapse, and also that CRSF⊆ and CRSF contain the same relations, that is, the same 0/1 valued functions.

Our second characterization takes a very different approach, by describing a Boolean circuit model of computa-
tion on sets. We define (possibly infinite) circuits, which act on Boolean (0/1) values and have the usual conjunction,
disjunction and negation gates. To allow these to input and output sets, we use the method of coding outlined above.
For example, if we want to take as input sets which can be codedas a subsetE of a× a, we include an input node
for each memberu of a×a, and assign it the value1 if u ∈ E and0 otherwise – and as is usual in circuit complexity,
we will need a different circuit for each size parametera. We show that CRSF can be precisely characterized as the
functions which can be computed by strongly uniform families of small Boolean circuits, where “small" is defined
in terms of the smash function. This is our main result, and shows that a basic property of polynomial time functions
carries across smoothly to arbitrary sets.

There are several advantages to the Boolean circuit characterization. First, it is quite different from the earlier
characterizations, thus providing more evidence of the robustness of CRSF. Second, it makes clear that CRSF is, in
part, a model of parallel computation. This fact is obscuredin the earlier development in [4], as that work focused on
the equivalence with polynomial time computation. Third, it allows tools from the usual theory of Boolean circuit
complexity to be applied to CRSF. As an example, using the Hastad switching lemma about the inexpressibility of

A. Beckmann et al. / Feasible set functions have small circuits 3

parity in AC0 [8], we can show a version of P6=NP for CSRF. We hasten to mention that this does not say anything
about whether the usual classes of P and NP are distinct.

Our third characterization is again as a function algebra, this time defined by extending the rudimentary functions
in an elementary way. We take the class RS to be the rudimentary functions plus the transitive closure function, all
closed under subset-bounded recursion. We do not add the smash function, and it is easy to see that smash is not
in RS, which hence is different from CRSF. However we adapt our system of coding to RS and show that CRSF
functions can be defined in RS via their codes, and thus that the classes are essentially the same except for issues
of decoding. The key is to show that∈-recursion in the presence of smash can be simulated by lexicographic∈-
recursion without smash.

There are several potential routes for future work. This paper, together with related work [2–4, 12], shows that
we have established a robust understanding of polynomial time in set theory. Obvious next steps are to find set
theoretic analogues for other time, space or circuit complexity classes which are well-known and well-studied in the
context of finite binary strings.

The outline is as follows. Section 2 discusses preliminary topics, and introduces our version of the Mostowski
collapse and smash functions. Section 3 introduces subset-bounded recursion, defines our version of CRSF, and
proves some basic properties of these definitions. Section 4introduces a simple model of infinite-time Turing ma-
chine computation and shows that on finite and infinite binarystrings, CRSF functions are the same as those com-
puted by corresponding notions of polynomial time Turing machines. Section 5 introduces some technical material,
in particular bisimilarity, which we will use to detect whentwo encodings of Mostowski graphs represent the same
set. Section 6 defines infinite Boolean circuits, and also thenotion of∆#

0 -uniform families of Boolean circuits.
Section 7 proves a series of strong technical results about the power of∆#

0 -uniform circuits. Section 8 completes
the proof that the CRSF functions are precisely the functions computable with∆#

0 -uniform circuits. It also gives a
P6=NP style result for CRSF functions acting on hereditarily finite (HF) sets. Section 9 proves the equivalence of our
version of CRSF and CRSF as defined in [4]. Section 10 shows that adding transitive closure and subset-bounded
recursion to Jensen’s rudimentary functions gives anothercharacterization of CRSF.

2. Preliminaries
2.1. Notational conventions
The partial ordering induced on sets by∈ will play a fundamental role for us, analogous to the ordering on natural
numbers. We therefore use the notation< for the transitive closure of the∈ relation, and the notation6 for the
reflexive transitive closure. Writing tc(b) for the transitive closure ofb, this means thata < b and a 6 b are
equivalent toa ∈ tc(b) anda ∈ tc({b}), respectively. To further strengthen the analogy to the interval notation and
because it will be convenient for the generalized notion of “binary string” defined below, we write[a] for tc({a})
(this was denoted tc+(a) in [4]). This notation is meant to suggest the “interval”[0, a] = {x : ∅ 6 x 6 a}.

We often code one set inside another set in a way that generalizes the usual notion of binary strings. We will stick
as much as possible to the following convention. We treat some sets as “raw materials”, inside whose Mostowski
graphs we will construct other objects. We write these “raw material” sets using small lettersa, b, . . . ; they are
analogous to unary strings in complexity theory. We use capital lettersE, F, . . . or U,V, . . . for objects we construct
as subsets of the Mostowski graphs of sets of the first kind; these are analogous to binary strings. For ordinary binary
strings, the analogy is precise: an ordinary unary string oflengthn is identified with the von Neumann integera = n,
and an ordinary binary string of lengthn is then the subsetU of a having as members the positions where a bit1
appears in the string.

In a directed graph, if there is an edge from a nodeu to a nodev we say thatu is apredecessorof v. If there is
a path (possibly of length0) from u to v we say thatu is anancestorof v. We will usually be dealing with acyclic
(in fact well-founded) directed graphs, and when we describe directed graphs we think of the edges as pointing
upwards.

We define the ordered pair as〈a, b〉 = {{a}, {a, b}} and extend this in the usual way to orderedk-tuples, with
〈a, b, c〉 = 〈a, 〈b, c〉〉 etc. and〈~a〉 = a if ~a is a1-tuple. We will write[a]k for thek-th cartesian power of[a], since we

4 A. Beckmann et al. / Feasible set functions have small circuits

will need to refer to this often. But we do not use this notation for sets not written in the form[a] to avoid confusion
with ordinal exponentiation.

We identify the natural numbers with the finite von Neumann ordinals∅, {∅}, . . . For the sake of consistency we
will always write0 instead of∅.

2.2. Embedded Mostowski collapse

Recall that a directed graph with nodesU and edgesE is well-foundedif, for every non-empty subsetS of U, there is
a nodey in S with no predecessors inS. It is extensionalif no two distinct nodes have the same set of predecessors.
We say that it isaccessible pointedwith sink a if there is a path from every node toa.1

The Mostowski graphof a set a is the directed graphG(a) := 〈[a],E〉 with nodes[a] and with edges
E = {〈x, y〉 ∈ [a]2 : x ∈ y}. ClearlyG(a) is well-founded, extensional and accessible pointed, withsink a. By
well-foundedness and extensionality it also has exactly one source node, the empty set. On the other hand ifG is
any well-founded, extensional, accessible pointed graph then there is a unique seta, theMostowski collapseof G,
such thatG is isomorphic toG(a). We denote this seta byM(G).

Definition 2.1. A diagramis a pair 〈a,E〉 of sets such that〈x, y〉 ∈ E only if x< y.

The diagram〈a,E〉 represents the graph with nodes[a] and edgesE ∩ [a]2. We think of 〈a,E〉 as a graph
“embedded” in the Mostowski graphG(a) of a, with edges that are forced to respect the ordering onG(a). An
example of a diagram is the pair〈a,∈↾[a]2〉, representingG(a) itself.

A diagram is automatically well-founded, by the condition on E. In general it is not accessible pointed or
extensional; for example any nodes in[a] outside the range ofE will have the same, empty set of predecessors.
However, if we restrict the graph to the set of nodes that areE-ancestors ofa, then it is accessible pointed, with sinka.
Furthermore, we can make it extensional by recursively collapsing together nodes with the same set of predecessors.
We can then take the Mostowski collapse of the resulting graph. This procedure, which we callembedded Mostowski
collapse, has a simple recursive definition:

Definition 2.2. The embedded Mostowski collapse function M(a,E) is defined by

M(a,E) = {M(b,E) : b < a∧ 〈b, a〉 ∈ E}.

Notice that this is definable by∈-recursion. We will almost always use Mostowski collapse inthis form, so will
often omit the word “embedded".

We use rank(x) to denote the von Neumann rank of the setx and|x| to denote its cardinality.

Lemma 2.3. |[M(a,E)]| 6 |[a]| andrank(M(a,E)) 6 rank(a).

Definition 2.4. We say bis embeddable ina if b = M(a,E) for some E.

We interpret the embeddability ofb in a as meaning thatb is no more complex thana, in the sense that, for exam-
ple, recursion overb is no more powerful than recursion overa. Lemma 9.4 shows that our notion of embeddability
is the same as the one in [4].

1 Aczel [1] defines anaccessible pointed graphas one with a distinguished node from which every other node is reachable. Note that our paths
run in the opposite direction.

A. Beckmann et al. / Feasible set functions have small circuits 5

2.3. The smash function
We repeat some definitions from [4].

Definition 2.5. Theset composition functiona⊙ b is defined as follows. Given sets a and b, construct a graph H
by drawing the graphG(a) above the graphG(b) and then identifying the source ofG(a) with the sink ofG(b).
Then a⊙ b = M(H).

An equivalent recursive definition for set composition is:

a⊙ b =

{

b if a = 0
{x⊙ b : x ∈ a} if a 6= 0.

Definition 2.6. The set smash functiona#b is defined as follows. Given sets a and b, construct a graph H by
drawing a disjoint copy Gx of G(b) for every point x∈ G(a), and then adding an edge from the sink of Gx to the
source of Gy for every edge〈x, y〉 of G(a). Then a#b = M(H).

An equivalent recursive definition for set smash isa#b = b⊙ {x#b : x ∈ a}.
The smash function is a kind of cartesian product on Mostowski graphs. We introduce a corresponding “pairing

function”σa,b(x, y), which we think of as taking nodesx ∈ G(a) andy ∈ G(b) and outputting the node correspond-
ing to y in the x-th copyGx of G(b) in H. Note that although we writea as a subscript inσa,b we do not actually
usea in the definition.

Definition 2.7. We defineσa,b(x, y) = y⊙ {z#b : z∈ x}.

Lemma 2.8. The function〈x, y〉 7→ σa,b(x, y) is an order isomorphism between[a]× [b], ordered lexicographically,
and[a#b].

Definition 2.9. We letπ1,a,b : [a#b] → [a] andπ2,a,b : [a#b] → [b] be projection functions invertingσa,b, so that
σa,b(π1,a,b(z), π2,a,b(z)) = z for z∈ [a#b].

Lemma 2.10. For sets a and b,

(1) rank(a⊙ b) = rank(b) + rank(a)
(2) |tc(a⊙ b)| = |tc(a)|+ |tc(b)|
(3) rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1)
(4) |tc(a#b)|+ 1 = (|tc(b)|+ 1)(|tc(a)|+ 1), equivalently,|[a#b]| = |[a]| · |[b]|.

Definition 2.11. A smash-termis a term built from variables, the constant0 and the functions pairing, cartesian
product, transitive closure,⊙ and#.

Smash-terms will play the role usually played by polynomials in computational complexity, providing bounds
for various complexity measures. Notice that the rank, and respectively the size of the transitive closure, of a smash-
term is at most polynomially larger than those of its arguments. (The corresponding definition of#-term in [4] is
stricter, only allowing variables, the constant1, ⊙ and#.)

3. Subset-bounded recursion and CRSF
This section is modelled on the similar development of CRSF in [4].

Definition 3.1. Let g(~a, b, x) and h(~a, b) be functions from sets to sets. The function f(~a, b) is obtained from
g(~a, b, x) bysubset-bounded recursionwith bound h(~a, b) if

f (~a, b) = g(~a, b, { f (~a, c) : c ∈ b}) ∩ h(~a, b).

6 A. Beckmann et al. / Feasible set functions have small circuits

Definition 3.2. We take as initial functions

(1) the constant0
(2) projection: a1, . . . , an 7→ a j for 1 6 j 6 n
(3) pairing: a, b 7→ {a, b}
(4) union: a 7→

⋃

a

(5) conditional:cond∈(a, b, c, d) =

{

a if c ∈ d
b otherwise

(6) transitive closure: a7→ tc(a)
(7) cartesian product: a, b 7→ a×b
(8) set composition: a, b 7→ a⊙ b
(9) set smash: a, b 7→ a#b

(10) embedded Mostowski collapse: a,E 7→ M(a,E).

The above initial functions are roughly the same as the primitive symbols in the definition of Cobham recursive set
functions given in [5], but with the addition of the embeddedMostowski collapse function.

Definition 3.3. CRSF⊆ is defined as the closure of initial functions(1) to (9)under composition and subset-bounded
recursion.CRSF+⊆ is defined as the closure of all of the initial functions above, including embedded Mostowski
collapse, under composition and subset-bounded recursion.

Definition 3.4. A CRSF⊆ relation is a relationϕ(~a) given by an expression of the form g(~a) 6= 0 where g is a
CRSF⊆ function. TheCRSF+⊆ relations are defined similarly.

Lemma 3.5. We derive some basic properties ofCRSF⊆. These also hold withCRSF+⊆ in place ofCRSF⊆.

(1) CRSF⊆ contains the functions{a}, a∪ b and

cond=(a, b, c, d) =

{

a if c = d
b otherwise.

(2) TheCRSF⊆ relations are closed under Boolean operations.
(3) CRSF⊆ is closed underseparation. That is, ifϕ(~a, c) is aCRSF⊆ relation then the following function is also

in CRSF⊆:

f (~a, b) = {c ∈ b : ϕ(~a, c)}.

(4) The CRSF⊆ relations are closed under∆0 quantification, in which quantifiers range over members of a
given set.

(5) CRSF⊆ contains the functions
⋂

a, a\ b and a∩ b. By convention
⋂

0 = 0.
(6) CRSF⊆ contains the usual pairing and projection functions for k-tuples, for k∈ N.
(7) CRSF⊆ containsσa,b and the projection functionsπ1,a,b andπ2,a,b.

Proof.

