
A Characterisation of Definable NP Search
Problems in Peano Arithmetic

Arnold Beckmann?

Department of Computer Science
Swansea University

Swansea SA2 8PP, UK
a.beckmann@swansea.ac.uk

Abstract. The complexity class of ≺-bounded local search problems with
goals is introduced for well-orderings ≺, and is used to give a character-
isation of definable NP search problems in Peano Arithmetic.

1 Introduction

A search problem in general is just a binary relation R. The search task is to
find, given x as input, some y satisfying R(x, y). Search problems play a special
role in complexity theory. Usually, they are ignored, that is, studied through
corresponding decision problems. Often this leads to satisfying results, for ex-
ample when the reduction is given by a natural self-reduction which produces a
polynomially equivalent decision problem. However, there are situations where
this approach is unsatisfying as the decision problem is not computationally
equivalent. This is particularly important if we are concerned with total search
problems, that is, search problems which satisfy (∀x)(∃y)R(x, y).

Total NP search problems are those where R is polynomial time computable
and polynomially bounded — the latter means that R(x, y) always implies that
the length of y is polynomially bounded in the length of x. Johnson, Papadim-
itriou and Yannakakis [JPY88] have initiated the study of total NP search prob-
lems, and in particular identified several natural subclasses of total NP search
problems depending on the mathematical principle needed to proof their totality.

The totality of NP search problems, or in general the totality of definable
(multi-)functions, is also an important theme in the study of logical theories, like
fragments of arithmetic, in particular Bounded Arithmetic. Bounded Arithmetic
has been introduced by Buss [Bus86] as first-order theories of arithmetic with a
strong connection to computational complexity. These theories can be given as
restrictions of Peano Arithmetic in a suitable language. A main goal in the study
of Bounded Arithmetic is to give natural descriptions of the class of total search
problems / (multi-)functions whose totality can be shown within some theory of

? Supported in part by EPSRC grant EP/D03809X/1, and by a grant from the John
Templeton Foundation.

Bounded Arithmetic [Bus86,Kra93,BK94,Pol99]. Recently, some advances have
been made in providing characterisations for missing pairs of level of definability
and theories of Bounded Arithmetic [KST07,ST07,Pud06,BB08]. In particular,
characterisations have been obtained using a machinery which originated from
the proof-theoretic study of Peano Arithmetic, using so called proof notations
for continuous cut-elimination [AB08,BB09].

At this point, it natural to ask whether it is also possible to obtain natural
descriptions of those total NP search problems whose totality can be proven
in stronger theories than Bounded Arithmetic.1 The present paper is a first
contribution to this programme by studying the definable NP search problems
of Peano Arithmetic, and characterising them in terms of a kind of generalised
local search problems which we denote α-bounded local search problems for α <
ε0. Of course, it is not surprising that α ranges over ordinal notations for the
ordinal ε0, as ε0 is the well-known proof-theoretic ordinal for Peano Arithmetic,
first implicitly established by Gentzen [Gen36] in his consistency proof for Peano
Arithmetic.

The next section will briefly introduce Peano Arithmetic in a way suitable for
our proof-theoretic investigations. Section 3 defines the search problem classes
of α-bounded local search. This is followed in Section 4 by the definition of
an ordinal notation system of order-type ε0. Section 5 briefly reviews necessary
definitions and results on notations and cut-reduction for Peano Arithmetic from
[AB08]. This is followed by the section defining the search problems which come
from proofs in Peano Arithmetic, and stating our main result concerning the
characterisation of definable NP search problems in terms of α-bounded local
search for α < ε0.

2 Peano Arithmetic

Our definition of Peano Arithmetic is based on Bounded Arithmetic, as we want
to make use of the machinery developed in [AB08]. Also, we want to obtain
in later sections notation systems which have polynomial time computable in-
gredients, which in particular means that closed terms in the language must
evaluate in polynomial time. Thus, allowing symbols for stronger functions than
polynomial time computable ones is problematic.

