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Abstract

We consider equational theories for functions defined via recursion in-
volving equations between closed terms with natural rules based on recur-
sive definitions of the function symbols. We show that consistency of such
equational theories can be proved in the weak fragment of arithmetic S

1

2 .
In particular this solves an open problem formulated by Takeuti (c.f. [5,
p.5 problem 9.])

1 Introduction

Since the introduction of bounded arithmetic it has been and still is a major
open problem if bounded arithmetic is finitely axiomatizable, or, equivalently,
if the hierarchy of bounded arithmetic theories Si

2 (c.f. [2]) is proper. One of
the first ideas to attack this problem which comes into one’s mind is to use con-
sistency statements as separating sentences. However, up to now only negative
results have been achieved in this direction. The usual notion of consistency is
too strong as S2 6⊢ ConS−1

2

, c.f. [11], where S−1
2 is the induction-free fragment of

bounded arithmetic S2. Also the weaker consistency statements BDCon which
refer to proofs that use only bounded formulas still is too strong: S. Buss [2]
proved that Si+1

2 ⊢ BDConSi
2

holds for at most one i, and P. Pudlák showed
in [9] that S2 6⊢ BDConS1

2
, hence only S2 ⊢ BDConS0

2
remains to be possi-

ble. The reason why usual approaches for proving consistency do not work in
weak arithmetic is that it is impossible to feasibly evaluate closed terms from
the language of bounded arithmetic – their values grow exponentially in their
Gödel-numbers in general. This leads to the plausible conjecture raised by
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G. Takeuti, c.f. [5, p.5 problem 9.]: “Let S−∞

2 be the equational theory in-
volving equations s = t, where s, t are closed terms in the language of S2, with
natural rules based on recursive definitions of the function symbols. Show that
S2 6⊢ Con(S−∞

2 ). [ . . . ]”
If this conjecture would be true then it would be likely that consistency

statements cannot be used to negatively answer the finitely axiomatizability
problem of bounded arithmetic. In this paper we will disprove this conjecture,
thus there is hope that consistency statements can lead to a negative answer.

More generally we will consider equational theories for functions defined via
recursion involving equations between closed terms with natural rules based
on recursive definitions of the function symbols. The recursion can be defined
very general. On the one hand it can depend on several kinds of numerals like
natural numbers, binary words, or k-adic numbers (trees will not be allowed).
On the other hand, in a recursive definition of a function symbol f the symbol
itself may occur with unrestricted arguments (thus the recursion may not be
terminating). So the axioms have the general form

f(~x) = t(λ~y.f(~y), ~x)

where t involves some previously defined function symbols. Examples of such
equational theories will be given for the primitive recursive functions, the µ-
recursive (or partial recursive) functions, and Cook’s system PV (c.f. [6]) with-
out the substitution and induction rule for the polynomial time computable
functions, see Example 2.3. Let Ax be such a set of axioms defining the func-
tions, then EqT(Ax) is the equational theory given by (closed) instances of Ax,
the definition of equality as an equivalence relation, and the compatibility of
function symbols with equality.

We will show that the consistency of such equational theories can be proved
in the fragment S1

2 of bounded arithmetic.

Main Theorem 1.1 S1
2 proves the consistency of EqT(Ax), i.e. that 0 = 1 is

not derivable in EqT(Ax).

Remark 1.2 Our result is quite remarkable when compared with known results
about unprovability of consistency statements. In [3] it is shown that PV 6⊢
Con(PV −), where PV − is related to Cook’s equational theory PV without
induction. But one has to be careful, because on the one hand in this article we
study equational theories without substitution rule only, and on the other hand
the version of PV − in [3] contains some additional axioms, i.e. finitely many
equations, beside the defining equations according to the recursive definition of
the function symbols.

Acknowledgments: I would like to thank Jan Kraj́ıček, who reminded
me of the problem raised by Takeuti (c.f. [5]), and for many valuable sug-
gestions and remarks on a first version of this article; Alex Wilkie for his
hospitality during my stay at the Mathematical Institute of the University of
Oxford, and for a lot of discussions and remarks; Sam Buss for many valuable
suggestions and discussions leading to the final version of this article.
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2 Equational theories based on recursion

A typical equational theory, which is a kind of prototype for the ones we will
consider, is given by the following small example which defines a kind of expo-
nentiation over the natural numbers.

Example 2.1 Let Fgexp be the set of function symbols consisting of 0,S,+, ·, ẽxp
where 0 is zero-ary denoting the constant zero, S is unary denoting the successor
function, and +, ·, ẽxp are binary denoting addition, multiplication and, respec-
tively, a kind of exponentiation. These symbols are recursively axiomatized by
the following equations forming the set Axgexp:

0 + x1 = x1 (Sx0) + x1 = S(x0 + x1)

0 · x1 = 0 (Sx0) · x1 = (x0 · x1) + x1

ẽxp(0, x1) = x1 ẽxp(Sx0, x1) = x1 · ẽxp(x0, x1)

We are going to show (by applying our general results to this special example)
that S1

2 proves the consistency of the equational theory for Fgexp, i.e. that 0 = S 0
is not derivable.

As mentioned in the introduction our result even holds for equational theories
which base on general recursive axioms over general numerals. In order to
make this more precise we start fixing numerals as free algebras over some
set of constructors. First some general remarks. Throughout this paper we
assume familiarity with the theories of bounded arithmetic and general notions
introduced in [2]. A “:” attached to one side of the equality sign in an equation
indicates that the expression on the side where “:” occurs is defined by the
expression on the other side. I.e., u := v, or v =: u, respectively, indicates that
u is defined by v. With N we denote the set of non-negative integers.

Let F be a set of function symbols with arities ar(f) for f ∈ F. With T(F)
we denote the set of terms over F, which can be inductively defined by

f ∈ F and t1, . . . , tar(f) ∈ T(F) ⇒ (ft1 . . . tar(f)) ∈ T(F).

The reader not interested in general equational theories, but rather wants to stick
to Example 2.1, can skip the next two pages and go on reading with Example 2.3
on page 5. For the ongoing discussion he should think of C as {0,S}, of A as
N = “the numerals over C”, i.e. T(C), of F as Fgexp, and, respectively, of “a nice
set of recursive axioms” as Axgexp.

Let X = {x0, x1, x2, . . . } be a set of free variables. For a subset Y of X let
T(F, Y ) be T(F ∪ Y ), viewing variables as function symbols of arity 0. If Y is
a finite set {~x}, we will write T(F, ~x) instead of T(F, {~x}). We will suppress
brackets for a better readability. E.g. we will write f~t instead of (f~t) and S S Sx
instead of (S(S(Sx))).