(1) We use{a} = {a, a} anda∪ b =
⋃

{a, b}. We define cond= as cond∈(a, b, c, {d}).
(2) We define¬(g(~a) 6= 0) and (f (~a) 6= 0) ∨ (g(~b) 6= 0) respectively by cond=(1, 0, g(~a), 0) 6= 0 and

f (~a) ∪ g(~b) 6= 0.

A. Beckmann et al. / Feasible set functions have small circuits 7

(3) Using cond∈, cond= and Boolean operations we can define functions by cases. Definek(~a, b, c) by recursion
onc as

k(~a, b, c) =

{c} if c ∈ b andϕ(~a, c)
⋃

{k(~a, b, d) : d ∈ c} if c = b
0 otherwise.

Then k(~a, b, c) ⊆ b always, sok is definable by subset-bounded recursion with boundb. We put
f (~a, b) = k(~a, b, b).

(4) We can define the relation∃c∈bϕ(~a, c) by

{c ∈ b : ϕ(~a, c)} 6= 0

where the set on the left is given by separation.
(5) We take

⋂

a = {x ∈
⋃

a : ∀b∈a (x ∈ b)}, using separation. The other two are trivial.
(6) Trivial.
(7) We haveσa,b(x, y) = y⊙ {z#b : z∈ x}, where the set{z#b : z∈ x} can be obtained by separation, since it

is a subset of tc([x#b]). Forz∈ [a#b] we can define, for example, the projection functionπ1,a,b by

π1,a,b(z) =
⋃

{x ∈ [a] : ∃y∈[b]σa,b(x, y) = z}

since exactly onex satisfies the condition on the right. ✷

Lemma 3.6. The rank function is inCRSF+⊆.

Proof. Given a seta, defineρ(a) by first lettingH be the transitive closure ofG(a) as a graph, that is, we start with
G(a) and add an edge〈x, y〉 whenever there is a path fromx to y, and then lettingρ(a) be the Mostowski collapse
of H. Thenρ(a) is an ordinal, since it is a transitive set of transitive sets. Furthermore, we can show by induction
ona that rank(ρ(a)) = rank(a). We haveρ(a) = {ρ(x) : x ∈ tc(a)} so

rank(ρ(a)) = sup{rank(y) + 1 : y ∈ ρ(a)}

= sup{rank(ρ(x)) + 1 : x ∈ tc(a)}

= sup{rank(x) + 1 : x ∈ tc(a)}

= rank(a)

It follows that ρ(a) = rank(a). This construction can be done in CRSF+
⊆ by definingρ(a) = M(a,H), where

H = {〈x, y〉 ∈ [a]2 : x < y}. ✷

Note that the graphH above is in general not extensional — for example, consider what happens to the nodes{1}
and2 whena = {{1}, 2}. This situation is similar to the appearance of a multi-valued embedding in the construction
of the rank function in [4].

Lemma 3.7. Ordinal addition and multiplication are inCRSF+⊆.

Proof. We know that rank(a ⊙ b) = rank(b) + rank(a) and rank(a#b) + 1 = (rank(b) + 1)(rank(a) + 1), from
Lemma 2.10. Hence the functiona+ b = rank(b⊙ a) gives us ordinal addition, and we can define ordinal multipli-
cation by subset-bounded recursion as

a · b =
⋃

{a · c+ a : c ∈ b} ∩ rank(b#a)

8 A. Beckmann et al. / Feasible set functions have small circuits

sincea · b ⊆ rank(b#a) for ordinals. ✷

Lemma 3.8. For any CRSF+⊆ function f , we haverank(f (~a)) 6 p(rank(~a)) and |[f (~a)]| 6 p(|[~a]|) for some
polynomial p.

Proof. This is a straightforward induction on the complexity off . ✷

Corollary 3.9. Ordinal exponentiation is not inCRSF+⊆.

Corollary 3.10. There is noCRSF+⊆ function which, on all hereditarily finite sets x, ouputs theordinal |x|.

Proof. Let f be such a function. Taken ∈ N and leta be its power setP(n), so f (a) is the ordinal2n. Then
rank(a) = n+ 1 while rank(f (a)) = 2n. ✷

We conclude this section with a digression about the choice of initial functions and whether they are all nec-
essary. It turns out that Mostowski collapse plays a more limited role in CRSF+⊆ than might be expected. We will
show in Section 8 that for any functionf (~a) in CRSF+⊆, there is a smash-termt(~a) and a functiong(~a) in CRSF⊆
such thatf (~a) = M(t(~a), g(~a)). In other words, if we can compute a set in CRSF+

⊆, then we can already compute
a diagram of it in CRSF⊆. In particular, Mostowski collapse is not needed if we are only interested in computing
0/1-valued functions.

We expect that we could do without cartesian product, since if we want to quantify over pairs ina×b we could
instead quantify over elements of[a#b], using the functionσa,b(x, y) where we now use the ordered pair〈x, y〉. This
change would require some formal changes to our definitions of diagrams and Mostowski collapse, to make use of
this new system.

In the full system CRSF+⊆ we do not need to include set composition as an initial function, since it is easy to
construct the Mostowski graph ofa⊙b as a diagram embedded insidea#b and then recovera⊙b using Mostowski
collapse.

The smash function would seem to play a central role in introducing polynomial growth rate functions. Nonethe-
less, there is a natural way to extend embedded Mostowski collapse which removes the need for the smash function.
Fork ∈ N, definek-embedded Mostowski collapseas

Mk(〈~a〉,E) = {Mk(〈~b〉,E) : 〈~b〉 <k 〈~a〉 ∧ 〈〈~b〉, 〈~a〉〉 ∈ E}

where〈~a〉, 〈~b〉 arek-tuples and<k is the lexicographic ordering given by<. We can use the order-isomorphism
between[a]k under<k and [a# · · ·#a] (with k occurrences ofa) under< to defineMk in CRSF+⊆. In the other
direction, it is straightforward to define the smash function using M2, so the class CRSF+⊆ is unchanged if we
remove smash and set composition and replaceM with M2. For more on<k andMk, see Section 10.

4. Turing machines
We consider a simple model of infinite-time Turing machines [7]. The usual finite Turing machines are special

cases of the definition below, obtained by considering only finite ordinals and skipping any text containing the word
“limit”.

We simulate machines operating on strings of symbols from a finite alphabet of numerals0, . . . , k−1. These
strings may be finite, but more generally will have ordinal length. We need to specify how to code such strings as
sets, so that we can manipulate them with CRSF+

⊆ functions. We do this in a straightforward way by letting a string

A. Beckmann et al. / Feasible set functions have small circuits 9

of lengthλ 6 ω be formally a functionλ → k and dealing with this directly as a set-theoretic function,that is, as a
set of ordered pairs.2

Consider a Turing machineA with a single, one-way tape,mstates, andk symbols. We will simulate the machine
running on a tape of lengthλ 6 ω for time τ, whereλ andτ are ordinals (that is,λ will be either finite orω). A
configuration of the machine is a triple〈W, i, s〉 where the stringW is the contents of the tape,i is the position of the
head ands is the state.

At each stepσ+1, machineA reads the symbol that was under the head in stepσ, then writes a symbol, changes
state and moves the head, all according to the transition function (as usual).

At limit stepsσ, we set the symbol in each cellj in W to be the highest symbol that occurs cofinally often in
cell j as we range over the earlier configurations. We change the state s to a distinguished limit state and move the
head toi = 0.

Let ConfigA(λ, I , τ) be the function that takes as inputs ordinalsλ 6 ω andτ, and a stringI of ordinal length6 λ,
and outputs the configuration of the machineA with tape lengthλ after running forτ steps on inputI .

Lemma 4.1. ConfigA is in CRSF⊆.

Proof. ConfigA can be defined by a straightforward recursion. The only technical issue is to make sure that the
intermediate values in the recursion are all subsets of a setwe can construct. We assume thatλ andτ are ordinals
and will write< rather than∈ for membership in an ordinal.

Let F(λ, I , τ) be the function that, on well-formed inputs, outputs

{τ}×W×{i}×{s} = {〈τ, a, i, s〉 : a ∈ W}

where〈W, i, s〉 is the configuration ofM at stepτ. Then

F(λ, I , τ) ⊆ {τ}× (λ× k)× λ×m

so we can potentially defineF directly by subset-bounded recursion. To do so, we must showhow to compute
F(λ, I , τ) from S = {F(λ, I , σ) : σ < τ}. Observe that forσ < τ we can recoverF(λ, I , σ) from S as the subset of
⋃

S consisting of elements with first componentσ. In particular we can recover the tape contentsWσ at stepσ by
separation as

Wσ = {a ∈ λ× k : ∃i<λ ∃s<m〈σ, a, i, s〉 ∈
⋃

S}

and can similarly recover the head positioniσ and the statesσ.
If τ = 0 then we leti = 0, let s be the starting state, and letW be the input stringI , padded out as necessary to

lengthλ with pairs〈 j, 0〉 (assuming without loss of generality that the symbol0 stands for “blank”). Ifσ :=
⋃

τ ∈ τ
thenτ is the successor ordinalσ + 1. Using Wσ, iσ, sσ and the transition function ofM, we computeW using
separation and changei andsappropriately.

Otherwiseτ is a limit. We lets be the limit state and leti = 0. The set of symbols occurring cofinally often in
cell j is

X j = {x < k : ∀σ<τ∃σ′<τ (σ < σ′ ∧ 〈 j, x〉 ∈ Wσ′)}.

Hence
⋃

X j is the maximum symbol that occurs cofinally often, and we can let W = {a ∈ λ× k : a = 〈 j,
⋃

X j〉}.
This shows thatF is in CRSF⊆. The lemma follows. ✷

2 There are other ways of handling this. In particular, over the binary alphabet we could code strings of lengthλ simply as subsets ofλ. We
do not use this encoding here, partly to avoid issues of how tomark the end of a string, but we will use it beginning in Section 5.1 where we
will be dealing with strings of fixed size. An alternative where we explicitly record the lengthλ would be to code binary stringsa0a1 . . . as pairs
〈λ, {i < λ : ai = 1}〉. This would be essentially equivalent to the coding used in the current section, since there are CRSF+

⊆
functions translating

in both directions between them.

10 A. Beckmann et al. / Feasible set functions have small circuits

As usual,{0, 1}∗ denotes the set of finite binary strings.

Theorem 4.2. Every polynomial time function from{0, 1}∗ to {0, 1}∗ is in CRSF+⊆.

Proof. Supposef is computed by a Turing machineA which halts in timenc on inputs of lengthn > 1. Given a
finite stringw, in CRSF+⊆ we can compute the lengthn of w as{i ∈

⋃⋃

w : ∃x<k 〈i, x〉 ∈ w}. We then computenc

(using Lemma 3.7) and ConfigA(n
c,w, nc), and the output off can easily be obtained from this. ✷

The only use of Mostowski collapse in the proof of Theorem 4.2is to obtainnc from n. If we instead let
m = n# · · ·#n (wheren appearsc times) thenm is order-isomorphic to(n+ 1)c − 1, and we can prove a version
of Lemma 4.1 that avoids using Mostowski collapse, by simulating Turing machine computations of lengthnc using
∈-recursion onm rather than onnc. All that prevents us from carrying out the whole proof of thetheorem in this way
is that, under our coding of binary strings as sets, we must beable to convert the output into a sequence indexed by
an ordinal. This is not a problem for very simple outputs, so we have:

Theorem 4.3. Every polynomial time relation on{0, 1}∗ is in CRSF⊆.

As a converse of Theorem 4.2 we have the following.

Theorem 4.4. EveryCRSF+⊆ function from{0, 1}∗ to {0, 1}∗ is in polynomial time.

Proof. We use the same argument as [4]. The theorem follows from the more general observation that for any
CRSF+⊆ function f (x1, . . . , xr) there is a polynomial time function which, for any hereditarily finite setsa1, . . . , ar ,
given graphsG(a1), . . . ,G(ar) outputsG(f (a1, . . . , ar)) (up to graph isomorphism) using the standard encoding of
directed graphs as strings. This is proved by induction on the complexity of f . The bound on recursion guarantees
that the sizes of the graphs involved do not grow too fast. ✷

We now move to infinite-time machines. Following [12], a function from{0, 1}ω to {0, 1}ω is polynomial time
if it is computed by an infinite-time Turing machine with three tapes (an input tape, an output tape and a working
tape) which always halts after at mostωd steps, for some fixed exponentd ∈ N.

Theorem 4.5. Every polynomial time function from{0, 1}ω to {0, 1}ω is in CRSF⊆.

Proof. This is proved in the same way as Theorem 4.3, with minor changes to accommodate simulating three tapes
rather than one. Since the output sequence is a subset ofω×2, we can use separation to construct it from the output
of ConfigM and do not need Mostowski collapse. ✷

Theorem 4.6. EveryCRSF+⊆ function from{0, 1}ω to {0, 1}ω is polynomial time.

Proof. It is shown in [3] that every such function from{0, 1}ω to {0, 1}ω in the class SRSF is polynomial time. By
results in [4] and in Section 9 below, every function in CRSF+

⊆ is in SRSF. ✷

5. Bisimilarity and coding
This section discusses the generalized notion of binary strings, bisimulation, and how to code collections of sets.

A. Beckmann et al. / Feasible set functions have small circuits 11

5.1. a-strings
Definition 5.1. Let a be any set. An a-string is a subset of a.

We will sometimes informally identify ana-string with its characteristic functiona → {0, 1}. In this sense, for
finite ordinalsk, the usual binary strings in{0, 1}k of complexity theory correspond to thek-strings. For example,
the binary string01101 ∈ {0, 1}5 corresponds to the5-string{0, 2, 3} (writing the most significant bit on the left).

