
Applications of cut–free infinitary derivations to

generalized recursion theory

Arnold Beckmann

Institut für Mathematische Logik

und Grundlagenforschung

Einsteinstr. 62

48149 Münster

e–mail: beckmaa@math.uni-muenster.de

Wolfram Pohlers

Institut für Mathematische Logik

und Grundlagenforschung

Einsteinstr. 62

48149 Münster

e–mail: pohlers@math.uni-muenster.de

December 16, 1997

1 Introduction

Cut elimination is the main tool in proof theoretical research. The emphasis
there, however, is on the cut–elimination procedure, i.e., the dynamical aspect
of cut–elimination. In this paper we want to show that also the statical aspect,
i.e., the mere existence of cut–free derivations, has consequences which may be
viewed to belong to Descriptive Set Theory or Generalized Recursion Theory.

We will introduce an infinitary proof system for a language of second order
arithmetic which is complete for Π1

1–sentences. This leads to a notion of truth
complexity for Π1

1–sentences. We define the truth complexity as the depth of
the shortest infinitary derivation for ϕ. The main observation there is the Boun-
dedness Theorem telling that the order–type of a Σ1

1–definable well–ordering ≺
is less than or equal to the truth complexity of TI(≺) where TI(≺) expresses
transfinite induction along ≺. The fact that for every Σ1

1–collection of well–
orderings of order types < ωCK

1 there is an ordinal < ωCK
1 which bounds all

these order types is commonly known as the Boundedness Principle of Generali-
zed Recursion Theory. We will obtain it as a consequence of our proof theoreti-
cal Boundedness Theorem which in turn is a consequence of cut–freeness. This

1

yields a proof of the Boundedness Principle which does not use the Analytical
Hierarchy Theorem.

We are indebted to the referee for many valuable remarks.

2 The infinitary proof system

Let L2 denote the language of Second Order Number Theory including constants
for all primitive–recursive functions and relations. We introduce the language
L∞

2 of infinitary propositional logic with second order quantifiers. The non–

logical symbols of L∞
2 are those of L2. The logical symbols are =, 6=, ∈, /∈,

∧

,
∨

, ∀, ∃, and second order variables X,Y ,Z,X1,

• Terms are built from 0 and constants for primitive–recursive functions. The
symbol n abbreviates (S . . . (S

︸ ︷︷ ︸

n–times

0)) where S is a symbol for the successor func-

tion. Observe that for any term t its value tN can be primitive–recursively
computed.

• Atomic formulas are (s = t), (s 6= t), (s ∈ X), (s /∈ X), (Rt1 . . . tn) where
s, t, t1, . . . , tn are terms and R is a symbol for an n–ary primitive–recursive
relation.

• If 〈φi|i ∈ I〉 for ∅ 6= I ⊆ N is a sequence of L∞
2 –formulas then

∧

i ∈ I

φi and

∨

i ∈ I

φi are L∞
2 –formulas.

• If ϕ(X) is an L∞
2 –formula then ∀Xϕ(X) and ∃Xϕ(X) are L∞

2 –formulas.

We call an L∞
2 formula first order iff it does not contain quantifiers. We

denote the set of first order formulas by L∞
1 .

The semantics for L∞
2 is given in the natural way, where ∃X and ∀X are

supposed to range over all subsets of N. We write N |= ϕ to denote that the
sentence ϕ is standardly valid.

We define the negation ¬ϕ of an L∞
2 –formula inductively by

• ¬(s = t) :≡ (s 6= t), ¬(s 6= t) :≡ (s = t),

• ¬(t ∈ X) :≡ (t /∈ X), ¬(t /∈ X) :≡ (t ∈ X),

• ¬(Rt1, . . . , tn) :≡ (Rt1, . . . , tn) where R is the symbol denoting the comple-
ment of the relation denoted by R.

• ¬(
∧

i ∈ I

φi) :≡
∨

i ∈ I

¬φi, ¬(
∨

i ∈ I

φi) :≡
∧

i ∈ I

¬φi.

• ¬(∀Xϕ(X)) :≡ (∃X¬ϕ(X)), ¬(∃Xϕ(x)) :≡ (∀X¬ϕ(X)).

