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Abstract

We will investigate the relation of countable closed linear orderings
with respect to continuous monotone embeddability and will show that
there are exactly ℵ1 many equivalence classes with respect to this em-
beddability relation. This is an extension of Laver’s result [Lav71], who
considered (plain) embeddability, which yields coarser equivalence classes.
Using this result we show that there are only ℵ0 many different Gödel log-
ics.

1 Introduction
The starting point of the present work was the question ‘How many Gödel
logics are there?’ This question led us to the study of embeddability relations of
(countable) linear orderings. The most important result in this field is Laver’s
classical result on the Fraïssé Conjecture [Lav71] which counts the number of
scattered linear orderings with respect to bi-embeddability.

We will generalize Laver’s method to deal not only with monotone but with
continuous monotone embeddings, and come back to Gödel logics in Section 3,
where we use this result to compute the number of Gödel logics. Gödel logics
form a class of many-valued logics, which are one of the three fundamental
t-norm based logics.

Our main result is that the set of countable closed linear orderings is better-
quasi-ordered by strictly monotone continuous embeddability, even when we
consider labeled countable closed linear orderings. As a corollary we derive that
there are only countably many Gödel logics.

The main concepts in all these discussions are ‘well-quasi orderings’ and
‘better-quasi-ordering’, which have been introduced by Nash-Williams in a series
of five papers in the 1960s [NW63, NW64, NW65b, NW65a, NW68]
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While considering embeddability relation of orderings, examples of infinite
descending sequences, as well as infinite antichains can be given [DM40, Sie50].
In [Fra48], Fraïssé made conjectures to the effect that the embeddability relation
is more well behaved in the case of countable order types (later extended to
scattered order types), stating that ‘every descending sequence of countable
order types is finite, and every antichain of countable order types is finite.’ This
conjecture was finally proved by Laver [Lav71].

1.1 Basic concepts
In our exposition we will mainly follow Rosenstein’s textbook on linear orderings
[Ros82], especially Chapter 10. To keep this article self-contained we will give
all the necessary definition and cite some results, but ask the reader to consult
the mentioned book for motivation, background and history of these concepts
and results, as well as for the proofs.

Definition 1. ([Ros82], 10.12-10.15) A quasi-ordering is a reflexive and transi-
tive binary relation ≤Q on a set Q. With <Q we denote the strict part of ≤Q,
i.e. p <Q q iff p ≤Q q and q �

Q
p. We will often drop the index Q if there is not

danger of confusion.
We write p ≡Q q iff both p ≤Q q and q ≤Q p hold. This is an equivalence

relation; we write Q/≡ for the set of equivalence classes.
An infinite sequence ~p = 〈pn : n < ω〉 is called good if there are indices n < k

with pn ≤ pk; ~p is called bad if it is not good. ~p is called an infinite descending
chain if p0 >Q p1 >Q p2 >Q . . . . It is called an anti-chain of Q if neither
pi ≤Q pj nor pj ≤Q pi for i 6= j.

A set Q is a well-quasi-ordering, denoted wqo, if one of the conditions in
Lemma 2 hold.

Lemma 2. ([Ros82], 10.16–10.17) Let (Q,≤) be partial order. Then the follow-
ing are equivalent:

1. All sequences ~q = 〈qi : i < ω〉 are good.

2. For all sequences ~q = 〈qn : n < ω〉 there is an infinite subsequence 〈qn :
n ∈ I〉 which is either strictly increasing (n < m implies qn < qm) or
constant (n < m implies qn ≡ qm).

3. There are no infinite antichains and no infinite decreasing chains in Q.

Definition 3. ([Ros82], 10.19) Given quasi-orderings Q1 and Q2, we define the
quasi-ordering Q1 × Q2 by stipulating that 〈p1, p2〉 ≤ 〈q1, q2〉 if p1 ≤Q1 q1 and
p2 ≤Q2 q2.

Lemma 4. ([Ros82], 10.20) If Q1 and Q2 are wqo, then so is Q1 ×Q2.

Definition 5. ([Ros82], 10.21, 10.24) Given a quasi-ordering Q, we define the
quasi-ordering Q<ω, whose domain is the set of all finite sequences of elements of
Q, by stipulating that 〈p0, p1, . . . , pn−1〉 ≤ 〈q0, q1, . . . , qm−1〉 if there is a strictly
increasing h : n→ m such that ai ≤Q bh(i) for all i < n.

We define the quasi-ordering Qω of ω-sequences of elements of Q by saying
that 〈pn : n < ω〉 ≤ 〈qn : n < ω〉 if there is a strictly increasing h : ω → ω such
that an ≤Q bh(n) for all n < ω.
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Theorem 6. ([Ros82], 10.23) If Q is a wqo, then so is Q<ω.

Definition 7. ([Ros82], 10.31–10.33) If c is a finite subset of N, d is any subset
of N, then we say that d extends c iff: c = {i ∈ d : i ≤ max c}, i.e., if c is an
initial segment (not necessarily proper) of d.

An infinite set B of finite subsets of N is a block if every infinite subset X of⋃
B :=

⋃
{b : b ∈ B} has an initial segment in B; that is, X extends some ele-

ment in B. A block B is called a barrier if no two elements of B are comparable
w.r.t. inclusion.

A precedence relation C on a barrier B is defined as follows: if b1 and b2
are elements of B, then we say that b1 precedes b2, written b1 C b2, if there are
i1 < i2 < · · · < im such that b1 = {i1, i2, . . . , ik} and b2 = {i2, . . . , im} for some
k, 1 ≤ k < m. (In particular, {i} C {j} holds for all i 6= j.)

A function f : B → Q on a barrier B is bad if, whenever b1, b2 ∈ B and
b1 C b2, f(b1) �Q f(b2). Otherwise we say that f is good.

Definition 8. ([Ros82], 10.30) We say thatQ is a better-quasi-ordering, denoted
bqo, if every f : B → Q is good, for every barrier B of finite subsets of N.

Remark. Every bqo is a wqo.

Proof. Use the barrier B = {{n} : n ∈ N}.