For us, the most important use ofa-strings is to encode sets via a Mostowski collapse:

Definition 5.2. We say that a diagram〈a,E〉 codesthe set M(a,E). If a is fixed and E is an[a]2-string, we say E
codesthe set M(a,E).

This way of coding sets, as a size parametera together with an[a]2-string E, is designed to work well with
subset-bounded recursion.

5.2. Bisimilarity
We will frequently need to recognize when two diagrams code the same set even in situations where the Mostowski
collapse function is not available. If we are dealing with extensional, accessible pointed diagrams, then two such
diagrams code the same set if and only if they are isomorphic.However our diagrams are typically neither, so we
will instead use the notion ofbisimilarity (see for example [1]). This is very well-behaved on well-founded graphs.

Definition 5.3. A bisimulationbetween directed graphs G and H is a relation∼ relating nodes of G to nodes of H,
such that for all nodes u in G and v in H, u∼ v holds if and only if both of the following hold:

(1) For every predecessor u′ of u in G, there is a predecessor v′ of v in H such that u′ ∼ v′

(2) For every predecessor v′ of v in H, there is a predecessor u′ of u in G such that u′ ∼ v′.

Recall that a diagram〈a,E〉 represents the directed graph with nodes[a] and edges[a]2 ∩ E.

Definition 5.4. We say that two diagrams〈a,E〉 and〈b, F〉 arebisimilar if there is a bisimulation∼ between〈a,E〉
and〈b, F〉 such that a∼ b.

Lemma 5.5. There is at most one bisimulation between two diagrams.

Proof. Suppose∼1 and∼2 are distinct bisimulations between diagrams〈a,E〉 and 〈b, F〉. Chooseu <-minimal
in [a] such that there is av ∈ [b] for which∼1 and∼2 differ on the pair〈u, v〉, and fix a<-minimal suchv. Then∼1

and∼2 agree on all predecessors ofu andv. Therefore, by the definition of a bisimulation, they must agree on〈u, v〉,
giving a contradiction. ✷

Lemma 5.6. Given diagrams〈a,E〉, 〈b, F〉, there is at least one bisimulation between them, and they are bisimilar
if and only if M(a,E) = M(b, F).

Proof. Define a relation∼ by u ∼ v if and only if M(u,E) = M(v, F). It follows directly from the definitions that
this is a bisimulation between〈a,E〉 and〈b, F〉. We then apply Lemma 5.5. ✷

Lemma 5.7. There is aCRSF⊆ function B(a,E, b, F) computing the bisimulation between diagrams〈a,E〉
and〈b, F〉, by outputting the bisimulation as a set of ordered pairs.

Proof. First observe thatB(a,E, b, F) ⊆ [a]× [b], so we can potentially defineB directly by a subset-bounded re-
cursion. We will use recursion ona. Given a setS = {∼c : c ∈ a}, where each∼c is the bisimulation between〈c,E〉
and〈b, F〉 output byB(c,E, b, F), let ∼ =

⋃

S. Then by the uniqueness of bisimulations,∼ ∩ ([c] × [b]) = ∼c

for everyc ∈ a. It follows that∼ has all the properties of a bisimulation between〈a,E〉 and〈b, F〉 except possi-
bly at a, and we can extend∼ to a by adding a pair〈a, y〉 for everyy ∈ [b] which satisfies both conditions from
Definition 5.3. ✷

12 A. Beckmann et al. / Feasible set functions have small circuits

5.3. Coding collections of sets
We use a generalized notion of a 0/1 matrix to allow a single set W to encode a collection of sets. The intuition is
that the pairs〈c, x〉 in W encode the Mostowski graph of thec-th set encoded byW.

Definition 5.8. For sets W and c, we define the c-th row ofW, denoted W(c), as the set{x : 〈c, x〉 ∈ W}.

Note thatW(c) ⊆
⋃⋃

W, so the functionW, c 7→ W(c) is in CRSF⊆ by separation. The next lemma allows us to
use such a matrix to code a set of sets.

Lemma 5.9. The function f(W, a, b) = {M(a,W(c)) : c ∈ b} is in CRSF+⊆.

Proof. Let e = b#a. Our strategy is to construct fromW a single embedded graph〈e,E〉 such that
f (W, a, b) = M(e,E). We will write σ, π1, π2 for the functionsσb,a, π1,b,a, π2,b,a. Define

E′ = {〈u, v〉 ∈ [e]2 : π1(u) = π1(v) 6= b∧ 〈π2(u), π2(v)〉 ∈ W(π1(u))}.

For eachc < b this puts the structure ofW(c) ∩ [a]2 onto copyc of the graph ofa inside the graph ofe, so that
M(σ(c, a),E′) = M(a,W(c)). On the other handσ(b, a) = e is not connected to anything inE′, soM(e,E′) = 0.
Let E = E′ ∪ {〈σ(c, a), e〉 : c ∈ b}. ThenM(e,E) equals{M(σ(c, a),E′) : c ∈ b}, which is the required set. ✷

6. Boolean circuits
This section defines computations with unbounded fan-in Boolean circuits encoded by sets. We first introduce

circuits that compute functions mapping strings to strings. We then extend this to circuits computing set functions,
which operate on sets encoded as diagrams or strings. The setvalue that is computed by the circuit will be extracted
from its output using the embedded Mostowski collapse.

Definition 6.1. A circuit is a triple 〈c,E, λ〉 where〈c,E〉 is a diagram andλ is a function from[c] to the set of
symbols{0, 1, ∗,

∧

,
∨

,¬} (which we identify with the numbers0, . . . , 5) such that each node labelled¬ has exactly
one E-predecessor. The nodes labelled∗ are calledinput nodes. We say that the circuit hassizec.

Conjuctions and disjunctions may have arbitrary fan-in. The labels0 and1 represent the constant valuesFalse
andTrue.

Definition 6.2. Let C= 〈c,E, λ〉 be a circuit, and let a be its set of input nodes. Given any a-string A, acomputation
of C on A is a [c]-string W which, informally, assigns0/1 values to the nodes of C in such a way that each input
node gets the same value that it has in A, and all other nodes get values according to the usual interpretations of
their symbols in a circuit. That is, for all u∈ [c],

(1) if λ(u) = 0 then u /∈ W
(2) if λ(u) = 1 then u∈ W
(3) if λ(u) = ∗ then u∈ W ↔ u ∈ A
(4) if λ(u) =

∧

then u∈ W ↔ ∀v<u (〈v, u〉 ∈ E → v ∈ W)
(5) if λ(u) =

∨

then u∈ W ↔ ∃v<u (〈v, u〉 ∈ E ∧ v ∈ W)
(6) if λ(u) = ¬ then u∈ W ↔ ∃v<u (〈v, u〉 ∈ E ∧ v /∈ W).

In general, to guarantee that a circuit has a computation it is enough for the graph underlying the circuit to be
well-founded. However we need the extra condition that the graph is embedded inc for the next lemma.

Lemma 6.3. There is aCRSF⊆ function which takes a circuit C and an a-string A, as in Definition 6.2, and outputs
a computation of C on A.

A. Beckmann et al. / Feasible set functions have small circuits 13

Proof. Let f (C,A, v) be the function that outputs a[v]-string assigning correct values to all nodesu 6 v in the
circuit. Sincef (C,A, v) ⊆ [v] it is possible to definef directly by subset-bounded recursion. Suppose we are given
S = { f (C,A, u) : u ∈ v}. ThenW′ =

⋃

S assigns the correct values to all nodesu of the circuit withu < v,
and since〈c,E〉 is a diagram, this includes all nodes such that〈u, v〉 ∈ E. Hence we have enough information to
extendW′ to a [v]-stringW which also assigns the correct value tov, and clearly this can be done in CRSF⊆. ✷

We extend the definition to handle computations on tuples of strings. Whenc, a1, . . . , ak andp are finite ordinals,
the following is equivalent to the usual definition of a finiteBoolean circuit.

Definition 6.4. A circuit with input sizesa1, . . . , ak and output sizep is a tuple〈c,E, λ, ~a, p, µ, ν〉 where〈c,E, λ〉 is
a circuit and we are also given

(1) A partial functionµ : [c] → ({0} × a1) ∪ · · · ∪ ({k−1} × ak) which maps every input node to a member of
(a disjoint copy of) some ai , and

(2) A functionν : p → [c] which maps every element of p to some node in[c]. We call the range ofν theoutput
nodes.

Definition 6.5. Thecircuit evaluation functiontakes inputs C, ~A where C= 〈c,E, λ, ~a, p, µ, ν〉 is a circuit and~A is
a tuple of strings, with each Ai an ai-string. It outputs the p-string C(~A) computed by C on inputs~A.

Lemma 6.6. The circuit evaluation function is inCRSF⊆.

Proof. We construct a computationW of the circuit as in the proof of Lemma 6.3. We recover the output by sepa-
ration as{i ∈ p : ν(i) ∈ W}. ✷

Definition 6.7. A family C~a of circuits parametrized by a tuple~a of sets issmall if there are smash-terms
s, t, u1, . . . , uk such that the size of C~a is s(~a), and C~a has input sizes u1(~a), . . . , uk(~a) and output size t(~a). We
say that a family C

~a,~b is smallwith size bounds independent of~b if the parameters~b do not appear in any of these
smash-terms.

Consider a set functionf (x) which, when its inputs are sets embeddable ina, outputs a set embeddable inp.
Using diagrams, we can code the inputs and output off respectively as[a]2-strings and[p]2-strings. We can then
ask whether the corresponding function from strings to strings is computed by a small circuit.

Definition 6.8. Let f(x1, . . . , xk) be any set function and let a1, . . . , ak be a tuple of sets. Suppose that C is a circuit
with input sizes[a1]2, . . . , [ak]

2 and output size[p]2 for some p, such that for every tuple E1, . . . ,Ek of strings, with
each Ei an [ai]

2-string, we have

M(p,C(E1, . . . ,Ek)) = f (M(a1,E1), . . . ,M(ak,Ek))

where C(E1, . . . ,Ek) is the[p]2-string as defined in Lemma 6.6. Then we say that Ccomputesf on sets embeddable
in a1, . . . , ak.

We say that fhas small circuitsif there is a family C~a of small circuits such that, for all~a, C~a computes f on
sets embeddable in~a.

We next describe a class of simple formulas, which we will useboth for constructing circuits and to define a
notion of uniformity for circuits. Note that the terms in thelanguage below are exactly the smash-terms.

Definition 6.9. A∆#
0 formula is a formula in the language{∈, 0, pairing, tc, ×, ⊙, #} in which all quantifiers are

bounded, of the form∃x<t or ∀x<t . We say that a family of sets is∆#
0 -definable (with parameters~z) if there is a

∆#
0 formulaϕ and a smash-term t such that the sets in the family have the form{u ∈ t(~z) : ϕ(u,~z)}.

14 A. Beckmann et al. / Feasible set functions have small circuits

Definition 6.10. A family C~z of circuits is ∆#
0 -uniform if it is small and the sets E⊆ [c]2, λ ⊆ [c] × 6,

µ ⊆ [c] × (({0} × a1) ∪ · · · ∪ ({k−1} × ak)) and ν ⊆ p × [c] describing the circuit C~z are all ∆#
0 -definable

with parameters~z.

Below, to save space we will write e.g. “a1, . . . , ak-strings A1, . . . ,Ak” instead of “ana1-string A1, an a2-
stringA2, . . . ” etc.

The next lemma states that the truth-sets of certain kinds of∆#
0 formulas can be computed by∆#

0 -uniform
circuits. This is a crucial tool underlying the proof in Section 7 that CRSF+⊆ has small circuits.

Lemma 6.11. Letϕ be a∆#
0 formula

ϕ(x1, . . . , xℓ, a1, . . . , am, b1, . . . , bn,U1, . . . ,Uk)

in which all occurrences of variables Ui are immediately to the right of an∈ symbol in an atomic formula of the
form t∈ Ui , and in which only variables ai can appear in terms bounding quantifiers. It is not necessarythat all the
variables are present inϕ. Let t(~a), s1(~a), . . . , sk(~a) be smash-terms.

There is a∆#
0 -uniform family of circuits C

~a,~b with size bounds independent of~b, with input sizes s1(~a), . . . , sk(~a)

and output size t(~a), such that for all~a and~b and all s1(~a), . . . , sk(~a)-strings U1, . . . ,Uk we have

C
~a,~b(

~U) = {〈~x〉 ∈ t(~a) : ϕ(~x, ~a, ~b, ~U)}.

Proof. We fix m, n andk and use induction on the complexity ofϕ. Circuits will be given with descriptions that can
easily be turned into∆#

0 formulas.
Supposeϕ has the formr1(~x, ~a, ~b) ∈ r2(~x, ~a, ~b) for termsr1, r2. We compute thet(~a)-string

{〈~x〉 ∈ t(~a) : r1(~x, ~a, ~b) ∈ r2(~x, ~a, ~b)}

using a circuit of sizet(~a). Each nodeu ∈ [t(~a)] of the circuit is labelled1 if u = 〈~x〉 for some~x with
r1(~x, ~a, ~b) ∈ r2(~x, ~a, ~b), and is otherwise labelled0 (there are no input nodes or nodes labelled with connectives).
The setE of edges is empty. The functionν mapping elements of the output sizet(~a) to output nodes is just the
identity.

The case whereϕ has the formr(~x, ~a, ~b) ∈ Ui is broadly similar. This time each nodeu ∈ [t(~a)] is labelled
with a ∗ (that is, as an input node) ifu = 〈~x〉 for some~x with r(~x, ~a, ~b) ∈ si(~a), and is otherwise labelled0. The
output is arranged as in the previous case. The functionµ mapping input nodes to the disjoint union of input sizes
maps〈~x〉 to 〈i−1, r(~x, ~a, ~b)〉 (we usei−1 to match the notation in Definition 6.4), with the result thata computationW
assigns1 to 〈~x〉 if and only if r(~x, ~a, ~b) ∈ Ui .

