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Abstract

Using appropriate notation systems for proofs, cut-reduction can often

be rendered feasible on these notations. Explicit bounds can be given. De-

veloping a suitable notation system for Bounded Arithmetic, and applying

these bounds, all the known results on definable functions of certain such

theories can be reobtained in a uniform way.

1 Introduction and Related Work

Since Gentzen’s invention of the “Logik Kalkül” LK and the proof of his “Haupt-
satz” [Gen35a, Gen35b], cut-elimination has been studied in many papers on
proof theory. Mints’ invention of continuous normalisation [Min78, KMS75]
isolates operational aspects of normalisation, that is, the manipulations on (in-
finitary) propositional derivations. These operational aspects are described in-
dependently of the system’s proof theoretic complexity, but at the expense of
introducing the void logical rule of repetition to balance derivation trees.

Γ (Rep)
Γ

Note that this rule is both logically valid and preserves the sub-formula property,
which, in particular, means that it does not harm computational tasks related
to derivations as long as it does not occur too often.

It is well-known that, using (Rep), the cut-elimination operator becomes a
primitive recursive function which is continuous w.r.t. the standard metric on
infinitary trees: the normalisation procedure requires only as much information
of the input as it produces output, using (Rep) as the last inference rule of
the normal derivation, if the result cannot immediately be determined (“please
wait”).
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In fact, there is a quite tight relationship between the use of repetition
constructors and steps of computation. One can associate some repetition rules
with β-reductions in the simply-typed lambda calculus. In this way, bounds on
the sum of the number of computation steps and the size of the output can be
obtained [AJ05] that strengthen earlier results [Bec01]. Using the ω-rule [Sch51],
this method can also be applied to Gödel’s [Göd58] system T .

In this article, we will re-examine this situation. We will show that the
cut-reduction operator can be understood as a polynomial time operation in a
natural way, see Observation 8.16. We will work with proof notations which
give implicit descriptions of (infinite) propositional proofs. A proof notation
system will be a set which is equipped with some functions, most importantly
two which compute the following tasks.

• Given a notation h, compute the last inference tp(h) in the denoted proof.

• Given a notation h and a number i ∈ N, compute a notation h[i] for the
i-th immediate sub-derivation of the derivation denoted by h.

Implicit proof notations given in this way uniquely determine a propositional
derivation tree, by exploring the derivation tree from its root and determining
the inference at each node of the tree. The cut-reduction operator will be
defined on such implicitly described derivation trees. For this, we build on
Buchholz’ technically very smooth approach to notation systems for continuous
cut-elimination [Buc91, Buc97]. Our main result of the first part of this article,
in particular, implies the following statement, as can be seen from Corollary 8.15.
Let 2n(x) denote the n-fold iteration of exponentiation 2x.

Let d be some propositional derivation, and assume that all sub-
proofs of d can be denoted with notations of size bounded by s,
and that the height of d is h. Then, all sub-proofs of the derivation
obtained from d by reducing the complexity of cut-formulae by k
can be denoted by notations of size bounded by 2k−1(2h) · s.

Observe that the size of notations is (iterated) exponential only in the height of
the original derivation. In the second part of this article we will identify situa-
tions occurring in proof-theoretical investigations of Bounded Arithmetic where
this height is bounded by an iterated logarithm of some global size parameter,
making these sizes feasible.

Bounded Arithmetic has been introduced by Buss [Bus86] as theories of
arithmetic with a strong connection to computational complexity. For sake of
simplicity of this introduction, we will concentrate only on the Bounded Arith-
metic theories Si

2. These theories are given as first order theories of arithmetic
in a language which suitably extends that of Peano Arithmetic where induction
is restricted in two ways. First, logarithmic induction is considered which only
inducts over a logarithmic part of the universe of discourse.

ϕ(0) ∧ (∀x)(ϕ(x) → ϕ(x + 1)) → (∀x)ϕ(|x|) .
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Here, |x| denotes the length of the binary representation of the natural num-
ber x, which defines a kind of logarithm on natural numbers. As in these
theories exponentiation will not be a total function, this is a proper restriction.
Second, the properties which can be inducted on, must be described by a suit-
ably restricted (“bounded”) formula. The class of formulae used here are the
Σb

i -formulae which exactly characterise Σp
i , that is, properties of the i-th level

of the polynomial time hierarchy of predicates. The main ingredients of the
theories Si

2 are the instances of logarithmic induction for Σb
i formulae.

A multifunction is a total relation. Let a multifunction f be called Σb
j -

definable in Si
2, if its graph can be expressed by a Σb

j -formula ϕ, such that the

totality of f , which renders as (∀x)(∃y)ϕ(x, y), is provable from the Si
2-axioms

in first-order logic. The main results characterising definable multifunctions of
Bounded Arithmetic are the following.

• Buss [Bus86] has characterised the Σb
i -definable functions of Si

2 as FPΣb
i−1 ,

the i-th level of the polynomial time hierarchy of functions.

• Kraj́ıček [Kra93] has characterised the Σb
i+1-definable multifunctions of Si

2

as the class FPΣb
i [wit,O(log n)] of multifunctions which can be computed

in polynomial time using a witness oracle from Σp
i , where the number of

oracle queries is restricted to O(log n) many (n being the length of the
input).

• Buss and Kraj́ıček [BK94] have characterised the Σb
i−1-definable multi-

functions of Si
2 as projections of solutions to problems from PLSΣb

i−2 , which
is the class of polynomial local search problems relativised to Σp

i−2-oracles.

We will re-obtain all these definability characterisations by one unifying
method using the results from the first part of this article in the following
way. First, we will define a suitable notation system HBA for propositional
derivations which are obtained by translating Bounded Arithmetic proofs. The
propositional translation used here is well-known in proof-theoretic investiga-
tions; the translation has been described by Tait [Tai68], and later was inde-
pendently discovered by Paris and Wilkie [PW85]. In the Bounded-Arithmetic
world it is known as the Paris-Wilkie translation.

Applying the machinery from the first part we obtain a notation system
CHBA of cut-elimination for HBA. CHBA will have the property that its implicit
descriptions, most notably the functions tp(h) and h[i] mentioned above, will
be polynomial time computable.

This allows us to formulate a general local search problem on CHBA which
is suitable to characterise definable multifunctions for Bounded Arithmetic. As-
sume that (∀x)(∃y)ϕ(x, y), describing the totality of some multifunction, is
provable in some Bounded Arithmetic theory. Fix a particularly nice formal
proof p of this. Given a ∈ N we want to describe a procedure which finds some
b such that ϕ(a, b) holds. Invert the proof p of (∀x)(∃y)ϕ(x, y) to a proof of
(∃y)ϕ(x, y) where x is a fresh variable, then substitute a for all occurrences of
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x. This yields a proof of (∃y)ϕ(a, y). Adding an appropriate number of cut-
reduction operators we obtain a proof with all cut-formulae of (at most) the
same logical complexity as ϕ. It should be noted that a notation h(a) for this
proof can be computed in time polynomial in the length of a.

The general local search problem which finds a witness for (∃y)ϕ(a, y) can
now be characterised as follows. The set of solutions are those notations of a
suitable size, which denote a derivation having the property that the derived
sequent is equivalent to (∃y)ϕ(a, y)∨ψ1∨· · ·∨ψl where all ψi are “simple enough”
and false. An initial solution is given by h(a). A neighbour to a solution h is a
solution which denotes an immediate sub-derivation of the derivation denoted
by h, if this exists, and h otherwise. The cost of a notation is the height of the
denoted derivation. The search task is to find a notation in the set of solutions
which is a fixpoint of the neighbourhood function. Obviously, a solution to the
search task must exist. In fact, any solution of minimal cost has this property.
Now consider any solution to the search problem. It must have the property,
that none of the immediate sub-derivations is in the solution space. This can
only happen if the last inference derives (∃y)ϕ(a, y) from a true statement ϕ(a, b)
for some b ∈ N. Thus b is a witness to (∃y)ϕ(a, y), and we can output b as a
solution to our original witnessing problem.

Depending on the complexity of logarithmic induction present in the Bounded
Arithmetic theory we started with, and the level of definability, we obtain lo-
cal search problems defined by functions of some level of the polynomial time
hierarchy, and different bounds to the cost function. For example, if we start
with the Σb

i -definable functions of Si
2, we obtain a local search problem defined

by properties in FPΣb
i−1 , where the cost function is bounded by |a|O(1). Thus,

by following the canonical path through the search problem which starts at
the initial value and iterates the neighbourhood function, we obtain a path of

polynomial length, which describes a procedure in FPΣb
i−1 to compute a witness.

Other research related to our investigations is a paper by Buss [Bus04] which
also makes use of the Paris-Wilkie translation to obtain witnessing results by
giving uniform descriptions of translated proofs. However, Buss’ approach does
not explicitely involve cut-elimination. Dynamic ordinal analysis [Bec03, Bec06]
characterises the heights of propositional proof trees obtained via the Paris-
Wilkie translation and cut-reduction. Therefore, it is not surprising that the
bounds obtained by dynamic ordinal analysis coincide with the bounds on cost
functions we are exploiting here.

The potential of our approach to the characterisations of definable search
problems via notation systems is that it leads to characterisations of so far
uncharacterised definable search problems, most notably the Σb

1-definable search
problems in Si

2 for i ≥ 3. Research on this topic will be reported at a different
place.

This article is organised as follows. First, we introduce (in Section 2) the
general notion of a proof system, of which probably the most important example
is (infinitary) propositional logic (Section 3). We then introduce (in Section 4)
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the concept of a notation for a propositional formula and (in Section 5) that
of a notation system for proofs. Recalling (in Section 6) cut-elimination for
propositional logic, we then (in Section 7) show how a notation system for
propositional proof can be extended to one where cut-elimination is available.

To abstract away from unneeded details we consider (in Section 8) notation
systems as abstract reduction systems, with “stepping to a sub-proof” as re-
duction relation. In this setting we then prove our bounds on the size of our
notations.

Finally, we apply our results to Bounded Arithmetic. We first introduce
Bounded Arithmetic (in Section 9) and notations for formulae (Section 10) and
proofs (Section 11). Using the bounds obtained earlier we then (in Section 12)
obtain the mentioned characterisations of the definable functions.

2 Proof Systems

Following Buchholz [Buc97], we present a generic concept of a Tait-style proof
system. A proof system essentially is a set of rules that tells how to derive
finite sets of formulae. These finite sets of formulae (“sequents”) are to be read
disjunctively.

Even in the generic setting, we want an abstract notion of cut-rank. There-
fore, we require our formulae to come with some structure, including a notion of
rank. As our main example in mind is infinitary propositional logic, we take for-
mulae as a quite abstract notation system—otherwise complexity issues would
be hard to define in the presence of infinite objects. As equality for infinite
objects usually is undecidable, we require formulae to come with an intensional
equality, i.e., we want to know when two formulae are given to us as the same
object. Note that in the main example (discussed in Section 10) in this arti-
cle propositional formulae are given by arithmetical formulae denoting them.
In this situation, extensional equality, i.e., equality of the denoted propositional
formula is undecidable, but just using equality of the notations does not identify
enough formulae.

Let S be a set. The set of all subsets of S will be denoted by P(S), the set
of all finite subsets of S will be denoted by Pfin(S).

Definition 2.1 (Notation System for Formulae). A notation system for for-
mulae is a triple 〈F ,≈, rk〉 where F is a set (of formulae), ≈ an equivalence
relation on F (identity between formulae), and rk: P(F) × F → N a function
(rank).

Definition 2.2 (Sequent). A sequent over 〈F ,≈, rk〉 is a finite subset of F . We
use Γ,∆, . . . as syntactic variables to denote sequents. With ≈∆ we denote the
set {A ∈ F : (∃B ∈ ∆)A ≈ B}.

We usually write A1, . . . , An for {A1, . . . , An} and A,Γ,∆ for {A} ∪ Γ ∪ ∆,
etc. We always write C-rk(A) instead of rk(C, A).
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Definition 2.3. A proof system S over 〈F ,≈, rk〉 is given by a set of formal
expressions called inference symbols (syntactic variable I), and for each infer-
ence symbol I an ordinal |I| ≤ ω, a sequent ∆(I) and a family of sequents
(∆ι(I))ι<|I|.

Proof systems may have inference symbols of the form CutC for C ∈ F ;
these are called “cut inference symbols” and their use will (in Definition 2.5) be
measured by the C-cut-rank.

Notation 2.4. By writing
. . .∆ι . . . (ι < I)

(I)
∆

we declare I as an infer-

ence symbol with |I| = I, ∆(I) = ∆, ∆ι(I) = ∆ι. If |I| = n we write
∆0 ∆1 . . . ∆n−1

∆
instead of

. . .∆ι . . . (ι < I)

∆
.

Definition 2.5 (Inductive definition of S-quasi derivations). If I is an inference
symbol of S, and (dι)ι<|I| is a sequence of S-quasi derivations, then d :=
I(dι)ι<|I| is an S-quasi derivation with endsequent

Γ(d) := ∆(I) ∪
⋃

ι<|I|

(Γ(dι) \ ≈∆ι(I)) ,

last inference last(d) := I, subderivations d(ι) := dι for ι < |I|, height

hgt(d) := sup {hgt(dι) + 1: ι < |I|} ,

size (provided S has inference symbols of finite arity only)

sz(d) := (
∑

ι<|I|

sz(dι)) + 1 ,

and cut-rank

C-crk(d) := sup({C-rk(I)} ∪ {C-crk(dι) : ι < |I|}) .

Here we define C-rk(I), the cut-rank of I, to be C-rk(C) + 1 if I is of the form
I = CutC with C 6∈ C, and 0 otherwise.

Remark 2.6. The reason why the notion introduced in Definition 2.5 is called
“quasi derivation”, rather than “derivation” is that some proof systems might
require additional constraints for a proof to be correct. Most prominently, formal
systems of (Bounded) Arithmetic might require an Eigenvariable condition, see
Definition 11.3.

Definition 2.7. d ⊢≈ Γ is defined as Γ(d) ⊆ ≈Γ.

Lemma 2.8. For d = I(dι)ι<|I| we have

d ⊢≈ Γ ⇔ ∆(I) ⊆ ≈Γ and (∀ι < |I|) dι ⊢≈ Γ,∆ι(I)

Proof. If d ⊢≈ Γ, that is, Γ(d) ⊆ ≈Γ, then ∆(I) ⊆ Γ(d) ⊆ ≈Γ. Moreover, for
ι < |I|, we have Γ(dι) \ ≈∆ι(I) ⊆ Γ(d) and hence Γ(dι) ⊆ Γ(d) ∪ ≈∆ι(I) ⊆
≈(Γ ∪ ∆ι(I)).