Our proof-theoretic investigations are very much independent of the exact
choice of the language. Therefore, we will be very liberal and allow symbols for
all polynomial time computable functions. We introduce Bounded Arithmetic
very briefly, and in a slightly nonstandard way similar to [AB08]. The reader

1 This question has also been formulated in a draft of a book by Pavel Pudlák. The
author would like to thank Pavel Pudlák for discussing this question during a one
week visit of the author at the Mathematical Institute of the Academy of Sciences of
the Czech Republic. The author would also like to thank Jan Kraj́ıček, Pavel Pudlák
and Neil Thapen for their hospitality during his stay.

interested in the general theory of Bounded Arithmetic is kindly referred to the
literature [Bus86].

For a ∈ N let |a| denote the length of the binary representation of a. We will
use | · | also as a symbol for a unary function in the next definition. This will
never lead to confusion.

Definition 1 (Language of Bounded Arithmetic). The language LBA of
Bounded Arithmetic contains as nonlogical symbols {=,≤} for the binary rela-
tion “equality” and “less than or equal”, and a symbol for each polynomial time
computable function. In particular, LBA includes a constant ca for a ∈ N whose
interpretation in the standard model N is cN

a = a, and unary function symbols
| · | whose standard interpretation is given by | · |N : a 7→ |a|. We will often write
a instead of ca, and 0 for c0.

Atomic formulas are of the form s = t or s ≤ t where s and t are terms.
Literals are expressions of the form A or ¬A where A is an atomic formula.
Formulas are build up from literals by means of ∧ , ∨ , (∀x), (∃x). The negation
¬C for a formula C is defined via de Morgan’s laws. Negation extends to sets of
formulas in the usual way by applying it to their members individually.

We will use the following abbreviations.

Definition 2. The expression A → B denotes ¬A ∨ B. Bounded quantifiers
are introduced as follows: (∀x≤t)A denotes (∀x)(x ≤ t → A), (∃x≤t)A denotes
(∃x)(x ≤ t ∧ A), where x may not occur in t.

Definition 3 (Bounded Formulas). The set of bounded LBA-formulas is the
set of LBA-formulas consisting of literals and being closed under ∧ , ∨ , (∀x≤t),
(∃x≤ t).

Definition 4. The set sΣb
1 consists of all literals and all formulas of the form

(∃x≤ s)A(x) where A is a literal. A, s and t may depend on other variables not
mentioned here.

Definition 5. As axioms we allow all disjunctions of literals, i.e., all disjunc-
tions A of literals such that A is true in N under any assignment. Let us denote
this set of axioms by BASIC.

The set BASIC is not recursive. Although this is nonstandard for usual formu-
lation of Bounded Arithmetic [Bus86], it is quite normal for the type of proof
theoretic invistigations we are after, i.e. using notations for infinitary derivations.
It comes from the fact that the complexity of the set of axioms (measured by
its arithmetic complexity) of a formal system does not influence the complexity
of cut-elimination (measured by the ordinal height of infinitary derivation trees)
in the corresponding infinitary propositional derivations.

Definition 6. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z ≤ t)(A → Az(z + 1)) → Az(t) .

Definition 7. Let S1
2 denote the theory consisting (of universal closures) of for-

mulas in BASIC and (of universal closures) of formulas of the form Ind(A, z, |t|)
with A ∈ sΣb

1 , z a variable and t an LBA-term.
Let PA denote the theory consisting (of universal closures) of formulas in

BASIC and (of universal closures) of formulas of the form Ind(A, z, t) with A
an LBA formula (not necessarily bounded), z a variable and t an LBA-term.

Definition 8. Let Σb
1 be the set of formulas ϕ such that there exist ψ ∈ sΣb

1

with S1
2 ` ϕ ↔ ψ.

Let ∆b
1 be the set of formulas ϕ such that there exist formulas σ, π with

σ,¬π ∈ sΣb
1 and S1

2 ` (ϕ ↔ σ) ∧ (ϕ ↔ π).

3 Bounded Local Search with Goals

A binary relation R ⊆ N × N is called polynomially bounded iff there is a poly-
nomial p such that (x, y) ∈ R implies |y| ≤ p(|x|). R is called total if for all x
there exists a y with (x, y) ∈ R.