Let C ⊂ F be a finite set of constructors with arities ar(c) ∈ {0, 1} for c ∈ C,
which is not trivial, i.e. {ar(c) : c ∈ C} = {0, 1}. The free algebra A = A(C)
over C is defined by T(C). Examples are the algebra N of natural numbers with
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constructors 0, S of arity 0, respectively, 1; the algebra W of binary words over
the alphabet {0, 1} with constructors ǫ of arity 0 and S0, S1 of arity 1 (their
intended meaning is: ǫ = empty word, Si(w) = wi); or the algebra Dk of k-adic
numbers with constructors 0 of arity 0, S1, . . . ,Sk of arity 1 (their intended
meaning is: Si(n) = kn + i). Elements from A will also be called numerals.

By sx(t) we denote the result of replacing all occurrences of x in s by t.
The function symbols from F \ C represent functions over A. We assume

that they are axiomatized in the restricted way defined next which makes our
arguments easier (e.g., the recursion argument is always the first one), but which
is still general enough, i.e. captures all interesting examples (see Examples 2.3).

Definition 2.2 Let Ax be a set of equations over T(F,X). We call Ax a nice
set of recursive axioms iff the following conditions are satisfied:

i) Each function symbol f ∈ F \ C is uniquely (i.e., deterministically) and
completely defined by some equation from Ax. By this we mean that for
each f ∈ F \ C and each c ∈ C there exists exactly one equation s = t in
Ax such that s has the form f c x1 . . . xar(f) if ar(c) = 0, or ,respectively,
the form f(c x0)x1 . . . xar(f) if ar(c) = 1.

With tcf we denote the t from the equation s = t which is uniquely deter-

mined by f and c. Considering Example 2.1 we have, e.g., t0+ = x1 and
tS+ = S(x0 + x1).

ii) The opposite inclusion also holds. Each equation in Ax is a recursive
definition of some function symbol in F \ C. I.e., for each s = t in Ax
there exists f ∈ F \ C and c ∈ C such that either ar(c) = 0 and s has the
form f c x1 . . . xar(f) and t ∈ T(F, {x1 . . . xar(f)}), or ar(c) = 1 and s has
the form f(c x0)x1 . . . xn and t ∈ T(F, {x0 . . . xar(f)}).

For c ∈ C and u, v ∈ T(F) we write u = c(v) iff either ar(c) = 0 and u = c,
or ar(c) = 1 and u = (c v). This is a technical convenience which unifies some
distinction of cases. For example, condition i) and ii) establish that there is a
bijection between (F \ C) × C and Ax, which is given by

f, c 7→ (f c(x0)x1 . . . xar(f) = tcf ).

In order to obtain formalizability in S1
2 we assume in addition that syntax

is Gödelized in a suitable way. In particular, we assume that the predicates
(u = v) ∈ Ax, f ∈ F, or the set of triples (f, c, tcf ), are ∆b

1-definable in S1
2 ,

and that the code of f contains the code for tcf for each c ∈ C. With the last

condition we mean the following: Given f ∈ F\C and c ∈ C, let t̃ be the term tcf ,
where all occurrences of f have been replaced by some new ar(f)-ary function
symbol. Then we assume that the code of t̃ is bounded by the code of f .

Observe that f is allowed to occur in tcf without restriction on its arguments,
hence this is more general than usual recursion or recurrence schemas. Of course
this leads in general to non-terminating computations. E.g. let f be an unary
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function symbol, and let Ax be {(f0 = f0), (f(S x) = fx)}, then Ax is a nice
set of recursive axioms for {0,S, f} over N, but f0 cannot be computed (in the
sense that it is equal to some numeral).

Examples 2.3 i) Axgexp is a nice set of recursive axioms for Fgexp over N.

ii) A nice set of recursive axioms over N for the primitive recursive functions
can be defined as follows: For each n ∈ N and words u, v let fn,u,v be a new
function symbol, e.g. 〈n, u, v〉. For fn,u,v the index n will indicate its arity,
and indices u, v are terms which will be used to recursively define fn,u,v.
Let F0 be the set of constructors {0,S} of N, and define inductively Fi+1

by extending Fi by all function symbols fn+1,u,v with u ∈ T(Fi, x1, . . . , xn)
and v ∈ T(Fi, {x0, . . . , xn+1}), and let ar(fn+1,u,v) be n + 1. Let FPR be⋃

i Fi.

Then a nice set of recursive axioms AxPR for FPR over N, which defines
exactly the primitive recursive functions, is given by all equations

(f0x1 . . . xn) = u and (f(S x0)x1 . . . xn) = vxn+1
(fx0 . . . xn)

for fn+1,u,v ∈ FPR.

iii) AxPR can be extended to a nice set of recursive axioms AxµR over N which
exactly defines the µ-recursive functions in the following way: modify the
construction of Fi+1 by adding symbols µf and µ̃f of arity n + 1, respec-
tively, n+2 for each f ∈ Fi of arity n+1 obtaining FµR. Then modify the
construction of RPR by replacing FPR by FµR and adding the equations

µfx1 . . . xn = µ̃f (f0x1 . . . xn)0x1 . . . xn

µ̃f0x1 . . . xn+1 = x1

µ̃f (S x0)x1 . . . xn+1 = µ̃f (f(S x1)x2 . . . xn+1)(Sx1)x2 . . . xn+1

for each f ∈ FµR of arity n + 1 obtaining RµR.

iv) Cook’s system PV (c.f. [6]) without the substitution and induction rule,
i.e. without the rules u = w ⇒ ux(v) = wx(v) and

f1(0, ~x)= g(~x) f2(0, ~x)= g(~x)
f1(Si(y), ~x)= hi(y, ~x, f1(y, ~x)) f2(Si(y), ~x)= hi(y, ~x, f2(y~x))

f1(y, ~x)≤ l(y, ~x) f2(y, ~x)≤ l(y, ~x)
f1(y, ~x) = f2(y, ~x)

can be regarded as a nice set of recursive axioms AxPV over D2.

The equational theory for a nice set of recursive axioms Ax is given by
(closed) instances of Ax, the definition of equality as an equivalence relation,
and the compatibility of function symbols with equality. Let us define this
formally.

5



Definition 2.4 Let Ax be a nice set of recursive axioms for F. The equational
theory EqT(F, Ax) for F axiomatized by Ax consists of all equations u = v with
u, v ∈ T(F) which can be derived by the following rules: let u, v, w, ~u, ~w ∈ T(F).

(Ax) s~x(~u) = t~x(~u) for (s = t) ∈ Ax.

(E1) u = u

(E2) u = w ⇒ w = u

(E3) u = v, v = w ⇒ u = w

(E4) u1 = w1, . . . , um = wm ⇒ f~u = f ~w for f ∈ F with m = ar(f).

Observe that EqT(F, Ax) consists only of equations between closed terms and
does not contain a substitution rule of the kind u = w ⇒ ux(v) = wx(v). We
will write EqT(Ax) if the F connected to Ax is clear or unimportant.