If, on the other hand, ∆(I) ⊆ ≈Γ and (∀ι < |I|) dι ⊢≈ Γ,∆ι(I), then Γ(d) =
∆(I)∪

⋃
ι<|I|(Γ(dι)\≈∆ι(I)) ⊂ ≈Γ∪

⋃
ι<|I|(≈(Γ∪∆ι(I))\≈∆ι(I)) ⊆ ≈Γ.
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3 The Infinitary Proof System for Propositional

Logic

The most prominent logic proof systems are designed for is propositional logic. It
is standard proof-theoretical practise to translate more complicated systems, like
arithmetic, into propositional logic, using infinitary rules, like the ω-rule [Sch51].

In this section we introduce the infinitary calculus for (infinitary) propo-
sitional logic. We will never work with this calculus directly, but only access
(parts of) it via notations. Nevertheless it is an important source of inspiration.
In particular, cut-elimination is best understood thinking about infinite proofs.
Therefore, we introduce this system and relate each concept we work with to
infinitary logic, by means of appropriate translations.

Definition 3.1. The set of all infinitary formulae L∞ is defined inductively as
follows. If c ∈ {⊤,⊥,

∧
,
∨
} and Aι ∈ L∞ for ι < |c| then c(Aι)ι<|c| ∈ L∞.

Here |⊤| = |⊥| = 0 and |
∧
| = |

∨
| = ω. The rank C-rk(A) is defined to be

C-rk(c(Aι)ι<|c|) = sup{(C-rk(Aι) + 1) | ι < |c| and C 6∈ C}.

Convention 3.2. C-rk will only be used for C which are closed under taking
subformulae and intensional equal formulae.

Remark 3.3. By our convention, the C-rk in particular has the property that
C-rk(C) = 0 if C ∈ C.

Notation 3.4. We denote ⊤() by ⊤, and ⊥() by ⊥.

Definition 3.5. ¬ denotes the operation on L∞ which computes negation ac-
cording to the de Morgan rules, i.e.,

¬
(
c(Aι)ι<|c|

)
:= (¬(c))

(
¬(Aι)

)
ι<|c|

where ¬(⊤) = ⊥, ¬(⊥) = ⊤, ¬(
∧

) =
∨

, and ¬(
∨

) =
∧

.

Definition 3.6. The set of all infinitary formulae of finite rank is denoted with
F∞. The identity between F∞-formulae is the “true” set-theoretic equality.

The logical rules associated with infinitary propositional logic are the obvious
ones, i.e., to derive a disjunction, it suffices to derive one disjunct, and to derive
a conjunction, all the (infinitely many) conjuncts have to be derived.

Definition 3.7. The infinitary proof system S∞ is the proof system over F∞

which is given by the following set of inference symbols:

(Ax)
⊤

. . . Aι . . . (ι < ω)
(
∧

A)
A

for A =
∧

(Aι)ι<ω ∈ F∞

Ai
(
∨i

A)
A

for A =
∨

(Aι)ι<ω ∈ F∞ and i < ω
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C ¬C(CutC)
∅

for C ∈ F∞

∅
(Rep)

∅

Definition 3.8. The S∞-derivations are the S∞-quasi derivations.

As mentioned earlier, proofs of propositional logic are infinite, ω-branching
trees labelled with the inference symbols. As the underlying structure is always
the full tree, it suffices to describe the labelling, which is best done by a function
from the paths in the tree to the set of inference symbols. The set of paths in the
full ω-branching tree is the set N<ω of the finite sequences of natural numbers.

With a S∞-derivation d = I(dι)ι<|I| we associate a function from N<ω to
S∞ as follows. d(〈〉) := last(d) and

d(〈ι〉⌢ s) :=

{
dι(s) if i < |I|

Ax otherwise

4 Notation System for Infinitary Formulae

Formulae of propositional logic are, as seen, built from ⊤ (“true”) and ⊥
(“false”) by ω-branching conjunctions and disjunctions. In order to reason-
ably speak about effectiveness and complexity we consider (as we did already in
Section 2) abstract notations for formulae; in Section 7 we will consider nota-
tions for derivations as well. A notation for a propositional formula essentially
is anything which allows to compute the outermost connective and notations of
subformulae.

Definition 4.1. A notation system 〈F , tp, ·[·],¬, rk,≈〉 for (infinitary) propo-
sitional formulae is a notation system 〈F ,≈, rk〉 for formulae together with
functions tp : F → {⊤,⊥,

∧
,
∨
}, ·[·] : F ×N → F , and ¬ : F → F , called outer-

most connective, sub-formula, and negation, respectively, such that tp(¬(f)) =
¬(tp(f)), ¬(f)[n] = ¬(f [n]), C-rk(f) = C-rk(¬f), C-rk(f [n]) < C-rk(f) for f /∈ C
and n < | tp(f)|, and f ≈ g implies tp(f) = tp(g), f [n] ≈ g[n], ¬(f) ≈ ¬(g) and
C-rk(f) = C-rk(g).

It should be noted that if F is a notation system for formulae, then so is
F/ ≈ in the obvious way; moreover, in F/ ≈ the intensional equality is true
equality in the quotient. The reason why we nevertheless explicitly consider
an (intensional) equality relation is that we are interested in the computational
complexity of notation systems and therefore prefer to take notations as the
strings that arise naturally, rather than working on the quotient. Note that
the latter would require us to compute canonical representations anyway and
so would just push the problem to a different place.

It should also be noted that the intensional equality is truly intensional.
Two formulae are only equal, if they are given to us as being equal. The obvi-
ous extensional equality would be the largest bisimulation, that is, the largest
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relation ∼⊂ F ×F satisfying f ∼ g → tp(f) = tp(g) ∧ f [n] ∼ g[n] ∧ C-rk(f) =
C-rk(g)∧¬f ∼ ¬g. However, like most extensional concepts, the largest bisimu-
lation is undecidable in almost all interesting cases and therefore not suited for
an investigation of effective notations.

Definition 4.2. Let F = 〈F , tp, ·[·], rk,≈〉 be a notation system for infinitary
formulae. The interpretation [[f ]]∞ of f ∈ F is inductively defined as

[[f ]]∞ = tp(f)([[f [ι]]]∞)ι<| tp(f)|

Observation 4.3. The following properties hold.

1. f ∼ g ⇔ [[f ]]∞ = [[g]]∞,

2. f ≈ g ⇒ [[f ]]∞ = [[g]]∞.

5 Semiformal Proof Systems

Definition 5.1. Let F = 〈F , tp, ·[·],¬, rk,≈〉 be a notation system for infinitary
propositional formulae. The proof system SF over F is the proof system over
F which is given by the following set of inference symbols.
(AxA)

A for A ∈ F with tp(A) = ⊤

. . . C[n] . . . (n ∈ N)
(
∧

C)
C

for C ∈ F with tp(C) =
∧

C[i]
(
∨i

C)
C

for C ∈ F with tp(C) =
∨

and i ∈ N

C ¬C(CutC)
∅

for C ∈ F with tp(C) ∈ {⊤,
∧
}

∅
(Rep)

∅

Abbreviations

For tp(C) ∈ {⊥,
∨
} let

C ¬C(CutC)
∅

denote
¬C C(Cut¬C)

∅
.

Definition 5.2. The SF -derivations are the SF -quasi derivations.

Later in our applications, we will be concerned only with derivations of
finite height, for which we can formulate slightly sharper upper bounds on cut-
reduction than in the general (infinite) case (2α versus 3α). Thus, from now on
we will restrict attention to derivations of finite height only.

Definition 5.3. Let d ⊢α
C,m Γ denote that d is an SF -derivation with Γ(d) ⊆

≈Γ, C-crk(d) ≤ m, and hgt(d) ≤ α < ω .
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It should be noted that Definition 5.3 adds weakening in a strong form: the
very same proof is also a proof of the weakened sequent. This is a deliberate
choice, as weakening never contains any computationally relevant information.

Observation 5.4. If d ⊢α
C,m Γ with I = last(d) and ι < |I|, then d(ι) ⊢αι

C,m Γ,∆ι(I)
for some αι < α.

Definition 5.5. The interpretation [[d]]∞ of a SF -derivation d = I(dι)ι<|I| is
defined as

[[d]]∞ := [[I]]∞([[dι]]∞)ι<|I|

where [[I]]∞ is defined by

[[AxA]]∞ := Ax

[[
∧

A]]∞ :=
∧

[[A]]∞

[[
∨i

A]]∞ :=
∨i

[[A]]∞

[[CutC ]]∞ := Cut[[C]]∞

[[Rep]]∞ := Rep

Observation 5.6. Γ([[d]]∞) ⊆ [[Γ(d)]]∞

Proof. Induction on d. The “⊆”, instead of the expected “=” is due to the
fact, that only formulae are removed from the conclusion that are intensionally
equal; compare also Observation 4.3.

6 Cut Elimination for Semiformal Systems

Let F = 〈F , tp, ·[·],¬, rk,≈〉 be a notation system for infinitary formulae, and
SF the semiformal proof system over F . We define Mints’ continuous cut-
reduction operator [Min78, KMS75] following the description given by Buchholz
[Buc91]. The only modification is our explicit use of intensional equality. For
this section we will always assume that C is closed under taking subformulae
and intensional equal formulae.

Theorem 6.1 (and Definition of the Inversion Operator). Let C ∈ F with
tp(C) =

∧
, and k < ω be given. We define an operator Ik

C such that: d ⊢α
C,m

Γ, C ⇒ Ik
C(d) ⊢α

C,m Γ, C[k].

Proof by induction on the build-up of d:
Case 1. last(d) ∈ {

∧
D : D ≈ C}. Then

Ik
C(d) := Rep(Ik

C(d(k)))

is a derivation as required.

Case 2. I := last(d) /∈ {
∧

D : D ≈ C}. Then

Ik
C(d) := I(Ik

C(d(i)))i<|I|

is a derivation as required.
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Theorem 6.2 (and Definition). Let C ∈ F with tp(C) ∈ {⊤,
∧
} be given.

We define an operator RC such that: d0 ⊢α
C,m Γ, C & d1 ⊢β

C,m Γ,¬C

& C-rk(C) ≤ m ⇒ RC(d0, d1) ⊢
α+β
C,m Γ.

Proof by induction on the build-up of d1: Let I = last(d1).

Case 1. ∆(I)∩≈{¬C} = ∅. Then ∆(I) ⊆ ≈Γ and d1(i) ⊢
βi

C,m Γ,¬C,∆i(I) with

βi < β for all i < |I|. By induction hypothesis we obtain RC(d0, d1(i)) ⊢α+βi

C,m

Γ,∆i(I) for i < |I|. Hence

RC(d0, d1) := I(RC(d0, d1(i)))i<|I|

is a derivation as required.

Case 2. ∆(I)∩≈{¬C} 6= ∅. Then tp(C) 6= ⊤, because otherwise there is some
D ∈ ∆(I) with tp(D) = ⊥, but this is not satisfied by any of the inference
symbols of the semiformal system SF . Hence tp(C) =

∧
. We obtain that

I =
∨k

D for some k ∈ N and D ≈ ¬C, and d1(0) ⊢β0

C,m Γ,¬C,¬C[k] with

β0 < β. By induction hypothesis we obtain RC(d0, d1(0)) ⊢α+β0

C,m Γ,¬C[k]. The

Inversion Theorem 6.1 shows Ik
C(d0) ⊢α

C,m Γ, C[k]. Now either C[k] ∈ C or
C-rk(C[k]) < C-rk(C) ≤ m, hence

RC(d0, d1) := CutC[k](I
k
C(d0),RC(d0, d1(0)))

is a derivation as required.

Theorem 6.3 (and Definition). We define an operator E such that:
d ⊢α

C,m+1 Γ ⇒ E(d) ⊢2α−1
C,m Γ.

Proof by induction on the build-up of d:
Case 1. last(d) = CutC . Then C-rk(C) ≤ m and d(0) ⊢α0

C,m+1 Γ, C and

d(1) ⊢α0

C,m+1 Γ,¬C with α0 < α. By induction hypothesis we obtain E(d(0)) ⊢2α0−1
C,m

Γ, C and E(d(1)) ⊢2α0−1
C,m Γ,¬C.

Case 1.1. tp(C) ∈ {⊤,
∧
}, then by the last Theorem RC(E(d(0)),E(d(1))) ⊢2·2α0−2

C,m

Γ, and
E(d) := Rep(RC(E(d(0)),E(d(1))))

is a derivation as required.

Case 1.2. tp(C) /∈ {⊤,
∧
}, then R¬C(E(d(1)),E(d(0))) ⊢2·2α0−2

C,m Γ. Continue
as before.

Case 2. I := last(d) 6= CutC . Then

E(d) := I(E(d(i)))i<|I|

is as required.

Remark 6.4. Immediately from the definition we note that the operators I, R,
and E only inspects the last inference symbol of a derivation to obtain the last
inference symbol of the transformed derivation. It should be noted that this
continuity would not be possible without the repetition rule.
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7 Notations for Derivations and Cut-Elimination

As already mentioned in the introduction to Section 4, we are interested in
arguing about complexity of proof transformations. For this question to make
sense we need a finite representation of infinite proofs. Again, we take a flexible
approach. Any form of finite notation is fine, as long as it is easy to compute
the last rule of inference and notations for the subderivations.

Definition 7.1. Let 〈FBA, tp, ·[·],¬, rk,≈N〉 be a notation system for formulae,
and SF the propositional proof system over F from Definition 5.1.

A notation system H = 〈H, tp, ·[·],Γ, crk, o, |·|〉 for SF consists of a set H
of notations and functions tp: H → SF , ·[·] : H × N → H, Γ : H → Pfin(F),
crk: P(F)×H → N, and o, |·| : H → N\{0} called denoted last inference, denoted
sub-derivation, denoted end-sequent, denoted cut-rank, denoted height and size,
such that C-crk(h[n]) ≤ C-crk(h), tp(h) = CutC implies C-rk(C) < C-crk(h)
for C /∈ C, o(h[ι]) < o(h) for ι < | tp(h)|, and the following local faithfulness
property holds for h ∈ H:

∆(tp(h)) ⊆ ≈Γ(h) and ∀ι < | tp(h)| h[ι] ⊢≈ Γ(h),∆ι(tp(h)) .