Definition 9 (Total and Definable NP Search Problems). Let R ⊆ N×N
be a polynomially bounded, total relation which is polynomial time computable.
The (total) NP search problem associated with R is this: Given input x ∈ N,
return a y ∈ N such that (x, y) ∈ R. R is called definable in a theory T , if
there exists a sΣb

1 -formula (∃y)ϕ(x, y) (the bound to y is implicit in ϕ) with
all free variables shown, such that (x, y) ∈ R iff N � ϕ(x, y), and such that
T ` (∀x)(∃y)ϕ(x, y).

A binary relation ≺ on N×N is a polynomial time computable well-ordering,
if it satisfies the conditions that it is polynomial time computable as a binary
relation, that it is a total order, and that it is well-founded, i.e. does not contain
infinite descending sequences.

We now define the class of ≺-bounded local search problems with goals. It
will be defined similar to polynomial local search (PLS) problems as introduced
by Johnson, Papadimitriou, and Yannakakis [JPY88], and in particular Πp

k -PLS
with Πp

` -goals from [BB08,BB09]. The main difference will be that the set of
possible solutions is not required to be polynomially bounded. We discuss below
immediate consequences of this, after we have given the next definition.

Definition 10 (≺-BLS Problems with Goals). Let ≺ be a polynomial time
computable well-ordering. A ≺-bounded local search (≺-bls) problem with goal
is a tuple L = (S,G, d,N, c, i) consisting of, for a given input x, a set S(x) of
possible solutions, a goal set G(x) with a polynomial bound d, a neighbourhood
function N(x, s) mapping a solution s to another solution, a function c(x, s)
computing the cost of a solution s according to the well-ordering ≺, and a func-
tion i(x) computing an initial solution, such that the functions N , c and i and
the predicates F and G are polynomial time computable, and the following six

conditions are satisfied:

≺ is a total order. (3.1)
(∀x, s)(s ∈ G(x) → |s| ≤ d(|x|)) (3.2)

(∀x)(i(x) ∈ S(x)) (3.3)
(∀x, s)(s ∈ S(x) → N(x, s) ∈ S(x)) (3.4)
(∀x, s)(N(x, s) = s ∨ c(x,N(x, s)) ≺ c(x, s)) (3.5)
(∀x, s)(s ∈ G(x) ↔ (N(x, s) = s ∧ s ∈ S(x))) (3.6)

The search task is, for a given input x, to find some s with s ∈ G(x).
If the well-ordering is understood from the context, we often refer to it by its

ordertype given as an ordinal, and e.g. speak of α-bounded local search problems
with goals.

We have introduced F and G as sets. They will usually be given via a corre-
sponding relation, e.g. “s ∈ S(a)” in terms of S(a, s).

The following fact is obvious.

Fact 11. Any ≺-bls problem with goal defines a total NP search problem in the
sense of Definition 9.

The next observation is almost obvious, and uses the fact that the set of
possible solutions is not necessarily polynomially bounded.

Observation 12. Any total NP search problem can be defined by some <-bls
problem with goal, where < is the natural ordering on N.

Proof. The proof is based on a simple padding idea. As the set of possible solu-
tions is not required to be polynomially bounded, we first increase the size of a
possible solution to reach a possible solution which is exponentially bigger that
the polynomially bound of our goal set. At this point it is feasible to directly
search for a solution in the goal set.

To be more precise, let R be a total binary relation, which is polynomi-
ally bounded using some polynomial d. We define a <-bls problem with goal
L = (S,G, d,N, c, i) which defines the NP search problem associated with R
in the sense of Definition 10: let b := 2d(|x|) (which implies d(|x|) < |b|) and
define G(x) := {y : |y| ≤ d(|x|) and R(x, y)}, S(x) := {〈x, b, n〉 : n ∈ N} ∪G(x),
N(x, 〈x, b, n〉) :=

〈
x, b, n2 + 2

〉
if |n| < b, N(x, 〈x, b, n〉) := y if |n| ≥ b and

y smallest with R(x, y) (observe that in this case y < b ≤ |n| ≤ | 〈x, b, n〉 |,
thus it is feasible to search for y,) N(x, s) := s otherwise, i(x) := 〈x, b, 0〉 and
c(x, 〈x, b, n〉) := 1 + (b ·− |n|), c(x, s) := 0 otherwise. ut