We assume that syntax is coded in a feasible way. Let E be some equational
theory as considered above and let PrfE(π, ps = tq) denote that π codes a
treelike proof in E of s = t. We assume that 0 and c′ are some zero-ary,
respectively, unary constructors, which are fixed for a given set of constructors C.
Let 1 be the numeral c′ 0. Then Con(E) is the formula ∀π¬PrfE(π, p0 = 1q).
The main result in this paper will be the following

Main Theorem 2.5 Let Ax be a nice set of recursive axioms. Then

S1
2 ⊢ Con(EqT(Ax)).

The proof will be divided into two main steps. In the next section we will
construct in S1

2 from a given treelike proof in EqT(Ax) of s = t a path going
from s to t according to a rewriting relation associated with Ax. In section 4
we will prove in S1

2 a feasible Church-Rosser-property for paths according
to this rewriting relation which start from numerals. This shows in S1

2 that
there cannot be a path from 0 to 1 which, with the first step, yields the Main
Theorem.

3 Viewing proofs as term rewriting

Rewrite systems are directed equations used to simplify expressions by repeat-
edly replacing subterms of a given expression with equal terms.1 Term rewriting
has also been used to investigate recursive function theory, c.f. [4, 10, 1]. Here
we use term rewriting to prove consistency of equational theories defined by nice
recursive axioms.

We start by briefly defining term rewriting adapted to our setting. Through-
out the rest of this paper let Ax be some nice set of recursive axioms for F over A,
e.g. Axgexp for Fgexp over N from Example 2.1. Terms in which no variable occur,

1See [7] for a general introduction to the theory of rewrite systems.
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i.e. from T(F), are called closed or ground. A ground substitution is a mapping
σ from a finite set of variables into the set of ground terms T(F). It is common
to write sσ instead of σ(s) for terms s.

Equations from Ax have – the way we defined them – the property that they
are “simplifying from left to right”, which is also the direction how the functions
defined by them are computed. This is also reflected through the direction of
the rewriting relation in the next definition.

Definition 3.1 The one-step rewriting relation −→1
Ax is the binary relation on

T(F) defined as follows for ground terms u, v: u −→1
Ax v holds iff there exists

an axiom s = t in Ax and a ground substitution σ such that sσ is a ground term
and v is the result of replacing exactly one occurence of sσ in u by tσ.

Then −→n
Ax, −→∗

Ax are defined to be the n-step rewriting relation, respec-
tively, the reflexive and transitive closure of −→1

Ax.
The symmetric one-step rewriting relation ←→1

Ax is defined by

u ←→1
Ax v iff u −→1

Ax v or v −→1
Ax u

and then ←→n
Ax, ←→∗

Ax again are defined to be the n-step symmeteric rewriting
relation, respectively, the reflexive and transitive closure of ←→1

Ax.

Observe that equations s = t from nice sets of recursive axioms always fulfill
that the variables of t occur under those of s, hence if sσ is a ground term, then
so is tσ. Thus, starting from a ground term, −→∗

Ax only produces ground terms.
Furthermore, it is easy to see that ←→∗

Ax is an equivalence relation (provable
in S1

2).
As said before we consider a feasible Gödelization of syntax as in [2]. I.e.,

after Gödelizing all symbols in a suitable way, terms are coded by

p(ft1 . . . tm)q = 〈p(q, pfq〉apt1qa . . . aptmqa〈p)q〉.

Hence the number of symbols in a term is proportional to the code of that term.
Equational theories are strongly connected to corresponding symmetric re-

writing relation. It is possible to feasibly extract from a given proof of an
equation u = v in some equational theory a path from u to v according to the
corresponding symmetric rewriting relation.

Theorem 3.2 (S1
2) If u = v is provable in EqT(Ax), then u ←→∗

Ax v.

Proof. We prove the assertion by induction on the EqT(Ax)-proof of u = v.
If u = v is an axiom concerning (Ax), then u = v is an instance of some

equation s = t from Ax. By mapping each variable in s, t to its instance in u, v
we obtain a ground substitution σ such that

u = sσ −→1
Ax tσ = v.

If the last inference have been one of (E1), (E2) or (E3), then the assertion
is obvious, because ←→∗

Ax is an equivalence relation, provable in S1
2 .
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If the last inference has been (E4), then u has the form fu1 . . . um, and v
has the form fv1 . . . vm, and we have subproofs πi in π of ui = vi. By induction
hypothesis we obtain ui ←→∗

Ax vi, which we use successively to obtain

u = fu1 . . . um ←→∗

Ax fv1u2 . . . um ←→∗

Ax fv1v2 . . . um ←→∗

Ax . . . ←→∗

Ax v.

In order to see that this proof is formalizable in S1
2 we have to check that

the constructed path from u to v concerning ←→1
Ax is polynomially bounded

in the original proof π. But it is easy to see that the number of steps from u
to v is bounded by the number of symbols in π, and all terms on that path are
bounded by π. (Both bounds are only very rough upper bounds.) ¤

4 A kind of Church-Rosser-property

We start this section with an example. Assume we have a path a ←→∗

Ax u
starting from some numeral a ∈ A. At each step of this path we will convince
ourselves that the term at this point has value a, thus there cannot be a path
from 0 to 1. The first idea for solving this problem, which comes to ones mind,
is to prove in S2 that −→1

Ax has the Church-Rosser-property, i.e. to show

u ←→∗

Ax v ⇒ ∃w(u −→∗

Ax w & v −→∗

Ax w).

This solves the problem, because numerals are irreducible under −→1
Ax. But it

is, to the author’s best knowledge, an open problem if this general form of the
Church-Rosser-property is provable in S2, and the author conjectures that
this is not the case.

We will solve this problem, in case that u is a numeral and u ←→∗

Ax v holds,
by reducing v to u according to a modified reduction relation. This modification
is a combination of “approximation” and “calculation”. For “approximation”
we introduce a new symbol ∗. If a subterm is replaced by ∗, it is blocked out from
the ongoing computation (we think of its value as “arbitrary” or “unknown”).
Now “calculating” means reducing according to −→1

Ax, which is viewed in this
setting as a rewriting relation over T(F, ∗).