The local faithfulness property immediately implies the following Proposi-
tion.

Proposition 7.2.

Γ(h[ι]) ⊆ ≈
(
Γ(h) ∪ ∆ι(tp(h))

)

Definition 7.3. Let H = 〈H, tp, ·[·],Γ, crk, o, |·|〉 be a notation system for SF .
The interpretation [[h]] of h ∈ H is inductively defined as the following SF -
derivation:

[[h]] := tp(h)([[h[ι]]])ι<| tp(h)|

Observation 7.4. For h ∈ H we have

last([[h]]) = tp(h)

[[h]](ι) = [[h[ι]]] for ι < | tp(h)|

Γ([[h]]) ⊆ ≈Γ(h)

We now extend a notation system H for SF to notation system for cut-
elimination on H, by adding notations for the operators I, R and E from the
previous section.

Definition 7.5. The notation system CH for cut-elimination on H is given by
the set of terms CH which is inductively defined by

• H ⊆ CH,

• h ∈ CH, C ∈ F with tp(C) =
∧

, k < ω ⇒ I
k
Ch ∈ CH,

• h0, h1 ∈ CH, C ∈ F with tp(C) ∈ {⊤,
∧
} ⇒ RCh0h1 ∈ CH,
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• h ∈ CH ⇒ Eh ∈ CH,

where I,R,E are new symbols, and by functions tp : CH → SF , ·[·] : CH × N →
CH, Γ : CH → Pfin(F), crk: P(F)×CH → N, o : CH → N\{0} and |·| : CH → N

defined by recursion on the build-up of h ∈ CH:

• If h ∈ H then all functions are inherited from H.

• h = I
k
Ch0: Let Γ(h) := {C[k]} ∪ (Γ(h0) \ ≈{C}), C-crk(h) := C-crk(h0),

o(h) := o(h0), and |h| := |h0| + 1.

Case 1. tp(h0) ∈ {
∧

D : D ≈ C}. Then let tp(h) := Rep, and h[0] :=
I
k
Ch0[k].

Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := I
k
Ch0[i].

• h = RCh0h1: Let I := tp(h1). We define Γ(h) := (Γ(h0) \ ≈{C}) ∪
(Γ(h1)\≈{¬C}), C-crk(h) := max{C-crk(h0), C-crk(h1), C-rk(C)}, o(h) :=
o(h0) + o(h1), and |h| := |h0| + |h1| + 1.

Case 1. ∆(I) ∩≈{¬C} = ∅: Then let tp(h) := I, and h[i] := RCh0h1[i].

Case 2. Otherwise, ∆(I) ∩ ≈{¬C} 6= ∅. As in the proof of Theorem 6.2

we can conclude that tp(C) 6= ⊤. Thus tp(C) =
∧

, and I =
∨k

D for
some k ∈ N and D ≈ ¬C. Then let tp(h) := CutC[k] and h[0] := I

k
Ch0,

h[1] := RCh0h1[0].

• h = Eh0: Let Γ(h) := Γ(h0), C-crk(h) := C-crk(h0) ·− 1, o(h) := 2o(h0) − 1,
and |h| := |h0| + 1.

Case 1. tp(h0) = CutC : Then let tp(h) := Rep and
let h[0] := RCEh0[0]Eh0[1] if tp(C) ∈ {⊤,

∧
},

let h[0] := R¬CEh0[1]Eh0[0] if tp(C) /∈ {⊤,
∧
}.

Case 2. Otherwise, let tp(h) := tp(h0), and h[i] := Eh0[i].

Proof. The just defined system is a notation system for SF in the sense of
Definition 7.1. To prove this we have to show that

o(h[n]) < o(h) for n < | tp(h)| (1)

C-crk(h[n]) ≤ C-crk(h) (2)

tp(h) = CutC with C 6∈ C ⇒ C-rk(C) < C-crk(h) (3)

and that the local faithfulness property for Γ holds. We start by proving (1) by
induction on the build-up of h ∈ CH.

If h ∈ H then (1) is inherited from H. If h = I
k
Ch0 then h[n] = I

k
Ch0[n

′] for
some n′ and (1) is immediate by induction hypothesis.

Now let us consider the case h = RCh0h1. If h[n] = RCh0h1[n
′] for some n′

then (1) is immediate by induction hypothesis. The other case is that h[0] =
I
k
Ch0 for some k. We compute

o(h[0]) = o(IkCh0) = o(h0) < o(h0) + o(h1) = o(h)
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since o(h1) > 0.
Finally, let us consider the case h = Eh0. If h[n] = Eh0[n] then (1) is

immediate by induction hypothesis. Otherwise, we are in the case h[0] =
RC(Eh0[i])(Eh0[j]) for some C, i, j. By induction hypothesis we obtain that
o(h0[i]) ≤ o(h0) − 1 and o(h0[j]) ≤ o(h0) − 1. Hence

o(RC(Eh0[i])(Eh0[j])) = o(Eh0[i]) + o(Eh0[j]) = 2o(h0[i]) − 1 + 2o(h0[j]) − 1

< 2 · 2o(h0)−1 − 1 = 2o(h0) − 1 = o(h)

The Properties (2) and (3) are proven by a simple induction on the build
up of h. Note that in the only case of a cut not inherited from a subterm of
h, that is, in the case h = RCh0h1 with ∆(tp(h1)) ∩ ≈{¬C} 6= ∅, the cut is on
C[k], that is, an immediate subformula of C and therefore, by Definition 3.1, of
strictly smaller rank than C, since C 6∈ C.

The local faithfulness property of Γ is shown by induction on the build-up
of h ∈ CH. This yields a somewhat lengthy case distinction, but in each case
the argument is straight forward; moreover, a similar proof can be found in the
literature [Buc91, Theorem 5.7(a)].

Remark 7.6. For the computation of Γ, the cut-elimination operators I
k
C , RC

and E behave like the following inference symbols:

C
(IkC)

C[k]
,

C ¬C(RC)
∅

,
∅

(E)
∅

.

Definition 7.7. Let CH be the notation system for cut-elimination on H. The
interpretation [[h]] is extended inductively from H to CH by defining

[[IkCh]] = Ik
C([[h]])

[[RCh0h1]] = RC([[h0]], [[h1]])

[[Eh]] = E([[h]]).

Proposition 7.8. For h ∈ CH we have

last([[h]]) = tp(h)

[[h]](ι) = [[h[ι]]] for ι < | tp(h)|

C-crk([[h]]) ≤ C-crk(h)

Γ([[h]]) ⊆ ≈Γ(h)

Proof. By induction on the build-up of h ∈ CH. If h ∈ H then the assertion
is inherited from H and Observation 7.4. The remaining cases follow from
Theorems 6.1, 6.2 and 6.3.
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8 Size Bounds

We are now interested in studying the size needed by the notations for sub-
derivations of derivations obtained by the cut-elimination operator. To avoid
losing the simple idea in a mess of notation, we abstract our problem to a simple
term-rewriting system.

Definition 8.1. An abstract system of proof notations is a set D of “deriva-
tions”, together with two functions |·|, o(·) : D → N \ {0}, called “size” and
“height”, and a relation →⊆ D×D called “reduction to a sub-derivation”, such
that d→ d′ implies o(d′) < o(d).

Observation 8.2 (and Definition). Let F be a notation system for formu-
lae and SF the semiformal proof system over F . A notation system H =
〈H, tp, ·[·],Γ, crk, o, |·|〉 for SF gives rise to an abstract system of proof nota-
tions by letting D = H and defining d → d′ iff there exists an n < | tp(d)| with
d′ = d[n].

Definition 8.3. If D is an abstract system of proof notations, then D̃, the
“cut elimination closure”, is the abstract notation system extending D that is
inductively defined by

d ∈ D

d ∈ D̃

d ∈ D̃

Id ∈ D̃

d ∈ D̃ e ∈ D̃

Rde ∈ D̃

d ∈ D̃

Ed ∈ D̃

|Id| = |d| + 1 |Rde| = |d| + |e| + 1 |Ed| = |d| + 1

d→ d′ in D
d→ d′

d→ d′

Id→ Id′
e→ e′

Rde→ Rde′
d→ d′

Ed→ Ed′

Rde→ Id

d→ d′ d→ d′′

Ed→ R(Ed′)(Ed′′)

o(Id) = o(d) o(Rde) = o(d) + o(e) o(Ed) = 2o(d) − 1

where E, R, I are new symbols.

As one easily verifies, we have o(d) > o(d′) for all d, d′ ∈ D̃ with d → d′.

Therefore, the just defined system D̃ is indeed an abstract system of proof
notations.

Let F be a notation system for formulae, SF the semiformal proof system
over F , H a notation system for SF , CH the notation system for cut-elimination
on H with denoted height o and size |·|, and let D be the abstract system of
proof notations associated with H according to Observation 8.2.

Definition 8.4. The abstraction h of h ∈ CH is obtained by dropping all sub-
and superscripts. It can be defined by induction on the build-up of h ∈ CH:

• h ∈ H ⇒ h := h,
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• h = I
k
Ch0 ⇒ h := Ih0,

• h = RCh0h1 ⇒ h := R h0 h1,

• h = Eh0 ⇒ h := Eh0.

We denote the set of abstractions for h ∈ CH by CH.

Observation 8.5. We note that the abstraction is over approximating in the
following sense. For all h ∈ CH and ι < | tp(h)| we have h→ h[ι].

We now prove a bound on the size of (abstract) notations for cut-elimination.

By induction on the build up of D̃ we assign every element a measure that
bounds the size of all derivations reachable from it via iterated use of the →-
relation. A small problem arises in the base case; if d → d′ in D̃ because this
holds in D we have no means of bounding |d′| in terms of |d|. So we use the
usual trick [AS00] when a global measure is needed and assign each element d of

D̃ not a natural number but a monotone function ϑ(d) such that |d′| ≤ ϑ(d)(s)
for all d →∗ d′ whenever s ∈ N is a global bound on the size of all elements in
D.

Definition 8.6. An abstract system D of proof notations is called s-bounded
(for s ∈ N), if for all d ∈ D it is the case that |d| ≤ s.

Definition 8.7. If D is an abstract system of proof notations and d ∈ D, then
by Dd we denote the set Dd = {d′ | d →∗ d′} ⊂ D considered as an abstract
system of proof notation with the structure induced by D. Here →∗ denotes
the reflexive transitive closure of →.

Definition 8.8. For D an abstract system of proof notations and d ∈ D we say
that d is s-bounded if Dd is.

Definition 8.9. For D an abstract system of proof notations, we define a mono-
tone function ϑ(d) : N → N for every d ∈ D̃ by induction on the inductive

definition of D̃ as follows.

• For d ∈ D we set ϑ(d)(s) = s.

• ϑ(Id)(s) = ϑ(d)(s) + 1

• ϑ(Rde)(s) = max{|d|+1+ϑ(e)(s) , ϑ(d)(s)+1}

• ϑ(Ed)(s) = o(d)(ϑ(d)(s) + 2)

Proof. The monotonicity of the defined function ϑ(d) is immediately seen from
the definition and the induction hypothesis.

Proposition 8.10. If D is s-bounded then for every d ∈ D̃ we have |d| ≤
ϑ(d)(s).
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Proof. By induction on the inductive definition of D̃.
If d ∈ D then ϑ(d)(s) = s ≥ |d|, since D is s-bounded. We calculate

ϑ(Id)(s) = ϑ(d)(s) + 1 ≥ |d| + 1 = |Id|, where we used that ϑ(d)(s) ≥ |d| by
induction hypothesis. Also, ϑ(Rde)(s) ≥ |d|+1+ϑ(e)(s) ≥ 1+ |d|+ |e| = |Rde|,
using the induction hypothesis for e. Finally, ϑ(Ed)(s) = o(d)(ϑ(d)(s) + 2) ≥
ϑ(d)(s)+1 ≥ |d|+1 = |Ed|, where for the first inequality we used that o(d) ≥ 1,
and for the second inequality we used the induction hypothesis.

Theorem 8.11. If D is s-bounded, d ∈ D̃ and d→ d′, then ϑ(d)(s) ≥ ϑ(d′)(s).

Proof. Induction on the inductive definition of the relation d→ d′ in D̃.
If d→ d′ because it holds in D then ϑ(d)(s) = s = ϑ(d′)(s).
If Id → Id′ thanks to d → d′ then ϑ(Id)(s) = ϑ(d)(s) + 1 ≥ ϑ(d′)(s) + 1 =

ϑ(Id′)(s), where the inequality is due to the induction hypothesis.
If Ed→ R(Ed′)(Ed′′) thanks to d→ d′ and d→ d′′ we argue as follows

ϑ(R(Ed′)(Ed′′))(s)
= max{|Ed′|+1+ϑ(Ed′′)(s) , ϑ(Ed′)(s)+1}
= max{|d′|+2+o(d′′)(ϑ(d′′)(s)+2) , o(d′)(ϑ(d′)(s) + 2)}
≤ max{ϑ(d′)(s)+2+o(d′′)(ϑ(d′′)(s)+2) , o(d′)(ϑ(d′)(s) + 2)}
≤ max{ϑ(d)(s)+2+o(d′′)(ϑ(d)(s)+2) , o(d′)(ϑ(d)(s) + 2)}
≤ max{ϑ(d)(s)+2+(o(d) − 1)(ϑ(d)(s)+2) , (o(d) − 1)(ϑ(d)(s) + 2)}
= ϑ(d)(s)+2+(o(d) − 1)(ϑ(d)(s)+2)
= o(d)(ϑ(d)(s)+2)
= ϑ(Ed)(s)

where for the first inequality we used Proposition 8.10, for the second the in-
duction hypothesis, for the third that, since d→ d′ and d→ d′′, both o(d′) and
o(d′′) are bounded by o(d) − 1.

If Ed → Ed′ thanks to d → d′ then ϑ(Ed′)(s) = o(d′)(ϑ(d′)(s) + 2) ≤
o(d)(ϑ(d′)(s) + 2) ≤ o(d)(ϑ(d)(s) + 2) = ϑ(Ed)(s).