Theorem 9. ([Ros82], 10.38) If Q is a bqo, then Q<ω and Qω are bqo’s.

Theorem 10. ([Ros82], 10.40) Let B be a barrier and suppose that B = B1∪B2

is a partition of B. Then there is a sub-barrier C ⊆ B such that C ⊆ B1 or
C ⊆ B2.

This ends the definitions and results we will need from [Ros82].

Definition 11. A countable closed linear ordering, denoted cclo, is a countable
closed subset of R.

A strictly monotone continuous embedding h (denoted smc-embedding) from
a cclo Q1 to a cclo Q2 is an embedding h : Q1 → Q2 which is continuous
on Q1, i.e. whenever (pn)n∈N is a sequence in Q1 converging to an element p
in Q1, then (h(pn))n∈N is a sequence in Q2 converging to an element h(p) in
Q2, and strictly monotone on Q1, i.e. whenever p, q ∈ Q1 with p <Q1 q then
h(p) <Q2 h(q). (Here, “convergence” is always understood as convergence in the
usual topology of R.)

Definition 12 (labeled cclo). In addition to cclo, we will also have to consider
the following notion: Fix a quasi-order Q (usually a bqo, often a finite set or an
ordinal). A Q-cclo is a function A whose domain domA is a cclo and whose
range is contained in Q.

We write A � B (A is Q-smc-embeddable into B, or shortly A is embeddable
into B) iff there is a smc-embedding h from domA to domB with the property
A(a) ≤Q B(h(a)) for all a ∈ domA.

If Q is a singleton, then A � B reduces just to a smc-embedding from domA
to domB. If Q = {p, q} is an antichain, or satisfies p < q, and A(0) = A(1) =
q = B(0) = B(1), B(b) = p for all b 6= 0, 1, then A � B means that there is a
smc-embedding from domA to domB which moreover preserves 0 and 1. Such
embeddings will play an important rôle when we investigate Gödel sets and the
number of Gödel logics.
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2 Q-labeled countable closed linear orderings
Let us fix some bqo (Q,≤) for defining Q-cclo’s.

Notation 13. We will use the following notation throughout the paper:

L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

or ∑
Li + p+

∑∗
iL

When we write this term the following conditions are imposed:

• p is an element of Q.

• All the Li and iL are Q-cclo’s.

• Either all Li are empty, or none of them are empty. Similarly, either all
iL are empty, or none of them are. We do not allow all Li and all iL to
be empty.

• domLi < domLi+1 < dom i+1L < dom iL for all i, where we write A < B
for “A = ∅ ∨ B = ∅ ∨ supA < inf B”. In particular, between the domains
of any two of them (in the non-empty case) we can find an open interval.

• limn→∞ an = limn→∞ na, whenever an ∈ domLn and na ∈ dom nL.

The meaning of such a term is the Q-cclo L whose domain is the set
⋃

i Li ∪
{x}∪

⋃
i iL (where x = limn→∞ an and/or x = limn→∞ na for any/all sequences

satisfying an ∈ domLn and na ∈ dom nL), and the function L extends all
functions Li and iL, and L(x) = p.

A “finite sum”
L = L1 + · · ·+ Ln

is defined naturally: we allow this expression only when all Li are nonempty and
satisfy max domLi < mindomLi+1. In this case we let dom(L) =

⋃
i dom(Li)

and L =
⋃

i Li.

We will consider two slightly different operations (S, S′ below) to build com-
plicated Q-cclo’s from simpler ones. These two operations naturally correspond
to two notions rk, rk′ of rank; a third rank that we occasionally use is the
classical Cantor-Bendixson rank rkCB of a cclo.

Definition 14. Let O be a class of Q-cclo’s. We let S(O) (‘sums from O’) be
the set of all Q-cclo’s which are finite sums of Q-cclo’s from O, plus the set of
all Q-cclo’s of the form

L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where p ∈ Q and all Ln and all nL are in O.
We let S′(O) (‘unbounded sums from O’) be the set of all Q-cclo’s of the

form
L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where p ∈ Q and all Ln and all nL are in O, and

∀n ∃k > n Ln � Lk and ∀n ∃k > n nL � kL.
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As a consequence of the above definition we obtain for unbounded sums,
that for all n there are infinitely many k > n such that Ln � Lk and nL � kL.

Definition 15.

(a) Let C be the set of all Q-cclo’s.

(b) Let C0 = C ′
0 be the set of all Q-cclo’s with singleton or empty domain.

For any α ≤ ω1 let

Cα+1 = S(Cα) ∪ Cα C ′
α+1 = S′(C ′

α) ∪ C ′
α

and for limit ordinals δ > 0 let Cδ =
⋃

α<δ Cα, C ′
δ =

⋃
α<δ C ′

α.

(c) For any L ∈
⋃

α Cα we define the rank of L (rk(L)) as the first ordinal α
at which L occurs in Cα+1. Similar, we define rk′(L) for L ∈

⋃
α C ′

α as
the first ordinal α at which L occurs in C ′

α+1.

(d) The set of all Q-cclo’s whose domains are suborderings of domL is denoted
with C (L).

It is clear that C ′
ω1
⊆ Cω1 ⊆ C . We will show that C = Cω1 , and that every

order in C can be written as a finite sum of orders from C ′
ω1

.

Lemma 16. C = Cω1 . That is, for every Q-cclo L there is a countable ordinal
α such that L ∈ Cα.

Proof. We use the Cantor-Bendixson decomposition, more precisely we use in-
duction on the Cantor-Bendixson rank of V = domL.

For every scattered closed set V there is an ordinal rkCB(V ) (the Cantor-
Bendixson rank of V ) and a decomposition

V =
⋃

α≤rkCB(V )

CBα(V ),

where CB0(V ) is the set of isolated points of V , and more generally each set
CBα(V ) is the set of isolated points of V \

⋃
β<α CBβ(V ), and CBrkCB(V )(V ) is

finite and nonempty.
Assume for the moment that CBrkCB(V )(V ) is a singleton {x∗}. If rkCB(V ) =

0, then L ∈ C0. If rkCB(V ) > 0, fix an increasing sequence 〈xn〉 and a decreasing
sequence 〈nx〉, both with limit x∗, and xn, nx /∈ V . Now it is easy to see that
for all β < rkCB(V )

CBβ(V ∩ [xn, xn+1]) = CBβ(V ) ∩ [xn, xn+1],

so rkCB(V ∩ [xn, xn+1]) < rkCB(V ), similarly for V ∩ [nx, n+1x]. Now we can
use the induction hypothesis.