Example 4.1 Let us return to Ax = Axgexp from Example 2.1. The correspond-
ing rewriting relation −→1

Ax is given by

0 + y −→1
Ax y (S x) + y −→1

Ax S(x + y)

0 · y −→1
Ax 0 (S x) · y −→1

Ax x · y + y

ẽxp0y −→1
Ax y ẽxp(Sx)y −→1

Ax y · (ẽxpxy)

Consider the following reduction chain according to −→1
Ax:

0 ←−1
Ax 0 · (ẽxp(s + t)0) ←−1

Ax ẽxp(S(s + t))0 ←−1
Ax ẽxp((S s) + t)0 (1)

We now show how this approximation and calculation stuff works by considering
successively the terms in the chain (from left to right).
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i) “ 0”. Nothing to do.

ii) “ 0 ·(ẽxp(s+t)0)”. Approximate ẽxp(s+t)0 by ∗, then calculate 0 ·∗ −→1
Ax

0.

iii) “ ẽxp(S(s + t))0”. For the subterm S(s + t) approximate s + t by ∗ which
yields S ∗. Calculate ẽxp(S ∗)0 −→1

Ax 0 · (ẽxp ∗ 0), approximate (ẽxp ∗ 0)
by ∗ and use information from ii) that 0 · ∗ approximates and calculates
to 0. Hence ẽxp(S ∗)0 approximates and calculates to 0.

iv) “ ẽxp((S s)+t)0”. For the subterm (S s)+t approximate s and, respectively,
t by ∗, then calculate (S ∗) + ∗ −→1

Ax S(∗ + ∗) and approximate ∗ + ∗ by
∗, thus (S s)+ t approximates and calculates to S ∗. Use information from
iii) that ẽxp(S ∗)0 approximates and calculates to 0.

For the rest of this section let C, A and F be fixed and Ax be a nice set of
recursive axioms for F over A, e.g. {0,S}, N, Fgexp, Axgexp from Example 2.1. Ex-
ample 4.1 shows that we want to suppress parts of a term which are unessential
for a certain reduction path. We do this by replacing such unessential subterms
of a term s by a new (fixed) symbol ∗. The result of such a replacement will be
an approximation to s.

More precise, let ∗ be a new zero-ary constructor. Define C∗ := C ∪ {∗},
F∗ := F∪{∗} and A∗ := T(C∗). Elements of A∗ are called generalized numerals.
We define a binary relation ⊳ on T(F∗) which will have the meaning that s ⊳ t
holds if t is an approximation to s, i.e., if t is the result of replacing some
(possibly none) subterms of s by ∗. Read “s ⊳ t” as “s is approximated by t”.

Definition 4.2 We define the relation ⊳ on T(F∗) inductively by

i) s ⊳ ∗ holds for all s ∈ T(F∗).

ii) If f ∈ F and si ⊳ ti for i = 1, . . . , ar(f), then f~s ⊳ f~t.

The definition of ⊳ as a ∆b
1-predicate in S1

2 is left to the reader as an exercise.

Observe that ii) implies f ⊳ f for f ∈ F∗ with ar(f) = 0, therefore we obtain
u ⊳ u for all u ∈ T(F∗). We state some properties which follow immediately
from the definition.

Let us remind ourselves that for c ∈ C and a term u we have fixed the
convention that in case that c is zero ary the writing c(u) denotes the term c,
and in case that c is unary the writing c(u) denotes the term (c u). For Fgexp

from Example 2.1 the only possibilities are 0(u) denoting 0 and S(u) denot-
ing (Su). To see that this convention often helps reducing cases we observe
that Observation 4.3 ii) for Fgexp is equivalent to

S u ⊳ S v ⇒ u ⊳ v and S u 6⊳ 0 and 0 6⊳ S v.

Observations 4.3 (S1
2)

i) If u ⊳ v and v ∈ T(F), then u = v.
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ii) If c(u) ⊳ c′(v) and c, c′ ∈ C, then c = c′ and u ⊳ v.

iii) If u ⊳ v ⊳ u, then u = v.

iv) ⊳ is transitive.

v) If u ⊳ v and t ∈ T(F∗, x), then tx(u) ⊳ tx(v). ¤

The following Lemma is simple but essential for the layout of our proofs. It
would be wrong if the set of constructors would contain an element with arity
bigger than one.

Lemma 4.4 (S1
2)

If w ⊳ u, w ⊳ v and u, v ∈ A∗, then u ⊳ v or v ⊳ u.

Proof. We essentially use {ar(c) : c ∈ C} = {0, 1}. We prove the assertion by
induction on the definition of w ⊳ u. If u = ∗, then v ⊳ u. If u = c ∈ C, then
w = u, hence u ⊳ v.

Otherwise u = c u′, c ∈ C, hence w = c w′ and w′ ⊳ u′. In case v = ∗ we get
u ⊳ v. Otherwise we have v = c v′ and w′ ⊳ v′ because of w = c w′ ⊳ v. By
induction hypothesis we obtain u′ ⊳ v′ or v′ ⊳ u′, hence u ⊳ v or v ⊳ u. ¤

As in Example 4.1 we view −→1
Ax also as the rewriting relation over T(F∗).

This way we already described a new way for computing (generalized) values
of closed terms by a method we called “approximation and calculation”. As
in Example 4.1 we can construct from a given path according to our rewrite
system the essence which let us feasibly approximate and calculate values of the
terms of the path. In the example this essence has the form

0 · ∗ Ã 0 , f(S ∗)0 Ã 0 , (S ∗) + ∗ Ã S ∗ .

We call this sequence e an evidence (it includes that it is “correctly derived”
using the underlying rewriting system). Using evidence e we can feasibly argue
that each term on the path has value 0. We say that, for example, 0 is an e-
approximation to f((S s) + t)0. (We use the wording “approximation” because
we will also consider paths starting from generalized numerals w, so that w will
only be an approximation in the sense of Definition 4.2 to the value of each term
of the path.)

Furthermore, we will also control the depths of all generalized numerals
occurring in approximations and evidences. The depth dp(t) of a term t ∈ T(F∗)
is defined as usual inductively by

dp(ft1 . . . tm) =

{
0 if m = 0,

1 + maxi=1,... ,m dp(ti) if m > 0.

We consider a feasible coding of sequences, which can be handled in S1
2 , as

done for example in [2]. Especially we have a predicate Seq for the set of all
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sequence numbers, and we assume 0 /∈ Seq. We write 〈a1, . . . , an〉 for the code

of the sequence a1, . . . , an. With l(σ), (σ)i, maxel(σ), σ a τ , σ ↾ j, SqBd(a, b)
we denote the length of a sequence σ, its i-th element, the maximum of its
elements, the concatenation of σ with the sequence τ , the restriction of σ to its
first j elements, i.e. σ ↾ j := 〈(σ)0, . . . , (σ)j−1〉, respectively, an upper bound to
all sequences σ with l(σ) ≤ |a| and maxel(σ) ≤ b. Here |a| denotes the number
of bits in the binary representation of a, i.e. ⌈log2(n+1)⌉. With σ ⊑ τ we mean
that σ is a subsequence of τ , i.e.

∃i1 < . . . < il(σ) < l(τ) ∀j < l(σ) (σ)j = (τ)ij+1
.