The previous fact and observation show that the general formulation of ≺-bls
problems with goals cannot be used to make any meaningful assertions about
total NP search problems. That is, they do not lead to a meaningful combinatorial
description of a kind of local search problem, which expresses the totality of the
overall search problem in some natural way. If we study the previous proof we

can see why this is the case: in order to obtain that the neighbourhood function
as defined in the previous proof is a well-defined function (that is, is total) we
have to know for the step N(x, 〈x, b, n〉) := y if |n| ≥ b and y smallest with
R(x, y), that a y with R(x, y) exists, which means that at this point we already
have to invest that the R defines a total NP search problem. And for the proof
of existence it does not help that n is very big.

One way to ensure that the description of a ≺-bounded local search problem
stays in some sense “purely combinatorial”, is to require that all its conditions
can be formalised in some weak theory suitable for formalising combinatorics. We
follow this line of thought in the following definition by taking as such theory S1

2.

Definition 13 (Formalised ≺-BLS Problems in S1
2). A ≺-bls problem with

goal in the sense of Definition 10 is formalised in S1
2 provided the predicates S,

G and ≺ are given by ∆b
1-formulas, and the defining conditions (3.1)–(3.6) are

provable in S1
2.

4 Ordinal Notations for ε0

Let < denote the ‘real’ semantic concept of ordinal orderings. Recall the Cantor
normal form for ordinals; i.e., every ordinal α > 0 can be written uniquely in
the form

α = ωα1 + ωα2 + ωα3 + · · ·+ ωαk ,

where k ≥ 1 and α1 ≥ α2 ≥ α3 ≥ · · · ≥ αk. This is the basis for the well-known
representation of ordinals less than ε0: namely, write an ordinal α < ε0 as a term
in Cantor normal form, recursively writing the exponents of ω in the same form.
We repeat the definition of compact representations for ordinals less than ε0 as
given in [BBP03].

Definition 14. We simultaneously and inductively define a set of expressions,
called normal compact forms for ordinals less than ε0, and a binary relation ≺ε0
on normal compact forms, as follows, where “=” denotes identity on strings:

1. If α1, . . . , αk are normal compact forms, and n1, . . . , nk ∈ N \ {0}, then the
expression ωα1 ·n1 + · · ·+ωαk ·nk is a normal compact form. For k = 0 this
is the empty word which we denote by 0.

2. ωα1 · n1 + · · · + ωαk · nk ≺ε0 ωβ1 ·m1 + · · · + ωβ` ·m` holds if and only if
there is some i with 0 ≤ i ≤ min{k, `}, such that αj = βj and nj = mj for
j = 1, . . . , i, and one of the following cases is satisfied:
(a) either i = k < `; or
(b) i < min{k, `} and αi+1 ≺ε0 βi+1; or
(c) i < min{k, `}, αi+1 = βi+1 and ni+1 < mi+1.

We also write α ≺ε0 ε0 to indicate that α is a normal compact form.

It can be shown (cf. [BBP03]) that S1
2 can formalise the notion of normal

compact forms by using standard sequence coding methods to define the Gödel
number of a normal compact form. We assume that some efficient method of
sequence coding is used for Gödel numbers so that the length of the Gödel
number of a basic form α is proportional to the number of symbols in α.

In this way, the set of normal compact forms and the relation ≺ε0 can be
seen to be polynomial time computable based on their inductive definitions, and
that the bounded arithmetic theory S1

2 can ∆b
1-define the syntactic concepts of

normal compact forms and the relation ≺ε0 , see [BBP03] for more details.
It is also easy to see that the operations α, β 7→ α + β of addition and

α 7→ 3α of exponentiation to base 3 on ordinals can be represented on normal
compact forms by polynomial time computable functions. Also observe that the
embedding of N into normal compact forms, given by n 7→ ω0 · n, is polynomial
time computable.

Finally, we show that S1
2 can prove that ≺ε0 is a total ordering on normal

compact forms, satisfying transitivity and trichotomy.