2

There is a canonical translation ∗ of the formulas of L2 not containing free
number variables into L∞

2 by putting

• ϕ∗ :≡ ϕ for atomic ϕ

• (ϕ ∧ ψ)∗ :≡
∧

{ϕ∗, ψ∗}, (ϕ ∨ ψ)∗ :≡
∨

{ϕ∗, ψ∗}

• (¬ϕ)∗ :≡ ¬ϕ∗

• (∀xϕ(x))∗ :≡
∧

n∈ω
ϕ(n)∗, (∃xϕ(x))∗ :≡

∨

n∈ω
ϕ(n)∗

• (∀Xϕ(X))∗ :≡ ∀Xϕ(X)∗, (∃Xϕ(X))∗ :≡ ∃Xϕ(X)∗.

We obviously have

N |= ϕ ⇔ N |= ϕ∗

for all L2–sentences ϕ. In the rest of the paper we will mostly identify ϕ and
ϕ∗. It will usually be clear from the context if ϕ is the L2 or L∞

2 formula.
The diagram of N contains all true atomic sentences of L∞

2 . Observe that
Diagram(N) is a recursive set.

2.1 Definition Let ∆ be a finite set of L∞
2 –formulas and α an ordinal. We

define the infinitary proof relation
α

∆ inductively by the following clauses.

(Ax N) If ∆ ∩ Diagram (N) 6= ∅ then
α

∆ for any α .

(Ax L) If sN = tN then
α

∆, s /∈ X, t ∈ X for any α.

(
∧

) If
αi

∆, ϕi and αi < α holds for all i ∈ I then
α

∆,
∧

i∈I

ϕi.

(
∨

) If
α0

∆, ϕi and α0 < α holds for some i ∈ I then
α

∆,
∨

i∈I

ϕi.

(∀) If
α0

∆, ϕ(X) and α0 < α holds for some set variable X not occurring
in ∆,∀Zϕ(Z) then

α
∆,∀Zϕ(Z)

(∃) If
α0

∆, ϕ(X) and α0 < α then
α

∆,∃Zϕ(Z).

There are some basic properties which follow easily by induction on α.

α
∆, α ≤ β,∆ ⊆ Γ ⇒

β
Γ. (1)

α
∆,

∧

i∈I
φi ⇒

α
∆, φi for all i ∈ I. (2)

α
∆,

∨

i=1,...,n
ϕi ⇒

α
∆, ϕ1, . . . , ϕn. (3)

α
∆(s) and sN = tN ⇒

α
∆(t). (4)

3

α
∆,∀Xϕ(X) ⇒

α
∆, ϕ(Z) for any Z. (5)

We refer to (1) as structural rule, to (2) as
∧

–inversion, to (3) as
∨

–exportation,

to (4) as equality–rule and to (5) as ∀–inversion. If an infinitary derivation does
neither contain ∀– nor ∃–rules we talk about a first order derivation. The exis-
tence of a first order derivation is denoted by 1 α

∆.

2.2 Lemma If ∆ is a set of first order formulas and
α

∆, then 1 α
∆.

The proof is immediate by induction on α. The infinitary calculus is obviously
sound. By induction on α we get the following lemma.

2.3 Lemma
α

ϕ1, . . . , ϕn ⇒ N |= ϕ1 ∨ . . . ∨ ϕn.

The opposite direction of Lemma 2.3 is in general not true. But we can save it
in special situations.

2.4 Definition Call a formula ϕ in L∞
2 a Π–formula if

ϕ ≡ ∀X1 . . . ∀Xnψ(X1, . . . ,Xn)

and ψ(X1, . . . ,Xn) is first order.

2.5 Theorem For any Π–sentence ϕ we have

N |= ϕ ⇔ (∃α < ω1)
α

ϕ

where ω1 denotes the first uncountable ordinal.

Proof: The direction from right to left is Lemma 2.3. A detailed proof of the
opposite direction is in [5] Theorem 9.6 which holds for first order derivations.
However, to make this paper self contained, we repeat a sketch of the proof.
A tree is a set of sequence numbers which is closed under initial segments. For
sequence numbers s0 and s1 we denote by s0 ⊆ s1 that s0 codes an initial
segment of s1.