Then σ ⊏ τ is the strict form of ⊑, i.e. it means σ ⊑ τ and σ 6= τ . With
a ∈ σ we mean that a occurs under the elements of σ. All these predicates
and functions are ∆b

1-definable, respectively, Σb
1-definable in S1

2 . Furthermore
S1

2 can prove all necessary properties, see [2].
We now define formally that a generalized numeral w approximates a term

under a given (hypothetic) evidence e, and afterwards that e is an evidence.
We have to define the notions in this order because an evidence also carries
the information that it is correct under the underlying rewriting system, and
this correctness is expressed using approximations. In the following we always
identify symbols with their Gödel-numbers.

Definition 4.5 We define by induction on t ∈ T(F∗) that w is an e, k-approxi-
mation for t iff w ∈ A∗, e ∈ Seq, and

i) w = ∗, or

ii) dp(w) ≤ k, t has the form ft1 . . . tm, and there are e, k-approximations wi

for ti for i = 1, . . . ,m such that either f ∈ C∗ and f ~w ⊳ w, or f 6∈ C∗

and there is some v ⊳ w such that 〈f, ~w, v〉 ∈ e.

Let us remind ourselves the convention of writing tcf . There is a bijection
between (F \ C) × C and Ax, which is given in the following way: for each
f ∈ F \ C and each c ∈ C there is exactly one equation s = t in Ax with
s = f c(x0)x1 . . . xar(f), and then tcf denotes t. Considering Example 2.1 we

have, e.g., t0+ = x1 and tS+ = S(x0 + x1).

Definition 4.6 We define that e is a k-evidence iff e ∈ Seq and for all i < l(e)
there are f , with arity m > 0, and w1, . . . , wm, w such that (e)i has the form
〈f, w1, . . . , wm, w〉, w, ~w ∈ A∗, dp(w),dp(~w) ≤ k, w1 has the form c(v) with
c ∈ C, and w is an (e ↾ i), k-approximation for tcf (v, w2, . . . , wm) .

Going back to Example 4.1 we have the following list of level l, terms t and
evidences e such that e is an l-evidence and 0 an e, l-approximation of t.

term level evidence
0 0 〈〉
0 · (f(s + t)0) 0 〈〈·, 0, ∗, 0〉〉
f(S(s + t))0 1 〈〈·, 0, ∗, 0〉, 〈f,S ∗, 0, 0〉〉
f((S s) + t)0 1 〈〈·, 0, ∗, 0〉, 〈f,S ∗, 0, 0〉, 〈+,S ∗, ∗,S ∗〉〉

11



On the next one and a half pages we will argue that the last definitions can
be formalized in a suitable way in S1

2 . The reader who believes this already, or
does not want to go into so much detail, can skip these and go on reading with
Observation 4.7 on page 14.

Let BA∗
(k) be an upper bound to the Gödel-numbers of elements from A∗

whose depths are not bigger that k, which can be chosen to fulfill |BA∗
(k)| =

O(k).
We now argue that the just defined notions can be given by Σb

1-formulas
such that S1

2 proves the properties given in the above definitions. As “e is a
k-evidence” is not inductively defined but explicitly based on “w is an e, k-
approximation for t” it suffices to argue for the last notion which has been
defined in Definition 4.5. We first have to fix some functions and predicates on
coded trees which can be seen to be Σb

1-definable in S1
2 , respectively, ∆b

1 in S1
2

similar to [2].
E.g., let us consider the following tree

c

d

b

a

which is coded as t = p(a(b)(c(d)))q. A node in t is given either by an index k
of the sequence t, or by a position p ∈ Seq which reflects the path from the root
to that node. E.g. the nodes of t have the following indices and positions:

node a b c d
index in t 1 3 6 8

position in t 〈〉 〈0〉 〈1〉 〈1, 0〉

Let tcb(w, s1, . . . , sl) := 〈p(q, w〉a s1
a . . . a sl

a〈p)q〉 (tcb stands for tree-com-
bine), i.e. tcb(w, s1, . . . , sl) codes the tree whose root is labeled with w, and
which has l children s1, . . . , sl. E.g. t = tcb(a, p(b)q, p(c(d))q). In the following
we often replace unimportant terms by one or several dots.

For p ∈ Seq let the p-th subtree of s be defined by

st(p, s) :=





s if p = 〈〉

st(p′, si) if p = 〈i〉a p′ and s = tcb(., s0, . . . , sl−1) and i < l

〈〉 otherwise.

E.g. st(〈0〉, t) = p(b)q. Let

val(s) :=

{
〈w〉 if s = tcb(w, . . . )

〈〉 otherwise,

then the p-th value of s is defined by val(p, s) := val(st(p, s)). E.g. val(〈1〉, t) =
〈c〉 and val(〈1, 0〉, t) = 〈d〉.
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We also need some kind of inverse function to val(p, s), which computes the
position of a node in a tree. The position of a node (t)k in a tree t can be
computed via

pos(k, t) = 0 if t 6= tcb(. . . )

pos(k, tcb(., s0, . . . , sl−1))

=





〈〉 if k = 1

〈m〉a pos(k ·− n, sm) if m < l, n = 2 +
∑

j<m l(sj)

and n ≤ k < n + l(sm)

0 otherwise

For our example we have

index k 0 1 2 3 4 5 6 7 8 9 10 11
k-th char. in t ( a ( b ) ( c ( d ) ) )

pos(k, t) 0 〈〉 0 〈0〉 0 0 〈1〉 0 〈1, 0〉 0 0 0

Observe that l(pos(k, t)) ≤ l(t) and maxel(pos(k, t)) ≤ l(t), hence pos(k, s) ≤
SqBd(t, |t|). For p := pos(k, t) ∈ Seq we have val(p, t) = (t)k, because 0 /∈ Seq.

Furthermore, if p = pos(k, t) ∈ Seq and st(p a〈l〉, t) 6= 〈〉, then there is some

k′ > k such that pos(k′, t) = p a〈l〉.
We say that s has the same tree-structure as t iff s and t are trees which

differ at most at the labels of their nodes, i.e. l(s) = l(t) and

∀i < l(t)
[
(t)i ∈ {p(q, p)q} ⇒ (s)i = (t)i

]
.

We now define a Σb
1-formula stating that τ is an e, k-approximation tree for

t, which, for τ having the same tree-structure as t, means that the labels of τ
are e, k-approximations for the corresponding subterms in t.

approxtree(e, k, t, τ) :⇔∀j < |t|
[

if p := pos(j, t) ∈ Seq

let f := val(p, t), w′ := val(p, τ),m := ar(f),

wi := val(pa〈i ·− 1〉, τ) for i = 1, . . . ,m,

then w′, ~w ∈ A∗,dp(w′),dp(~w) ≤ k,

(f ∈ C∗ ⇒ f ~w ⊳ w′) and

(f /∈ C∗ ⇒ ∃v ≤ e(v ⊳ w′ & 〈f, ~w, v〉 ∈ e))
]

For w ∈ A∗ \ {∗}, e ∈ Seq, t ∈ T(F∗) we then can define that w is an e, k-
approximation for t iff there exists a sequence τ ≤ SqBd(t,max(e, t)) such that
τ has the same tree-structure as t and approxtree(e, k, t, τ) and val(〈〉, τ) = 〈w〉.
Obviously this is defined by a Σb

1-formula.
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The following observations follow immediately from the definitions.