Theorem 15. Let α be a normal compact form. The α-bls problems with goals
are definable NP search problems in PA.

Proof. Let L = (S,G,N, c, i) be an α-bls problem with goal. Let x be given. The
set A := {c(x, s) : s ∈ S(x)} is a non-empty subset of {β : β ≺ε0 α} by (3.3) and
(3.4), and can be expressed by a Σ1 formula. PA proves transfinite induction up
to α ≺ε0 ε0 for Σ1 properties [Poh09]. Thus, arguing in PA, we can choose some
c ∈ A which is ≺ε0 -minimal. Pick s ∈ S(x) with c(x, s) = c, and let s′ := N(x, s).
Then s′ ∈ S(x) by (3.4). By construction c(x, s′) 6≺ε0 c(x, s), hence (3.5) shows
s′ = N(x, s) = s. Hence, (3.6) shows s ∈ G(x). ut

5 Notation System for Peano Arithmetic

In [AB08], a general framework has been developed which is suitable to char-
acterise definable search problems / (multi-)functions in Bounded Arithmetic.
This framework is based on notations for propositional proofs. In principle, the
same framework can also be used to characterise the definable NP search prob-
lems of Peano Arithmetic. The main difference between the notation system for
Bounded Arithmetic and that for Peano Arithmetic is that heights of proposi-
tional proofs can become infinite in the case of Peano Arithmetic, and therefore
have to be bounded by ordinals.

Due to the lack of space, we will only briefly introduce proof notations, and
mainly state the differences between those for Bounded Arithmetic and those
needed for Peano Arithmetic. The reader interested in more details is kindly
referred to [AB08].

A proof notation system is a set (of proof terms) which is equipped with
some functions, most prominently a function computing the last inference tp(h)
of a proof named by some notation h, and a function that, given a notation h
and a natural number i computes some notation h[i] for the i’th subproof of the

derivation named by h. So, a proof notation completely determines an explicit
propositional derivation tree; the tree can be reconstructed by exploring it from
its root and determining the inference at each node of the tree.

The cut-reduction operator can be defined on the names for derivation trees.
Using continuous cut-elimination, these transformations will be particularly sim-
ple on the names; note that, using names, for derivations it makes sense to ask
about the complexity of getting the i’th subderivation, or about the size of the
name, even if it denotes an infinite object. It has been shown [AB08] that the
cut-reduction operator on proof notations can be understood as a polynomial
time operation. Continuous normalisation for infinitary propositional proofs has
been invented by Mints [Min78,KMS75]. The approach in [AB08] is build on
Buchholz’ technical very smooth approach to notation systems for continuous
cut-elimination [Buc91,Buc97].

In [AB08], a notation system HBA has been defined which denotes propo-
sitional derivations obtained by translating [Tai68,PW85] Bounded Arithmetic
proofs. Applying the machinery of notations for continuous cut-elimination, a
notation system CHBA of cut-elimination for HBA has been obtained which has
the property that its implicit descriptions, most notably the functions mentioned
above, will be polynomial time computable.

To obtain a similar notation system for Peano Arithmetic we can proceed as
follows. Let FPA be the set of closed formulas in LBA. We define the outermost
connective function tp(f) for f ∈ FPA to be > or ⊥ for true or false literals,
respectively,

∧
for universally quantified formulas and conjunctions, and

∨
for

existentially quantified formulas and disjunctions. The sub-formula function f [n]
for f ∈ FPA and n ∈ N is defined in the obvious way, where for finite conjunctions
and disjunctions the last conjunct or disjunct is treated as if it were repeated
infinitely often. The rank rk(A) of a formula A in FPA is defined in the usual
way measuring its depth: rk(A) := 0 for atomic formulas A, for A = B ∧ C or
A = B ∨ C let rk(A) := 1 + max{rk(B), rk(C)}. If A = (∀x)B or A = (∃x)B,
let rk(A) := 1 + rk(B).

As closed terms are evaluated to numbers when translating PA-proofs into
propositional ones, notations have to be considered modulo the natural inten-
tional equivalence relation ≈N which identifies terms with the same value. As our
definition of LBA only contains function symbols for polynomial time computable
functions, ≈N will be polynomial time decidable if the depth of expressions is
restricted, and the number of function symbols representing polynomial time
functions is also restricted to a finite subset.