If CBrkCB(V )(V ) is not a singleton then we can write V = V1 + · · ·+ Vn for
some finite n, with each CBrkCB(V )(Vk) a singleton, then proceed as above.

Definition 17. The set C ′ := C ′
ω1

is the smallest family of Q-cclo’s which
contains all the singletons and is closed under unbounded sums S′.

Theorem 18. Let L be a Q-cclo and assume that (C (L),�) is a wqo. (See
Definition 15(d).) Then L is a finite sum of elements in C ′.
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Proof. Induction on rk(L): Assume that

L = L0 + L1 + L2 . . .+ p+ . . .+ 2L+ 1L+ 0L

where all the Li and iL are in C ′. Suppose that, for all but a finite number of
Li, each Li is embeddable in infinitely many Lj , and for all but a finite number
of iL, each iL is embeddable in infinitely many jL. Then L can be written as

L0 + . . . Lk−1 + (Lk+0 + Lk+1 + · · ·+ p+ · · ·+ l+1L+ l+0L) + l−1L+ · · ·+ 0L

where each summand is in C ′.
Otherwise there are either infinitely many Li or iL each embeddable in only

finitely many Lj or jL, resp. We then find a either a subsequence 〈Lh(n) : n < ω〉
or 〈h(n)L : n < ω〉 no entry of which can be embedded in any subsequent
entry. This bad sequence of suborderings of L contradicts the hypothesis of the
theorem.

Theorem 19. If (C ′,�) is a bqo, then (C ,�) is a wqo.

Proof. We will show for all countable L by induction on the rank rk(L) (that
is the rank w.r.t. the classes in C as defined in Definition 15 (c)), that the
collection C (L) of Q-cclo’s whose domains are suborderings of domL is a wqo
w.r.t smc-embeddability.

First we show that, if K is in C (L), then K can be written as K =
∑
Ji +

p+
∑∗

iJ , where all the Ji and iJ are in C ′. To prove this, observe that L can
be written as

∑
Li +p+

∑∗
iL where the ranks of the Li and iL are strictly less

than the rank of L. Using the induction hypothesis, we see that (C (Li),�) and
(C (iL),�) are wqo. If domK is a sub ordering of domL, it can be written as
K =

∑
Ki+q+

∑∗
iK with Ki ∈ C (Li) and iK ∈ C (iL). Thus, by Theorem 18,

each Ki and iK can be written as finite sum of elements Jj and jJ in C ′, and
K as J0 + J1 + J2 . . .+ q + . . .+ 2J + 1J + 0J .

Now consider a sequence 〈Kl : l < ω〉, where each Kl is a Q-cclo and
subordering of L. We will repeatedly thin out this sequence, eventually arriving
at a sequence which is good, which will show that our original sequence was good.
After having thinned out the sequence 〈Kl : l < ω〉 to a sequence 〈Kli : i < ω〉,
we will (for notational simplicity) relabel our index set so that we will also call
the new sequence 〈Kl : l < ω〉.

Each Kl can be written as

Kl = J l
0 + J l

1 + J l
2 . . .+ pl + . . .+ 2J

l + 1J
l + 0J

l

where each of the summands is in C ′. Using Lemma 2 we thin out our sequence
to a new sequence (again called 〈Kl : l < ω〉) such that pj ≤Q pk for all j < k.

By Theorem 9 we know that C ′ω is a bqo, in particular a wqo. Consider the
ω-tuples Cl = 〈J l

0, J
l
1, . . .〉 ∈ C ′ω. Using Lemma 2 we can thin out our sequence

to obtain a sequence satisfying Cj � Ck for any j < k.
We now apply the fact that C ′ω is wqo to the sequence nC = 〈0Jn, 1J

n, . . .〉 ∈
C ′ω to see that without loss of generality we may also assume jC � kC for all
j < k.

Now pick any n < m, and consider the sums

Kn = Jn
0 + Jn

1 + Jn
2 . . .+ pn + . . .+ 2J

n + 1J
n + 0J

n
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and
Km = Jm

0 + Jm
1 + Jm

2 . . .+ pm + . . .+ 2J
m + 1J

m + 0J
m.

Write xn and xm for the central points of Kn and Km, respectively (i.e., xn =
supn

⋃
i dom Jn

i = infn

⋃
i dom iJ

n, etc.)
We know pn ≤Q pm, Cn � Cm, nC � mC.
Thus, there are strictly increasing functions g and h from N to N, such

that for all i, Jn
i � Jm

g(i) and iJ
n � h(i)J

m. Let αi and iα be functions that
witness this, i.e., let αi be a function mapping dom Jn

i to dom Jm
g(i) with Jn

i (x) ≤
Jm

g(i)(αi(x)) for all x ∈ dom Jn
i , and similarly iJ

n(x) ≤ g(i)J
m(iα(x)) for all

x ∈ dom iJ
n,

Now define α : domKn → domKm naturally: α extends all functions αi

and iα, and α(xn) = xm. Clearly α witnesses Kn � Km.

Finally, if {Ki : i < ω} is an arbitrary sequence, where each Ki is in C , then
each Ki ∈ C(K) where K = K0 + K1 + K2 . . . + p + . . . + 2K + 1K + 0K
for arbitrary p and empty iK. According to the above remarks, the sequence
{Ki : i < ω} must be good, so that C is a wqo.

Theorem 20. (C ′,�) is a bqo.

We prove the Theorem by a series of lemmas. The first lemma holds for
general quasi-orderings which are equipped with a rank function, it forms the
main technical part of the proof of Theorem 20.