Supposeϕ has the formϕ1 ∧ ϕ2. Let C1 andC2 be circuits for respectively

{〈~x〉 ∈ t(~a) : ϕ1(~x, ~a, ~b, ~U)} and {〈~x〉 ∈ t(~a) : ϕ2(~x, ~a, ~b, ~U)}

with sizesc1 = c1(~a) andc2 = c2(~a). We define a circuitD with sized = t(~a) ⊙ {c2} ⊙ {c1}. This means that
the underlying graph ofD consists of a copy ofG(c1) at the bottom, with a copy ofG(c2) above it, and a copy
of G(t(~a)) above that, with the sink node of each component connected tothe source node of the next component.
We will call the componentsC′

1, C′
2 andO. The labellings, edges and connections to inputs inC′

1 are copied fromC1,
and similarly forC′

2 andC2. So, for example, ifC2 has an edge〈u, v〉 thenD has an edge〈u⊙ {c1}, v⊙ {c1}〉. The
functionνmaps every element of the output sizet(~a) to the corresponding node ofO, that is,ν : u 7→ u⊙{c2}⊙{c1},
and these nodes in the image ofν are labelled with

∧

. The other nodes ofO are labelled with0 and are not used.
Finally, in the original circuits eachu ∈ t(~a)was associated with an output nodeν1(u) in C1 and an output nodeν2(u)

A. Beckmann et al. / Feasible set functions have small circuits 15

in C2. In D we connect each nodeu⊙{c2}⊙{c1} labelled
∧

in O to the nodes ofD corresponding toν1(u) andν2(u),
that is, toν1(u) in C′

1 andν2(u)⊙ {c1} in C′
2.

Supposeϕ has the form∀x′∈s(~a)ψ(x′, ~x, ~a, ~b, ~U). Let C be a circuit for

{〈x′, ~x〉 ∈ s(~a)× t(~a) : ψ(x′, ~x, ~a, ~b, ~U)}

with sizec = c(~a). We construct a circuitD of size t(~a) ⊙ {c}, consisting ofC with a copyO of G(t(~a)) above
it, similarly to the previous case. For the output nodes ofD we take all nodesu⊙ {c} in O for u ∈ t(~a), and label
them with

∧

. If such a node has the form〈~x〉 ⊙ {c}, we connect it by an edge to every output nodeνC(〈x′, ~x〉) in C
with x′ ∈ s(~a), whereνC is C’s function mapping elements of its output sizes(~a)× t(~a) to its output nodes.

Negation is handled similarly. ✷

We finish this section by giving three concrete examples of families of small uniform circuits, all of which we
will need in the next section. The first example, union, is nowan easy consequence of Lemma 6.11. The other two,
circuits for computing bisimilarity and the ancestor relation, are more complicated.

Lemma 6.12. The union function has∆#
0 -uniform circuits.

Proof. Let 〈a,E〉 be a diagram. Let the[a]2-stringF be defined from the[a]2-stringE by

〈x, y〉 ∈ F ⇔

{

〈x, y〉 ∈ E if y 6= a
∃z∈[a], 〈x, z〉 ∈ E ∧ 〈z, a〉 ∈ E if y = a.

ThenM(a, F) =
⋃

M(a,E). The result follows by Lemma 6.11. ✷

For the next two examples we will need a technical lemma, to help construct circuits defined using smash.

Lemma 6.13. For x ∈ [a], y ∈ [b] and w∈ [a#b] the relationσa,b(x, y) = w is definable by a∆#
0 formula which

uses only terms in a and b as bounds on quantifiers.

Proof. We haveσa,b(x, y) = w if and only if w = y⊙ {z#b : z∈ x}, which holds if and only if

∃s∈[w], w = y⊙ s ∧ s= {z#b : z∈ x}.

This is∆#
0 -definable, and we can bound all quantifiers by[a#b] ∪ [a]. ✷

Lemma 6.14. There is a family Ca,b of ∆#
0 -uniform circuits, with input sizes[a]2 and [b]2 and with output

size[a]× [b], which take an[a]2-string E and a[b]2-string F and output a string giving the bisimulation between
diagrams〈a,E〉 and〈b, F〉.

Proof. We will imitate the recursion ona used to show that bisimilarity is in CRSF⊆ in Lemma 5.7. Foru ∈ [a] we
write∼u for the bisimulation between〈u,E〉 and〈b, F〉, which we treat as a[a]× [b]-string.

Let Ru =
⋃

{∼u′ : u′ ∈ u}. Then for〈x, y〉 ∈ [a]× [b] we have〈x, y〉 ∈∼u if and only if either〈x, y〉 ∈ Ru,
or x = u and the conditions from Definition 5.3 hold, that is,

∀x′∈[a]
(

〈x′, x〉 ∈ E → ∃y′∈[b] (〈y′, y〉 ∈ F ∧ 〈x′, y′〉 ∈ Ru)
)

∧ ∀y′∈[b]
(

〈y′, y〉 ∈ F → ∃x′∈[a] (〈x′, x〉 ∈ E ∧ 〈x′, y′〉 ∈ Ru)
)

.

16 A. Beckmann et al. / Feasible set functions have small circuits

Thus∼u is expressed by a∆#
0 formula to which we can apply Lemma 6.11, giving∆#

0 -uniform circuitsCa,b,u

computing∼u from E, F and Ru, with size bounds independent ofu. Let t = t(a, b) be the size ofCa,b,u and
let λu, µu andνu be the functions describing respectively its internal, input and output gates.

Our circuitC which computes bisimulations has sizea#t and functionsλ, µ andν. It is formed as follows. For
eachu ∈ [a]:

(1) C has an edge〈σa,t(u, x), σa,t(u, y)〉 for each edge〈x, y〉 in Ca,b,u.
(2) For eachx ∈ [t], the internal gateλ(σa,t(u, x)) is the same asλu(x).
(3) For eachx ∈ [t], if µu(x) = 〈0, z〉 for z∈ [a]2 (representing an input fromE) or if µu(x) = 〈1, z〉 for z∈ [b]2

(representing an input fromF) thenσa,t(u, x) is an input node ofC andµ(σa,t(u, x)) = µu(x).

In other words via the mapx 7→ σa,t(u, x) theu-th copy oft insidea#t, which we will callCu, is given the same
internal structure asCa,b,u and accesses inputs fromE andF in the same way. Then:

(4) For eachx ∈ [t], if µu(x) = 〈2, z〉 for z∈ [a]× [b] (representing an input fromRu) thenλ(σa,t(u, x)) =
∨

and
for eachu′ ∈ u there is an edge inC connectingσa,t(u, x) with the “output node" ofCu′ corresponding toz,
that is, the nodeσa,t(u′, νu′(z)). (If u = 0, this is equivalent to settingλ(σa,t(u, x)) = 0.)

(5) For eachz∈ [a]× [b] we setν(z) = σa,t(a, νa(z)).

By item (4) the[a]× [b]-string that the subcircuitCu gets as its third “input” is the union of the[a]× [b]-strings
“output” by the subcircuitsCu′ for u′ ∈ u. Thus by induction onu the “output" ofCu is ∼u. Finally item (5) reads
off the “output" of the top subcircuitCa as the output of our circuitC. ✷

Lemma 6.15. There is a family Ca of ∆#
0 -uniform circuits, with input and output size[a]2, which take as input a

string E and output a string giving the relation “x is an E-ancestor of y in the diagram〈a,E〉”.

Proof. Let us write✁u for the E-ancestor relation on〈u,E〉. Let Ru =
⋃

{✁v : v ∈ u}. Then forx, y ∈ [u], we
have〈x, y〉 ∈ ✁u if and only if

x = y∨ 〈x, y〉 ∈ Ru ∨ ∃z∈[a] (z< y∧ 〈x, z〉 ∈ Ru ∧ 〈z, y〉 ∈ E).

Hence by Lemma 6.11 there is a small,∆#
0 -uniform circuit Ca,u computing✁u from E and Ru, with size t(a)

independent ofu.
Our circuit has sizea#t(a) and is formed by takingG(a) and replacing each nodeu with a copy ofCa,u, adding

edges so thatCa,u gets as inputE and the union of the outputs ofCa,v for v ∈ u, exactly as in Lemma 6.14. ✷

7. Small circuits for CRSF+
⊆

Theorem 7.1. EveryCRSF+⊆ function has∆#
0 -uniform circuits.

To prove this it is enough to show that all our initial functions have such circuits, and that the class of functions
with such circuits is closed under composition and subset-bounded recursion.

Lemma 7.2. The class of set functions with∆#
0 -uniform circuits is closed under composition.

Proof. Let g be anm-ary set function computed by a circuit familyD~x with sized(~x). Let f1, . . . , fm ben-ary set
functions, withfi computed by a circuit familyCi

~y with sizeci(~y) and output size[si(~y)]2. Then the circuit to compute

the composition ofg and ~f on inputs embeddable in~y has size

d(s1(~y), . . . , sm(~y))⊙ {cm(~y)} ⊙ · · · ⊙ {c1(~y)}

and is formed in the obvious way, by connecting copies ofDs1(~y),...,sm(~y) andC1
~y , . . . ,C

m
~y together. ✷

A. Beckmann et al. / Feasible set functions have small circuits 17

7.1. Initial functions
The projection function is trivial, and we dealt with the union function in Lemma 6.12. Pairing, conditional, set
composition, set smash, transitive closure, cartesian product and embedded Mostowski collapse remain. In each
case the proof uses Lemma 6.11.

Lemma 7.3. The pairing function has∆#
0 -uniform circuits.

Proof. Given diagrams〈a,E〉 and〈b, F〉 let c = {b} ⊙ {a}, so thatG(c) has the structure of, first, a copy ofG(a),
then an edge connecting its sink to the source of a copy ofG(b), then an edge connecting the sink of that to the
global sinkc. Let 〈x, y〉 ∈ G if and only if one of the following holds:

(1) 〈x, y〉 ∈ E
(2) 〈x, y〉 = 〈x′ ⊙ {a}, y′ ⊙ {a}〉 for some〈x′, y′〉 ∈ F
(3) y = c and eitherx = a or x = b⊙ {a}.

By items (1) and (2),M(a,G) = M(a,E) and M(b ⊙ {a},G) = M(b, F). Hence by item (3) we have
M(c,G) = {M(a,E),M(b, F)} as required. The lemma now follows from Lemma 6.11. ✷

Lemma 7.4. (The characteristic functions of) membership and equalityhave∆#
0 -uniform circuits.

Proof. This follows from Lemma 6.14. For example, to compute membership, given diagrams〈a,E〉 and〈b, F〉 we
first construct a subcircuit computing the bisimulation∼ between〈a,E〉 and〈b, F〉. ThenM(a,E) ∈ M(b, F) if and
only if there existsu < b with 〈u, b〉 ∈ F anda ∼ u. ✷

Lemma 7.5. Thecond∈ function has∆#
0 -uniform circuits.

Proof. Recall that the function cond∈(e, f , g, h) takes the valuee if g ∈ h and takes the valuef otherwise. Suppose
we are given diagrams〈a,E〉, 〈b, F〉, 〈c,G〉 and〈d,H〉. We will output a diagram〈b⊙ a, I〉. Our circuit is formed
from four subcircuits, which we will callW, X, Y andZ. These are combined in a similar way to Lemma 7.2.

The subcircuitW computes whetherM(c,G) ∈ M(d,H), as in Lemma 7.4.
The subcircuitX computes a[b⊙ a]2 string IE with

〈x, y〉 ∈ IE ⇔

{

〈x, y〉 ∈ E if y 6= a
〈x, a〉 ∈ E if y = b⊙ a

so thatIE has the structure ofE but with the sink node moved tob⊙ a, giving M(b⊙ a, IE) = M(a,E).
The subcircuitY computes a[b⊙ a]2 string IF with

〈x, y〉 ∈ IF ⇔ 〈x, y〉 = 〈x′ ⊙ a, y′ ⊙ a〉 for some〈x′, y′〉 ∈ F

so thatM(b⊙ a, IF) = M(b, F).
Finally, Z takes the outputs ofW, X andY, and outputsIE if M(c,G) ∈ M(d,H) andIF otherwise. ✷

Lemma 7.6. The set composition function⊙ has∆#
0 -uniform circuits.

Proof. Suppose we are given diagrams〈a,E〉 and〈b, F〉. We will output a diagram〈a⊙ b,G〉, where〈x, y〉 ∈ G if
one of the following holds:

(1) 〈x, y〉 ∈ F
(2) 〈x, y〉 = 〈b, y′ ⊙ b〉 for some〈x′, y′〉 ∈ E wherex′ is a source node of〈a,E〉
(3) 〈x, y〉 = 〈x′ ⊙ b, y′ ⊙ b〉 for some〈x′, y′〉 ∈ E wherex′ is not a source node of〈a,E〉

18 A. Beckmann et al. / Feasible set functions have small circuits

By item (1),M(b,G) = M(b, F). Items (2) and (3) put the structure of〈a,E〉 onto the copy ofG(a) insideG(a⊙b),
except that all source nodes of〈a,E〉 get mapped tob. HenceM(a⊙ b,G) = M(a,E)⊙ M(b, F). ✷

Lemma 7.7. The set smash function# has∆#
0 -uniform circuits.

Proof. Suppose we are given diagrams〈a,E〉 and〈b, F〉. We will output a diagram〈a#b,G〉, where〈x, y〉 ∈ G if
either of the following hold:

(1) 〈x, y〉 = 〈σa,b(u, x′), σa,b(u, y′)〉 for someu ∈ [a] and〈x′, y′〉 ∈ F
(2) 〈x, y〉 = 〈σa,b(u, b), σa,b(v, x)〉 for some〈u, v〉 ∈ E and some source nodex of 〈b, F〉.