If Rde→ Rde′ thanks to e→ e′, then

ϑ(Rde′)(s)
= max{|d|+1+ϑ(e′)(s) , ϑ(d)(s)+1}
≤ max{|d|+1+ϑ(e)(s) , ϑ(d)(s)+1}
= ϑ(Rde)

where for the inequality we used the induction hypothesis.
If Rde→ Id then ϑ(Rde)(s) ≥ ϑ(d)(s) + 1 = ϑ(Id)(s).

Now we draw the desired consequences of our main theorem by putting
things together.

Lemma 8.12. If D is s-bounded, and d ∈ D̃ then D̃d is ϑ(d)(s)-bounded.

Proof. We first show by induction on the inductive definition of the reflexive
transitive closure that for every d′ ∈ D̃d = {d′ ∈ D̃ | d→∗ d′} we have ϑ(d)(s) ≥
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ϑ(d′)(s). The case d = d′ is trivial and if d→∗ d′ → d′′ then ϑ(d)(s) ≥ ϑ(d′)(s)
by induction hypothesis and ϑ(d′)(s) ≥ ϑ(d′′)(s) by Theorem 8.11.

Now, by Proposition 8.10 we know that ϑ(d′)(s) ≥ |d′| for d′ ∈ D̃. So, with

the previous claim, for d′ ∈ D̃d we get ϑ(d)(s) ≥ ϑ(d′)(s) ≥ |d′|, which is the
claim.

Corollary 8.13. If d ∈ D is s-bounded then Ed is o(d)(s+2)-bounded and EEd
is 2o(d) · o(d) · (s+ 4)-bounded.

Proof. Let d ∈ D be s-bounded and h := o(d). First we observe that (̃Dd)d′ =

D̃d′ for any d′ ∈ (̃Dd). So we can assume without loss of generality that D is
s-bounded.

Lemma 8.12 now gives us that Ed is ϑ(Ed)(s)-bounded and EEd is ϑ(EEd)(s)-
bounded. We calculate ϑ(Ed) = o(d)(ϑ(d)(s) + 2) = o(d)(s + 2) ≤ h(s+ 2) and
ϑ(EEd) = o(Ed)(ϑ(Ed)(d) + 2) = o(Ed)(h(s+ 2) + 2) ≤ (2h − 1)(h(s+ 2) + 2) ≤
2h · h · (s+ 4).

Even though the above Corollary covers all the cases usually needed in prac-
tise, it is interesting to consider the general case. Recall that iterated exponen-
tiation 2n(x) is defined inductively by setting 20(x) = x and 2n+1(x) = 22n(x).
An easy induction shows that the height o(End) of the n-times cut-reduced
derivation d is bounded by 2n(d).

Lemma 8.14. ϑ(End)(s) ≤ 2n−1(2 · o(d)) · s for all n ≥ 1, s ≥ 2 and o(d) ≥ 2.

Proof. Induction on n. For the case n = 1 we compute ϑ(Ed)(s) = o(d)(s+2) ≤
2o(d)s.

For n = 2 we compute ϑ(EEd)(s) = (2o(d)−1)(o(d)(s+2)+2). For o(d) = 2
and o(d) = 3 we directly compute that this is bounded by 22o(d)s. For o(d) ≥ 4
we compute ϑ(EEd)(s) ≤ 2o(d)4o(d)s ≤ 22o(d)s.

Now assume that the claim holds for n ≥ 2. We then compute ϑ(EEnd)(s) =
o(End)(ϑ(End)(s) + 2) ≤ 2n−1(2

o(d) − 1) · (2n−1(2 · o(d)) · s+ 2) ≤ 2n−1(2
o(d) −

1) · 2 · 2n(o(d)) · s ≤ 2n(o(d)) · 2n(o(d)) · s ≤ 2n(2 · o(d)) · s

As an immediate Corollary we obtain

Corollary 8.15. If d ∈ D is s-bounded of height o(d) = h for s ≥ 2 and h ≥ 2,
then Ek(d) is 2k−1(2 · h) · s-bounded for all k ≥ 1.

In Corollary 8.15 one should note that the tower of exponentiations has
height only k− 1. Hence there is one exponentiation less than the height of the
denoted proof.

We conclude this section by remarking that the cut-elimination operator can
be viewed as a polynomial time computable operation. Assume we modify the
function ϑ on D̃ to ϑk by changing all ϑ to ϑk and defining for the last case

• ϑk(Ed)(s) = (k + 1) · (ϑ(d)(s) + 2)
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Then we obtain as before for D s-bounded, d ∈ D̃ and k ∈ N, that |d| ≤ ϑk(d)(s),
and d→ d′ implies ϑk+1(d)(s) ≥ ϑk(d′)(s). Hence, for d ∈ D, D s-bounded, and
Ed→k d′, we obtain |d′| ≤ ϑk(Ed)(s) ≤ (k+1)·(s+2). From this we can conclude
the following observation, which also holds in general for infinite derivations with
unrestricted (i.e. potentially infinite) heights. Let f [i1, . . . , ik] := f [i1] . . . [ik].

Observation 8.16. The cut-reduction operator for infinitary propositional logic
is a polynomial time operation in the following sense.

Let F and H be some notation systems for infinitary formulae and the semi-
formal system SF . Assume that F and H are polynomial time computable, and
that in addition also the functions

F × N<ω → F

A, (i1, . . . , ik) 7→ A[i1, . . . , ik]

and

H× N<ω → H

h, (i1, . . . , ik) 7→ h[i1, . . . , ik]

are polynomial time computable.
Then, CH and the function

H× N<ω → CH

h, (i1, . . . , ik) 7→ (Eh)[i1, . . . , ik]

are polynomial time computable.

9 Bounded Arithmetic

In the remaining sections of this article, we will apply the machinery from previ-
ous sections to re-obtain known characterisations of definable multifunctions in
Bounded Arithmetic. Our proof-theoretic investigations are very much indepen-
dent of the exact choice of the language. Therefore, we will be very liberal and
allow symbols for all polynomial time computable functions. We have chosen
to introduce Bounded Arithmetic very briefly, and in a slightly non-standard
way which suits our proof-theoretic investigations most. The reader interested
in the general theory of Bounded Arithmetic is kindly referred to the literature
[Bus86, Kra95].

Definition 9.1 (Language of Bounded Arithmetic). The language LBA of Bounded
Arithmetic contains as non-logical symbols {=,≤} for the binary relation “equal-
ity” and “less than or equal”, and a symbol for each polynomial time computable
function. In particular, it includes a constant ca for a ∈ N whose interpretation
in the standard model N is cN

a = a, unary function symbols | · | and 2|·| which

have their standard interpretation given by | · |N : a 7→ n and 2|·|
N

: a 7→ 2n
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where n is the length of the binary representation of a, and the binary func-
tion symbols min and # whose standard interpretation are minimisation and
#N : a, b 7→ 2n·m where n and m are the lengths of the binary representations
of a resp. b. We will often write a instead of ca, and 0 for c0.

Atomic formulae are of the form s = t or s ≤ t where s and t are terms.
Literals are expressions of the form A or ¬A where A is an atomic formula.
Formulas are build up from literals by means of ∧ , ∨ , (∀x), (∃x). The negation
¬C for a formula C is defined via de Morgan’s laws. Negation extends to sets
of formulae in the usual way by applying it to their members individually.

To define a rank function which relates to the rank function for infinitary
formulae, c.f. Definition 3.1, we first define an auxiliary rank function rk’. Let
C be a set of LBA-formulae (think of Σb

i ), and A an LBA-formula. We define
C-rk’(A) by induction on the complexity of A. If A ∈ C∪¬C, let C-rk’(A) := −1.
For A /∈ C ∪ ¬C, C-rk’(A) is defined as follows:

• If A = B ∧C or A = B ∨C, let C-rk’(A) := 1 + max{C-rk’(B), C-rk’(C)}.

• If A = (∀x)B or A = (∃x)B, let C-rk’(A) := 1 + C-rk’(B).

Then we define the C-rank of A, denoted C-rk(A), by C-rk(A) := max{0, C-rk’(A)}.
Observe that Σb

i -rk(A) ≤ Σb
i+1-rk(A) + 1.

The proof-theoretic machinery from the first part of this article is adapted
from the machinery designed for analysing fragments of Peano Arithmetic, in
particular Πn-Induction. A consequence of this is that cut-elimination is ad-
justed to formulae of type

∧
/ Π-formulae, see the definition of (CutC) in Def-

inition 5.1. In Bounded Arithmetic however, the focus is on induction with Σb
i

formulae, thus it would be more natural to focus for cut-elimination on formulae
of type

∨
/ Σ-formula. We decided to stay with the original cut-elimination

machinery so that our investigations could be more closely adapted. As a conse-
quence, the above definition of rank in its base case does not distinguish between∧

and
∨

-type, by considering the cut-rank above C ∪ ¬C only.
We will use the following abbreviations.

Definition 9.2 (Abbreviations). The expression A → B denotes the expres-
sion ¬A ∨ B. The expression s < t denotes ¬ t ≤ s. Bounded quantifiers are
introduced as follows: (∀x ≤ t)A denotes (∀x)Ax(min(x, t)), (∃x ≤ t)A denotes
(∃x)Ax(min(x, t)), where x may not occur in t.

Our introduction of bounded quantifiers is slightly nonstandard. It has the
advantage that the usual cut-reduction procedure already gives optimal results.
The standard abbreviation of bounded quantification, where e.g. (∃x≤ t)A de-
notes (∃x)(x ≤ t ∧ A), would need a modification of cut-reduction to produce
optimal bounds, as two logical connectives are to be removed for one bounded
quantifier. Nevertheless, the two kind of abbreviations are equivalent over a
weak base theory like Buss’ BASIC assuming that this base theory includes some
standard axiomatisation of min using ≤, for example a ≤ b → min(a, b) = a
and min(a, b) = min(b, a). Also, either way makes use of a nonlogical symbol
(“≤” versus “min”).
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Definition 9.3 (Bounded Formulas). The set BFOR of bounded LBA-formulae
is the set of LBA-formulae consisting of literals and closed under ∧ , ∨ , (∀x≤t),
(∃x≤ t).

We now define a delineation of bounded formulae. The literature sometimes
distinguishes between “strict” or “prenex” versions versus more liberal ones.
We do not want to make such a distinction, and define the classes directly in
their restricted form.

Definition 9.4. The set Σb
i is the smallest subset of bounded LBA-formulae

that is closed under taking subformulae and contains all formulae of the form

(∃x1 ≤ t1)(∀x2 ≤ t2) . . . (Qxi ≤ ti)(Q̄xi+1 ≤ |ti+1|)A(~x)

with Q and Q̄ being of the corresponding alternating quantifier shape, and A
being quantifier free.

Definition 9.5. As axioms we allow all disjunctions of literals, i.e., all disjunc-
tions A of literals such that A is true in N under any assignment. Let us denote
this set of axioms by BASIC.

It should be noted that our set of basic axioms is considerably stronger
than the axioms usually taken in formalisations of Bounded Arithmetic. In
particular, BASIC is not computable. This shows that our upper bounds on the
definable multifunctions are quite independent of the precise axiomatisation; in
particular, true Π0

1-formulae can be added ad libitum. This property is typical
to many proof-theoretic investigations.

We will base our definition of Bounded Arithmetic theories on a stronger
normal form of induction than usually considered in the literature. Let | · |m
denote the m-fold iteration of the function symbol | · |.

Definition 9.6. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z < t)(A → Az(z + 1)) → Az(t) .

The set Φ-LmIND consists of all expressions of the form

Ind(A, z, 2||t|m|)

with A ∈ Φ, z a variable and t an LBA-term.

Definition 9.7. With Σb
j -LkIND we also denote the theory consisting of the

(universal closures of) formulae in BASIC and Σb
j -LkIND. Let Si

2 abbreviate

the theory Σb
i -L1IND.

Our version of Si
2 is different from the standard version as for example defined

in [Bus86], as it is adapted to suit the proof-theoretic investigations we want
to pursue. Nevertheless, it is obvious that our version is an extension of the
standard one, in the sense that every statement that is provable in “standard

21



Si
2” (say, as defined in [Bus86]) can also be proved in the version of Si

2 as given
in the previous definition. This follows from the fact that the restricted form
of induction as defined in Definition 9.6 implies the usual form, because the
following can be proven from BASIC alone:

Ind(A(min(t, z)), z, 2|t|) → Ind(A(z), z, t) .

10 A Notation System for Formulae based on

Bounded Arithmetic

Let FBA be the set of closed formulae in BFOR. We define the outermost
connective function on FBA by

tp(A) :=





⊤ A true literal

⊥ A false literal∧
A is of the form A0 ∧ A1 or (∀x)B∨
A is of the form A0 ∨ A1 or (∃x)B ,

and the sub-formula function on FBA × N by

A[n] :=






A A literal

Amin(n,1) A is of the form A0 ∧ A1 or A0 ∨ A1

Bx(n) A is of the form (∀x)B or (∃x)B .

The rank and negation functions for the notation system are those defined for
LBA.

We didn’t have much choice on how to render BFOR into a notation system
for formulae. Nevertheless, the above definition already shows that we have to
work with a non-trivial intensional equality. The reason is that, even though in
the process of the propositional translation we can make sure that we only have
closed formulae, this still is not enough; we do have other closed terms than just
the canonical ones.

Consider, for example, an arithmetical derivation ending in

...

B(f(0))

∃x.B(x)

where f is some function symbol. In the propositional translation we have to
provide some witness i for the

∨i
∃x.B(x)-inference. The “obvious” choice seems

to take i = fN(0). But this would require a derivation of (∃x.B(x))[fN(0)] =
B(fN(0)). The translation of the sub-derivation, on the other hand, gives us a
derivation of B(f(0)). So, in order to make this a correct inference in the propo-
sitional translation, we have to consider B(f(0)) and B(fN(0)) as intensionally
equal. Note that both formulae are extensionally equal.
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We will now define an intensional equality which provides the above de-
scribed identification. For t a closed term its numerical value tN ∈ N is defined
in the obvious way. Let →1

N
denote the rewriting relation obtained from

{
(t, tN) : t a closed term

}
.

For example,
(∀x)(x ≤ ⌊ 1

2 (5 · 3)⌋) →1
N

(∀x)(x ≤ 7) .

Let ≈N denote the reflexive, symmetric and transitive closure of →1
N
.

Proposition 10.1. The just defined system 〈FBA, tp, ·[·],¬, rk,≈N〉 forms a
notation system for formulae in the sense of Definition 4.1.