Observations 4.7 (S1
2)

i) w is a 〈〉, k-approximation for t iff w ∈ A∗, dp(w) ≤ k and t ⊳ w.

ii) If w is an e, k-approximation for t ∈ A∗, then t ⊳ w.

iii) If w is an e, k-approximation for c(t), c ∈ C, then w = ∗ or w = c(w′).

iv) If (c w) is an e, k-approximation for (c t), then w is an e, k-approximation
for t.

v) If v is an e, k-approximation for t and v ⊳ w, then w is an e, k-approxi-
mation for t (because v ⊳ w ⇒ dp(w) ≤ dp(v)).

vi) If w is an e, k-approximation for t and e ⊑ e
′, k ≤ k′, then w is an

e
′, k′-approximation for t. ¤

Our general plan is to construct, from a given path a ←→∗

Ax v starting from
some numeral a ∈ A∗, a number k and a k-evidence e such that a is an e, k-
approximation for v. But if also v ∈ A∗, this implies v ⊳ a by Observation 4.3
ii). Hence, as 1 6⊳ 0, there cannot be a path 0 ←→∗

Ax 1. This will prove the
consistency of EqT(Ax).

We divide this general plan into two parts according to the direction of the
rewriting steps t ←→1

Ax t′ on the path. If we already have an evidence e and
an e-approximation w for t and t −→1

Ax t′, then the same e yields that w is an
e-approximation for t′. This is the easier part.

In the second part, if t ←−1
Ax t′, we will construct a new evidence e

′ such that
w is an e

′-approximation for t′. In this step the depth of the stored generalized
numerals will eventually raise by one.

Let s, t be terms and x be a variable, then by sx(t) we denote the result of
replacing all occurrences of x in s by t. With s(x) we denote some occurrences
of x in s (possibly none).

For the first part we only have to show that enough information is stored
in evidences. E.g. returning to Example 2.1, if e is an evidence and w an
e-approximation for ẽxp(S s, t), then by definition there are e-approximations
u, v for s, respectively t, such that w is an e-approximation for tS

gexp(u, v) =

v · ẽxp(u, v), using that e is an evidence. Hence, we only have to show that u, v
can be replaced by s, respectively t. The next lemma states such a composition
property for approximations.

At the end of the proof of some of the next lemmas and propositions we
will indicate how the proofs can be formalized in S1

2 . The reader who already
believes in the formalizability, or does not want to go into so much detail, may
skip these remarks and go on reading after those proofs. Let us remind ourselves
that BA∗

(k) is an upper bound to all (Gödel-numbers of) numerals of A∗ of
depth not greater than k.
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Lemma 4.8 (S1
2) Assume wi is an e, k-approximation for ti, for i = 1, . . . ,m,

and w is an e, k-approximation for a(~w), where a(~x) ∈ T(F∗, ~x). Then w is an
e, k-approximation for a(~t).

Proof. Let wi be an e, k-approximation for ti, for i = 1, . . . ,m. We prove

∀w ≤ BA∗
(k)

[
w is an e, k-approximation for a(~w)

⇒ w is an e, k-approximation for a(~t)
]

by induction on the definition of the term a(~x).
If a ∈ C∗ the assertion is obvious.
In case a(~x) = xi we have that w is an e, k-approximation for wi, hence

with Observation 4.7 ii) wi ⊳ w. Thus using the assumptions we obtain from
Observation 4.7 v) that w is an e, k-approximation for ti.

Finally assume that a(~x) is fb1(~x) . . . bn(~x). If w = ∗ we are done. Otherwise
there is vi being an e, k-approximation for bi(~w), for i = 1, . . . , n. By induction
hypothesis we obtain that vi is an e, k-approximation for bi(~t), for i = 1, . . . , n.
Then the same reason for w being an e, k-approximation for a(~w) also shows
that w is an e, k-approximation for a(~t).

Concerning formalizability the induction described so far is equivalent to
LIND over some Πb

2-formula which is not available in S1
2 . In order to see

that this proof can be done in S1
2 , we would have to proceed as follows. Fix

some term a(~x) and w being an e, k-approximation for a(~w). I.e., there is
some τ having the same tree-structure as a(~w) such that val(〈〉, τ) = 〈w〉 and
approxtree(e, k, a(~w), τ) holds. Now we prove

∀i < |a(~x)|
(
j ≤ i & p := pos(i, a(~x)) ∈ Seq

⇒ (val(p, τ))0 is an e, k-approximation for st(p, a(~t))
)

by backwards induction on j using the fact that if p = pos(i, a(~x)) ∈ Seq and s

is the (l+1)-th direct subterm of st(p, a(~x)), then st(p a〈l〉, a(~x)) = s and there

is some i′ > i such that pos(i′, a(~x)) = pa〈l〉. ¤

The structures of most of the following proofs are the same as the one from
the last proof. They will mostly rely on an induction on terms a(~x) ∈ T(F∗, ~x).
We will therefore only consider those cases where something new happens,
i.e. which are not the same as in the last proof, or do not follow directly from
the induction hypothesis.

Theorem 4.9 (S1
2) Assume that e is a k-evidence, w is an e, k-approximation

for t, and t −→1
Ax t′. Then w is an e, k-approximation for t′.

Proof. Let e be a k-evidence, and fix some f ∈ F \ C, c ∈ C and b,~c ∈ T(F∗),
a(x) ∈ T(F∗, x). Remember that f c(b)~c −→1

Ax tcf (b,~c). We prove the assertion
for a(f c(b)~c) −→∗

Ax a(tcf (b,~c)). Let w be an e, k-approximation for a(f c(b)~c).
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We only consider the case that a(x) = x. Then there are e, k-approximations
w′, ~wc for c(b),~c. As f /∈ C∗ there exists some v ⊳ w such that 〈f, w′, ~wc, v〉 ∈ e.
e is a k-evidence, hence w′ = c(wb), same c, by Observation 4.7 iii), and v is
an e, k-approximation for tcf (wb, ~wc). From this, v ⊳ w and Observation 4.7 v),
it follows that w is an e, k-approximation for tcf (wb, ~wc). Hence the assertion
follows by Lemma 4.8, as wb is an e, k-approximation for b by Observation 4.7 iv).