2.6 Definition We are going to define search trees for finite sequences of L∞
1 –

formulas. Such a sequence is called reducible if it contains at least one non
atomic formula. The left most non atomic formula in a reducible sequence is
called distinguished. The reduced sequence ∆r of a reducible sequence ∆ is
obtained by removing the distinguished formula from the sequence.
The search tree for a finite sequence ∆ of L∞

1 -formulas is a tree S∆ together
with a label function which assigns a finite sequence δ(s) of L∞

1 -formulas to
each node s ∈ S∆. It is defined by the following clauses:

(S〈〉) 〈〉 ∈ S∆ and δ(〈〉) = ∆

4

(SAx) If s ∈ S∆ and δ(s) is an axiom according to (Ax L) or (Ax N) then
s⌢〈i〉 /∈ S∆ for all i ∈ N. (I.e. s is a topmost node of S∆.)

For the following clauses assume s ∈ S∆ such that δ(s) is not an axiom.

(Sid) If δ(s) is not reducible then s⌢〈0〉 ∈ S∆ and δ(s⌢〈0〉) = δ(s).

(S∧) If
∧

i∈I

φi is the distinguished formula in δ(s) then s⌢〈i〉 ∈ S∆ for all i ∈ I

and δ(s⌢〈i〉) := δ(s)r, φi.

(S∨) Assume that
∨

i∈I

φi is the distinguished formula in δ(s). Let i0 be the least

i ∈ I such that φi does not occur in
⋃

s0⊆s δ(s0). Then s⌢〈i0〉 ∈ S∆ and

δ(s⌢〈i0〉) := δ(s)r, φi0 ,
∨

i∈I

φi. If there is no such i0 then s⌢〈0〉 ∈ S∆ and

δ(s⌢〈0〉) := δ(s)r.

Observe that if we regard Definition 2.6 as an inductive definition we can
dispense with clause (SAx). The least set which is closed under the remaining
clauses satisfies (SAx) automatically.
For a function f : N −→ N we define f [n] := 〈f(0), . . . , f(n−1)〉 and call f [n] the
course of values of f below n. If T is a tree and f [m] ∈ T then {f [n] n ≤ m} ⊆
T . We call f [m] a path in the tree T . If f [n] ∈ T for all n ∈ N we say that
f is an infinite path in T . A tree is well–founded iff it has no infinite paths.
For a well–founded tree S we denote by otyp(S) its order–type, i.e., the ordinal
measuring the depth of S.
A finite set Γ of formulas occurs in a path f [m] in S∆ if Γ ⊆ δ(f [n]) for some
n ≤ m. By “F occurs in a node s ∈ S∆” we mean that F occurs in δ(s).
There are two main lemmas.

2.7 Lemma (Syntactical Main-Lemma) If the search tree S∆ is well-founded

then otyp(S∆) < ω1 and
otyp(S∆)

∆ .

Proof: If the search tree S∆ is well-founded then it is by definition countable.
Hence otyp(S∆) < ω1. If S∆ is well–founded every topmost node of S∆ contains

an axiom and we get
otyp(S∆)

∆ easily by induction on otyp(S∆). ⊓⊔

2.8 Lemma (Semantical Main-Lemma) If S∆ is not well–founded then there
is an assignment S1, . . . , Sn of subsets of N to the set variables in ∆ such that
N 6|=

∨
∆[S1, . . . , Sn].

To sketch the proof we assume that f is an infinite path in S∆. We observe:

(0) None of the δ(f [n]) is an axiom.

5

(1) If A is an atomic formula occurring in some s ∈ S∆ then A occurs in all
t such that s ⊆ t ∈ S∆.

(2) If a non atomic formula F occurs in some f [n] then there is an m ≥ n
such that F is distinguished in f [m].

The proof of (2) is an easy induction on the number of non atomic formulas
occurring left of F in δ(f [n]). Using (2) the proofs of the following observations
are almost immediate from the definition of S∆.

(3) If a formula
∧

i∈I
φi occurs in some f [n] then there is an m and an i ∈ I

such that φi occurs in f [m].

(4) If a formula
∨

i∈I
φi occurs in f [n] then there is for every k ∈ I an mk

such that φk occurs in f [mk].