Let PA∞ denote the propositional proof system over FPA. The last inference
of a derivation in PA∞ can be of the form (AxA) for A ∈ FPA with tp(A) = >
indicating an axiom, (

∧
C) for C ∈ FPA with tp(C) =

∧
indication an application

of a
∧

-inference with main formula C, (
∨i
C) for C ∈ FPA with tp(C) =

∨
and

i ∈ N indicating an application of a
∨

-inference with main formula C and
side formula C[i], (CutC) for C ∈ FPA with tp(C) ∈ {>,

∧
} indicating an

application of a cut inference, and the void repetition inference (Rep) which
neither introduces nor discharges a formula.

The finitary proof system PA? is some particularly nice formal proof system
for first order logic, which includes also some special rules for induction. It is
mainly given by the same inference symbols as BA? in [AB08].

Finally, let HPA be the set of closed PA?-derivations. For each h ∈ HPA

we define the denoted last inference tp(h) and subderivations h[j] following the
obvious translation into propositional logic, were induction up to 2i is proved by
a balanced tree of cuts of height i. The height o(h) is defined according to the
above description of a tree of balanced cuts; the increase of the height caused
by one application of induction can be bounded by ω. The cut-rank crk(h) of
a derivation h ∈ HPA is defined as usual by strictly bounding the ranks of all
cut-formulas. We write h `≈N Γ to indicate that Γ is a superset (modulo ≈N) of
the end-sequent of the propositional derivation denoted by h.

As for HBA [AB08], we can now add notations for cut-elimination to obtain
CHPA. In particular, we add a symbol E which represents the reduction of cuts
by one level, and which has the following properties: If h `≈N Γ , then Eh `≈N Γ ,
crk(Eh) ≤ crk(h) ·− 1 and o(Eh) = 3o(h).

As in the case of HBA it can be seen that all functions involved in HPA and
CHPA are polynomial-time computable.

Theorem 16. Assume PA ` ϕ with FV(ϕ) ⊆ {x}. Then, there is some PA?-
derivation h such that FV(h) ⊆ {x}, h `≈N ϕ, and o(h(a/x)) ≺ε0 ω · 2.

6 Definable NP Search Problems in Peano Arithmetic

We start by describing the idea for computing witnesses using proof trees. As-
sume we have a PA-proof of a formula (∃y)ϕ(y) in sΣb

1 and we want to compute
an n such that ϕ(n) is true — in case we are interested in definable search prob-
lems, such a situation is obtained from a proof of (∀x)(∃y)ϕ(x, y) by inverting
the universal quantifier to some a ∈ N. Assume further, that we have applied cut-
elimination to obtain a PA∞ derivation d0 of (∃y)ϕ(y) with crk(d0) = 0. Then
we can define a path through d0, represented by sub-derivations d1, d2, d3 . . . ,
such that dj is an immediate sub-derivation of dj+1, and the end-sequent of dj is
of the form (∃y)ϕ(y), Γj where all formulas A ∈ Γj are false and either atomic or
instances of sub-formulas of (∃y)ϕ(y). Such a path must be finite as the height
of dj is strictly decreasing. Say it ends with some d`. In this situation we must
have that last inference of d` is

∨k
(∃y)ϕ(y) and that ϕ(k) is true. Hence we found

our witness.
Before we capture this idea in Definition 18 we will define a function on proof

notations that computes the next step in the path described above.

Definition 17. Let CHkPA denote the set of notations h in CHPA which satisfy
that the index of any function symbols occurring in h is bounded by k, and that
the depths of any formula or term occurring in h is also bounded by k (the depth
of constants is counted as 0.)

We define a function red: CHkPA ∪ {0} → CHkPA ∪ {0} by h 7→ red(h) with

red(h) :=

0 if h = 0 or tp(h) = AxA or
tp(h) =

∨d
(∃y)ϕ(a,y) with ϕ(a, d) true,

h[1] if tp(h) = CutC with C true,
h[1] if tp(h) =

∧
A0 ∧ A1

with A0 ∧A1 of the form
ϕ(a, d) for some d and A0 true,

h[0] otherwise.