¤

This Theorem finishes the first part of our general plan. The second one is
more involved, here we have to construct new approximations. E.g. returning to
Example 2.1, let e be an evidence and w be an e-approximation for tS

gexp(s, t) =

t · ẽxp(s, t). Then we have to construct an evidence e
′ such that w is an e

′-
approximation of ẽxp(S s, t). To do so, we first have to find e-approximations
u, v for s, respectively t. Here lies the crucial point, which is very similar to
the general Church-Rosser-property, but which can now be handled in S1

2 .
From the assumption that w is an e-approximation for t · ẽxp(s, t) we obtain
for several occurrences of t in general several e-approximations v, v′ for t. The
main part is now to prove that v and v′ are comparable with respect to ⊳. In
particular, this implies that 0 and 1 cannot be e-approximations of the same
term at the same time. Assuming that v ⊳ v′, it is then easy to conclude that
w is an e-approximation for v · ẽxp(u, v). Hence we can extend e by a new
entry 〈ẽxp,S u, v, w〉 obtaining an evidence e

′ which solves our problem. In the
following we make this precise.

We start with a simple Lemma.

Lemma 4.10 (S1
2) Assume w is an e, k-approximation for a(v) with a(x) ∈

T(F∗, x), and u ⊳ v ∈ A∗. Then w is an e, k-approximation for a(u).

Proof. Let u ⊳ v ∈ A∗, a(x) ∈ T(F∗, x), and w be an e, k-approximation for
a(v). We only consider the case that a(x) = x. Then w is an e, k-approximation
for v ∈ A∗. Observation 4.7 ii) yields v ⊳ w, thus u ⊳ w by transitivity
of ⊳. Furthermore, w ∈ A∗ and dp(w) ≤ k, hence by Observation 4.7 i) w is
a 〈〉, k-approximation for u. With Observation 4.7 vi) this yields that w is an
e, k-approximation for u. ¤

As explained before the next proposition is central for our investigation. It
shows that S1

2 can prove the correctness of our approximations, i.e. that several
approximations for the same term are comparable.

Proposition 4.11 (S1
2) Assume that e is a k-evidence, and v, w are e, k-ap-

proximations for t ∈ T(F∗). Then v ⊳ w or w ⊳ v.

Proof. Fix some k-evidence e and some term t ∈ T(F∗,X).
Define a ∈ Sub(t, e) iff a is a subterm of t, or there are i < l(e) and c ∈ C

such that for f := (e)i0, which must be in F by definition of evidence, a is a
subterm of tcf .
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In order to get the induction through we have to prove a slightly more general
assertion. We prove by main induction on l ≤ l(e) and side induction on the defi-
nition of a(~x) ∈ Sub(t, e) as a term – assuming that a only contains the variables
x1, . . . , xn – that for all general numerals v, v1, . . . , vn, w, w1, . . . , wn ≤ BA∗

(k),
if

∀i = 1, . . . , n [vi ⊳ wi or wi ⊳ vi],

v is an (e ↾ l), k-approximation for a~x(~v), and w is an (e ↾ l), k-approximation
for a~x(~w), then v ⊳ w or w ⊳ v.

Let l ≤ l(e), a(~x) ∈ Sub(t, e), and v, w,~v, ~w ≤ BA∗
(k) with

∀i = 1, . . . , n[vi ⊳ wi or wi ⊳ vi], (2)

v is an (e ↾ l), k-approximation for a(~v), and (3)

w is an (e ↾ l), k-approximation for a(~w) (4)

If v = ∗ or w = ∗ we are done. So let us assume that this is not the case.
By Observation 4.3 ii) it suffices to find some u with u ⊳ v and u ⊳ w.

If a = c ∈ C∗ and ar(c) = 0, then c ⊳ v and c ⊳ w by Observation 4.7 ii)
applied to assumptions (3), (4), hence we are done.

Assume a(~x) = xi. W.l.o.g. we assume vi ⊳ wi. Now (3) says that v is an
e, k-approximation for vi ∈ A∗, hence Observation 4.7 ii) yields vi ⊳ v. Similarly
we obtain from (4) wi ⊳ w. Hence vi ⊳ wi ⊳ w and vi ⊳ v, and we are done.

Finally assume a(~x) = fa1(~x) . . . am(~x), m > 0. By assumption v 6= ∗ 6= w,
hence (3) and (4) yield some u1, . . . , um, u′

1, . . . , u′

m ≤ BA∗
(k) such that

uj is an (e ↾ l), k-approximation for aj(~v)

u′

j is an (e ↾ l), k-approximation for aj(~w)
(5)

for j = 1, . . . ,m. As aj is a subterm of a ∈ Sub(t, e), we have aj ∈ Sub(t, e).
This, (5), (2) and the side induction hypothesis yields

∀j = 1, . . . ,m [uj ⊳ u′

j or u′

j ⊳ uj ]. (6)

W.l.o.g. we assume u1 ⊳ u′

1.
In case f ∈ C∗ with ar(f) = 1, assumptions (3) and (4) show fu1 ⊳ v and

fu′

1 ⊳ w, hence fu1 ⊳ fu′

1 ⊳ w and fu1 ⊳ v, and we are done.
Otherwise f /∈ C∗, hence (3) and (4) produce some u ⊳ v and u′ ⊳ w such

that

〈f, ~u, u〉, 〈f, ~u′, u′〉 ∈ (e ↾ l). (7)

In particular l > 0. The definition of an evidence shows that u1 = c(ũ1),
u′

1 = c′(ũ′

1), for some c, c′ ∈ C, and

u is an (e ↾ (l − 1)), k-approximation for tcf (ũ1, u2, . . . , um) (8)

u′ is an (e ↾ (l − 1)), k-approximation for tc
′

f (ũ′

1, u
′

2, . . . , u′

m) (9)
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As u1 ⊳ u′

1 we get c = c′ and ũ1 ⊳ ũ′

1, thus (9) can be rewritten as

u′ is an (e ↾ (l − 1)), k-approximation for tcf (ũ′

1, u
′

2, . . . , u′

m) (10)

Furthermore, f = (e)i0 for some i < l(e), hence tcf ∈ Sub(t, e). With (6), (8),
(10) we can apply the main induction hypothesis obtaining u ⊳ u′ or u′ ⊳ u.
W.l.o.g. assume u ⊳ u′, hence u ⊳ u′ ⊳ w and u ⊳ v, thus we are done.

Concerning formalizability let Bt,e be max(t,SqBd(e, e)). Then, by definition
of a nice set of recursive axioms,

a ∈ Sub(t, e) ⇒ paq ≤ Bt,e (11)

This is clear if a is a subterm of t, because then paq ≤ ptq. Otherwise there
are i < l(e) and c ∈ C such that f := (e)i0 ∈ F and a is a subterm of tcf .

By the definition of a nice set of recursive axioms, there is some t̃(⋆) with
pt̃(⋆)q ≤ pfq ≤ e and tcf = t̃(f). Hence

ptcfq = pt̃(⋆)q⋆(pfq) ≤ SqBd(pfq, pfq) ≤ Bt,e.