To prove fact (4) we assume that
∨

i∈I
φi is distinguished in δ(f [n]). By (2)

this means no loss of generality. If φk does not occur in f [l] for l ≤ n then

δ(f [n + 1]) = δ(f [n])r, φj ,
∨

i∈I
φi

for some j ∈ I such that j ≤ k. Then φk will occur in f [m + 1] for some m ≥ n

as soon as
∨

i∈I
φi becomes distinguished in δ(f [m]) and φl has occurred for all

l ∈ I ∩ {0, . . . , k − 1}.
We define an assignment

Φ(X) :=
{
tN (t /∈ X) occurs in f

}
.

Here ϕ occurs in f means that ϕ occurs in f [n] for some n.
An easy induction on the length of a formula ψ, using observations (3) and (4)
and the fact that f does not contain an axiom, shows

N 6|= ψ[Φ]

for all formulas ψ occurring in f . Since all formulas of ∆ occur in f [0] this
yields the claim

N 6|=
∨

∆[Φ]. ⊓⊔

The Syntactical Main Lemma together with the Semantical Main Lemma prove

Theorem 2.5. If φ ≡ ∀X1 . . . ∀Xnψ(X1, . . . ,Xn) and we assume
α

6 ψ(X1, . . . ,Xn)
for all ordinals α < ω1 then, by the Syntactical Main-Lemma, the search tree
for ψ(X1, . . . ,Xn) is not well–founded. Applying the Semantical Main-Lemma
we obtain an assignment Φ over N such that

N 6|= ψ(X1, . . . ,Xn)[Φ].

Hence N 6|= φ. ⊓⊔

6

If ϕ is a Π1
1–sentence the search tree for ϕ∗ as defined in Definition 2.6 is

recursive. Therefore we can sharpen Theorem 2.5 to

2.9 Theorem For a Π1
1–sentence ϕ we have

N |= ϕ ⇔ (∃α < ωCK

1)
α

ϕ∗.

There are two possibilites to relativize Theorem 2.9. Starting with a function
G: N −→ N we may introduce a constant for G. The computation of the value
tN of a term t in the extended language is primitive recursive in G. Starting
with a set S ⊆ N we may introduce a constant for S. In both cases Diagram(N)
becomes recursive in G or S, respectively. Therefore the search tree for a Π1

1–
formula in the extended language becomes recursive in G or S. Putting

ωCK

1 [S] := sup {otyp(≺) ≺ is recursive in S}

we get

2.10 Theorem For a Π1
1–sentence ϕ(S) with parameter S we have

N |= ϕ(S) ⇔ (∃α < ωCK

1 [S])
α

ϕ∗(S).

As a side remark one should notice that the Hyperarithmetical Quantifier Theo-
rem follows from Theorem 2.10. Since the search tree for ϕ∗(S) can easily be
constructed within LωCK

1 S which is Hyp(S) we get

2.11 Theorem For any Π1
1–formula ϕ(~x, ~X) there is a Σ1–formula ψ(~x, ~X) in

the language of set theory such that

(∀~S ⊆ω)(∀~n ∈ ωk)
[

N |= ϕ[~n, ~S] ⇔ L
ωCK

1 [~S](
~S) |= ψ[~n, ~S]

]

.

Theorem 2.10 can be extended to sentences which are positively arithmetical in
Π1

1–sets, i.e., to sentences of the form φ(ψ1, . . . , ψn) where φ(X1, . . . ,Xn) is an
X1, . . . ,Xn–positive arithmetical formula and ψ1, . . . , ψn are Π1

1–formulas. The
proof needs a lemma saying

α
∃ xφ(x, (X)x) ⇒

α·2
∃ x∀Xφ(x,X)

where (X)x := {z 〈z, x〉 ∈ X}. A proof is in [2].

3 The boundedness theorem

Using Theorem 2.5 we define for L∞
2 –sentences ϕ

tc(ϕ) :=

{

min
{

α
α

ϕ
}

if this exists

ω1 otherwise.

7

We call tc(ϕ) the truth–complexity of ϕ which is motivated by the fact that for
first order sentences

α
ϕ is just the truth definition for ϕ. For Π1

1–sentences ϕ
of L2 we define

tc(ϕ) := tc(ϕ∗).

Let

Prog(≺,X) :≡ ∀x[∀y(y ≺ x → y ∈ X) → x ∈ X]

and

TI(≺) :≡ ∀X[Prog(≺,X) → ∀x(x ∈ X)].