Let (Q,≤) be a quasi-ordering, and let ρ be a rank function from Q into the
ordinals (i.e., a function satisfying ρ(x) ≤ ρ(y) whenever x ≤ y). Let F denote
the set of all functions g : B → Q where B is a barrier of finite subsets of N.
(See Definition 7.)

We say that C is an extended sub-barrier of B if
⋃
C ⊆

⋃
B and if every

element of C is an extension (not necessarily proper) of an element of B. C
is called a proper extended sub-barrier of B if C is an extended sub-barrier of
B and at least one element of C properly extends some element of B. For two
functions g : B → Q and h : C → Q in F we say that h is shorter than g if C
is a proper extended sub-barrier of B and if g and h coincide on B ∩C, and if,
whenever c ∈ C properly extends b ∈ B, h(c) ≤ g(b) and h(c) has lower rank
than g(b). The following Lemma can be extracted from the proof of Theorem
10.47 in Rosenstein [Ros82]. Recall from Definition 7 that a function f : B → Q
is called bad if, whenever b1, b2 ∈ B and b1 C b2, f(b1) � f(b2).

Lemma 21. If F contains some bad function, than it contains some minimal
bad function, i.e. one which is minimal w.r.t. ‘shorter’.

Proof. Assume for the sake of contradiction that F contains some bad function,
but for any bad g ∈ F there is some bad h ∈ F which is shorter than g.

Let g : B → Q be bad. With k(g) we denote the minimal k such that there
is a shorter h : C → Q and a b ∈ B which is properly extended by some element
in C with max b ≤ k. Fix some witnesses C, h and b for k(g). We define D
as the set of all d ∈ B which do not have extensions in C and which fulfill
d ⊂ [0, k(g)] ∪

⋃
C. Obviously C ∩D = ∅.

First observe that for d ∈ D we have d 6⊂
⋃
C: Assume for the sake of

contradiction that d ⊂
⋃
C. Let X be the infinite set d ∪

( ⋃
C ∩ [max d,∞)

)
,

then X ⊆
⋃
C, hence there is some c ∈ C which is extended by X. Since X
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is also an extension of d, c extends d or vice versa. As c extends some element
in B and d ∈ B, we have that c cannot be properly extended by d because
B is a barrier. But by definition of D we also have that c does not extend d.
Contradiction.

Now, B∗ := C ∪D is a barrier and g∗ : B∗ → Q defined by g∗(c) = h(c) for
c ∈ C and g∗(d) = g(d) for d ∈ D is bad and shorter than g.

We verify these claims: First note that
⋃
B∗ ⊆

⋃
C ∪ [0, k(g)]. For B∗ to be

a block let X ⊆
⋃
B∗ be infinite. There is some d ∈ B which is extended by X

(as B is a block, and
⋃
B∗ ⊆

⋃
B). If d is not already in B∗ then, by definition

of D, d has some extension in C which must be proper as d /∈ C. Thus d ⊂
⋃
C

and max d ≥ k(g), hence X ⊆
⋃
C as

⋃
B∗ ⊆

⋃
C ∪ [0, k(g)]. But then there is

some c ∈ C which is extended by X. Altogether this shows that B∗ is a block.
Assume that B∗ is not a barrier, then there must be c ∈ C and d ∈ D which

are comparable. As c is the extension of some element in B and d ∈ B, we
have c * d because B is a barrier. But d ∈ D implies d 6⊂

⋃
C, hence d * c.

Contradiction. Hence B∗ must be a barrier.
Obviously, g∗ is shorter than g, as h already has been shorter than g. To

verify that g∗ is bad we assume for the sake of contradiction that c1 C c2 and
g∗(c1) ≤ g∗(c2). As h is bad, c1 and c2 cannot be in C at the same time.
Similar with g, they cannot be in D at the same time. If c1 ∈ C and c2 ∈ D,
then c2 6⊂

⋃
C which together with c1 C c2, c1 ∈ C and the definition ofD shows

max c1 < k(g), hence c1 ∈ B. Hence g(c1) = h(c1) = g∗(c1) ≤ g∗(c2) = g(c2)
contradicting that g is bad. Therefore, c1 ∈ D and c2 ∈ C. There is some
b2 ∈ B such that b2 is extended by c2. If c1 6 b2 then b2 ( c1 which contradicts
that B is a barrier. Hence we have c1 C b2. But then g(c1) = g∗(c1) ≤ g∗(c2) =
h(c2) ≤ g(b2) contradicts that g is bad. Altogether this shows that g∗ is bad.

We now define a sequence of bad elements fn ∈ F in the following way. Let
f0 : B0 → Q be some bad element in F , and define recursively Bn+1 := B∗n and
fn+1 := f∗n. Let kn := k(fn). Then kn+1 ≥ kn because ‘shorter’ is transitive
and kn is chosen minimal. Furthermore, kn = km for only finitely many m
since {b ∈ Bn : max b = kn} is finite. Hence 〈kn : n < ω〉 is a non-decreasing
unbounded sequence of natural numbers. Also observe that if b ∈ Bn and
max b < kn and n < m then b ∈ Bm, and if b ∈ Bm ∩Bn then fm(b) = fn(b).

Let B :=
⋃
{
⋂
{Bn : n ≥ m} : m < ω}. We show that B is a barrier. Let

M :=
⋂
{
⋃
Bn : n < ω}. M is infinite because kn ∈ M for all n. Let X ⊆ M

be infinite. Then for all n < ω we have X ⊆
⋃
Bn, hence there is some bn ∈ Bn

which is extended by X. If bn+1 is a proper extension of bn then the rank
of fn+1(bn+1) is strictly smaller than the rank of fn(bn), hence, for some m,
bn = bm for all n ≥ m, i.e. bm ∈

⋂
{Bn : n ≥ m} ⊆ B. In particular, M ⊆

⋃
B

by taking X := M ∩ [m,∞) for m ∈ M . If k ∈
⋃
B, then there is some b ∈ B

with k ∈ b. b ∈ B implies that there is some m with b ∈
⋂

n≥mBn. Thus
k ∈

⋃
Bn for all n ≥ m. Also k ∈

⋃
Bm ⊆

⋃
Bm−1 ⊆ · · · ⊆

⋃
B0, hence

k ∈ M . This shows
⋃
B ⊆ M . Thus M =

⋃
B and B is a block. Let b, c ∈ B,

then b, c ∈ Bn for some n, hence they are not comparable as Bn is a barrier.
Altogether this shows that B is a barrier.