It is clear from the introduction of proof notations for PA that red is poly-
nomial time computable.

Definition 18. We define a parameterised α-bounded local search problem by
k ∈ N, α ≺ε0 ε0, a PA?-derivation h which defines an initial value function

h(·) : N→ CHPA, a 7→ h(a) := E · · ·E︸ ︷︷ ︸
crk(h)×

h(a/x) ,

and a formula (∃y)ϕ(x, y) ∈ sΣb
1 , such that S1

2 proves, for a ∈ N, that h(a) `≈N

(∃y)ϕ(a, y), crk(h(a)) = 0, and o(h(a)) ≺ε0 α. We denote such a parametrisation
by P = 〈k, α, h, (∃y)ϕ(x, y)〉.

This parametrisation defines an α-bounded local search problem with goal
L = (S,G, d,N, c, i) in the following way: Let t(x) be the bound to y which is
implicit in (∃y)ϕ(x, y). An instance is given by some a ∈ N. The goal set is
defined as G(a) := {y : ϕ(a, y)}; the set of possible solutions as

S(a) := G(a) ∪ {〈t(a), h0, . . . , h`〉 : h0 = h(a), h` 6= 0 and
(∀i<`)hi+1 = red(hi)} ;

the neighbourhood function is defined as

N(a, 〈t(a), h0, . . . , h`〉) :={
〈t(a), h0, . . . , h`, red(h`)〉 if red(h`) 6= 0
d if red(h`) = 0 and tp(h`) =

∨d
(∃y)ϕ(x,y)

N(a, d) := d for d ≤ t(a) ;

the initial value function is given by i(a) := 〈t(a), h(a)〉; and the cost function
is defined as c(a, 〈t(a), h0, . . . , h`〉) := o(h`), and c(a, d) := 0 for d < Da.

Proposition 19. The local search problem L = (S,G, d,N, c, i) parameterised
by P = 〈k, α, h, (∃y)ϕ(x, y)〉 from Definition 18 provides an α-bls problem with
goal according to Definition 10 which solves ϕ.

Theorem 20. The definable NP search problems in PA can be characterised by
α-bls problems with goals for α ≺ε0 ε0.

Proof. Assume PA ` (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ sΣb
1 . Inverting the (∀x)

quantifier we obtain PA ` (∃y)ϕ(x, y). By Theorem 16, we obtain some PA?-
derivation h such that FV(h) ⊆ {x}, h `≈N (∃y)ϕ(x, y), and o(h(a/x)) ≺ε0 ω · 2.

Let k be so large that it bounds all indices of function symbols occurring in
h, as well as the logical depths of all formulas and terms (where constants have
depth 0) occurring in h. Let α := 3crk(h)(ω · 2). Then P = 〈k, α, h, (∃y)ϕ(x, y)〉
defines a parameterised α-bls problem according to Definition 18, because the
following are provable in S1

2, using h(a) := E · · ·E︸ ︷︷ ︸
crk(h)×

h(a/x):

– h(a) `≈N (∃y)ϕ(a, y);
– crk(h(a)) = crk(h(a/x)) ·− crk(h) = crk(h) ·− crk(h) = 0;
– o(h(a)) = 3crk(h)(o(h(a/x))) ≺ε0 3crk(h)(ω · 2) = α.

By Proposition 19, this defines an α-bls problem with goal which solves ϕ. ut

Together with Theorem 15 we obtain the following

Corollary 21. The definable NP search problems in PA are exactly charac-
terised by α-bls problems with goals for α ≺ε0 ε0.

Conclusion

We have characterised the definable NP search problems of Peano Arithmetic
in terms of α-bls problems with goals for α ≺ε0 ε0. One immediate question is
whether the defining conditions (3.1)–(3.6) can be turned into some independent
principle, by rendering all involved polynomial time functions and predicates in
a generic way using oracles (cf. [BB08,BB09]).