Using (11) we see that the main and the side induction formulas are Πb
1, hence

this kind of Πb
1-<-length-induction, which is equivalent to Σb

1-LMin, is available
in S1

2 . ¤

In the next Lemma we show a kind of converse of Lemma 4.8, i.e. that the
approximations have a certain decomposition property.

Lemma 4.12 (S1
2) Assume that e is a k-evidence, and w is an e, k-approxi-

mation for t(b1, . . . , bm) ∈ T(F∗). Then there are w1, . . . , wm, such that wj is
an e, k-approximations for bj, for j = 1, . . . ,m, and w is an e, k-approximation
for t(~w).

Proof. Let e be a k-evidence and b1, . . . , bm ∈ T(F∗). We prove the assertion
by induction on the definition of the term t(~x) ∈ T(F∗, ~x).

If w = ∗ or t ∈ C∗ we are done. So let us assume that this is not the case.
In case t(~x) = xi we have that w is an e, k-approximation for bi. Let wi be w,

and wj be ∗ for j 6= i. Then wj is an e, k-approximation for bj , for j = 1, . . . ,m,
and w is an e, k-approximation for w = t(~w).

Finally assume t(~x) = ft1(~x) . . . tn(~x). As w 6= ∗ and w is an e, k-approxima-

tion for t(~b), there are v1, . . . , vn ≤ BA∗
(k) such that vj is an e, k-approximation

for tj(~b), for j = 1, . . . , n. By induction hypothesis there are w1
i , . . . , wn

i

being e, k-approximations for bi, for i = 1, . . . ,m, such that vj is an e, k-
approximation for tj(~wj), for j = 1, . . . , n. Using Proposition 4.11 we can
choose wi ∈ {w1

i , . . . , wn
i } which is minimal with respect to ⊳, i = 1, . . . ,m.

Then Lemma 4.10 shows that vj is an e, k-approximation for tj(~w), for j =
1, . . . , n. As in the proof of Lemma 4.8 the same reason for w being an e, k-
approximation for t(~b) now shows w is an e, k-approximation for t(~w). ¤

18



Theorem 4.13 (S1
2) Assume that e is a k-evidence, w is an e, k-approximation

for t, and t′ −→1
Ax t. Then there are pfq ≤ pt′q, ~v, v ≤ BA∗

(k + 1) such that

e
′ := e

a〈〈f,~v, v〉〉 is a (k + 1)-evidence, and w is an e
′, (k + 1)-approximation

for t′.

Proof. Let e be a k-evidence, f ∈ F \ C, c ∈ C and b, c1, . . . , cm ∈ T(F∗),
a(x) ∈ T(F∗, x). Furthermore, let w be an e, k-approximation for a(tcf (b,~c)).
We will construct an evidence e

′ as claimed above such that w is an e
′, (k + 1)-

approximation for a(f c(b)~c). This proves the Theorem.
The proof proceeds in several steps.

i) By Lemma 4.12 there is some v being an e, k-approximation for tcf (b,~c),
such that w is an e, k-approximation for a(v). In particular v ≤ BA∗

(k).

ii) Again by Lemma 4.12 there are some wb, ~wc with wb being an e, k-approxi-
mation for b and wci

being an e, k-approximation for ci, for i = 1, . . . ,m,
and v being an e, k-approximation for tcf (wb, ~wc).

iii) Let e
′ := e

a〈〈f, c(wb), ~wc, v〉〉, then e
′ is a (k + 1)-evidence, because

dp(c(wb)) = dp(wb) + 1 ≤ k + 1, and by ii). This also implies c(wb) ≤
BA∗

(k + 1).

iv) By the definition of e
′ and ii) we immediately have that v is an e

′, (k +1)-
approximation for f c(b)~c.

v) From i) and Observation 4.7 vi) we obtain that w is an e
′, (k +1)-approxi-

mation for a(v), hence with iv) and Lemma 4.8 we obtain w is an e
′, (k+1)-

approximation for a(f c(b)~c). ¤

This finishes the second (and last) part of our general plan. Now we put
Theorem 4.9 together with the last one obtaining the main result of this section.

Theorem 4.14 (S1
2) Assume v, w ∈ A∗ and v ←→∗

Ax w, then v = w.

Proof. Assume v, w ∈ A∗ and v ←→∗

Ax w. Let σ be the path from v to w. I.e.,
σ is a sequence, where the first element of σ is v, the last one is w, and two
successive elements u, u′ of σ fulfill u ←→1

Ax u′. Let d be the depth of v. We
prove that there exists some e such that

l(e) ≤ j, maxel(e) ≤ SqBd(σ ↾j+1, σ ↾j+1 +BA∗
(d + j)),

e is a (d + j)-evidence and v is an e, (d + j)-approximation for (σ)j

by induction on j < l(σ). This induction is an application of Σb
1-LIND, because

e can obviously be bounded by SqBd(σ,SqBd(σ, σ + BA∗
(d + l(σ)))).

If j = 0 let e := 〈〉 and the assertion is obvious as (σ)0 = v.
Now assume j + 1 < l(σ) and by induction hypothesis there is some e such

that l(e) ≤ j, maxel(e) ≤ SqBd(σ ↾j+1, σ ↾j+1 +BA∗
(d + j)), e is a (d + j)-

evidence and v is an e, (d + j)-approximation for (σ)j .
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If (σ)j −→1
Ax (σ)j+1, then e is also a (d + j + 1)-evidence and Theorem 4.9

yields that v is an e, (d + j + 1)-approximation for (σ)j+1.
Otherwise (σ)j+1 −→1

Ax (σ)j . By Theorem 4.13 there are f ≤ (σ)j+1,

~u, u ≤ BA∗
(d+ j +1) such that e

′ := e
a〈〈f, ~u, u〉〉 is a (d+ j +1)-evidence and v

is an e
′, (d+j+1)-approximation for (σ)j+1. Furthermore l(e′) ≤ l(e)+1 ≤ j+1

and
〈f, ~u, u〉 ≤ SqBd((σ)j+1, (σ)j+1 + BA∗

(d + j + 1)),

hence the assertion follows.
Thus there is some e such that v is an e, (d+l(σ))-approximation for w, thus

w ⊳ v by Observation 4.7 ii). Similarly we obtain v ⊳ w. Hence v = w by
Observation 4.3 iii). ¤

Proof of the Main Theorem 2.5. We argue in S1
2 . Let Ax be a nice

set of recursive axioms and assume PrfEqT(Ax)(π, p0 = 1q). By Theorem 3.2 we
obtain that 0 ←→∗

Ax 1. But then Theorem 4.14 yields 0 = 1, a contradiction.
¤

Remark 4.15 The consistency notion used in our results bases on treelike
proofs. It is open whether the results still hold when considering daglike proofs,
i.e. proofs coded as directed acyclic graphs. However, the proofs of Theorems 3.2
and 4.14 indicate that we can allow terms to be represented as dags.
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