Then TI(≺) expresses transfinite induction along ≺ and for arithmetical defi-
nable ≺ the sentence TI(≺) is Π1

1. We will see that there is a close connection
between the truth complexity of the sentence TI(≺) and the order–type otyp(≺)
of the well–ordering ≺. First we observe that there is a canonical infinitary proof
for TI(≺). Let ≺ be a – for simplicity primitive recursive – well-founded binary
relation. We show

5·(otyp
≺

(n)+1)

¬Prog(≺,X), n ∈ X (6)

by induction on otyp≺(n). We have

5·(otyp
≺

(m)+1)

¬Prog(≺,X),¬m ≺ n,m ∈ X (i)

either as an instance of (Ax N) or by induction hypothesis. Hence

5·otyp
≺

(n)+3

¬Prog(≺,X), (∀y)[y ≺ n → y ∈ X] (ii)

by two applications of (
∨

) and one application of (
∧

). By (AxL) we have

0
¬Prog(≺,X), n /∈ X,n ∈ X . (iii)

By (ii) and (iii) we obtain

5·otyp
≺

(n)+4

¬Prog(≺,X), (∀y)[y ≺ n → y ∈ X] ∧ n /∈ X,n ∈ X . (iv)

One additional “inference” (
∨

) leads to

5·(otyp
≺

(n)+1)

¬Prog(≺,X), n ∈ X . ⊓⊔

From (6) we obtain by a clause (
∧

), two clauses (
∨

) and one application of (∀)
the following lemma.

3.1 Lemma If ≺ is a primitive recursive well-founded relation whose order-type
is a limit ordinal then tc(TI(≺)) ≤ otyp(≺) + 3.

The claim in Lemma 3.1 should of course be read as

8

tc(TI(≺)) ≤ otyp(≺) (7)

since the “+3” is due to the technical peculiarities of the calculus. Observe
that the Lemma remains true if we replace ≺ by an arithmetical definable well–
ordering whose order-type is a limit. Instead of using (Ax N) in (i) we have to
use that a true arithmetical sentence ψ has truth complexity ≤ 2 · rk(ψ).
We are going to show that we also have the converse inequality. In [5] Theorem

13.10 there is a proof of otyp(≺) ≤ 2tc(TI(≺)) — a result which goes back
to Gentzen. Quite recently A. Beckmann has improved that to otyp(≺) ≤
tc(TI(≺)) (cf. [1]) which turned out to be important for the proof theory of
certain subsystems of arithmetic. Though not really essential for the results
of this paper we want to prove the sharper version. We need some notations.
Recall that every class O ⊆ On has a uniquely determined enumerating function

enO:On −→p O

which is recursively defined by enO(α) = min {ξ ∈O (∀β < α)[enO(β) < ξ]}.
Observe that enO is partial iff O is a set. We introduce also the dual enumerating
function enO := enOn\O which enumerates the complement of O. For the dual
enumerating function we obviously have

A ⊆ B ⇒ ∀α(enA(α) ≤ enB(α)).

Let ≺ be an order–relation. Its accessible part can be inductively defined by
the monotone operator

A≺(S) := S ∪ {n ∈N ∀m(m ≺ n → m ∈ S)}.

Defining the α–th iteration of this operator as

A
α
≺(S) := A≺(S ∪

⋃

ξ<α

A
ξ
≺(S))

we obtain the α–th stage of the inductive definition as

A
α
≺ := A

α
≺(∅).

By Acc(≺) :=
⋃

ξ∈On A
ξ
≺ we denote the accessible part of ≺.

For n ∈ Acc(≺) its order–type is obtained as

otyp≺(n) = min {α n ∈ A
α
≺} (8)

and we obtain

otyp(≺) := sup {otyp≺(x) + 1 x ∈ Acc(≺)}.

We are going to modify the accessibility operator. For M ⊆ N let

M≺ := {otyp≺(m) m ∈ M}

and define

9

R
α
≺(M) := {n ∈ N otyp≺(n) ≤ enM≺(α)} ∪ M.