Here item (1) puts a copy of the structure ofF onto each copy ofG(b) insideG(a#b), and item (2) connects the
sources and sinks of these copies according to the edges ofE. HenceM(a#b,G) = M(a,E)#M(a, B). ✷

Lemma 7.8. Transitive closure has∆#
0 -uniform circuits.

Proof. We are given a diagram〈a,E〉 and will output a diagram〈a, F〉. We first use Lemma 6.15 to con-
struct a subcircuit computing theE-ancestor relation on〈a,E〉 as an [a]2-string R. We then computeF
asE ∪ {〈x, a〉 : 〈x, a〉 ∈ R}, so thatM(a, F) = tc(M(a,E)). ✷

Lemma 7.9. Cartesian product has∆#
0 -uniform circuits.

Proof. We are given diagrams〈a,E〉 and〈b, F〉. We will output a diagram〈c,G〉wherec = ((a×b)#2)⊙{b}⊙{a}.
We begin by copying the structures of〈a,E〉 and 〈b, F〉 onto the copies ofG(a) andG(b) insideG(c), so that
M(a,G) = M(a,E) andM(b⊙ {a},G) = M(b, F).

Recall that ordered pairs are defined as〈e, f 〉 = {{e}, {e, f}}. At the top ofG(c), the graphG((a × b)#2)
contains a disjoint copy ofG(2) for each〈x, y〉 ∈ a× b. Let

τ : z 7→ σa×b,2(〈x, y〉, z)⊙ {b} ⊙ {a}

be the mapping fromG(2) to this copy ofG(2). If 〈x, a〉 ∈ E and〈y, b〉 ∈ F then we add toG the edges

(1) 〈x, τ(0)〉, so thatM(τ(0),G) = {M(x,E)}
(2) 〈x, τ(1)〉 and〈y⊙ {a}, τ(1)〉, so thatM(τ(1),G) = {M(x,E),M(y, F)}
(3) 〈τ(0), τ(2)〉, 〈τ(1), τ(2)〉 and〈τ(2), c〉, so that〈M(x,E),M(y, F)〉 ∈ M(c,G).

We do this for every〈x, y〉 ∈ a× b. HenceM(c,G) = M(a,E)× M(y, F). ✷

Lemma 7.10. Embedded Mostowski collapse has∆#
0 -uniform circuits.

Proof. We are given diagrams〈b,Ga〉 and〈c,GE〉. We will output a diagram〈b,H〉 such that if we leta = M(b,Ga)
andE = M(c,GE) thenM(b,H) = M(a,E).

For any setx, defineκ(x) = M(x,Ga), so thatκ(b) = a. We put

H = {〈x, y〉 ∈ [b]2 : x < y ∧ κ(x) < κ(y) ∧ 〈κ(x), κ(y)〉 ∈ E}.

Before showing how to computeH with a circuit, we prove thatM(b,H) = M(a,E). We will show by∈-induction
ony thatM(y,H) = M(κ(y),E) for all y ∈ [b]. Suppose this is true for allx < y. Then

M(y,H) = {M(x,H) : x < y ∧ 〈x, y〉 ∈ H}

= {M(κ(x),E) : x < y ∧ κ(x) < κ(y) ∧ 〈κ(x), κ(y)〉 ∈ E}

= {M(z,E) : z< κ(y) ∧ 〈z, κ(y)〉 ∈ E}

= M(κ(y),E).

A. Beckmann et al. / Feasible set functions have small circuits 19

Here the first and fourth equalities are the definition ofM, and the second follows from the inductive hypothesis
and the definition ofH. One direction of the third equality follows from settingz = κ(x). For the other direction,
let z< κ(y) and〈z, κ(y)〉 ∈ E. Sincez< κ(y) there is a finite sequencez1, . . . , zk such thatz= z1 ∈ · · · ∈ zk ∈ κ(y).
By the definition ofκ, there is somexk < y such thatzk = κ(xk). Similarly we can findxk−1 < xk such
thatzk−1 = κ(xk−1), and so on until we findx1 < x2 with z= z1 = κ(x1). We putx = x1.

To computeH with a circuit, we first construct subcircuits computing thebisimulation∼a between〈b,Ga〉
and〈b,Ga〉; the bisimulation∼a,E between〈b,Ga〉 and〈c,GE〉; the bisimulation∼E between〈c,GE〉 and〈c,GE〉;
and theGa-ancestor relation⊳a on 〈b,Ga〉. Then forx, y ∈ [b],

κ(x) < κ(y) ⇔ M(x,Ga) ∈ tc(M(y,Ga)) ⇔ ∃u<y, x ∼a u ∧ u ⊳a y.

On the other hand,〈κ(x), κ(y)〉 ∈ E if and only if

∃x′, y′<c, M(x,Ga)=M(x′,GE) ∧ M(y,Ga)=M(y′,GE) ∧ 〈M(x′,GE),M(y′,GE)〉∈M(c,GE)

which is equivalent to

∃x′, y′<c, x ∼a,E x′ ∧ y ∼a,E y′ ∧ “〈c,GE〉 � 〈x′, y′〉 ∈ c” .

where the expression in quotation marks means that we interpret〈x′, y′〉 ∈ c in the universe[c] with the membership
relation given byGE and equality given by∼E. This can be written as a∆#

0 formula. ✷

7.2. Closure under recursion
Lemma 7.14 below establishes closure under subset-boundedrecursion. We will need a few gadgets for the proof.

Lemma 7.11. The function x, y 7→ x∩ y has∆#
0 -uniform circuits. Furthermore we may assume that the circuit Ca,b

computing it on sets embeddable in a, b outputs an[a]2-string E for a diagram〈a,E〉.

Proof. We are given diagrams〈a,X〉 and〈b,Y〉. We first build a subcircuit to compute the bisimulation∼ between
them, then put

〈i, j〉 ∈ E ⇔

{

〈i, j〉 ∈ X if j 6= a
〈i, j〉 ∈ X ∧ ∃i′∈[b], 〈i′, b〉 ∈ Y∧ i ∼ i′ if j = a.

✷

Lemma 7.12. There is a∆#
0 -uniform family Ca,u of circuits with size bounds independent of u which, for u6 a,

take as input an[a]2-string X and output an[a]2-string E such that M(a,E) = M(u,X).

Proof. If u = a then we outputX. Otherwise we takeX, remove all edges〈i, a〉, then add an edge〈i, a〉 for
every〈i, u〉 ∈ X, and output the result. ✷

Lemma 7.13. There is a∆#
0 -uniform family Ca,b,u of circuits with size bounds independent of u which, for u6 a,

take as input an[a]× [b]2-string W and an[a]2-string X, and output an[a#b]2 string E such that

M(a#b,E) = {M(b,W(v)) : v < u∧ 〈v, u〉 ∈ X}.

Proof. We repeat the construction from the proof of Lemma 5.9. We will write σ, π1 andπ2 respectively for the
functionsσa,b, π1,a,b andπ2,a,b. Define

E′ = {〈i, j〉 ∈ [a#b]2 : π1(i) = π1(j) 6= a∧ 〈π2(i), π2(j)〉 ∈ W(π1(i))}.

20 A. Beckmann et al. / Feasible set functions have small circuits

For eachv < a this puts the structure ofW(v) ∩ [b]2 onto copyv of the graph ofb inside the graph ofE′, so
that M(σ(v, b),E′) = M(b,W(v)). On the other handσ(b, a) = a#b is not connected to anything inE′, so
M(a#b,E′) = 0. To rectify this, letE = E′ ∪ {〈σ(v, b), a#b〉 : v < u ∧ 〈v, u〉 ∈ X}. ✷

We can now prove the main result of this subsection.

Lemma 7.14. The class of functions with∆#
0 -uniform circuits is closed under subset-bounded recursion.

Proof. Suppose thatg andh are set functions with∆#
0 -uniform circuits. Letf be the function satisfying

f (x, z) = g({ f (y, z) : y ∈ x}, x, z) ∩ h(x, z)

where for simplicity we consider only a single parameterz rather than a tuple of parameters~z (this does not change
anything important). We are given setsa, c and must construct a circuit computingf (x, z) on all setsx, zembeddable
in respectivelya, c. Consider arbitrary input stringsX,Z and letx = M(a,X) andz= M(c,Z).

We would like to build a circuit similar to those for Lemmas 6.14 and 6.15, in which we put together many
copies of the circuits forg andh to simulate computingf (x, z) by recursion onx. However we are givenX as a
string input, and cannot use it as a parameter when constructing our circuit. Instead we will model a recursion ona.

Let [t]2 = [t(a, c)]2 be the output size of the given circuit computingh(x, z) on sets embeddable ina, c. We will
build a circuit which, as it computes, constructs for each nodeu ∈ [a] a [t]2-stringFu such that

M(t, Fu) = f (M(u,X), z) (1)

and hence in particularM(t, Fa) = f (x, z).
Let g′(s, x, z) = g(s, x, z)∩h(x, z) and letC = Ca,c be a circuit computingg′ on setss, x, zembedded ina#t, a, c.

By our assumptions and Lemma 7.11, we may assume thatC is ∆#
0 -uniform and furthermore that the output ofC

is a [t]2-string. LetDu = Da,u be the circuit from Lemma 7.12 with the property that

M(a,Du(X)) = M(u,X)

for u 6 a. Let Eu = Ea,t,u be the circuit from Lemma 7.13 with the property that, for any[a]× [t]2-stringW,

M(a#t,Eu(W,X)) = {M(t,W(v)) : v < u, 〈v, u〉 ∈ X}.

Combining these, letGu be the circuit which takes an[a] × [t]2-stringW, an [a]2-string X and a[c]2-stringZ, and
outputs the[t]2-string

Gu(W,X,Z) = C(Eu(W,X),Du(X),Z).

Suppose we have foundFv satisfying (1) for allv < u. If we define

W = {〈v, i, j〉 ∈ [a]× [t]2 : v < u, 〈i, j〉 ∈ Fv}

thenW(v) = Fv for all v < u, and if we letFu = Gu(W,X,Z) we have

M(t, Fu) = M(t,C(Eu(W,X),Du(X),Z))

= g′(M(a#t,Eu(W,X)),M(a,Du(X)),M(c,Z))

= g′({M(t, Fv) : v < u, 〈v, u〉 ∈ X},M(u,X), z)

= g′({ f (y, z) : y ∈ M(u,X)},M(u,X), z)

= f (M(u,X), z).

A. Beckmann et al. / Feasible set functions have small circuits 21

We can now describe a circuit computingFa. Its overall shape is similar to the circuit for bisimilarity in
Lemma 6.14. We start by taking a copy ofGu for eachu ∈ [a], so the size of our circuit isa#q whereq is the
size ofGu (which is independent ofu). We let eachGu take its inputsX andZ from the global inputsX andZ. Its
input nodes forW correspond to triples〈v, i, j〉 ∈ [a]× [t]2. For each such node, ifv 6< u we relabel it with the
constant0. Otherwise we wire it to the output node ofGv corresponding to〈i, j〉. In this way eachGu gets as input
exactly the stringW described above. Hence the output of the topmost subcircuitGa is Fa. ✷

8. Consequences of small circuits
In this section we use our results about small circuits first to sharpen our characterization of CRSF+

⊆, and then
to prove some lower bounds for it.

Theorem 8.1. TheCRSF+⊆ functions are exactly the set functions with∆#
0 -uniform circuits.

Proof. One direction is given by Theorem 7.1. It remains to show thatevery function with∆#
0 -uniform circuits

is in CRSF+⊆. So suppose thatf (x1, . . . , xk) is such a function. This means that there is such a familyC~a of
circuits with the property that, for alla1, . . . , ak, the circuitC~a computesf on sets embeddable in~a, and that
if C~a = 〈c,E, λ, ~s, p, µ, ν〉 then c and p are given by smash-terms in~a, each input sizesi is [ai]

2, and E, λ, µ
andν are∆#

0 -definable from~a.
To computef on ~a in CRSF+⊆ we first construct the circuitC~a. This can be done in CRSF⊆, since by the

uniformity conditions and the closure properties of CRSF⊆ there are CRSF⊆ functions computing each component
of C~a from~a, and we can construct the usual ordered7-tuples in CRSF⊆. Then for eachi we can trivially construct
from ai the [ai]

2-string Ei := ∈↾[ai], so thatM(ai ,Ei) = ai . By Lemma 6.6, we can evaluateC~a on these strings
with a CRSF⊆ function; then, with a CRSF+⊆ function, we can outputM(t,C~a(E1, . . . ,Ek)), wherep = t× t is the
output size ofC~a. ✷

It follows from the proof above that any function in CRSF+
⊆ can be computed using only a single Mostowski

collapse at the end of the computation.

Theorem 8.2. Let f ∈ CRSF+⊆. Then there is g∈ CRSF⊆ and a smash-term t such that f(~a) = M(t(~a), g(~a)).

Proof. By Theorem 7.1, the functionf has∆#
0 -uniform circuits. We now repeat the proof of Theorem 8.1, skipping

the final step, so thatg computesC~a(E1, . . . ,Ek). ✷

Corollary 8.3. TheCRSF+⊆ andCRSF⊆ relations are the same. Furthermore for every f∈ CRSF+⊆ the function
g(~a, b) := f (~a) ∩ b is inCRSF⊆.