Further steps in this programme will be to investigate whether it can be
extended to stronger theories than PA. The hope would be that for any theory
for which a suitable ordinal analysis has been accomplished [Poh09], this can
be turned into some feasible notation system which can form the basis of some
class of ≺-bls problems characterising the definable NP search problems of that
theory. A next step here could be to use the description of Γ0 in [BBP03].

References

[AB08] Klaus Aehlig and Arnold Beckmann. On the computational complexity of
cut-reduction, 2008. Submitted to APAL.

[BB08] Arnold Beckmann and Samuel R. Buss. Polynomial local search in the polyno-
mial hierarchy and witnessing in fragments of bounded arithmetic. Technical
Report CSR15-2008, Department of Computer Science, Swansea University,
December 2008.

[BB09] Arnold Beckmann and Samuel R. Buss. Characterising definable search prob-
lems in bounded arithmetic via proof notations. Technical report, Department
of Computer Science, Swansea University, January 2009.

[BBP03] Arnold Beckmann, Samuel R. Buss, and Chris Pollett. Ordinal notations and
well-orderings in bounded arithmetic. Ann. Pure Appl. Logic, 120(1-3):197–
223, 2003.

[BK94] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean complexity to
separation problems in bounded arithmetic. Proc. London Math. Soc. (3),
69(1):1–21, 1994.

[Buc91] Wilfried Buchholz. Notation systems for infinitary derivations. Archive for
Mathematical Logic, 30:277–296, 1991.

[Buc97] Wilfried Buchholz. Explaining Gentzen’s consistency proof within infinitary
proof theory. In Computational logic and proof theory (Vienna, 1997), volume
1289 of Lecture Notes in Comput. Sci., pages 4–17. Springer, Berlin, 1997.

[Bus86] Samuel R. Buss. Bounded arithmetic, volume 3 of Studies in Proof Theory.
Lecture Notes. Bibliopolis, Naples, 1986.

[Gen36] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math.
Ann., 112:493–565, 1936.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How
easy is local search? J. Comput. System Sci., 37(1):79–100, 1988. 26th IEEE
Conference on Foundations of Computer Science (Portland, OR, 1985).

[KMS75] G. Kreisel, G.E. Mints, and S.G. Simpson. The use of abstract language
in elementary metamathematics: Some pedagogic examples. In R. Parikh,
editor, Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages
38–131. Springer, 1975.

[Kra93] Jan Kraj́ıček. Fragments of bounded arithmetic and bounded query classes.
Trans. Amer. Math. Soc., 338(2):587–598, 1993.

[KST07] Jan Kraj́ıček, Alan Skelley, and Neil Thapen. NP search problems in low
fragments of bounded arithmetic. J. Symbolic Logic, 72(2):649–672, 2007.

[Min78] Grigori E. Mints. Finite investigations of transfinite derivations. Journal
of Soviet Mathematics, 10:548–596, 1978. Translated from: Zap. Nauchn.
Semin. LOMI 49 (1975). Cited after Grigori Mints. Selected papers in Proof
Theory.Studies in Proof Theory. Bibliopolis, 1992.

[Poh09] Wolfram Pohlers. Proof theory. Universitext. Springer-Verlag, Berlin, 2009.
The first step into impredicativity.

[Pol99] Chris Pollett. Structure and definability in general bounded arithmetic the-
ories. Ann. Pure Appl. Logic, 100(1-3):189–245, 1999.

[Pud06] Pavel Pudlák. Consistency and games—in search of new combinatorial prin-
ciples. In Logic Colloquium ’03, volume 24 of Lect. Notes Log., pages 244–281.
Assoc. Symbol. Logic, La Jolla, CA, 2006.

[PW85] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In A. Dold
and B. Eckmann, editors, Methods in Mathematical Logic (Proceedings Cara-
cas 1983), number 1130 in Lecture Notes in Mathematics, pages 317–340.
Springer, 1985.

[ST07] Alan Skelley and Neil Thapen. The provable total search problems of bounded
arithmetic, 2007. Typeset manuscript.

[Tai68] William W. Tait. Normal derivability in classical logic. In J. Barwise, editor,
The Syntax and Semantics of Infinitatry Languages, number 72 in Lecture
Notes in Mathematics, pages 204–236. Springer, 1968.