Putting

R
<α
≺ (M) :=

⋃

β < α

R
β
≺(M)

we get

A≺

(
M ∪ R

<α
≺ (M)

)
⊆ R

α
≺(M). (9)

In proving (9) we first observe that both sides contain the set M . To show the
inclusion from left to right assume n /∈ M and n ∈ A≺

(
M ∪ R

<α
≺ (M)

)
. Then

(∀m≺ n)[(∃β < α)otyp≺(m) ≤ enM≺(β) ∨ m ∈ M]

which entails otyp≺(m) < enM≺(α) for all m ≺ n. Hence otyp≺(n) ≤ enM≺(α)
which shows n ∈ R

α
≺(M). The opposite inlusion of (9) is only true if M fulfills

∀n(otyp≺(m) ∈ M → m ∈ M). To prove this assume otyp≺(n) ≤ enM≺(α).
Let m ≺ n. If enM≺(β) < otyp≺(m) < otyp≺(n) ≤ enM≺(α) for all β < α
then m ∈ M . Otherwise we have otyp≺(m) ≤ enM≺(β) for some β < α. Hence
(∀m≺ n)[m ∈ M ∪ R

<α
≺ (M)] which implies n ∈ A≺(M ∪ R

<α
≺ (M)).

From (9) we get by induction on α

A
α
≺(M) ⊆ R

α
≺(M). (10)

From the obvious fact

enM≺∪{otyp(n)}(α) ≤ enM≺(α + 1)

we get

R
α
≺(M ∪ {n}) ⊆ R

α+1
≺ (M) ∪ {n}. (11)

3.2 Lemma (Boundedness Lemma) Let ≺~Y
be a binary relation which is defi-

nable by an L2 formula and X,Y1, . . . , Ym be a list of set variables containing
all the variables occurring in ∆ and ≺~Y

. Assume that X does not occur among
the variables in the defining formula for ≺~Y

and occurs only positively in ∆,
i.e., there are no occurrences s /∈ X in ∆. If

α
¬Prog(≺~Y

,X), s1 /∈ X, . . . , sn /∈ X,∆ (12)

then

N |=
∨

∆[Rα
≺~S

({sN

1 , . . . , sN

n}), S1, . . . , Sm]

holds for all sets Si ⊆ N, i = 1, . . . ,m such that ≺~S
is a well–ordering.

Proof: We induct on α and show only the two interesting cases. If (12) holds
according to an axiom (Ax L) and there is a formula t ∈ X in ∆ such that
tN = sN

i for some i ∈ {1, . . . , n} then tN ∈ R
α
≺~S

({sN
1 , . . . , sN

n}) and we are done.

10

If (12) holds according to an inference (
∨

) whose derived formula is ¬Prog(≺~Y
,X)

we have the premise
α0

¬Prog(≺~Y
,X),∀x(x ≺~Y

s → x ∈ X) ∧ s /∈ X, s1 /∈ X, . . . , sn /∈ X,∆ (i)

for some α0 < α and some term s. By
∧

–inversion we obtain from (i)

α0
¬Prog(≺~Y

,X),∀x(x ≺~Y
s → x ∈ X), s1 /∈ X, . . . , sn /∈ X,∆ (ii)

as well as
α0

¬Prog(≺~Y
,X), s /∈ X, s1 /∈ X, . . . , sn /∈ X,∆. (iii)

If there is some k ≺~S
sN such that k /∈ R

α0
≺~S

({sN
1 , . . . , sN

n}) then we get

N |=
∨

∆[Rα0
≺~S

({sN

1 , . . . , sN

n}), S1, . . . , Sm] (iv)

from (ii) by the induction hypothesis. Since X occurs only positively in ∆ and
R

α0
≺~S

({sN
1 , . . . , sN

n}) ⊆ R
α
≺~S

({sN
1 , . . . , sN

n}) the claim follows from (iv).

If k ∈ R
α0
≺~S

({sN
1 , . . . , sN

n})] for all k ≺~S
sN we get

sN ∈ R
α0+1
≺~S

({sN

1 , . . . , sN

n}) (v)

by (10). The induction hypothesis for (iii) yields

N |=
∨

∆[Rα0
≺~S

({sN

1 , . . . , sN

n, sN}), S1, . . . , Sm]. (vi)

By (11) and (v) we have

R
α0
≺~S

({sN
1 , . . . , sN

n, sN}) ⊆ R
α0+1
≺~S

({sN
1 , . . . , sN

n}) ∪ {sN}

⊆ R
α
≺~S

(sN
1 , . . . , sN

n)

(vii)

and the claim follows from (vi) and (vii) and the fact that X occurs only posi-
tively in ∆.
The remaining cases are either trivial or follow straight forwardly from the
induction hypothesis. ⊓⊔

3.3 Theorem (Boundedness Theorem) For a well–ordering ≺ of N we have

otyp(≺) ≤ tc(TI(≺)).