Proof. For the first part, observe that given a diagram〈t,E〉 we can easily compute in CRSF⊆ whetherM(t,E) = 0.
For the second part, we first compute a diagram〈t,E〉 with M(t,E) = f (~a), and then compute the bisimulation∼
between〈t,E〉 and the Mostowski graph ofb. Then f (~a) ∩ b = {c ∈ b : ∃u<t, 〈u, t〉 ∈ E ∧ u ∼ c}. ✷

We can generalize Theorem 8.2 into a useful result about computing codes for CRSF+⊆ functions in CRSF⊆.

Lemma 8.4. Let f ∈ CRSF+⊆. Then there is g∈ CRSF⊆ and a smash-term t such that f(~b) = M(t(~a), g(~a, ~b))

whenever~a and~b are tuples of sets with bi 6 ai for all i.

Proof. As before we repeat the proof of Theorem 8.1, except, rather than choosingEi such thatM(ai ,Ei) = ai we
choose it so thatM(ai ,Ei) = bi . This can be done by first constructing a[bi]

2-stringE′
i such thatM(bi ,E′

i) = bi and
then using the method of Lemma 7.12. ✷

22 A. Beckmann et al. / Feasible set functions have small circuits

Corollary 8.5. CRSF+⊆ is closed under the replacement and union schemes. That is, for any CRSF+⊆ function g,

there areCRSF+⊆ functions f and u with

f (~a, c) = {g(~a, b) : b ∈ c} and u(~a, c) =
⋃

b∈c

g(~a, b).

Proof. By Lemma 8.4 there is a smash termt and a CRSF⊆ function h such thath(~a, c, b) ⊆ [t(~a, c)]2 and
g(~a, b) = M(t(~a, c), h(~a, c, b)) for everyb ∈ c. We can now use the method of Section 5.3 for coding collections of
sets. Let

W =
⋃

b∈c

{b}×h(~a, c, b).

ThenM(t(~a, c),W(b)) = g(~a, b) for everyb ∈ c, andW is computable in CRSF⊆ from ~a andc using separation,
sinceW ⊆ c× [t(~a, c)]2. Replacement follows by Lemma 5.9, and union follows immediately from replacement.✷

The course-of-valuesof a function f (x) on a seta (where f may possibly have other parameters) is defined
in [4] as the set{〈b, f (b)〉 : b ∈ tc(a)}. We will use a slightly different definition, in the spirit ofSection 5.3, which
is more convenient to use with subset-bounded recursion.

Definition 8.6. We define f↾c(~a,−) :=
⋃

b∈c {b} × f (~a, b), so that for b∈ c we have f(~a, b) = f↾c(~a,−)(b).
We define thecourse-of-values off (~a, x) on c (with respect to the argument x) as f↾tc(c)(~a,−), and will write

this as f<c(~a,−).

Definition 8.7. The function f is obtained from g bysubset-bounded course-of-values recursionwith bound h if

f (~a, b) = g(~a, b, f<b(~a,−)) ∩ h(~a, b).

Corollary 8.8. CRSF+⊆ is closed under subset-bounded course-of-values recursion.

Proof. Supposef (~a, b) = g(~a, b, f<b(~a,−)) ∩ h(~a, b) with g, h ∈ CRSF+⊆. DefineF(~a, b) = f↾[b](~a,−). Then
F(~a, b) ⊆ [b]×

⋃

c6b h(~a, c), since eachf (~a, c) ⊆ h(~a, c). By Corollary 8.5 this bound onF is in CRSF+⊆. Hence we
may potentially defineF by subset-bounded recursion. This is straightforward, as given S = {F(~a, c) : c ∈ b} we
have that

⋃

S = f<b(~a,−), so f (~a, b) = g(~a, b,
⋃

S) andF(~a, b) =
⋃

S ∪ ({b}× f (~a, b)). HenceF is in CRSF+⊆,
and it follows immediately thatf is as well. ✷

An interesting consequence of our characterization of CRSF+
⊆ in terms of circuits is that it allows us to use

known circuit lower bounds to prove that certain functions are not in CRSF+⊆.

Theorem 8.9. There is noCRSF+⊆ function f which computes the parity of|x| for every hereditarily finite set x.

Proof. Supposef is such a function. Then by Theorem 7.1 there is a smash-termt such that for every seta there
is a circuitCa of size t(a) computing f on all sets embeddable ina. Choose a largen ∈ ω of the form 22

k
.

Let a = P(P(k)). Then rank(a) = k+ 2, |a| = n and|[a]| 6 2n. Therefore the underlying graphG(t(a)) of Ca has
depth (that is, rank) polynomial ink and size polynomial inn. But sinceCa computes the parity of all subsets ofa,
it is straightforward to build from it a circuit of depth polynomial ink and size polynomial inn which computes the
parity of alln-bit strings, which is impossible by [8]. ✷

A. Beckmann et al. / Feasible set functions have small circuits 23

In contrast, by the simulation of polynomial time in CRSF+
⊆ in Section 4 there is a CRSF⊆ function which can

compute the parity of a hereditarily finite setx, as long asx is a set of ordinals.
As a corollary of Theorem 8.9 we get a version of P6= NP for CRSF+⊆. We first define a natural notion of NP

for CRSF+⊆.

Definition 8.10. AΣ⊆
1 -CRSF+⊆ relationis one of the form∃y⊆t(x)ϕ(x, y), whereϕ(x, y) is aCRSF+⊆ relation and t

is a smash term.

Corollary 8.11. The relationϕ(x) expressing that x can be partitioned into a collection of unordered pairs is
Σ⊆

1 -CRSF+⊆ but is not equivalent to anyCRSF+⊆ relation, even on hereditarily finite sets x.

ThatΣ⊆
1 -CRSF+⊆ is different from CRSF+⊆ on {0, 1}ω already follows from [12]. Say that a setL ⊆ {0, 1}ω is

in NP if there is a setM ⊆ {0, 1}ω in P (that is, decided by a polynomial time infinite-time Turing machine) such
thatx ∈ L ↔ ∃y∈{0, 1}ω x⊕y ∈ M, wherex⊕y ∈ {0, 1}ω alternates bits fromx with bits fromy. Then [12] shows
that every set in P is Borel, and gives an example of a set∆ in NP which is not Borel. By Theorems 4.5 and 4.6, P
coincides with CRSF+⊆ on{0, 1}ω. It follows that∆ is in Σ⊆

1 -CRSF+⊆ but not in CRSF+⊆.
As was already discussed, since the above separation is based on parity, it has no relevance for whether the

ordinary versions of P and NP are distinct.

9. Embedding-bounded recursion
We will write CRSF4 for the class of CRSF functions in the sense of [4]. The goal ofthis section is to show that

CRSF+⊆ and CRSF4 are the same. We recall some definitions from [4].

Definition 9.1. A functionτ is an embedding ofa into b, written τ : a 4 b, if τ : tc(a) → P(tc(b)) and for
all x, y ∈ tc(a),

(1) τ(x) 6= 0
(2) if x 6= y thenτ(x) ∩ τ(y) = 0
(3) if x ∈ y then for every v∈ τ(y), there is some u∈ τ(x) with u< v.

Definition 9.2. Let g(~a, b, x), h(~a, b) andτ(x, ~a, b) be functions. The function f(~a, b) is obtained from g(~a, b, x) by
embedding-bounded recursionwith bound h(~a, b) and embedding functionτ(x, ~a, b) if

f (~a, b) = g(~a, b, { f (~a, c) : c ∈ b})

and if for all ~a, b we haveτ(x, ~a, b) : f (~a, b) 4 h(~a, b). The last condition means that the function x7→ τ(x, ~a, b) is
an embedding f(~a, b) 4 h(~a, b).

Definition 9.3. CRSF4 is the closure of the empty set, projections, pairing, union, cond∈ and set smash# functions
under composition and embedding-bounded recursion.

We first show that the two natural notions of embeddability coincide.

Lemma 9.4. The following are equivalent:

(1) There is a set E such that a= M(b,E).
(2) There is a functionτ such thatτ : a 4 b.

24 A. Beckmann et al. / Feasible set functions have small circuits

Proof. First suppose thata = M(b,E). For x < a defineτ(x) = {u < b : x = M(u,E)}. It is straightforward to
show thatτ has the properties of an embedding function. In particular,if v ∈ τ(y) andx ∈ y thenx ∈ M(v,E) so,
by the definition of embedded Mostowski collapse,x = M(u,E) for someu < v, giving u ∈ τ(x) as required.

For the other direction, supposeτ : a 4 b. We first extend the domain ofτ from tc(a) to [a] by defining
τ(a) = {b}. It is easy to see that the three properties of an embedding function still hold. Now defineE as the set of
pairs〈u, v〉 ∈ [b]2 such that

u < v∧ ∃x, y∈[a], x ∈ y∧ u ∈ τ(x) ∧ v ∈ τ(y).

We will prove by∈-induction ony that, for everyy ∈ [a] andv ∈ τ(y), y = M(v,E). Sinceτ(a) = {b} it will follow
thata = M(b,E).

Fix v ∈ τ(y). To showM(v,E) ⊆ y, let z∈ M(v,E). Thenz= M(u,E) for someu < v with 〈u, v〉 ∈ E. By the
definition ofE and the properties ofτ, there existsx ∈ y with u ∈ τ(x). By the inductive hypothesis,x = M(u,E).
Thereforex = z, soz∈ y.

To showy ⊆ M(v,E), supposex ∈ y. Sincev ∈ τ(y), by the properties ofτ there is someu ∈ τ(x) with u < v.
Then〈u, v〉 ∈ E and also by the inductive hypothesisx = M(u,E). Thereforex ∈ M(v,E). ✷

Theorem 9.5. CRSF+⊆ is contained inCRSF4.

Proof. It is shown in [4] that CRSF4 contains all the initial functions of CRSF⊆ and is closed under subset-bounded
recursion. That is, all CRSF⊆ functions are in CRSF4. So it is enough to show that embedded Mostowki collapse is
in CRSF4. We know from [4] that CRSF4 is closed undercourse-of-values embedding-bounded recursion, which
is a version of embedding-bounded recursion in which we are allowed us to use the sequence{〈c, f (c,~z)〉 : c < b}
of all earlier values off when calculatingf (b,~z). We have

M(a,E) = {M(b,E) : b < a∧ 〈b, a〉 ∈ E}.

If S = {〈b,M(b,E)〉 : b < a} is the sequence of earlier values ofM then

M(a,E) = {y ∈
⋃⋃

S : ∃b<a, 〈b, y〉 ∈ S ∧ 〈b, a〉 ∈ E}

which is a CRSF4 function ofS, E anda.
For this to be a valid instance of course-of-values embedding-bounded recursion, we also need to provide a

CRSF4 function embeddingM(a,E) into an existing CRSF4 function of a andE. By the proof of Lemma 9.4,
if b = M(a,E) and we defineτ(x) = {u < a : x = M(u,E)} thenτ : b 4 a. To computeτ by a CRSF4
function which does not useM, we first compute the bisimulation∼ between the Mostowski graph ofx and〈a,E〉
(by Lemma 5.7 we can do this in CRSF⊆, and hence in CRSF4) and then takeτ(x) = {u < a : x ∼ u}. ✷

Theorem 9.6. CRSF4 is contained inCRSF+⊆.

Proof. By Theorem 21 of [4], it is enough to show that CRSF+
⊆ is closed under4-bounded recursion where the

bounding termh is a#-term. Here a#-termis a stricter version of our smash-term: it is built only fromvariables,
the constant 1, and the function symbols⊙ and#. So suppose thatg andτ are CRSF+⊆ functions,h is a#-term
and f is a function such that for all~a, b

f (~a, b) = g(~a, b, { f (~a, c) : c ∈ b}) and τ(x, ~a, b) : f (~a, b) 4 h(~a, b).

We must show thatf ∈ CRSF+⊆.

A. Beckmann et al. / Feasible set functions have small circuits 25

By Lemma 9.7 below we may assume that there is a functionτ′ in CRSF+⊆ such that, for all~a, b, d with b 6 d,

τ′(x, ~a, b, d) : f (~a, b) 4 h(~a, d).

We will useτ′ rather thanτ because it is convenient to have one fixed bounding set throughout the recursion. Below
we writeh for h(~a, d).

We will show f ∈ CRSF+⊆ by defining a functionF(~a, b, d) in CRSF+⊆ with the property thatF(~a, b, d) = {b}×E
for some [h]2-string E such thatM(h,E) = f (~a, b) wheneverb 6 d (the {b} is there to help us carry
out a kind of course-of-values recursion). We will construct F using ⊆-bounded recursion onb — note that
F(~a, b, d) ⊆ {b} × [h]2. We then obtainf (~a, b) asM(h(~a, b), F(~a, b, b)(b)).

Consider the point in the recursion where we reach a setb 6 d. We are given the sets = {F(~a, c, d) : c ∈ b}.
Let W =

⋃

s. By Lemma 5.9 we can computes′ = {M(h,W(c)) : c ∈ b}. By the properties ofF, eachW(c) is a
setE with M(h,E) = f (~a, c). Therefores′ = { f (~a, c) : c ∈ b}.

We can now computef (~a, b) as g(~a, b, s′). Since we have a CRSF+⊆ embeddingτ′ : f (~a, b) 4 h, we can
use the construction in the proof of Lemma 9.4 to build a setE ⊆ [h]2 such that f (~a, b) = M(h,E). We
put F(~a, b, d) = {b} × E. ✷

For the previous theorem we need to reprove, for CRSF+
⊆ functions, some technical results from [4] which

capture the idea that#-terms behave like monotone functions with respect to embeddings.

Lemma 9.7. Let f, g, h, i be CRSF+⊆ functions with arguments~a, b, which we treat as parameters. Letτ1, τ2 be

CRSF+⊆ functions with arguments x, ~a, b.

(1) There is aCRSF+⊆ functionτ such that ifτ1 : f 4 g andτ2 : g 4 h, thenτ : f 4 h.