For b ∈ B let mb := min {m : b ∈
⋂
{Bn : n ≥ m}}. We define f : B → Q

by f(b) := fmb
(b) and show that f is minimal w.r.t. ‘shorter’ and bad. f is

shorter than fn for all n, because ‘shorter’ is transitive, B is an extended sub-
barrier of Bn, if b ∈ B ∩ Bn then mb ≤ n hence f(b) = fmb

(b) = fn(b), and
if c ∈ B properly extends b ∈ Bn, then mc > n and f(c) = fmc(c) ≤ fn(b)
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and ρ(f(c)) = ρ(fmc
(c)) < ρ(fn(b)). f is bad, because if b, c ∈ B, and w.l.o.g.

mb ≤ mc, then f(b) = fmc
(b) and f(c) = fmc

(c) and fmc
is bad. By our

general assumption there is some bad f ′ : B′ → Q which is shorter than f .
Then there are b′ ∈ B′ and b ∈ B such that b′ properly extends b. Choose n
with kn > max b′. Now f ′ is shorter than fn because f is shorter than fn and
‘shorter’ is transitive. But this contradicts the minimality of k(fn). Hence our
general assumption has been wrong, and the theorem is proved.

Recall that the rank rk′(L) of L ∈ C ′ is given by the minimal α such that
L ∈ C ′

α+1. A C ′-term for L ∈ C ′ with rk′(L) > 0 is a faithful witness for
L ∈ C ′, i.e. a decomposition L =

∑
Li + p+

∑∗
iL with all the Li and iL in C ′

and rk′(Li) < rk′(L) and rk′(iL) < rk′(L) for all i.

Lemma 22. Let L and K be in C ′, with L =
∑
Li + p +

∑∗
iL and K =∑

Ki + q +
∑∗

iK being C ′-terms of them. If p ≤ q and each Li is embeddable
into some Kj and each iL is embeddable into some jK, then L � K.

Proof. Let the assumptions of the lemma be fulfilled. Then there are ki, li ∈ ω
such that ki < ki+1, li < li+1 and Li � Kki

and iL � liK because L,K are in
C ′. Fix smc-embeddings σi : domLi → domKki

and iσ : dom iL → dom liK
witnessing Li � Kki resp. iL � liK, and let b := limi(sup domLi) and c :=
limi(sup domKi). We define a map σ : domL→ domK by

σ(a) :=


σi(a) if a ∈ domLi

iσ(a) if a ∈ dom iL

c if a = b

Then σ is a smc-embedding witnessing L � K.

Proof of Theorem 20. Assume for the sake of contradiction that (C ′,�) is not
a bqo. By applying Lemma 21 we can find some f : B → C ′ which is bad
and minimal w.r.t. ‘shorter’. For each b ∈ B we fix some C ′-term f(b) =∑
Li + p+

∑∗
iL.

For any a, b ∈ B with a C b we have that f(a) =
∑
Li + p +

∑∗
iL �∑

Ki + q +
∑∗

iK = f(b), hence, by applying Lemma 22, we see that at least
one of the following holds:

(i) p � q

(ii) for some i: Li � Kj for all j,

(iii) for some i: iL � jK for all j.

By applying Theorem 10 we can find a sub-barrier B′ such that one the cases
(i), (ii), (iii) always happens on B′. In the first case this would form a bad
sequence in (Q,≤) which would contradict that (Q,≤) is a wqo. Thus, w.l.o.g.
we may assume that for all a, b ∈ B′ with a C b there is some i such that
Li � Kj for all j. Let B′(2) := {b1 ∪ b2 : b1, b2 ∈ B′ and b1 C b2}, then B′(2) is
an extended sub-barrier of B. Define g : B′(2) → C ′ by letting g(b1∪ b2) be the
first Li in f(b1) =

∑
Li + p+

∑∗
iL which is not embeddable into any Kj from

f(b2) =
∑
Ki + q +

∑∗
iK. Then obviously g is shorter than f . But also g is

bad, because if b1 ∪ b2 C b3 ∪ b4 then b2 = b3 and hence g(b1 ∪ b2) � g(b3 ∪ b4).
This contradicts the minimality of f .
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Theorems 19 and 20 together yield the following result:

Corollary 23. (C ,�) is a wqo.

For the next corollary, we need the following two well-known properties of
wqo’s:

Lemma 24. Let (Q,≤) be a wqo with uncountable many ≡-equivalence classes.
Then there exists a 1-1 monotone map f : ω1 → Q.

Proof sketch. W.l.o.g. let each equivalence class of Q/ ≡ consist of one element.
If each uncountable subset Q′ ⊆ Q contains some element q such that also
{r ∈ Q′ : q � r} is uncountable, then we can find sequence

Q = Q0 ⊇ Q1 ⊇ Q2 ⊇ · · ·

of uncountable sets with elements qn ∈ Qn, Qn+1 := {r ∈ Qn : qn � r}. But
then qn � qk for all n < k, contradicting the assumption that Q is wqo.

So there must be an uncountable subset Q′ ⊆ Q such that for any q ∈ Q′,
the set {r ∈ Q′ : q � r} is countable. But then we can easily find a copy of ω1

in Q′.
Alternatively, start with any 1-1 sequence 〈qi : i ∈ ω1〉 in Q; define a coloring

f : [ω1]2 → 2 by f(i < j) = 0 iff qi < qj , and apply the Erdős-Dushnik-Miller
theorem ω1 → (ω1, ω). (See [EHMR84, Theorem 11.1].)

Lemma 25. Let Q be a countable bqo (or at least assume that Q has only
countably many ≡-equivalence classes).

Then Qω (quasiordered as in Definition 5) has only countably many equiva-
lence classes.