Remark 10.2. It is an open problem what the complexity of ≈N is (assuming
a usual feasible arithmetisation of syntax). However, if the depth of expressions
is restricted, and the number of function symbols representing polynomial time
functions is also restricted to a finite subset, then the relation ≈N is polynomial
time decidable. I.e., let ≈N

k denote the restriction of ≈N to expressions of
depth ≤ k in which at most the first k function symbols occur. Here, we do
not consider constants as 0-ary function symbols, thus constants ca may occur
arbitrarily in such expressions. Terms of depth k build up from the first k
function symbols (excluding constants ca but allowing variables) represent a
finite set F of polynomial time computable functions. Thus, deciding ≈N

k is
equivalent to testing equality between functions from F on particular inputs,
which can be done in polynomial time.

From now on, we will assume that FBA implicitly contains such a constant
k without explicitly mentioning it. All formulae and terms used in FBA are
thus assumed to obey the abovementioned restriction on occurrences of function
symbols and depth. We will come back to this restriction at relevant places.
The next observation already makes use of this assumption.

Observation 10.3. All relations and functions in FBA are polynomial time
computable.

Proof. Syntax like terms and formulae can be Gödelised in a feasible way as ex-
plained for example in [Bus86, Chapter 7]. Thus, we obtain that predicates and
operations on syntax like FBA, ·[·], ¬, and rk, are polynomial time computable.
For tp and ≈N we observe in addition, that, under the just fixed convention,
the relation ≈N is actually ≈N

k for some k, and that the truth of literals can be
decided in polynomial time.

Definition 10.4. Let BA∞ denote the semiformal proof system over FBA ac-
cording to Definition 5.1.
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11 A Notation System for BA∞

Definition 11.1. The finitary proof system BA⋆ is the proof system over
〈BFOR,≈N, rk〉 which is given by the following set of inference symbols.

(Ax∆) if
∨

∆ ∈ BASIC
∆

A0 A1(
∧

A0∧A1
)

A0 ∧A1

Ak
(
∨k

A0∨A1
) (k ∈ {0, 1})

A0 ∨A1

Ax(y)
(
∧y

(∀x)A)
(∀x)A

Ax(t)
(
∨t

(∃x)A)
(∃x)A

¬F, Fy(y + 1)
(INDy,t

F )
¬Fy(0), Fy(2|t|)

¬F, Fy(y + 1)
(INDy,n,i

F ) (n, i ∈ N)
¬Fy(n), Fy(n+ 2i)

C ¬C(CutC)
∅

According to Definition 2.5, a BA⋆-quasi derivation h is equipped with func-
tions Γ(h) denoting the endsequent of h, hgt(h) denoting the height of h, and
sz(h) denoting the size of h. and C-crk(h) denoting the cut-rank of h above C.

In the following we will not need the cut-rank function which comes with
BA⋆-quasi derivations, but we will need a more general cut-rank function gcrk,
which will also bound the rank of induction formulas.

Definition 11.2. Let h be a BA⋆-derivation, h = Ih0 . . . hn−1. We define

C-gcrk(h) := sup({C-grk(I)} ∪ {C-gcrk(hi) : i < n})

where C-grk(I), the generalised cut-rank of I, is C-rk(C) + 1 if I is of the form
CutC , INDy,t

C or INDy,n,i
C for C /∈ C, and 0 otherwise.

Observe that Σb
i -gcrk(h) ≤ Σb

i+1-gcrk(h) + 1, which immediately follows
from Σb

i -gcrk(I) ≤ Σb
i+1-gcrk(I) + 1. To see the latter, in the critical case

when I is of the form CutC , INDy,t
C or INDy,n,i

C for C ∈ Σb
i+1 \Σb

i , we compute
Σb

i -gcrk(I) = Σb
i -rk(C)+1 = max{0,Σb

i -rk’(C)}+1 = 0+1 = Σb
i+1-gcrk(I)+1.

In our finitary proof system the ω-rule [Sch51] is replaced by rules with
Eigenvariable conditions. Of course, the precise name of the Eigenvariable does
not matter, as long as it is an Eigenvariable. For this reason, we think of
the inference symbols

∧y
(∀x)A, INDy,t

F , and INDy,n,i
F in BA⋆-quasi derivations

as binding the variable y in the respective sub-derivations. Fortunately, we
don’t have to make this intuition precise, as we will always substitute only
closed (arithmetical) terms into BA⋆-derivations and therefore no renaming of
bound variables will be necessary; hence we don’t have to define what this
renaming would mean. Note, however, that the details of Definition 11.3 of
BA⋆-derivations and Definition 11.5 of substitution become obvious with this
intuition on mind.
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Definition 11.3 (Inductive definition of ~x : h). For ~x a finite list of distinct
variables and h = Ih0 . . . hn−1 a BA⋆-quasi-derivation we inductively define the
relation ~x : h that h is a BA⋆-derivation with free variables among ~x as follows.

• If ~x, y : h0 and I ∈ {
∧y

(∀x)A, INDy,t
F , INDy,n,i

F } for some A,F, t, n, i, and

FV(t) ∪ FV(Γ(Ih0)) ⊆ {~x} then ~x : Ih0.

• If ~x : h0 and FV((∃x)A),FV(t) ⊆ {~x} then ~x :
∨t

(∃x)Ah0.

• If ~x : h0, ~x : h1 and FV(C) ⊆ {~x} then ~x : CutCh0h1.

• If FV(∆) ⊆ {~x} then ~x : Ax∆,

• If ~x : h0, ~x : h1 and I =
∧

A0∧A1
with FV(A0 ∧A1) ⊆ {~x} then ~x : Ih0h1.

• If ~x : h0 and I =
∨k

A0∨A1
with FV(A0 ∨A1) ⊆ {~x} then ~x : Ih0.

A BA⋆-derivation is a BA⋆-quasi derivation h such that for some ~x it holds
~x : h. We call a BA⋆-derivation h closed, if ∅ : h.

Proposition 11.4. If ~x : h then FV(Γ(h)) ⊆ {~x}. In particular FV(Γ(h)) = ∅
for closed h.

Proof. Trivial induction on the inductive definition of ~x : h.

Definition 11.5. For h a BA⋆-derivation, y a variable and t a closed term
of Bounded Arithmetic we define the substitution h(t/y) inductively by set-
ting (Ih0 . . . hn−1)(t/y) to be I(t/y)h0(t/y) . . . hn−1(t/y) if I is not of the form∧y

(∀x)A, INDy,t
F , or INDy,n,i

F with the same variable y, and Ih0 . . . hn−1 other-
wise.

Substitution for inference symbols is defined by setting

Ax∆(t/y) = Ax∆(t/y)∧
A0∧A1

(t/y) =
∧

(A0∧A1)(t/y)

∨k
A0∧A1

(t/y) =
∨k

(A0∧A1)(t/y)∧z
(∀x)A(t/y) =

∧z
((∀x)A)(t/y)

∨t′

(∃x)A(t/y) =
∨t′(t/y)

((∃x)A)(t/y)

INDz,t′

F (t/y) = IND
z,t′(t/y)
F (t/y) INDz,n,i

F (t/y) = INDz,n,i
F (t/y)

We now show the substitution property for BA⋆-derivations. The formu-
lation of Lemma 11.6 might look a bit strange with “⊆” instead of the more
familiar equality. The reason is, that a substitution may make formulae equal
which are not equal without the substitution.

Recalling however Definition 5.3, we note that derivations h in fact prove
every superset of Γ(h). Of course, an easy consequence of Lemma 11.6 is that
if Γ(h) ⊆ ∆ then Γ(h(t/y)) ⊆ ∆(t/y).

Lemma 11.6. Assume ~x : h and let y be a variable and t a closed term, then
~x \ {y} : h(t/y) and moreover Γ(h(t/y)) ⊆ (Γ(h))(t/y).
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Proof. We argue by induction on the build-up of h.
In the cases where no substitution occurs (as h = I . . . with I of the form∧y

(∀x)A, INDy,t
F , or INDy,n,i

F with the same variable y) both claims are trivial.
Otherwise, by induction hypothesis, we know that the sub-derivations are

BA⋆-derivations with the correct set of free variables; since substitution is also
carried out in the inference symbols, the y in the variable conditions for CutC

and
∨t

(∃x)A will also disappear due to the substitution. The Eigenvariable con-

dition z 6∈ FV(Γ(h)) will follow once we have shown the second claim.
For the second claim let h = Ih0 . . . hn−1. Then

h(t/y) = I ′h0(t/y) . . . hn−1(t/y)

with I ′ = I(t/y), and by induction hypothesis we have

Γ(hi(t/y)) ⊆ Γ(hi)(t/y) .

Hence

Γ(h(t/y)) = ∆(I ′) ∪
⋃

i<n

(
Γ(hi(t/y)) \ ≈N∆i(I

′)
)

i.h.
⊆ ∆(I ′) ∪

⋃

i<n

(
Γ(hi)(t/y) \ ≈N∆i(I

′)
)

!!!
⊆

(
∆(I) ∪

⋃

i<n

(
Γ(hi) \ ≈N∆i(I)

))
(t/y)

= Γ(h)(t/y)

At “!!!” we only have inclusion as substitution may make formulae equal (w.r.t.
≈N) which are not equal without the substitution.

This finishes the proof.

We will now define the ingredients for a notation system HBA for BA∞

according to Definition 7.1. The interpretation [[h]] for h ∈ HBA according
to Definition 7.3 formalises a translation of closed BA⋆-derivations into BA∞,
which is called embedding.

Let HBA be the set of closed BA⋆-derivations. For each h ∈ HBA we define
the denoted last inference tp(h) as follows: Let h = Ih0 . . . hn−1,

tp(h) :=






AxA if I = Ax∆, where A is the “least” true literal in ∆∧
A0 ∧ A1

if I =
∧

A0 ∧ A1∨k
A0 ∨ A1

if I =
∨k

A0 ∨ A1∧
(∀x)A if I =

∧y
(∀x)A∨tN

(∃x)A if I =
∨t

(∃x)A

Rep if I = INDy,t
F

Rep if I = INDy,n,0
F

CutFy(n+2i) if I = INDy,n,i+1
F

CutC if I = CutC
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For each h ∈ HBA and j ∈ N we define the denoted sub-derivation h[j] as
follows: Let h = Ih0 . . . hn−1. If j ≥ | tp(h)| let h[j] := Ax0=0. Otherwise,
assume j < | tp(h)| and define

h[j] :=





hmin(j,1) if I =
∧

A0 ∧ A1

h0 if I =
∨k

A0 ∨ A1

h0(j/y) if I =
∧y

(∀x)A

h0 if I =
∨t

(∃x)A

IND
y,0,|t|N

F h0 if I = INDy,t
F

h0(n/y) if I = INDy,n,0
F

INDy,n,i
F h0 if I = INDy,n,i+1

F and j = 0

INDy,n+2i,i
F h0 if I = INDy,n,i+1

F and j = 1

hj if I = CutC

The denoted end-sequent function Γ on HBA is given by Γ as defined on BA⋆.
The size function |·| on HBA is given by |h| := sz(h) as defined for BA⋆. We
define the denoted cut-rank function for h ∈ HBA to be C-crk(h) := C-gcrk(h).
We observe that C-crk(h[ι]) ≤ C-crk(h) for ι < | tp(h)|, and that C-rk(C) <
C-crk(h) if tp(h) = CutC and C /∈ C.

To define the denoted height function we need some analysis yielding an
upper bound to the log of the lengths of inductions which may occur during
the embedding (we take the log as this bounds the height of the derivation tree
which embeds the application of induction). Let us first assume m is such an
upper bound, and let us define the denoted height om(h) of h relative to m: For
a BA⋆-derivation h = Ih0 . . . hn−1 we define

om(h) :=






om(h0) + i+ 1 if I = INDy,n,i
F

om(h0) +m+ 1 if I = INDy,t
F

1 + supi<n om(hi) otherwise

Observe that om(h) > 0 (in particular, o(Ax∆) = 1).
To fill the gap of providing a suitable upper bound function of closed BA⋆-

derivations we first need to fix monotone bounding terms for any term in LBA.

Bounding terms

For a term t we define a term bd(t) which represents a monotone function with
the following property: If FV(t) = {~x} then

(∀~n) t~x(~n)N ≤ bd(t)~x(~n)N

Let x0, x1, x2, . . . be a fixed list of free variables. We fix for each function symbol
f of arity n a monotone bounding term Tf with FV(Tf ) ⊆ {x0, . . . , xn−1}. E.g.,
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assume that we have fixed for each function symbol f in our language a number
cf ∈ N such that (∀~n)|fN(~n)| ≤ max{2, |~n|}cf holds. We then can define

Tf := (max{2, ~x}) # . . .# (max{2, ~x})︸ ︷︷ ︸
cf times

.

As the only exception we demand that T|·| := |x0|.

Now, let t be a term. If t is a closed term, let bd(t) := tN. If t = x, let
bd(t) := x. If t = ft1 . . . tn is not a closed term, let

bd(t) := (Tf )~x(bd(t1), . . . ,bd(tn)) .

Bounding terms for closed BA⋆-derivations

For h ∈ HBA, the bounding term bd(h) is intended to bound any variable which
occurs during the embedding of h, and the term | ibd(h)| is intended to bound
the length of any induction which occurs during the embedding of h.

Let h = Ih0 . . . hn−1 be in HBA. Let max(n1, . . . , nk) denote the maximal
value amongst {n1, . . . , nk}, where we set max() = 0. We define

bd(h) :=





max(bd(h0(bd(t)/y)), bd(t)) if I =
∧y

(∀x≤t)A

max(bd(h0), bd(t)) if I =
∨t

(∃x)A

max(bd(h0(2
| bd(t)|/y)), 2|bd(t)|) if I = INDy,t

F

max(bd(h0(n+ 2i/y)), n+ 2i) if I = INDy,n,i
F

max(bd(h0), . . . ,bd(hn−1)) otherwise.

ibd(h) :=






ibd(h0(bd(t)/y)) if I =
∧y

(∀x≤t)A

max(ibd(h0(2
| bd(t)|/y)), 2|bd(t)|) if I = INDy,t

F

max(ibd(h0(n+ 2i/y)), 2i) if I = INDy,n,i
F

max(ibd(h0), . . . , ibd(hn−1)) otherwise.

Now we define for h ∈ HBA the denoted height function o(h) to be o| ibd(h)|(h).