(2) There areCRSF+⊆ functionsτ and τ′ such that ifτ1 : f 4 g andτ2 : h 4 i, then τ : f ⊙ h 4 g ⊙ i
andτ′ : f#h 4 g#i.

(3) If g is a #-term then there is aCRSF+⊆ function τ with arguments x, ~a, b, c such that whenever
τ1(x, ~a, b) : f (~a, b) 4 g(~a, b) and b6 c thenτ(x, ~a, b, c) : f (~a, b) 4 g(~a, c).

Proof. For item (1), letτ(x) = {z∈ [h] : ∃y∈τ1(x), z∈ τ2(y)}. The proof that this is an embedding function is just
as in Lemma 18 of [4].

For item (2), extendτ1 andτ2 so thatτ1(f) = {g} andτ2(h) = {i}. Let

τ(x) =

{

τ2(x) if x ∈ tc(h)
{y⊙ i : y ∈ τ1(x⊙−1 h)} otherwise

τ′(x) = {σg,i(y
′, z′) : y′ ∈ τ1(π1, f ,h(x)) ∧ z′ ∈ τ2(π2, f ,h(x))},

wherex ⊙−1 h is the (unique)z such thatx = z ⊙ h, or is 0 if no suchz exists. Thenτ(x) ⊆ tc(g ⊙ i) and
τ′(x) ⊆ tc(g#i) so both functions can be computed in CRSF+

⊆ using separation. The proofs that these work are as
in Lemma 19 of [4].

For item (3) it is enough, using item (1), to find a functionτ′ such thatτ′(x, ~a, b, c) : g(~a, b) 4 g(~a, c) when-
everb 6 c. This is done by induction on the complexity of the#-termg, using items (1) and (2). ✷

10. Rudimentary functions
The class Rud of rudimentary functions was introduced in [9], as the smallest class which contains projections,

pairing and set subtractionx \ y and is closed under composition and the union operationf (~a, c) :=
⋃

b∈c g(~a, b).
We will use some properties of Rud shown in [9], namely that itcontains×, is closed under separation, and that the
Rud relations are closed under Boolean operations and∆0 quantification.

26 A. Beckmann et al. / Feasible set functions have small circuits

Lemma 10.1. EveryRudfunction is inCRSF+⊆.

Proof. The only possible issue is closure under union, but this is taken care of by Corollary 8.5. ✷

Definition 10.2. LetRSbe the class of functions obtained fromRudby adding transitive closure as a basic function,
and closing under subset-bounded recursion.

We will show that RS and CRSF+⊆ have essentially the same complexity. A straightforward induction shows that
no function in RS increases the rank of its arguments by more than a constant, so RS does not contain⊙ or # and
the two classes cannot exactly coincide. But by Theorem 10.8below, for any CRSF+⊆ function f we can compute
in RS a string coding the value off via a version of embedded Mostowski collapse. In particularit follows that the
relations in RS and CRSF+⊆ are the same.

The key idea is that constructions in CRSF+
⊆ typically use recursion over smash-terms ordered by<, and we can

simulate this in RS using recursion over cartesian productsordered lexicographically by<.

Definition 10.3. For k ∈ N and k-tuples~a, ~b we write〈~a〉 <k 〈~b〉 for the usual lexicographic ordering induced by
the ordering< on components. For any set u we write<u

k 〈~a〉 for the set{〈~b〉 ∈ tc(u) : 〈~b〉 <k 〈~a〉}, where〈~b〉 ranges
over k-tuples. We write〈~b〉 <u

k 〈~a〉 instead of〈~b〉 ∈<u
k 〈~a〉.

When doing course-of-values recursion we use the notation

f
<u

k〈
~b〉(~p,−) :=

⋃

〈~c〉<u
k〈
~b〉

{〈~c〉}× f (~p, ~c).

where the dash− indicates the last k arguments of f .

We introduce the boundu because the collection of all tuples〈~b〉 such that〈~b〉 <k 〈~a〉 is typically not a set. Note
that<k is well-founded onk-tuples, in the sense that for any formulaϕ in the language of set theory, ifϕ(~p, ~a) holds
for somek-tuple〈~a〉 then there is some<k minimalk-tuple〈~b〉 such thatϕ(~p, ~b) holds.

We will use the following strengthening of course-of-values recursion to simulate CRSF+
⊆ in RS.

Definition 10.4. For k ∈ N, the function f is obtained from g bysubset-boundedk-lexicographic recursionwith
bound h if

f (~p, u, ~a) = g(~p, u, ~a, f<u
k〈~a〉

(~p, u,−)) ∩ h(~p, u, ~a).

We call u thedomainof the recursion.

Theorem 10.5. For each k∈ N, the classRS is closed under subset-bounded k-lexicographic recursion.

Proof. We use induction onk. The casek = 1 is just the usual course-of-values recursion as discussed in Section 8.
The proof of Corollary 8.8, that this is available in CRSF+

⊆, relies on the subset-bounded recursion and union
schemes and exactly the same proof goes through for RS.

Supposek > 1. For clarity we will suppress the parameters~p. We will assume thatg(u, ~a,S) ⊆ h(u, ~a) always,
by replacingg with g∩ h if necessary, and we will write~a2 and~b2 instead ofa2, . . . , ak andb2, . . . , bk. We have

f (u, ~a) = g(u, ~a, f<u
k〈~a〉

(u,−))

with g, h ∈ RS. Let f ′ be defined by the(k−1)-lexicographic recursion

f ′(u, ~a,S) := g(u, ~a,S ∪ R(u, a1, f ′<u
k−1

〈~a2〉(u, a1,−,S)))

A. Beckmann et al. / Feasible set functions have small circuits 27

whereR is the function

R(u, a1,Z) := {〈〈a1, ~b2〉, y〉 : 〈〈~b2〉, y〉 ∈ Z and〈a1, ~b2〉 ∈ tc(u)}

whose purpose is to prepend elements of a course-of-valuesZ over<u
k−1 〈~a2〉 with a1, and remove any which could

not then be elements of a course-of-values over<u
k 〈~a〉. By the inductive hypothesisf ′ ∈ RS. Define a functionF by

F(u, a1) = f<u
k〈a1 ,~0〉

(u,−)

where~0 stands for the(k−1)-tuple of empty sets.
We claim that for all~a andu,

f ′(u, ~a, F(u, a1)) = f (u, ~a).

To see this, fixu anda1 and use<k−1-induction on~a2. For the inductive step, suppose that for all〈~b2〉 <k−1 〈~a2〉
we have

f ′(u, a1, ~b2, F(u, a1)) = f (u, a1, ~b2).

By definition

f ′(u, a1, ~a2, F(u, a1)) = g(u, a1, ~a2,Z) (2)

where

Z = F(u, a1) ∪ R(u, a1, f ′<u
k−1

〈~a2〉(u, a1,−, F(u, a1)))

= f<u
k〈a1 ,

~0〉(u,−) ∪ R(u, a1,
⋃

〈~b2〉<u
k−1

〈~a2〉

{〈~b2〉}× f ′(u, a1, ~b2, F(u, a1))

= f<u
k〈a1 ,~0〉

(u,−) ∪
⋃

〈~b2〉<
u
k−1

〈~a2〉

〈a1 ,~b2〉∈tc(u)

{〈a1, ~b2〉}× f ′(u, a1, ~b2, F(u, a1))

= f<u
k〈a1 ,

~0〉(u,−) ∪
⋃

〈~b2〉<
u
k−1

〈~a2〉

〈a1 ,~b2〉∈tc(u)

{〈a1, ~b2〉}× f (u, a1, ~b2)

by the inductive hypothesis. From the definition,

<u
k 〈~a〉 = {〈b1, ~b2〉 ∈ tc(u) : (b1 < a1) ∨ (b1 = a1 ∧ 〈~b2〉 <k−1 〈~a2〉)}

=<u
k 〈a1, ~0〉 ∪ {〈a1, ~b2〉 ∈ tc(u) : 〈~b2〉 <u

k−1 〈~a2〉}

where we are using that〈a1, ~b2〉 ∈ tc(u) implies〈~b2〉 ∈ tc(u). It follows thatZ = f<u
k〈~a〉

(u,−). Therefore the right
hand side of (2) is exactly the recursive definition off (u, ~a), giving us the inductive step.

To finish the proof it is enough to show thatF is in RS. We have

F(u, a1) = f<u
k〈a1 ,~0〉

(u,−) =
⋃

〈~b〉∈tc(u)
b1<a1

{〈~b〉}× f (u, ~b) =
⋃

〈~b〉∈tc(u)
b1<a1

{〈~b〉}× f ′(u, ~b, F(u, b1))

28 A. Beckmann et al. / Feasible set functions have small circuits

hence F is definable by course-of-values recursion ona1, using f ′. Furthermore sincef ⊆ h we have
F(u, a1) ⊆ tc(u)×

⋃

〈~b〉<u
k〈a1,~0〉

h(u, ~b), and this bound is in RS. HenceF is in RS. ✷

We now generalize the notion of diagram from Definition 2.1.

Definition 10.6. For k ∈ N, a k-diagramis a pair〈〈~a〉,E〉 where〈~a〉 is a k-tuple, and a pair〈〈~x〉, 〈~y〉〉 of k-tuples is
in E only if 〈~x〉 <k 〈~y〉. Thedomainof a k-diagram is defined as

dom(〈〈~a〉,E〉) = {〈~a〉} ∪ {〈~x〉 : there is some pair〈〈~x〉, 〈~y〉〉 ∈ E}.

A k-diagram represents the graph with nodes dom(〈〈~a〉,E〉) and edges given byE.

Definition 10.7. For k ∈ N, the k-embedded Mostowski collapseMk is defined by the lexicographic recursion

Mk(〈~a〉,E) = {Mk(〈~b〉,E) : 〈〈~b〉, 〈~a〉〉 ∈ E and〈~b〉 <k 〈~a〉}.

For convenience we will often treatMk as a one-argument function, writingMk(∆) to meanMk(〈~a〉,E) for a
k-diagram∆ = 〈〈~a〉,E〉. We consider ak-diagram∆ as a code for the setMk(∆). Working with codes rather than
directly with sets allows us to simulate computations involving sets of higher rank than we could produce in RS.
Note thatMk itself is not in RS, at least fork > 2, and that if we addM2 to RS it becomes possible to construct#
and thus every function in CRSF+⊆.

We state our main result.

Theorem 10.8. If f ∈ CRSF+⊆ then there is a function F∈ RS and k ∈ N such that F(~a) is a k-diagram

and f(~a) = Mk(F(~a)). It follows that theCRSF+⊆ and RS relations are the same, and furthermore that for

f ∈ CRSF+⊆ the function g(~a, b) := f (~a) ∩ b is inRS.

This will follow from Theorem 10.10 below, together with theobservation that RS contains the function
a 7→ 〈a,∈↾[a]2〉 which mapsa to a1-diagram codinga. For the last sentence we repeat the proof of Corollary 8.3,
using Lemma 10.11 to compute bisimulations in RS.

Definition 10.9. We say that a function f(x1, . . . , xm) is RS-definable on diagramsif for all k1, . . . , km ∈ N

there is anRS function F~k(x1, . . . , xm) and ℓ ∈ N such that, for all∆1, . . . ,∆m where each∆i is a ki-diagram,
F~k(∆1, . . . ,∆m) is anℓ-diagram and

Mℓ(F~k(∆1, . . . ,∆m)) = f (Mk1(∆1), . . . ,Mkm(∆m)).

A relation r(x1, . . . , xm) is RS-definable on diagramsif for all k1, . . . , km ∈ N there is anRSrelation R~k(x1, . . . , xm)
such that for all ki-diagrams∆i

R~k(∆1, . . . ,∆m) ⇔ r(Mk1(∆1), . . . ,Mkm(∆m)).

We show that RS can simulate CRSF+
⊆ functions in this sense.

Theorem 10.10.EveryCRSF+⊆ function isRS-definable on diagrams.

The proof of this takes up the rest of this section. The constructions used are similar to those in Section 7.

Lemma 10.11.For k, ℓ ∈ N, there is a function Bk,ℓ(〈~a〉,E, 〈~b〉, F) in RSwhich computes the bisimulation between
the k-diagram〈〈~a〉,E〉 and theℓ-diagram〈〈~b〉, F〉.

A. Beckmann et al. / Feasible set functions have small circuits 29

Proof. First observe that the desired bisimulation is a subset of dom(〈~a〉,E)× dom(〈~b〉, F). We will defineBk,ℓ by
k-lexicographic recursion on〈~a〉 with domainE. Suppose we are givenS = (Bk,ℓ)↾<E

k 〈~a〉
(−,E, 〈~b〉, F), that is, the

course-of-values ofBk,ℓ below〈~a〉. Expanding the definition,

S =
⋃

〈~c〉<k〈~a〉
〈~c〉∈tc(E)

{〈~c〉} × Bk,ℓ(〈~c〉,E, 〈~b〉, F).

Let 〈~c〉 be anyE-predecessor of〈~a〉. Then〈~c〉 <k 〈~a〉 and〈~c〉 ∈ tc(E). Hence we can extract fromS the bisimulation
between〈〈~c〉,E〉 and〈〈~b〉, F〉 using an RS function, as

Bk,ℓ(〈~c〉,E, 〈~b〉, F) = {z∈
⋃⋃

S : 〈〈~c〉, z〉 ∈ S}.

We then carry on as in the proof of Lemma 5.7. ✷

Corollary 10.12. The relations= and∈ areRS-definable on diagrams.

Lemma 10.13.The constant0 and the functions pairing,cond∈ ×, ⊙ and# areRS-definable on diagrams.

Proof. A 1-diagram for0 is simply〈0, 0〉. For the other functions, suppose we are given ak-diagramΓ = 〈〈~a〉,E〉
and anℓ-diagram∆ = 〈〈~b〉, F〉.