Proof: For α := tc(TI(≺)) we have
α

∀X[Prog(≺,X) → ∀x(x ∈ X)]

and obtain an α0 < α such that
α0

¬Prog(≺,X),∀x(x ∈ X).

Hence ∀n(n ∈ R
α0
≺ (∅)) by the Boundedness Lemma which entails

11

otyp(≺) = sup {otyp≺(n) + 1 n ∈ N} ≤ α.
⊓⊔

As an immediate consequence of Theorem 2.9 and the Boundedness Theorem
we get

3.4 Corollary We have otyp(≺) < ωCK
1 for all arithmetically definable well–

orderings ≺.

To generalize Corollary 3.4 we introduce the following notations.
Let

n ≺R m :⇔ 〈m,n〉 ∈ R

and

W := {R⊆N ≺R is a well–ordering}.

To every index e of a computable function we associate the binary relation

x ≺e y :⇔ {e}(〈x, y〉) = 0.

Let

W := {e {e} is total ∧ ≺e is a well–ordering}.

3.5 Theorem (Boundedness Principle) If P is a Σ1
1–definable subclass of W

then sup {otyp(≺R) R ∈ P} < ωCK
1 .

Proof: Assume

N |= ∀Y [Y ∈ P → TI(≺Y)] (i)

and assume that P is defined by a Σ1
1–formula, say P = {Y ∃ZF (Z, Y)}. Then

N |= ∀Y ∀Z∀X[¬Prog(≺Y ,X) ∨ ¬F (Z, Y) ∨ ∀x(x ∈ X)]. (ii)

The formula in (ii) is Π1
1. Therefore there is an α < ωCK

1 such that
α
¬Prog(≺Y ,X),¬F (Z, Y),∀x(x ∈ X). (iii)

Let R ∈ P . Then ≺R is a well–ordering and there is some S ⊆ N such that
F (S,R). By the Boundedness Lemma we get

N |= ¬F (S,R) ∨ ∀x[x ∈ R
α
≺R

(∅)] (iv)

which shows that otyp(≺R) ≤ α + 1. Therefore we have

sup {otyp(≺R) R ∈ P} ≤ α + 1 < ωCK

1 . ⊓⊔

Completely analogous we obtain also

12

3.6 Theorem If P is a Σ1
1–definable subclass of W then

sup {otyp(≺e) e ∈ P} < ωCK

1 .

As a corollary of Theorem 3.5 we obtain

3.7 Theorem If ≺ is a Σ1
1–definable well–ordering then otyp(≺) < ωCK

1 .

Proof: Define

P = {X {(x, y) 〈x, y〉 ∈ X} is a linear order ∧ ∀x∀y[〈x, y〉 ∈ X → x ≺ y]}.

Then P is a Σ1
1–definable subclass of W. By Theorem 3.5 we get

sup {otyp(≺X) X ∈ P} < ωCK

1 .

From the definition of P , however, it is obvious that

otyp(≺) = sup {otyp(≺X) X ∈ P}. ⊓⊔

Relativizing Theorems 3.6 and 3.7 we get

3.8 Theorem Let P be a Σ1
1[G]–definable subclass of W then

sup {otyp(≺F) F ∈ P} < ωCK

1 [G].

3.9 Theorem If ≺ is a Σ1
1[G]–definable well–ordering then otyp(≺) < ωCK

1 [G].

Theorem 3.8 entails also its boldface version

3.10 Theorem Let P be a Σ1

1
–definable subclass of W then

sup {otyp(≺F) F ∈ P} < ω1.

References

[1] Arnold Beckmann Eine Verschärfung des Beschränktheitssatzes Preprint
Münster 1992

[2] Arnold Beckmann An optimal boundedness theorem for infinitary logic and
its application to descriptive set theory Preprint Münster 1996

[3] Yiannis Moschovakis Descriptive Set Theory North Holland 1980

[4] Peter Hinman Recursion Theoretic Hierarchies Springer 1978

[5] Wolfram Pohlers Proof Theory. An Introduction Lecture Notes in Mathema-
tics Springer 1989

13