Theorem 11.7. The just defined system 〈HBA, tp, ·[·],Γ, crk, o(·), | · |〉 forms a
notation system for BA∞ in the sense of Definition 7.1.

Proof. We have to show that HBA = 〈HBA, tp, ·[·],Γ, crk, o(·), | · |〉 has the fol-
lowing properties:

1. C-crk(h[n]) ≤ C-crk(h)

2. tp(h) = CutC implies C-rk(C) < C-crk(h) for C /∈ C

3. o(h[i]) < o(h) for i < | tp(h)|

4. HBA has the local faithfulness property in the sense of Definition 7.1.

28



The first two properties are obvious from the definition of crk as given above.
The last property is proven in Proposition 11.9.

For 3., we first observe that o·(·) satisfies the following monotonicity prop-
erty:

m ≤ m′ ⇒ om(h) ≤ om′(h) . (4)

We also observe the following substitution property by inspection:

om(h(t/y)) = om(h) . (5)

Now we can prove the following slightly more general assertion:

m ≥ | ibd(h)| & i < | tp(h)| ⇒ om(h[i]) < om(h) (6)

Then the 3. follows using the monotonicity property (4), as ibd(h[i]) ≤ ibd(h).
The proof of (6) is by induction on the build-up of h. Let h = Ih0 . . . hn−1.

First assume that h[i] = hj(t/y). The definition of om immediately shows that
in this case om(h) = 1 + supi<n om(hi). The substitution property (5) shows
that om(hj(t/y)) = om(hj). Hence

om(h) > om(hj) = om(hj(t/y)) = om(h[i]) .

The remaining cases are the following ones: If h = INDy,t
F h0, then h[0] =

IND
y,0,|t|
F h0. As |t| ≤ | bd(t)| < | ibd(h)| ≤ m we obtain

om(h[0]) = om(h0) + |t| + 1 < om(h0) +m+ 1 = om(h) .

If h = INDy,n,k+1
F h0, then h[i] = INDy,n′,k

F h0 for some n′ Hence

om(h[i]) = om(h0) + k + 1 < om(h0) + k + 2 = om(h) .

Thus, assertion (6) is proven, which finishes the proof.

Lemma 11.8. Let h = Ih0 . . . hn−1 be a BA⋆-derivation, and assume h ⊢≈N
Γ.

1. hi ⊢≈N
Γ,∆i(I) for i < n.

2. h(i/y) ⊢≈N
Γ(i/y) for i ∈ N and variables y.

Proof. 1. is obvious from the definition of ⊢≈N
. For 2. we compute

Γ(h(i/y))
Lemma 11.6

⊆ Γ(h)(i/y)
h⊢≈N

Γ

⊆ (≈NΓ)(i/y)
definition of ≈NΓ

⊆ ≈N

(
Γ(i/y)

)

Proposition 11.9. HBA has the local faithfulness property.
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Proof. Let h ∈ HBA be of the form h = Ih0 . . . hn−1 ∈ HBA, and let Γ := Γ(h).
We have to show

∆(tp(h)) ⊆ ≈NΓ and ∀i < | tp(h)| h[i] ⊢≈N
Γ,∆i(tp(h)) .

We distinguish cases according to the form of I:

Case 1. I = Ax∆: Then ∆ ⊆ Γ. Let A be the “least” true literal in ∆. Then
tp(h) = AxA and A ∈ ∆.

Case 2. I =
∧

C for C = A0 ∧ A1. Then C ∈ Γ and h0 ⊢≈N
Γ, A0 and

h1 ⊢≈N
Γ, A1. But tp(h) =

∧
C , h[0] = h0 and h[i] = h1 for i > 0, and

∆0(tp(h)) = A0 and ∆i(tp(h)) = A1 for i > 0.

Case 3. I =
∨k

A0 ∨ A1
. This case is similar to Case 2.

Case 4. I =
∧y

(∀x)A: Then (∀x)A ∈ Γ and h0 ⊢≈N
Γ, Ax(y). Using the Eigen-

variable condition and the previous Lemma we obtain h0(i/y) ⊢≈N
Γ, Ax(i). But

tp(h) =
∧

(∀x)A, h[i] = h0(i/y) and ∆i(tp(h)) = Ax(i).

Case 5. I =
∨t

(∃x)A: Then (∃x)A ∈ Γ and h0 ⊢≈N
Γ, Ax(t), hence h0 ⊢≈N

Γ, Ax(tN). But tp(h) =
∨tN

(∃x)A, h[0] = h0 and ∆0(tp(h)) = Ax(tN).

Case 6. I = INDy,t
F : Then ¬Fy(0), Fy(2|t|) ∈ Γ and h0 ⊢≈N

Γ,¬F, Fy(y + 1).

Hence IND
y,0,|tN|
F h0 ⊢≈N

Γ as Fy(2|t|) ≈N Fy(0 + 2|t
N|). But tp(h) = Rep and

h[0] = IND
y,0,|tN|
F h0.

Case 7. I = INDy,n,0
F : Then ¬Fy(n), Fy(n+ 1) ∈ Γ and h0 ⊢≈N

Γ,¬F, Fy(y +
1). Using the Eigenvariable condition and the previous Lemma we obtain
h0(n/y) ⊢≈N

Γ,¬Fy(n), Fy(n + 1), thus h0(n/y) ⊢≈N
Γ using Fy(n+ 1) ≈N

Fy(n+ 1). But tp(h) = Rep and h[0] = h0(n/y).

Case 8. I = INDy,n,i+1
F : Then ¬Fy(n), Fy(n+ 2i+1) ∈ Γ and we have h0 ⊢≈N

Γ,¬F, Fy(y + 1) which implies

h[0] = INDy,n,i
F h0 ⊢≈N

Γ,¬F, Fy(n+ 2i)

and

h[1] = INDy,n+2i,i
F h0 ⊢≈N

Γ,¬Fy(n+ 2i), Fy(n+ 2i+1) .

Using ¬Fy(n), Fy(n+ 2i+1) ∈ Γ this simplifies to

h[0] ⊢≈N
Γ, Fy(n+ 2i) and h[1] ⊢≈N

Γ,¬Fy(n+ 2i) .

Further, tp(h) = CutFy(n+2i) and thus ∆(tp(h)) = ∅, ∆0(tp(h)) = {Fy(n+ 2i)}

and ∆1(tp(h)) = {¬Fy(n+ 2i)}.

Case 9. I = CutC : Then h0 ⊢≈N
Γ,¬C and h1 ⊢≈N

Γ, C. But h[0] = h0,
h[1] = h1 and tp(h) = CutC , thus ∆(tp(h)) = ∅, ∆0(tp(h)) = {¬C} and
∆1(tp(h)) = {C}.

30



Observation 11.10. The following relations and functions are polynomial time
computable: the functions h 7→ Γ(h), h 7→ hgt(h), and h 7→ sz(h) denoting the
endsequent, the height and the size for an input promised to be a BA⋆-quasi
derivation h; the bounding term t 7→ bd(t) for terms t occurring in FBA and
the relations bd(h) ≤ m and ibd(h) ≤ m on inputs in HBA × N; the functions
h 7→ tp(h), h, i 7→ h[i], h 7→ Γ(h), m,h 7→ om(h) and h 7→ |h| for inputs in
HBA.

Here we used our implicit assumptions on the restrictions of term-depths
and occurrences of function symbols as explained at the end of Section 9.

The relations BA⋆, “being a BA⋆-quasi-derivation”, and HBA in general are
not polynomial time computable (even not computable). Later in the applications
they will be restricted to suitable polynomial time computable subsets.

Proof. For bounding terms we use our assumption that a fixed (finite) number
of function symbols and term depth is only allowed, which implies that terms
can only denote a fixed finite number of different polynomial time computable
functions. The computation of bd(h) computes a monotone increasing sequence
of values by successively applying one of the finitely many polynomial time
computable functions. The length of the sequence, i.e. the number of values
to be computed, is bounded by the size of h as a term. Thus, the relation
bd(h) ≤ m is clearly polynomial time decidable, because once the bound m is
exceeded during the process of computing bd(h) one can already output NO.

As the function bd(h) in general may not be polynomially bounded, we
cannot conclude in general that o(h) is polynomial time computable. However,
the function m,h 7→ omin(| ibd(h)|,m)(h) is polynomial time computable and will
be sufficient in our applications.

We finish this section by connecting BA⋆/HBA to the theories of Bounded
Arithmetic as defined in Section 9. This step also includes some proof normali-
sation which we will not give in all details as it is similar to the ones known in the
literature, for example free cut-elimination in [Bus86] or partial cut-elimination
in [Bec03].

Theorem 11.11 (Partial Cut-elimination). Assume Σb
j -L

kIND ⊢ ϕ with k ≥ 1,
ϕ ∈ BFOR and FV(ϕ) ⊆ {x}. Then, there is some BA⋆-derivation h such that
FV(h) ⊆ {x}, Γ(h) = {ϕ}, Σb

j -gcrk(h) = 0 and o(h(a/x)) = O(|a|k+1).

Proof. Assume Σb
j -LkIND ⊢ ϕ with k ≥ 1, ϕ ∈ BFOR and FV(ϕ) ⊆ {x}.

Induction in Σb
j -LkIND is given as universal closures of axioms of the form

Ind(A, z, 2||t|k|) with A ∈ Σb
j and LBA-terms t. They can be derived in BA⋆

in the following form: there is some BA⋆-derivation hA which satisfies that
Γ(hA) = {Ind(A, z, 2||t|k|)}, and that hA contains one occurrence of an induc-

tion inference symbol which is of the form (IND
y,|t|k
B(z) ) for B(z) of the form

Az(min(z, 2||t|k|)). Thus, there is some BA⋆-derivation h such that FV(h) ⊆
{x}, Γ(h) = {ϕ} and such that all occurring induction inference symbols are
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of the form (IND
z,|t|k
C ) for some C ∈ Σb

j and some LBA-term t. By partial

cut-elimination we can ensure that Σb
j -gcrk(h) = 0. To compute o(h(a/x)), we

first compute bd(h(a/x)) = 2|a|
O(1)

and ibd(h(a/x)) = |a|k
O(1)

. By definition of
om(h) we observe, as all occurring induction inference symbols are of the form

(IND
z,|t|k
C ), that om(h) ≤ sz(h) · (m+ 1). Thus

o(h(a/x)) = o| ibd(h(a/x))|(h(a/x))

≤ sz(h(a/x)) · (| ibd(h(a/x))| + 1) = O(|a|k+1) .

12 Computational Content of Proofs

We will now show how the results on bounding the lengths of proof notations
can be used to obtain characterisations of definable multifunctions.

Let us start by describing the idea for computing witnesses using proof trees.
Assume we have a Bounded Arithmetic proof of an existential formula (∃y)ϕ(y)
and we want to compute a k such that ϕ(k) is true—in case we are inter-
ested in definable multifunctions, such a situation is obtained from a proof of
(∀x)(∃y)ϕ(x, y) by inverting the universal quantifier to some n ∈ N. Assume fur-
ther, we have applied some proof theoretical transformations to obtain a BA∞

derivation d0 of (∃y)ϕ(y) with C-crk(d0) ≤ C-rk(ϕ) for some set of formulae C
(the choice of C depends on the level of definability we are interested in). Then
we can define a path through d0, represented by sub-derivations d1, d2, d3 . . . ,
such that

• dj+1 = dj(ι) for some ι ∈ | last(dj)|

• Γ(dj) = (∃y)ϕ(y),Γj where all formulae A ∈ Γj are false and satisfy
C-rk(A) ≤ C-rk(ϕ).

Such a path must be finite as hgt(dj) is strictly decreasing. Say it ends with

some dℓ. In this situation we must have that last(dℓ) =
∨k

(∃y)ϕ(y) and that ϕ(k)
is true. Hence we found our witness.

The path which we have just described can be viewed as the canonical path
through a related local search problem. Before explaining this, let us fix the
notion of a local search problem.

Definition 12.1. An instance of a local search problem consists of a set F
of possible solutions, an initial value d ∈ F , a cost function c : F → N, and
a neighbourhood function N : F → F which satisfy that c(N(d)) < c(d) if
N(d) 6= d. A solution to a local search problem, called a local optimum, is any
d ∈ F such that N(d) = d.

Observe that the ingredients of a local search problem guarantee the exis-
tence of a local optimum, by starting with the initial value and iterating the
neighbourhood function (this defines the canonical path through the search prob-
lem.)
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Now we define a local search problem whose canonical path is the one de-
scribed above. The set F of possible solutions is defined as the set of all BA∞-
derivations d which have the property that all formulae A ∈ Γ(d) \ {(∃y)ϕ(y)}
are false and satisfy C-rk(A) ≤ C-rk(ϕ). The cost of a possible solution d ∈ F
is given by the height hgt(d) of the proof tree d. Assume we have fixed some
initial value d0 ∈ F . The neighbourhood function N : BA∞ → BA∞ is defined
by case distinction on the shape of last(d) for d ∈ F :

• last(d) = AxA cannot occur as all atomic formulae in Γ(d) are false by
definition of F .

• last(d) =
∧

A0∧A1
, then A0 ∧A1 must be false, hence some of A0, A1 must

be false. Let N(d) := d(0) if A0 is false, and d(1) otherwise.

• last(d) =
∨k

A0∨A1
, then A0 ∨A1 must be false, hence both A0, A1 must be

false. Let N(d) := d(0).

• last(d) =
∧

(∀x)A(x). As (∀x)A(x) is false there is some i such that A(i) is

false. Let N(d) := d(i).

• last(d) =
∨k

(∃x)A(x). If (∃x)A(x) is different from (∃y)ϕ(y) then (∃x)A(x)

must be false; let N(d) := d(0). Otherwise, if ϕ(k) is false let N(d) = d(0),
and if it is true let N(d) = d. Observe that in the very last case we found
our witness.

• last(d) = CutC . If C is false let N(d) := d(0), otherwise let N(d) := d(1).

Obviously, this defines a local search problem according to Definition 12.1. As
remarked above, a local optimal solution to the search problem allows us to
determine a witness.

In the following we will use proof notations from CHBA to define local search
problems similar to the one we have just described. Utilising the results from
previous sections, we will then obtain characterisations of the definable multi-
functions of Bounded Arithmetic theories.