Proof. Part I: We first consider the set Q∗ of all sequences ~q = 〈q0, q1, . . .〉 ∈ Qω

satisfying
∀k ∃n > k : qk ≤ qn.

and show that this set is countable (modulo ≡).
By Theorem 9, Qω and hence also Q∗ is a wqo. Assume that Q∗ has uncount-

ably many ≡-classes, then by Lemma 24 we can find a sequence
〈
~q i : i ∈ ω1

〉
,

~q i = 〈qi
0, q

i
1, . . .〉 ∈ Q∗

with i < j ⇒ ~q i ≤ ~q j , ~q j � ~q i.
Let α < ω1 be so large such that every element of Q which appears some-

where as qj
n is ≤ to some qj′

n′ with j′ < α.
We claim that ~q α+1 ≤ ~q α, which will be the desired contradiction.
By definition of α, ∀n ∃i < α ∃n′ : qα+1

n ≤ qi
n′ . So for every n there is n′′

with qα+1
n ≤ qα

n′′ . Using ~q α ∈ Q∗, we can find a sequence k0 < k1 < · · · with
qα+1
n ≤ qα

kn
for all n, which means ~q α+1 ≤ ~q α.

Part II: For any sequence ~q = 〈q0, q1, . . .〉 ∈ Qω we can find a natural number
N = N~q such that ∀k ≥ N ∃n > k : qk ≤ qn, otherwise we get (as in the proof
of Theorem 18) a contradiction to our assumption that Q is a wqo.
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Now assume that Qω/≡ is uncountable, then we can find a natural num-
ber N∗ and an uncountable family

〈
~q i : i < ω1

〉
of pairwise nonequivalent se-

quences in Qω such that for all i, N~q i = N∗. Moreover, we may assume that
all initial segments 〈qi

0, . . . , q
i
N∗〉 are equal to each other. Consider the tails

〈qi
N∗+1, q

i
N∗+2, . . .〉 ∈ Qω. By definition of N~q i , these tails are all in Q∗, defined

in part I, above.
Hence we can find i 6= j such that

〈qi
N∗+1, q

i
N∗+2, . . .〉 ≡ 〈qj

N∗+1, q
j
N∗+2, . . .〉.

But then also ~q i ≡ ~q j .

Corollary 26. Assume that our basic wqo Q is countable. Then, for any set
O ⊆ C with O/≡ countable we also have that S′(O)/≡ and even S(O)/≡ are
countable.

Proof. If 〈L0, L1, . . .〉 � 〈L′0, L′1, . . .〉 and 〈0L, 1L, . . .〉 � 〈0L′, 1L′, . . .〉 and p ≤
p′, then also

L0 + L1 + · · ·+ p+ · · · 1L+ 0L � L′0 + L′1 + · · ·+ p+ · · · 1L′ + 0L
′.

So the corollary follows from Lemma 25.

Corollary 27. Assume that our basic wqo Q is countable. W.r.t. continuous
bi-embeddability there are exactly ω1 many equivalence classes of Q-cclo’s.

Proof. It is easy to see (using the countable ordinals) that the number of equiv-
alence classes is at least ℵ1.

On the other hand, Corollary 26 implies that |Cα| ≤ ℵ0 for all α < ω1, so
|Cω1 | ≤ ℵ1.

3 Gödel logics
Gödel logics are one of the oldest and most interesting families of many-valued
logics. Propositional finite-valued Gödel logics were introduced by Gödel in
[Göd33] to show that intuitionistic logic does not have a characteristic finite ma-
trix. They provide the first examples of intermediate logics (intermediate, that
is, in strength between classical and intuitionistic logics). Dummett [Dum59]
was the first to study infinite valued Gödel logics, axiomatizing the set of tautolo-
gies over infinite truth-value sets by intuitionistic logic extended by the linearity
axiom (A → B) ∨ (B → A). Hence, infinite-valued propositional Gödel logic
is also called Gödel-Dummett logic or Dummett’s LC. In terms of Kripke se-
mantics, the characteristic linearity axiom picks out those accessibility relations
which are linear orders.

Quantified propositional Gödel logics and first-order Gödel logics are natural
extensions of the propositional logics introduced by Gödel and Dummett. For
both propositional quantified and first-order Gödel logics it turns out to be
inevitable to consider more complex truth value sets than the standard unit
interval.

Gödel logics occur in a number of different areas of logic and computer
science. For instance, Dunn and Meyer [DM71] pointed out their relation to
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relevance logics; Visser [Vis82] employed LC in investigations of the provability
logic of Heyting arithmetic; three-valued Gödel logic has been used to model
strong equivalence between logic programs. Furthermore, these logics have re-
cently received increasing attention, both in terms of foundational investigations
and in terms of applications, as they have been recognized as one of the most
important formalizations of fuzzy logic [Háj98].

Perhaps the most surprising fact is that whereas there is only one infinite-
valued propositional Gödel logic, there are infinitely many different logics at
the first-order level [BLZ96, Baa96, Pre02]. In the light of the general result
of Scarpellini [Sca62] on non-axiomatizability, it is interesting that some of the
infinite-valued Gödel logics belong to the limited class of recursively enumerable
linearly ordered first-order logics [Hor69, TT84].

Recently a full characterization of axiomatizability of Gödel logics was given
[Pre03], where also the compactness of the entailment relation is discussed.
But one of the most basic questions has been left open until now: How many
Gödel logics are there? Lower bounds to this question have been given in
[Baa96, Pre02], and special subclasses of logics determined by ordinals have
been discussed [MTO90], but it was a long open question whether there are
only countably many or uncountably many different Gödel logics.

3.1 Syntax and Semantic
In the following we fix a relational language L of predicate logic with finitely or
countably many predicate symbols. In addition to the two quantifiers ∀ and ∃ we
use the connectives ∨, ∧, → and the constant ⊥ (for ‘false’); other connectives
are introduced as abbreviations, in particular we let ¬ϕ := (ϕ→ ⊥).

Originally, Gödel logics have been defined only based on the fixed truth value
set [0, 1]. But we can fix a (nearly) arbitrary subset of [0, 1] and consider the
Gödel logic induced by this truth value set.