For the pairing function we takem = 1 + k + ℓ and construct anm-diagram, whose nodes we will write in the
form 〈i, ~x, ~y〉 wherei is a1-tuple,~x is ak-tuple and~y is anℓ-tuple. We define an edge relationG, using infix notation
for G, by

(1) 〈0, ~x, ~0〉 G 〈0, ~x′, ~0〉 if and only if 〈~x〉 E 〈~x′〉

(2) 〈1, ~0, ~y〉 G 〈1, ~0, ~y′〉 if and only if 〈~y〉 F 〈~y′〉

(3) 〈0, ~a, ~0〉G 〈2, ~0, ~0〉

(4) 〈1, ~0, ~b〉G 〈2, ~0, ~0〉.

Note thatG respects the ordering<m. By (1) and (2),Mm(〈0, ~a, ~0〉,G) = Mk(Γ) andMm(〈1, ~0, ~b〉,G) = Mk(∆).
Thus by (3) and (4),Mm(〈2, ~0, ~0〉,G) = {Mk(Γ),Mℓ(∆)}. The set composition and cond∈ functions are similar (see
Lemmas 7.5 and 7.6).

For the smash function# we takem = k + ℓ. Using similar notation for tuples as the previous case, we define
an edge relationG onm-tuples by

(1) 〈~x, ~y〉G 〈~x, ~y′〉 if and only if 〈~x〉 ∈ dom(Γ) and〈~y〉 F 〈~y′〉

(2) 〈~x, ~b〉 G 〈~x′, ~y〉 if and only if 〈~x〉 E 〈~x′〉 and〈~y〉 is a source node ofF.

We output〈〈~a, ~b〉,G〉.
For the cartesian product we takem = 3 + k + ℓ. We define an edge relationG by first, for each

pair p ∈ dom(Γ)×dom(∆), putting

(1) 〈0, p, 0, ~x, ~0〉 G 〈0, p, 0, ~x′, ~0〉 if and only if 〈~x〉 E 〈~x′〉

(2) 〈0, p, 1, ~0, ~y〉 G 〈0, p, 1, ~0, ~y′〉 if and only if 〈~y〉 F 〈~y′〉.

For each suchp, if p has the form〈〈~x〉, 〈~y〉〉 where〈~x〉E〈~a〉 and〈~y〉F 〈~b〉, meaning thate〈~x〉 := Mk(〈~x〉,E) ∈ Mk(Γ)
and f〈~y〉 := Mℓ(〈~y〉, F) ∈ Mℓ(∆), then we add six more edges:

(3) 〈0, p, 0, ~x, ~0〉 G 〈0, p, 2, ~0, ~0〉
(4) 〈0, p, 0, ~x, ~0〉 G 〈0, p, 3, ~0, ~0〉 and〈0, p, 1, ~0, ~y〉 G 〈0, p, 3, ~0, ~0〉

30 A. Beckmann et al. / Feasible set functions have small circuits

(5) 〈0, p, 2, ~0, ~0〉 G 〈0, p, 4, ~0, ~0〉 and〈0, p, 3, ~0, ~0〉G 〈0, p, 4, ~0, ~0〉
(6) 〈0, p, 4, ~0, ~0〉 G 〈1, 0, 0, ~0, ~0〉.

From (1) and (3), we haveMm(〈0, p, 2, ~0, ~0〉,G) = {e〈~x〉}. From (1), (2) and (4), we haveMm(〈0, p, 3, ~0, ~0〉,G) = {e〈~x〉, f〈~y〉}.

From (5), Mm(〈0, p, 4, ~0, ~0〉,G) = 〈e〈~x〉, f〈~y〉〉. We output〈〈1, 0, 0, ~0, ~0〉,G〉, which thus by (6) codes the whole
setMk(Γ)× Mℓ(∆). ✷

Below we will use small Greek letters to denote tuples of sets. The arity will be clear from the context.

Lemma 10.14.The transitive closure function isRS-definable on diagrams.

Proof. Given ak-diagram∆ = 〈α,E〉, we first claim that there is an RS function computing the ancestor relation
on the nodes of∆.

To see this, forβ 6k α let Rβ be the ancestor relation on the graph whose nodes are the set6
dom(∆)
k β and whose

edges are those induced on this set byE. ThenRβ ⊆ dom(∆)×dom(∆) and can be computed by subset-boundedk-
lexicographic recursion, where the form of the recursion issimilar to the proof of Lemma 10.11, and we computeRβ

from earlier valuesRγ with 〈γ, β〉 ∈ E as in Lemma 6.15.
We output〈α,E ∪G〉 whereG consists of every pair〈β, α〉 such thatβ is anE-ancestor ofα. ✷

Lemma 10.15.Embedded Mostowski collapse isRS-definable on diagrams.

Proof. We are given ak-diagram〈α,Ga〉 and anℓ-diagram〈β,GE〉. We will construct a setH such that

Mk(〈α,H〉) = M(a,E)

wherea = Mk(〈α,Ga〉) andE = Mℓ(〈β,GE〉). As in Lemma 7.10, we defineκ(ρ) = Mk(〈ρ,Ga〉) for k-tuplesρ.
We put

H = {〈ρ, σ〉 ∈ dom(〈α,Ga〉)×dom(〈α,Ga〉) : ρ <k σ ∧ κ(ρ) < κ(σ) ∧ 〈κ(ρ), κ(σ)〉 ∈ E}.

The proof that this works is the same as for Lemma 7.10.
To constructH in RS, we first observe thatκ(ρ) < κ(σ) if and only if Mk(〈ρ,Ga〉) ∈ tc(Mk(〈σ,Ga〉)).

Since membership and transitive closure are RS-definable ondiagrams, this relation is as well. To decide
whether〈κ(ρ), κ(σ)〉 ∈ E, we first construct a subcircuit computing the bisimulation∼ between〈α,Ga〉 and〈β,GE〉.
Then〈Mk(〈ρ,Ga〉),Mk(〈σ,Ga〉)〉 is in E if and only if there existℓ-tuplesρ′, σ′ in dom(〈β,GE〉) such that

ρ ∼ ρ′ ∧ σ ∼ σ′ ∧ 〈Mℓ(〈ρ
′,GE〉),Mℓ(〈σ

′,GE〉)〉 ∈ Mℓ(〈β,GE〉)

and this condition is decidable in RS, since membership and the pairing function relation are RS-definable on
diagrams. ✷

Lemma 10.16.For k ∈ N there is anRS functionCollectk such that, for any set S of k-diagrams,Collectk(S) is a
(k+1)-diagram with

Mk+1(Collectk(S)) = {Mk(∆) : ∆ ∈ S}.

Proof. We write ak-diagram∆ as〈〈~a∆〉,E∆〉, and can recover thek-tuple~a∆ and the setE∆ from ∆ using RS
functions. Define

F =
⋃

∆∈S

{〈〈∆, ~x〉, 〈∆, ~x′〉〉 : 〈〈~x〉, 〈~x′〉〉 ∈ E∆}.

A. Beckmann et al. / Feasible set functions have small circuits 31

That is, for each pair inE∆ we prepend∆ to bothk-tuples in the pair, turning them into(k + 1)-tuples, and then
take the union over all∆ ∈ S. The result is thatMk+1(〈〈∆, ~a∆〉, F〉) = Mk(∆) for each∆ ∈ S. Then we define

G = F ∪ {〈〈∆, ~a∆〉, 〈S, ~0〉〉 : ∆ ∈ S}

where~0 is a k-tuple of empty sets. Note that the extra edges respect the lexicographic ordering. Finally we out-
put 〈〈S, ~0〉,G〉. ✷

Lemma 10.17.Suppose g and h areRS-definable on diagrams. Then the function f defined by subset-bounded
recursion from g with bound h isRS-definable on diagrams.

Proof. For simplicity of presentation we will only consider a recursion without parameters — this changes nothing
important. So we have

f (x) = g({ f (y) : y ∈ x}, x) ∩ h(x).

Suppose that our inputx is given as ak-diagram. By assumption there areℓ,m ∈ N and a functionH ∈ RS
simulatingh, which takes as input ak-diagram and outputs anℓ-diagram, and a functionG ∈ RS simulatingg,
which takes as input an(ℓ+1)-diagram (for the previous values) and ak-diagram (forx) and outputs anm-diagram.

Let us name the parts of a diagram, so that∆ = 〈sink(∆),Edges(∆)〉. We claim that there is an RS functionG′

such that for allk-diagrams∆ and(ℓ+1)-diagramsΓ, we have thatG′(Γ,∆) ⊆ Edges(H(∆)) and

Mℓ(〈sink(H(∆)),G′(Γ,∆)〉) = g(Mℓ+1(Γ),Mk(∆)) ∩ h(Mk(∆)). (3)

To computeG′, we first computeG(Γ,∆), H(∆) and the bisimulation∼ between them. To deal with the intersection,
we then take the set Edges(H(∆)) and delete from it every edge〈〈~v〉, sink(H(∆))〉 for which there is no〈~w〉 ∼ 〈~v〉
with the edge〈〈~w〉, sink(G(Γ,∆))〉 in Edges(G(Γ,∆)). We output the result.

We can now define a function simulatingf by recursively applyingG′. Below,α, β, γ stand fork-tuples. Suppose
our input is〈α,E〉. Define a functionF(β,E), by k-lexicographic recursion onβ with domainE as

F(β,E) = G′(Collectℓ(Sβ), 〈β,E〉) where Sβ = {〈s(γ), F(γ,E)〉 : γ <E
k β, 〈γ, β〉 ∈ E}

and we introduce the notations(γ) for sink(H(〈γ,E〉)). Recall that the course-of-values ofF(−,E) below β on
domainE is

F<E
k β
(−,E) :=

⋃

γ<E
k β

{γ}× F(γ,E),

from which we can constructSβ in RS. Furthermore this is a subset-bounded recursion, since by the definition ofG′

we have thatF(β,E) ⊆ Edges(H(〈β,E〉)). HenceF is in RS.
We claim thatMℓ(〈s(β), F(β,E)〉) = f (Mk(〈β,E〉)). It follows that we can definef on diagrams by settingβ to

beα. We will usek-lexicographic induction onβ. Letting∆ = 〈β,E〉 andb = Mk(∆), we have

Mℓ(〈s(β), F(β,E)〉) = Mℓ(〈sink(H(∆)),G′(Collectℓ(Sβ),∆)〉)

= g(Ml+1(Collectℓ(Sβ)), b) ∩ h(b)

= g({Mℓ(〈s(γ), F(γ,E)〉) : γ <
E
k β, 〈γ, β〉 ∈ E}, b) ∩ h(b)

= g({ f (Mk(〈γ,E〉)) : γ <
E
k β, 〈γ, β〉 ∈ E}, b) ∩ h(b)

= g({ f (c) : c ∈ b}, b) ∩ h(b)

= f (b)

32 A. Beckmann et al. / Feasible set functions have small circuits

using, in order, the definition ofF, equation (3), the definition of Collectℓ, the inductive hypothesis, and the recursive
definitions ofMk and f . ✷

References
[1] P. ACZEL, Non-Well-Founded Sets, CSLI Lecture Notes, no. 14, Center for the Study of Languageand Infor-

mation, Stanford, 1988.
[2] T. A RAI, Predicatively computable functions on sets, Archive for Mathematical Logic, 54 (2015), pp. 471–485.
[3] A. B ECKMANN , S. R. BUSS, AND S.-D. FRIEDMAN, Safe recursive set functions, Journal of Symbolic Logic,

80 (2015), pp. 730–762.
[4] A. B ECKMANN , S. R. BUSS, S.-D. FRIEDMAN , M. MÜLLER, AND N. THAPEN, Cobham recursive set

functions, Annals of Pure and Applied Logic, 167 (2016), pp. 335–369.
[5] , Cobham recursive set functions and weak set theories, in Sets and Computations, Lecture Notes Series,

Institute for Mathematical Sciences, National Universityof Singapore, World Scientific, 2017, pp. 55–116.
[6] A. COBHAM, The intrinsic computational difficulty of functions, in Logic, Methodology and Philosophy of

Science, Proceedings of the Second International Congress, held in Jerusalem, 1964, Y. Bar-Hillel, ed., Ams-
terdam, 1965, North-Holland, pp. 24–30.

[7] J. D. HAMKINS AND A. L EWIS, Infinite time Turing machines, Journal of Symbolic Logic, 65 (2000), pp. 567–
604.

[8] J. HÅSTAD, Almost optimal lower bounds for small depth circuits, in Proceedings of the 18-th Annual ACM
Symposium on Theory of Computing, 1986, pp. 6–20.

[9] R. B. JENSEN, The fine structure of the constructible hierarchy, Annals of Mathematical Logic, 4 (1972),
pp. 229–308. Errata, ibid4 (1972) 443.

[10] G. E. SACKS, Higher recursion theory, Springer-Verlag, Berlin, 1990.
[11] V. Y. SAZONOV, On bounded set theory, in Logic and Scientific Methods, M. L. D. C. et al., ed., Synthese

Library Volume 259, Kluwer Academic, 1997, pp. 85–103.
[12] R. SCHINDLER, P 6= NP for infinite time Turing machines, Monatshefte für Mathematik, 139 (2003), pp. 335–

340.

	Introduction
	Preliminaries
	Notational conventions
	Embedded Mostowski collapse
	The smash function

	Subset-bounded recursion and CRSF
	Turing machines
	Bisimilarity and coding
	a-strings
	Bisimilarity
	Coding collections of sets

	Boolean circuits
	Small circuits for CRSF+
	Initial functions
	Closure under recursion

	Consequences of small circuits
	Embedding-bounded recursion
	Rudimentary functions
	References