As explained above, a first step will be applying proof theoretic transfor-
mations to formal proofs in Bounded Arithmetic theories of some formula ex-
pressing the totality of a function whose complexity we want to characterise.
Here, the level of proof theoretic reduction will be adjusted in such a way that
occurring formulae which have to be decided fall exactly in the computational
class under consideration. So our main concern in order for this strategy to
be meaningful is to find feasible upper bounds for the length of such reduction
sequences and for the complexity of derivation notations occurring in them.

12.1 Complexity Notions for BA⋆

In order to describe the set of possible solutions for the search problems we are
going to define later, we need some notions describing key complexity properties
of BA⋆ proof notations which we will provide first.
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Although tp(A) =
∧

for any A starting with a ∀, and thus we can denote
infinitely many direct sub-formulae by A[n] for all n ∈ N, only finitely many
carry non-trivial information, because all quantifiers in A (and in particular this
outermost ∀) are bounded. The next definition makes this formal by assigning
first to each closed formula in FBA, then to each inference symbol in BA∞, and
finally to each proof notation in CHBA, its range.

Definition 12.2. Let A be a formula in FBA. We define the range of A, denoted
rng(A), by

rng(A) :=





0 if A a literal ,

2 if A = B ∧ C or A = B ∨ C ,

tN + 1 if A = (∀x ≤ t)B or A = (∃x ≤ t)B .

Let I be an inference symbol of BA∞. We define the range of I, denoted
rng(I), by

rng(I) :=






0 if I = AxA ,

1 if I =
∨k

C or I = Rep ,

rng(C) if I =
∧

C ,

2 if I = CutC .

For h ∈ CHBA we define

rng(h) := rng(tp(h)) .

Definition 12.3. We extend the definition of bounding terms bd(h) and ibd(h)
from HBA to CHBA in the following way by induction on the build-up of h ∈
CHBA:

• If h ∈ HBA then the definition of bd(h) and ibd(h) are inherited from the
definition of bd(h) resp. ibd(h) on HBA.

• bd(IkCh0) := bd(h0), and ibd(IkCh0) := ibd(h0).

• bd(RCh0h1) := max{bd(h0), bd(h1)}, and ibd(RCh0h1) := max{ibd(h0),
ibd(h1)}.

• bd(Eh0) := bd(h0), and ibd(Eh0) := ibd(h0).

Lemma 12.4. Let h ∈ CHBA.

1. bd(h[j]) ≤ bd(h) and ibd(h[j]) ≤ ibd(h) for all j.

2. If tp(h) =
∨k

C then k ≤ bd(h).

Proof by induction on the build-up of h.
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Definition 12.5. For h a BA⋆-derivation or h ∈ CHBA, we define the set of
decorations of h, deco(h), by induction on the build-up of h. deco(h) will be a
finite set of LBA-terms and formulae in BFOR. Let h = Ih0 . . . hn−1, where I
ranges over BA⋆ ∪ {IkC ,RC ,E} (see also Remark 7.6). We define

deco(h) := deco(I) ∪
⋃

i<n

deco(hi)

where

deco(I) := ∆(I) for I = Ax∆,
∧

A0∧A1
,
∨k

A0∨A1

deco(
∧y

(∀x)A) := {(∀x)A, y}

deco(
∨t

(∃x)A) := {(∃x)A, t}

deco(INDy,t
F ) := {F,¬Fy(0), Fy(2|t|), y, t}

deco(INDy,n,i
F ) := {F,¬Fy(n), Fy(n+ 2i), y, cn}

deco(CutC) := {C}

deco(IkC) := {C,C[k], ck}

deco(RC) := {C}

deco(E) := ∅ .

If we would drop F from the definition of deco(I) in case I = INDy,t
F for

example, only F (0/y) and F (t/y) would be included in the set of decorations,
giving us no access to the intermediate steps needed to “compute” the induction.
On the other hand, adding F to the set of decoration (F still contains the free
variable y) gives us a generic way to access those intermediate steps.

Observation 12.6. We have Γ(h) ⊆ deco(h).

Definition 12.7. Let Φ be a set of LBA-terms and formulae in BFOR, and let
K ∈ N be a size parameter. With ΦK we denote the set obtained by enlarging
Φ by the set {ci : 0 ≤ i ≤ K} and the set of formulae and terms which result
from formulae and terms in Φ by substituting constants from {ci : 0 ≤ i ≤ K}
for some (possibly none, possibly all) of the free variables.

Lemma 12.8. Let Φ be a set of LBA-terms and formulae in BFOR, such that
Φ ∩ BFOR is closed under negation and taking sub-formulae. Let j,K ∈ N and
y be a variable.

1. If j ≤ K and C ∈ Φ ∩ BFOR, then C[j] ∈ ΦK .

2. If h ∈ BA⋆ with deco(h) ⊆ Φ, and j ≤ K, then deco(h(j/y)) ⊆ ΦK .

3. ∆(tp(h)) ⊆ deco(h)bd(h) with the subscript understood in the sense of

Definition 12.7 (it is needed, e.g., for INDy,n,i+1
F ).

4. If h ∈ CHBA with deco(h) ⊆ Φ, and j ≤ bd(h), then deco(h[j]) ⊆ Φbd(h).
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Proof. For 4., consider the case that h = RCh0h1, tp(h1) =
∨k

¬C and j = 0, i.e.
h[0] = I

k
Ch0. By 3. we have ¬C ∈ Φbd(h1), hence C ∈ Φbd(h). Also k ≤ bd(h1)

by Lemma 12.4, 2. Hence, C[k] ∈ Φbd(h) by 1. Now we compute

deco(h[0]) = {C,C[k], ck} ∪ deco(h0) ⊆ Φbd(h) ∪ Φ = Φbd(h) .

Lemma 12.9. For h ∈ CHBA we have that the cardinality of Γ(h) is bounded
above by 2 · sz(h).

Proof. Let the cardinality of a set S be denoted by card(S). We observe that
card(∆(I)) ≤ 2 for any I ∈ BA∞. Thus we can compute for h = Ih0 . . . hn−1 ∈
CHBA by induction

card(Γ(h)) ≤ card(∆(I)) +
∑

i<n

card(Γ(hi)) ≤ 2 +
∑

i<n

2 · sz(hi) = 2 · sz(h) .

12.2 Search Problems Defined by Proof Notations

We identify the notation system HBA for BA∞ with the abstract system of proof
notations associated with it according to Observation 8.2. This way, the relation
“→” of “reduction to sub-derivation” is declared also on HBA. For s ∈ N a size
parameter and h a BA⋆-derivation we define

Hs
h := {h′ ∈ HBA : |h′| ≤ s and the axioms occurring in h′ as a

BA⋆-derivation are substitution instances of
those occurring in h .}

Then Hs
h is an s-bounded, abstract system of proof notations, because we ob-

serve that h ∈ HBA and h → h′ implies |h′| ≤ |h|. Furthermore, the relation
Hs

h (for fixed h) is polynomial time computable, because deciding whether an
inference symbol occurring in the notation h′ ∈ Hs

h is a BA⋆ axiom can be
decided by matching it with one of the finitely many BA⋆-axioms occurring in
h.

Remember that h for h ∈ CHBA denotes the abstraction of h which allows us
to view CHBA as a subsystem of H̃BA (see Definition 8.4 and Observation 8.5).

Definition 12.10. For h ∈ CHBA we define ϑ(h)(s) := ϑ(h)(s).

For the reader’s convenience let us mention that CHs
h stands for C(Hs

h), the
notation system for cut-elimination on Hs

h according to Definition 7.5. Theo-
rem 8.11 now reads as follows:

Corollary 12.11. If h′ ∈ CHs
h and h′ → h′′, then ϑ(h′)(s) ≥ ϑ(h′′)(s).

Definition 12.12. We will define a local search problem L which is parame-
terised by
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• a finite set Φ of LBA-terms and formulae in BFOR, for which Φ ∩ BFOR
is closed under negation and taking sub-formulae,

• a “complexity class” C given as a polynomial time computable set of LBA-
formulae which is assumed to be closed under taking subformulae and
intensional equal formulae (usually C = Σb

i for some i),

• a size parameter s ∈ N,

• a BA⋆-derivation h and a reduction level j, which together define an initial
value function h• : N → CHs

h, a 7→ ha := E
jh(a/x) := E . . .E︸ ︷︷ ︸

j times

h(a/x),

• a formula (∃y)ϕ(x, y) ∈ Φ with ¬ϕ ∈ C,

such that, for a ∈ N,

• Γ(ha) = {(∃y)ϕ(a, y)},

• C-crk(ha) = 0,

• o(ha) = 2|a|
O(1)

,

• ϑ(ha)(s) = |a|O(1),

• deco(ha) ⊆ Φa.

We denote such a parametrisation by L = 〈Φ, C, s, h, j, (∃y)ϕ(x, y)〉.
An instance of L is given by a ∈ N in the following way:

• The set of possible solutions F (a) ∈ Pfin(CHs
h) is given as the set of those

h′ ∈ CHs
h which satisfy:

i) Γ(h′) ⊆ {(∃y)ϕ(a, y)} ∪ ∆ for some ∆ ⊆ C ∪ ¬C such that all A ∈ ∆
are closed and false,

ii) C-crk(h′) = 0,

iii) o(h′) ≤ o(ha),

iv) ϑ(h′)(s) ≤ ϑ(ha)(s),

v) bd(h′) ≤ bd(ha) and ibd(h′) ≤ ibd(ha),

vi) deco(h′) ⊆ Φmax(a,bd(ha));

• The initial value is given by i(a) := ha;

• the cost function is defined as c(a, h′) := o(h′); and
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• the neighbourhood function is given by

N(a, h′) :=






h′[j] if tp(h′) =
∧

C , j < rng(C) and C[j] false ,

h′[0] if tp(h′) =
∨i

C and C 6= (∃y)ϕ(a, y)

or tp(h′) =
∨i

(∃y)ϕ(a,y) and ϕ(a, i) false ,

h′[0] if tp(h′) = CutC and C false ,

h′[1] if tp(h′) = CutC and C true ,

h′[0] if tp(h′) = Rep ,

h′ otherwise .

(Observe that the just defined neighbourhood function is a multifunction due
to case

∧
C .)

Lemma 12.13. For each a ∈ N the above defined 〈F (a), i(a), c(a, ·), N(a, ·)〉 is
indeed an instance of a local search problem, i.e. we have:

1. ha ∈ F (a),

2. h ∈ F (a) and N(a, h) 6= h implies N(a, h) ∈ F (a) and o(N(a, h)) < o(h).

Proof. The first claim is obvious by definition. For the second claim let h ∈ F (a)
with h′ := N(a, h) 6= h. Then we have to show h′ ∈ F (a) and o(h′) < o(h). As
h′ = h[j] for some j < rng(h) by construction, we obviously have o(h′) < o(h)
and h→ h′.

To show h′ ∈ F (a), we consider i)–vi) of the definition of h′ ∈ F (a):
ii) is clear; iii) is obvious; for iv) observe that h → h′ implies ϑ(h′)(s) ≤
ϑ(h)(s) by Corollary 12.11; for v) observe bd(h′) ≤ bd(h) and ibd(h′) ≤
ibd(h) by Lemma 12.4; for vi) observe that j < rng(h) implies deco(h′) ⊆
(Φmax(a,bd(ha)))bd(h) = Φmax(a,bd(ha)) by Lemma 12.8, 4., because rng(h) ≤
bd(h) and bd(h) ≤ bd(ha). And finally for i), we first observe that the first
condition, which says Γ(h′)\{(∃y)ϕ(a, y)} is a subset of C∪¬C consisting only of
closed formulae, is obviously satisfied as C-crk(h′) = 0. For the second condition
of i) let I := tp(h). By Proposition 7.2 we have that

Γ(h[j]) ⊆ ≈N

(
Γ(h) ∪ ∆j(I)

)
.

Thus it is enough to show that
∨

∆j(I) is false.

• I =
∧

C : ∆j(I) = {C[j]} and C[j] is false by construction.

• I =
∨i

C : then j = 0. If C 6= (∃y)ϕ(a, y), then ∆0(I) = {C[i]}. Now C
is false by i) of h ∈ F (a), hence C[i] must be false as well. Otherwise,
∆0(I) = {ϕ(a, i)}, and ϕ(a, i) is false by construction.

• I = CutC : If j = 0, then ∆0(I) = {C} and C is false by construction.
Otherwise, j = 1, then ∆1(I) = {¬C} and ¬C is false by construction.
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• I = Rep: then j = 0 and ∆0(I) = ∅ and nothing is to be shown.

In the following, P denotes the class of predicates which can be decided
in polynomial time, and FP the class of functions which can be computed in
polynomial time. We denote the relativisations of P and FP to some oracle from
a given class C by PC respectively FPC . Furthermore, FPC [wit, g(n)] denotes the
class of functions which can be computed by a Turing machine in polynomial
time, where the Turing Machine is allowed to ask witness queries to some oracle
in C such that the number of witness queries asked in computations on inputs
of length n is bounded by g(n). An overview and more in depth discussion of
these definitions can be found in Kraj́ıček’s encyclopedical book [Kra95].

Proposition 12.14 (Complexity of L). Let L = 〈Φ, C, s, h, j, (∃y)ϕ(x, y)〉 be
a local search problem as defined in Definition 12.12, with associated set of
possible solutions F , initial value function i, cost function c and neighbourhood
function N .

Then F ∈ PC, i, c ∈ FP, and N ∈ FPC [wit, 1].

Proof. First observe that the functions a 7→ i(a) = ha, a 7→ bd(ha), a 7→
ibd(ha), a 7→ o(ha), a 7→ ϑ(ha), and a 7→ deco(ha) are polynomial time com-
putable.

Furthermore, the relations CHs
h, C-crk(h′) = 0, bd(h′) ≤ m, ibd(h′) ≤ m and

deco(h′) ⊆ Φm are polynomial time computable. Thus, also o(h′) for h′ ∈ CHs
h

with ibd(h′) ≤ ibd(ha) is polynomial time computable using Observation 11.10
and the remark following the Observation. Hence c ∈ FP.

Also, the functions tp(h′) and h′[i] are polynomial time computable on CHs
h,

which shows N ∈ FPC [wit, 1]. N is only a multifunction because of the
∧

C -case.
For F ∈ PC observe that Γ(h′) ⊆ deco(h′) ⊆ Φmax(a,bd(ha)), hence the first

condition of h′ ∈ F (a) that all formulae in Γ(h′) \ {(∃y)ϕ(a, y)} are in C ∪ ¬C
and false, is a property in PC .