Definition 28 (Gödel set). A Gödel set is any closed set of real numbers,
V ⊆ [0, 1] which contains 0 and 1.

The (propositional) operations on Gödel sets which are used in defining the
semantics of Gödel logics have the property that they are projecting, i.e. that
the operation uses one of the arguments (or 1) as result:

Definition 29. For a, b ∈ [0, 1] let a ∧ b := min(a, b), a ∨ b := max(a, b),

a→ b :=
{

1 if a ≤ b
b otherwise

The last operation is called ‘Gödel’s implication’. Note that

(a→ b) = sup{x : (x ∧ a) ≤ b };

in order theory this is expressed as ‘the maps x 7→ (a∧ x) and y 7→ (a→ y) are
residuated’.

We define ¬a := (a→ 0), so ¬0 = 1, and ¬a = 0 for all a > 0.

The semantics of Gödel logics, with respect to a fixed Gödel set as truth
value set and a fixed relational language L of predicate logic, is defined using the
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extended language L M , where M is a universe of objects. L M is L extended
with symbols for every element of M as constants, so called M -symbols. These
symbols are denoted with the same letters.

Definition 30 (Semantics of Gödel logic). Fix a Gödel set V (and a relational
language L ). A valuation v into V consists of

1. a nonempty set M = Mv, the ‘universe’ of v,

2. for each k-ary predicate symbol P , a function P v : Mk → V .

Given a valuation v, we can naturally define a value v(A) for any closed
formula A of L M . For atomic formulas ϕ = P (m1, . . . ,mn), we define v(ϕ) =
P v(m1, . . . ,mn), and for composite formulas ϕ we define v(ϕ) naturally by:

v(⊥) = 0 (1)
v(ϕ ∧ ψ) = min(v(ϕ), v(ψ)) (2)
v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)) (3)
v(ϕ→ ψ) = v(ϕ) → v(ψ) (4)
v(∀xϕ(x)) = inf{v(ϕ(m)) : m ∈M} (5)
v(∃xϕ(x)) = sup{v(ϕ(m)) : m ∈M} (6)

(Here we use the fact that our Gödel sets V are closed subsets of [0, 1], in order
to be able to interpret ∀ and ∃ as inf and sup in V.)

For any closed formula ϕ and any Gödel set V we let

‖ϕ‖V := inf{v(ϕ) : v a valuation into V }

Remark. Note that the recursive computation of v(ϕ) depends only on the values
Mv, P v and not directly on the set V . Thus, if V1 ⊆ V2 are both Gödel sets,
and v is a valuation into V1, then v can be seen also as a valuation into V2, and
the values v(ϕ), computed recursively using (1)–(6), do not depend on whether
we view v as a V1-valuation or a V2-valuation.

If V1 ⊆ V2, there are more valuations into V2 than into V1. Hence ‖ϕ‖V1 ≥
‖ϕ‖V2 for all closed ϕ.

Similarly, for any map h : V1 → V2, any valuation v1 into V1 induces a
valuation v2 into V2 as follows:

Mv1 = Mv2 , P v1(~m) = h(P v2(~m)).

If h : V1 → V2 is a smc-embedding from V1 into V2 which moreover preserves 0
and 1, and if v2 is the valuation induced by v1 and h, then it is easy to verify
by induction on the complexity of the closed formula ϕ that v2(ϕ) = h(v1(ϕ)),
and hence

h(‖ϕ‖V1) ≥ ‖ϕ‖V2

for all closed formulas ϕ.

Definition 31 (Gödel logics based on V ). For a Gödel set V we define the first
order Gödel logic GV as the set of all closed formulas of L such that ‖ϕ‖V = 1.

From the above remark it is obvious that if h is as above or V1 ⊆ V2, the
Gödel logic GV2 is a subset of GV1 .
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Definition 32 (Submodel, elementary submodel). Let v1, v2 be valuations. We
write v1 ⊆ v2 (v2 extends v1) iff Mv1 ⊆ Mv2 , and for all k, all k-ary predicate
symbols P in L , we have

P v1 = P v2 � (Mv1)k

or in other words, if v1 and v2 agree on closed atomic formulas.
We write v1 ≺ v2 if v1 ⊆ v2 and v1(ϕ) = v2(ϕ) for all L Mv1 -formulas ϕ.

Fact 33 (downward Löwenheim-Skolem). For any valuation v (with Mv infi-
nite) there is a valuation v′ ≺ v with a countable universe Mv′ .

Definition 34. The only sub-formula of an atomic formula P in L M is P
itself. The sub-formulas of ϕ?ψ for ? ∈ {→,∧,∨} are the subformulas of ϕ and
of ψ, together with ϕ ? ψ itself. The sub-formulas of ∀xϕ(x) and ∃xϕ(x) with
respect to a universe M are all subformulas of all ϕ(m) for m ∈ M , together
with ∀xϕ(x) (or, ∃xϕ(x), respectively) itself.

The set of valuations of sub-formulas of ϕ under a given valuation v is
denoted with

Val(v, ϕ) = {v(ψ) : ψ sub-formula of ϕ w.r.t. Mv}

Lemma 35. Let v be a valuation with v(ϕ) < b < 1 and b does not occur in
Val(v, ϕ). Let v′ be the valuation with the same universe as v, defined by

v′(ψ) =

{
v(ψ) if v(ψ) < b

1 otherwise

for atomic subformulas ψ of ϕ w.r.t. Mv, and arbitrary for all other atomic
formulas. Then v′ is a valuation and v′(ϕ) = v(ϕ).

Proof. Let hb(a) = a if a < b and = 1 otherwise. By induction on the complexity
of the formula ψ we can easily show that v′(ψ) = hb(v(ψ)) for all subformulas
ψ of ϕ w.r.t. Mv.

Lemma 36. Assume that M ⊂ R is a countable set and P a perfect set. Then
there is a smc-embedding from M into P .

In [Pre03] there is a proof of this lemma which was used to extend the proof
of recursive axiomatizability of ‘standard’ Gödel logics (those with V = [0, 1])
to Gödel logics with a truth value set containing a perfect set in the general
case. Here we give a simple proof.

Proof. Since there are uncountable many disjoint sets of the form Q − x :=
{q−x : q ∈ Q}, there is some x such thatM∩(Q−x) = ∅, so also (M+x)∩Q = ∅.
So we may assume that M ∩Q = ∅. We may also assume M ⊆ [0, 1].

Since P is perfect, we can find an smc-embedding c from the Cantor set
C ⊆ [0, 1] into P .

Let i be the natural bijection from 2ω (the set of infinite {0, 1}-sequences,
ordered lexicographically) onto C. i is an order preserving homeomorphism.

For every m ∈ M let w(m) ∈ 2ω be the binary representation of m. Since
M does not contain any dyadic rational numbers, this representation is unique;
moreover, the map w is smc. Now c◦ i◦w is an smc embedding from M into P .

M
w−→ 2ω i−→ C

c−→ P
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Lemma 37. Let V be a truth value set with non-empty perfect kernel P , and
let W = V ∪ [inf P, 1], then the logics induced by V and W are the same, i.e.
GV = GW .

Proof. As V ⊆W we have GW ⊆ GV . (Cf. Remark before Definition 31.)
Now assume that vW (ϕ) < 1. Due to Fact 33, there is a v′W such that Mv′

is countable and v′W (ϕ) = vW (ϕ). The set M := Val(v′W , ϕ) has cardinality at
most ℵ0, thus there exists a b ∈W such that b /∈M , v′W (ϕ) < b < 1. According
to Lemma 36 there is a smc-embedding h from [inf P, b] ∩ (M ∪ {b}) into P .
Define vV (ψ) for all atomic subformulas of ϕ as follows:

vV (ψ) =


v′W (ψ) if 0 < v′W (ψ) < inf P
h(v′W (ψ)) if inf P ≤ v′W (ψ) ≤ b

1 otherwise

and 1 for all other atomic formulas. According to Lemma 35 we obtain that

vV (ϕ) =

{
v′W (ψ) < b < 1 if 0 < v′W (ψ) < inf P
h(v′W (ϕ)) < h(b) ≤ 1 if inf P ≤ v′W (ψ) ≤ b

thus vV (ϕ) < 1 and GV ⊆ GW .

Lemma 38. Let V1 and V2 be Gödel sets and Q = {0, 1} with 0 <Q 1. Let
A1 and A2 be Q-labeled cclos defined by dom(Ai) = Vi, Ai(0) = Ai(1) = 1 and
Ai(x) = 0 otherwise. If A1 is (Q-smc-)embeddable into A2, then the Gödel logic
determined by V1 is a superset of the Gödel logic determined by V2.

Proof. In this case of a very simple labeling the property that A1 is embeddable
into A2 reduces to the existence of a smc-embedding of V1 into V2 preserving 0
and 1. According to the Remark following Definition 30 this induces the reverse
inclusion of the respective Gödel logics.

Corollary 39. The set of Gödel logics

(a) is countable

(b) is a (lightface) Σ1
2 set

(c) is a subset of Gödel’s constructible universe L.

Proof. (a) First note that the set of countable Gödel logics (i.e. those with
countable truth value set), ordered by ⊇, is a wqo. To see this, assume that
〈Gn : n ∈ ω〉 is a sequence of countable Gödel logics. Take the sequence of
countable Gödel sets 〈Vn : n ∈ ω〉 generating these logics and define the re-
spective Q-labeled cclo (also denoted with Vn) with Q = {0, 1}, 0 <Q 1 and
Vn(0) = Vn(1) = 1, and Vn(x) = 0 otherwise. According to Corollary 23 this
sequence of Q-labeled cclos must be good, hence there are numbers n < m such
that Vn is smc-embeddable into Vm. Then Lemma 38 implies that Gn must
be a superset of Gm. This shows that the original sequence of Gödel logics
〈Gn : n ∈ ω〉 must be good, too.
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As each countable Gödel logic is a subset of a fixed countable set (the set of
all formulas), the family of countable Gödel logics cannot contain a copy of ω1.
So by Lemma 24, the family of countable Gödel logics must be countable.

According to Lemma 37 any uncountable Gödel logic, i.e. Gödel logic de-
termined by an uncountable Gödel set, such that 0 is not included in the pre-
fect kernel P of the Gödel set is completely determined by the countable part
V ∩ [0, inf P ]. So the total number of Gödel logics is at most two times the
number of countable Gödel logics plus 1 for the logic based on the full interval,
i.e. countable.

(b) First, note that the set

{(v, ϕ, v(ϕ)) : Mv = N}

is a Borel set, since we can show by induction on the quantifier complexity of ϕ
that the sets {(v, q) : Mv = N, v(ϕ) ≥ q} are Borel sets (even of finite rank).

Next, as set G of formulas is a Gödel logic iff

There exists a closed set V ⊆ [0, 1] (say, coded as the complement
of a sequence of finite intervals) such that:

• For every ϕ ∈ G, for every v with Mv = N, v(ϕ) = 1, and
• For every ϕ /∈ G, there exists v with Mv = N, v(ϕ) < 1.

(We can restrict our attention to valuations v with vM = N because of
Fact 33.)

Counting quantifiers we see that this is a Σ1
2 property.

(c) follows from (a) and (b) by the Mansfield-Solovay theorem (see [Man70],
[Mos80, 8G.1 and 8G.2]).

Questions and future work
Define ωG

1 as the smallest ordinal α such that: For every well-ordered Gödel set
V there is a well-ordered Gödel set V ′ of order type < α with GV = GV ′ .

Define ωGCB
1 as the smallest ordinal α such that: For every Gödel set V

there is a Gödel set V ′ whose Cantor-Bendixson rank is < α with GV = GV ′ .
By Corollary 39, both these ordinals are countable. Furthermore, ωG

1 ≤
ωGCB

1 . It would be interesting to describe the ordinals ωG
1 and ωGCB

1 by giv-
ing lower and upper estimates in terms of well-known closure ordinals, e.g. for
inductive definitions and related reflection principles of set theory. Are they
equal? Note that ωCK

1 ≤ ωG
1 .
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