A polynomial local search (PLS) problem [JPY88] is a local search problem
which in addition satisfies that the initial value, cost and neighbourhood func-
tions are polynomial time computable, and that the set of possible solutions
is polynomial time computable and polynomially bounded, which means that
for any instance of the search problem of length n, the length of any possible
solution is bounded polynomially in n. The relativisation of a PLS problem to a
class C is given by relativising its set of possible solutions, and initial value, cost
and neighbourhood function, to C. The class of such relativisations is denoted
by PLSC .

Proposition 12.15 (Properties of L). Let L = 〈Φ, C, s, h, j, (∃y)ϕ(x, y)〉 be
a local search problem as defined in Definition 12.12, with associated set of
possible solutions F , initial value function i, cost function c and neighbourhood
function N . Let f be the multifunction defined by ϕ: f(x) = y iff ϕ(x, y).
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1. If N(a, h) = h then tp(h) is of the form
∨i

(∃y)ϕ(a,y) such that ϕ(a, i) is

true. Obviously, i can be extracted from
∨i

(∃y)ϕ(a,y) by a polynomial time
computable operation. We say that f is computed by L.

2. The search problem L in general defines a search problem in PLSC, assum-
ing that we turn the neighbourhood multifunction into a function, which
can easily be achieved by using an intermediate PLSC search problem which
searches for the smallest witness in case tp(h) =

∧
C . Then N ∈ FPC.

3. Assume o(ha) = |a|O(1). Then the canonical path through L, which starts
at ha and leads to a local minimum by iterating the neighbourhood func-
tion, is of polynomial length with terms of polynomial size, thus f ∈
FPC [wit, o(ha)].

Observe that it is common for the treatment of multifunctions that we do
not require that all possible values of a multifunction appear as outputs of some
computations (cf. [Kra95, Section 6.3]).

Proposition 12.16. Assume that (∃y)ϕ(x, y) ∈ BFOR, ϕ(x, y) ∈ Πb
i , h is a

BA⋆-derivation with FV(h) ⊆ {x}, Γ(h) ⊆ {(∃y)ϕ(x, y)}, and Σb
i -gcrk(h) ≤ j.

Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation and
taking sub-formulae, C := Σb

i , s := |h|, and ha := E
jh(a/x). Then the following

holds:

1. (∃y)ϕ(x, y) ∈ Φ, ¬ϕ ∈ C, and ha ∈ CHs
h.

2. Γ(ha) = {(∃y)ϕ(a, y)}.

3. C-crk(ha) = 0

4. o(ha) ≤ 2j(o(h(a/x)))

5. ϑ(ha)(s) ≤ 2j−1((s+ 2) · o(h(a/x))) if j ≥ 1

6. deco(ha) ⊆ Φa

7. If either j ≤ 2 and o(h(a/x)) = O(|a|j), or o(h(a/x)) = O(|a|1+j), then
L = 〈Φ, C, s, h, j, (∃y)ϕ(x, y)〉 defines a local search problem according to
Definition 12.12.

Proof. 1., 3. and 4. are obvious by definition. 6. follows from Lemma 12.8.2.
For 2. we compute Γ(ha) = Γ(h(a/x)) = Γ(h)(a/x) = {(∃y)ϕ(a, y)}, using that
Γ(Eh(a/x)) = Γ(h(a/x)), as well as Lemma 11.6.

For 5. we prove

ϑ(Ek+1h(a/x))(s) ≤ 2k((s+ 2) · o(h(a/x))) (7)

by induction on k. For the case k = 0 we compute

ϑ(Eh(a/x))(s) = o(h(a/x)) · (ϑ(h(a/x))(s) + 2) = o(h(a/x)) · (s+ 2)
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For the induction step we compute

ϑ(Ek+2h(a/x))(s) = o(Ek+1h(a/x)) · (ϑ(Ek+1h(a/x)) + 2)

≤ 2k+1(o(h(a/x))) · (ϑ(Ek+1h(a/x)) + 2)

i.h.
≤ 2k+1(o(h(a/x))) · (2k((s+ 2) · o(h(a/x))) + 2)

≤ 2k+1(o(h(a/x))) · 2k+1((s+ 1) · o(h(a/x)))

≤ 2k+1((s+ 2) · o(h(a/x))) .

The last but one inequality holds because 2k((s+ 2) · u+ 2) ≤ 2k+1((s+ 1) · u)
for s ≥ 2, which is satisfied for s = |h|.

With 1., 2., 3. and 6. in place for 7. we are left to show o(ha) = 2|a|
O(1)

and
ϑ(ha)(s) = |a|O(1). If j ≤ 2 and o(h(a/x)) = O(|a|j), then we have

o(ha)
4.
≤ 2j(o(h(a/x))) = 2j(O(|a|j)) = 22(O(|a|2)) = 2|a|

O(1)

using for last equation that 2O(|n|) = nO(1). Furthermore, for j = 0 we have
ϑ(ha)(s) = s = |a|O(1), and, for j ≥ 1,

ϑ(ha)(s)
5.
≤ 2j−1((s+ 2) · o(h(a/x))) = 2j−1(O(|a|j)) = 21(O(|a|2)) = |a|O(1) .

If o(h(a/x)) = O(|a|1+j) then

o(ha)
4.
≤ 2j(o(h(a/x))) = 2j(O(|a|1+j)) = O(a)

using for last equation that c|n| ≤ n for n ≥ 4c2, and

ϑ(ha)(s)
5.
≤ 2j−1((s+ 2) · o(h(a/x))) = 2j−1(O(|a|1+j)) = O(|a|) .

We will now give new proofs for known characterisations of definable multi-
functions of Bounded Arithmetic theories. Let f be a Σb

j -definable multifunction

of Si
2, j > 0. Then f is defined by some ψ ∈ Σb

j , that is f(x) = y iff ψ(x, y), such

that Si
2 ⊢ (∀x)(∃y)ψ(x, y). By Parikh’s Theorem (cf. [Bus86, Section 4.7]) there

is some term t(x) such that Si
2 ⊢ (∀x)(∃y ≤ t(x))ψ(x, y). Now, ψ(x, y) is of the

form (∃z ≤ s(x, y))χ(x, y, z) with χ ∈ Πb
j−1. Consider ϕ(x, y) ≡ χ(x, (y)0, (y)1),

then ϕ ∈ Πb
j−1, Si

2 ⊢ (∀x)(∃y)ϕ(x, y), and the values of f are exactly projections
of values of the multifunction g defined by ϕ. As projections are polynomial
time computable, it will be enough to characterise g in order to characterise f .

Therefore, in the following proofs we will just consider Si
2 ⊢ (∀x)(∃y)ϕ(x, y)

with ϕ ∈ Πb
j−1 and (∃y)ϕ(x, y) ∈ BFOR to characterise the Σb

j -definable multi-

functions of Si
2.

Theorem 12.17 (Kraj́ıček [Kra93]). Let i ≥ 2. The Σb
i -definable multifunc-

tions of Si−1
2 are in FPΣb

i−1 [wit, O(logn)].
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Proof. Let i ≥ 2 and assume that Si−1
2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈

BFOR, ϕ ∈ Πb
i−1. By Theorem 11.11 we obtain some BA⋆-derivation h such

that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb
i−1-gcrk(h) = 0, and o(h(a/x)) =

O(||a||).
Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation and

taking sub-formulae, C := Σb
i−1, s := |h|, and ha := h(a/x). Proposition 12.16.7

shows that in this case L = 〈Φ, C, s, h, 0, (∃y)ϕ(x, y)〉 defines a local search
problem according to Definition 12.12, as ||a|| is the same as |a|2.

As o(ha) = O(||a||), Proposition 12.15.3 shows that the multifunction defined

by ϕ is in FPΣb
i−1 [wit, O(log n)], using the common notation in computational

complexity that n denotes the size of the input a, i.e. o(ha) = O(log n).

Theorem 12.18 (Buss [Bus86]). Let i > 0. The Σb
i -definable functions of Si

2

are in FPΣb
i−1 .

Proof. Let i > 0 and assume that Si
2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈

BFOR, ϕ ∈ Πb
i−1. By Theorem 11.11 we obtain some BA⋆-derivation h such that

FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb
i -gcrk(h) = 0, and o(h(a/x)) = O(||a||).

Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation
and taking sub-formulae, C := Σb

i−1, s := |h|, and ha := Eh(a/x). Proposi-
tion 12.16.7 shows that in this case L = 〈Φ, C, s, h, 1, (∃y)ϕ(x, y)〉 defines a local
search problem according to Definition 12.12, because C-crk(ha) = C-gcrk(h) ≤
Σb

i -gcrk(h) + 1 = 1. Observe that C-crk(ha) is the denoted cut-rank on HBA,
where C-gcrk(h) is the generalised cut-rank on BA⋆.

As o(ha) = |a|O(1), Proposition 12.15.3 shows that the multifunction defined

by ϕ is in FPΣb
i−1 [wit, nO(1)] = FPΣb

i−1 [wit]. But this immediately implies that

the Σb
i -definable functions of Si

2 are in FPΣb
i−1 , because a witness query to (∃z <

t)ψ(u, z) can be replaced by |t| many usual (non-witness) queries to χ(a, b, u) =
(∃z < t)(a ≤ z < b ∧ ψ(u, z)) using a divide and conquer strategy.

Theorem 12.19 (Buss and Kraj́ıček [BK94]). Let i > 0. The Σb
i -definable

multifunctions of Si+1
2 are projections of solutions to problems in PLSΣb

i−1 .

Proof. Let i > 0 and assume that Si+1
2 ⊢ (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈

BFOR, ϕ ∈ Πb
i−1. By Theorem 11.11 we obtain some BA⋆-derivation h such

that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb
i+1-gcrk(h) = 0, and o(h(a/x)) =

O(||a||).
Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation and

taking sub-formulae, C := Σb
i−1, s := |h|, and ha := EEh(a/x). Proposi-

tion 12.16.7 shows that in this case L = 〈Φ, C, s, h, 2, (∃y)ϕ(x, y)〉 defines a local
search problem according to Definition 12.12, because C-crk(ha) = C-gcrk(h) ≤
Σb

i+1-gcrk(h) + 2 = 2.

Proposition 12.15.2 shows that this defines a search problem in PLSΣb
i−1 .

Theorem 12.20 (Pollett [Pol99]). Let i ≥ 1, j ≥ 0, k ≥ 1. The Σb
i+1-definable

multifunctions of Σb
i+j-L

k+jIND are in FPΣb
i [wit, 2j(O(logk+j n))].
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Proof. Let i ≥ 1, j ≥ 0, k ≥ 1 and assume that Σb
i+j -L

k+jIND ⊢ (∀x)(∃y)ϕ(x, y)

with (∃y)ϕ(x, y) ∈ BFOR, ϕ ∈ Πb
i . By Theorem 11.11 we obtain some BA⋆-

derivation h such that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb
i+j -gcrk(h) = 0,

and o(h(a/x)) = O(|a|1+k+j).
Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation

and taking sub-formulae, C := Σb
i , s := |h|, and ha := E

jh(a/x). Proposi-
tion 12.16.7 shows that in this case L = 〈Φ, C, s, h, j, (∃y)ϕ(x, y)〉 defines a local
search problem according to Definition 12.12, because C-crk(ha) = C-gcrk(h) ≤
Σb

i+j-gcrk(h) + j = j.
As o(ha) = O(||a||), Proposition 12.15.3 shows that the multifunction defined

by ϕ is in FPΣb
i [wit, 2j(O(logk+j n))].

Finally, we draw another conclusion which has not been covered by the
literature so far.

Theorem 12.21. Let i ≥ 1, j ≥ 0, k ≥ 1. The Σb
i -definable multifunctions

of Σb
i+j-L

k+jIND are projections of solutions to problems in PLSΣb
i−1 where the

cost-function is bounded by 2j+1(O(logk+j n)), n being the size of the input.

Proof. Let i ≥ 1, j ≥ 0, k ≥ 1 and assume that Σb
i+j -L

k+jIND ⊢ (∀x)(∃y)ϕ(x, y)

with (∃y)ϕ(x, y) ∈ BFOR, ϕ ∈ Πb
i−1. By Theorem 11.11 we obtain some BA⋆-

derivation h such that FV(h) ⊆ {x}, Γ(h) = {(∃y)ϕ(x, y)}, Σb
i+j -gcrk(h) = 0,

and o(h(a/x)) = O(|a|1+k+j).
Let Φ be deco(h) together with deco(h) ∩ BFOR closed under negation and

taking sub-formulae, C := Σb
i−1, s := |h|, and ha := E

j+1h(a/x). Propo-
sition 12.16.7 shows that in this case L = 〈Φ, C, s, h, j + 1, (∃y)ϕ(x, y)〉 de-
fines a local search problem according to Definition 12.12, because C-crk(ha) =
C-gcrk(h) ≤ Σb

i+j-gcrk(h) + j + 1 = j + 1.

As in Proposition 12.15.2 we obtain that L is a PLSΣb
i−1 -problem, but now

the cost function is bounded by o(ha) ≤ 2j+1(o(h(a/x))) = 2j+1(O(|a|1+k+j)).

Conclusions and Future Work

In this article we have shown that one application of cut-reduction on proof no-
tations behaves feasibly. Explicit bounds have been obtained. We then applied
these bounds to Bounded Arithmetic to reobtain all known definability results
in a uniform way.

In the future, the authors will try to build on these notations to obtain new
definability results for hitherto uncharacterised classes.

Acknowledgements

The second author is grateful to Mohammad Javad A. Larijani, Ali Enayat, Iraj
Kalantari, Morteza Moniri and Massoud Pourmahdian for organising IPM Logic

43



Conference 2007. Their great hospitality during his stay in Tehran added to the
overall wonderful experience. Some of the results in this article were presented
at the conference by the second author in one of his two invited lectures.

The authors would like to thank the anonymous referees for their valuable
comments which helped improving the article considerably.

The authors gratefully acknowledge support by the Engineering and Physical
Sciences Research Council (EPSRC) under grant number EP/D03809X/1.

References

[AJ05] Klaus Aehlig and Felix Joachimski. Continuous normalization for the
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[Kra93] Jan Kraj́ıček. Fragments of bounded arithmetic and bounded query
classes. Trans. Amer. Math. Soc., 338(2):587–598, 1993.
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